Prolog: aritmetica e ricorsione

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Prolog: aritmetica e ricorsione"

Transcript

1 Capitolo 13 Prolog: aritmetica e ricorsione Slide: Aritmetica e ricorsione 13.1 Operatori aritmetici In logica non vi è alcun meccanismo per la valutazione di funzioni, che è fondamentale in un linguaggio di programmazione. In Prolog i numeri interi son rappresentati da termini come s(s(s(0)) dove s(0) indica semplicemente il successore del numero 0, dunque 1. Pertanto richiamando n volte il successore di 0, avremo denito il numero n. Com'è possibile dunque denire le operazioni aritmetiche? Facciamo due esempi: 1 somma(x, 0, X) 2 somma( s (X), Y, s (Z) ) : somma(x, Y, Z) Questo è un esempio di come denire la somma. Partiamo denendo la somma di un numero con 0, poi deniamo la somma di due numeri diversi da 0, cui ci si arriva per induzione. Vediamo invece come denire il prodotto: 1 prodotto (X, 0, 0 ) 2 prodotto (X, s (Y), Z) : prodotto (X, Y, W), somma(x, W, Z) Sebbene sia possibile denire le operazioni matematiche come abbiamo appena visto, tale approccio non è utilizzabile nella pratica, dunque Prolog fornisce dei predicati predeniti per la valutazione delle espressioni. Esistono dunque sia operatori binari che operatori unari, che vediamo qui riassunti: 1

2 2 CAPITOLO 13. PROLOG: ARITMETICA E RICORSIONE Unari Binari -, exp, log, ln, sin, cos, tg +, -, *, \, div, mod Per gli operatori binari, Prolog supporta sia la consueta notazione in- ssa, sia la notazione pressa, dunque le seguenti forme sono equivalenti: +(2, 3) Prolog riconosce come atomi sia i numeri interi, sia quelli in oating point Il predicato is is è uno speciale predicato predenito che consente di valutare le espressioni ed in un certo senso di assegnare dei valori a delle variabili. Vediamo subito come funziona. Intanto anche il predicato is accetta sia la notazione pressa, sia quella inssa: 1 i s (T, Expr ) è equivalente a: 1 T i s Expr Gli operatori sono: T: un atomo numerico o una variabile; Expr: un'espressione. L'espressione Expr viene valutata ed il risultato viene unicato con T. Alcuni esempi renderanno la trattazione più chiara: il seguente esempio unica la variabile X con il risultato della somma In X troveremo dunque il risultato di tale operazione: 1 : X i s yes X=5 l'esempio qui sotto è leggermente più elaborato. Calcola il valore di 2+3 assegnandolo alla variabile X1. Usa poi il valore di X1 per calcolarne l'esponenziale ed unicarlo con X2. Per ultimo calcola X1 X2 e lo unica con X:

3 13.2. IL PREDICATO IS 3 1 : X1 i s 2+3, X2 i s exp (X1), X i s X1 X2. 2 y e s X1=5 X2= X3= adesso utilizziamo invece di una variabile un atomo numerico e confrontiamolo con l'esito di un'operazione aritmetica: 1 : 0 i s yes in questo quarto esempio proviamo a vericare se due espressioni hanno lo stesso risultato: 1 : X i s 2+3, X i s no Dopo il primo goal, la variabile X ha il valore 5, dunque il secondo goal coincide con: 1 : 5 i s 4+1 riprendiamo l'esempio precedente, ma applichiamo una modica: 1 : X i s 2+3, X i s X+1. 2 no È importante notare che alla variabile X, nel secondo goal non viene assegnato il valore X+1 in quanto le variabili sono write-once. Il secondo goal equivale a chiedere se X è uguale a X+1 e chiaramente ciò provoca un fallimento. nel prossimo esempio proviamo ad eettuare un calcolo utilizzando però la variabile Y non istanziata: 1 : X i s Y 1. 2 no Come vediamo otteniamo un fallimento. essere istanziate! Le variabili devono sempre con il prossimo esempio mostriamo che con il predicato is l'ordine dei goal è importante: 1 ( a ) : X i s 2+3, Y i s X+1. 2 (b) : Y i s X+1, X i s 2+3.

4 4 CAPITOLO 13. PROLOG: ARITMETICA E RICORSIONE Come possiamo immaginare infatti, il goal a produce X = 5, Y = 6, mentre il goal b fallirebbe dal momento che X non è istanziata quando si va a svolgere il primo sotto goal. Il predicato is è un esempio di predicato non reversibile e come conseguenza tutte le funzioni che fanno uso di tale predicato non sono in generale reversibili. Un'espressione viene valutata soltanto se è il secondo argomento del predicato is. Lo vediamo con il seguente esempio: 1 p(a,2+3 5). 2 q (X,Y) : p(a,y), X i s Y. 3 : q (X,Y). 4 yes X=17 Y=2+3 5 Come si fa ad arrivare a tale risultato? Il goal q(x, Y ) unica con l'espressione alla seconda riga. Il primo goal di questa espressione unica con il fatto noto, dunque ad Y viene associato , ma tale espressione non viene valutata. Il secondo goal viene unicato assegnando a X il valore dell'espressione contenuta in Y. Questa volta l'espressione viene valutata in quanto è il secondo parametro dell'operatore is Operatori relazionali Prolog fornisce anche degli operatori (con notazione inssa) per confrontare i valori delle espressioni: Op. relazionali >, <, >=, =<, ==, =/= L'ultimo è l'operatore di disuguaglianza. Indicando uno qualunque degli operatori relazionali con REL possiamo dire che tali operatori vengono utilizzati nella forma: 1 Expr1 REL Expr2 Le espressioni Expr1 ed Expr2 vengono valutate (ovviamente devono essere completamente istanziate) ed i loro risultati vengono confrontati.

5 13.4. FUNZIONI Funzioni Volendo denire una funzione di n argomenti, questa può essere realizzata in Prolog tramite un predicato a n+1 argomenti, come segue: 1 f (X1, X2,..., Xn, Y) : <c a l c o l o di Y> Il predicato f accetta n+1 parametri che sono gli n argomenti della funzione e la variabile in cui inserire il risultato. Possiamo vedere ora qualche esempio: fattoriale: la funzione fattoriale è una funzione che prende in input un valore x e restistuisce 1 se x=0, altrimenti restituisce x 1 x. Questo secondo risultato può essere riscritto ricorsivamente come: f attoriale(x) = f attoriale(x 1) x. Sulla base di queste considerazioni possiamo dunque denire una funzione fatt (in realtà è un predicato) che calcola e restituisce proprio il fattoriale: 1 f a t t ( 0, 1 ). 2 f a t t (N,Y) : N>0, N1 i s N 1, f a t t (N1, Y1), Y i s N Y1. A questo punto possiamo provarla: 1 : f a t t (6,X). 2 yes X=720 massimo comun divisore fra due numeri interi positivi: il massimo comune divisore fra due numeri si calcola secondo queste due semplici regole: l'mcd fra X>0 e 0 è X; l'mcd fra X>0 ed Y>0 è pari all'mcd fra em Y e X mod Y. Ricaviamo quindi: 1 mcd(x, 0,X). 2 mcd(x,y, Z) : Y>0, X1 i s X mod Y, mcd(y, X1, Z). valore assoluto: vediamo due possibili formulazioni: 1 abs ( 0, 0 ). 2 abs (X,X) : X>0. 3 abs (X, Y) : X<0, Y i s (X 2 X). o alternativamente:

6 6 CAPITOLO 13. PROLOG: ARITMETICA E RICORSIONE 1 abs (X, X) : X>=0. 2 abs (X, Y) : X<0, Y i s X. parità: scriviamo una funzione che verichi se un numero è pari: 1 p a r i (X) : 0 i s (X mod 2). O in una via più elaborata: 1 p a r i ( 0 ). 2 p a r i (X) : X>0, X1 i s X 1, d i s p a r i (X1). 3 d i s p a r i (X) : X>0, X1 i s X 1, p a r i (X1) Ricorsione ed iterazione Il Prolog non fornisce alcun costrutto per l'iterazione, nessun ciclo for, while, repeat ecc. L'unico meccanismo per ottenere iterazione è la ricorsione. Un particolare tipo di ricorsione è la cosiddetta ricorsione tail. Una funzione ricorsiva tail è una funzione che dopo aver richiamato sè stessa, non eettua altre operazioni. In altre parole f è ricorsiva tail se sul risultato della chiamata ricorsiva di f non vengono eettuate altre operazioni. La ricorsione tail viene equiparata ad una denizione per iterazione. Nel caso di ricorsione la regola generale dice che la valutazione richiede l'uso dello stack ed in particolare il caricamento in cima allo stack di una copia del record d'attivazione della funzione per ogni chiamata della f stessa. Se la funzione è denita con ricorsione tail l'uso dello stack è inutile. Cerchiamo di capire ciò con un esempio. Consideriamo il seguente blocco di pseudo codice: (X): if X = 0 then g(x) else f(x 1) Supponiamo di richiamare f(2). Nello stack viene inserito un record di attivazione per contenente < X = 2,... >. Poi viene richiamata dal codice la funzione stessa, ma con argomento 1: f(1). Nello stack avremo quindi un nuovo record di attivazione: < X = 1,... >, < X = 2,... >. A questo punto viene richiamata f(0) e lo stack assume la forma: < X = 0,... >, < X = 1,... >, < X = 2,... >. A questo punto si può calcolare g(0) (e la sua chiamata provocherà l'aggiunta nello stack di un'altra voce < X = 0,... > in testa). All'uscita di g(0) viene rimosso il primo record di attivazione, e poi man mano tutti gli altri: prima il record corrispondente a f(0), poi a f(1), poi a f(2). Il salvataggio dei valori nello stack è necessario

7 13.5. RICORSIONE ED ITERAZIONE 7 per poter poi eettuare delle operazioni all'uscita delle varie funzioni, ma avendo usato la ricorsione tail non vi saranno altre elaborazioni all'uscita da una chiamata di funzione. Questo ci fa capire dunque che il salvataggio nello stack per tali funzioni è inutile e quindi si può attuare un'ottimizzazione. L'ottimizzazione della ricorsione tail consiste nel valutare una funzione ricorsiva tail f mediante un processo iterativo, cioè caricando un solo record di attivazione per f sullo stack di esecuzione. Con questa ottimizzazione non servirà in memoria uno spazio proporzionale al numero di chiamate ricorsive, ma uno spazio costante. In Prolog l'ottimizzazione della ricorsione tail risulta più complicata a causa del non determinismo e della presenza di punti di scelta nella denizione delle clausole. A questo proposito vediamo un piccolo esempio: 1 p(x) : c1 (X), g (X). 2 p(x) : c2 (X), h1 (X,Y), p(y). 3 p(x) : c3 (X), h2 (X,Y), p(y). Se viene scelta la seconda clausola per valutare il goal p(z), bisogna ricordarsi che la terza è ancora un punto di scelta aperto e bisogna mantenere alcune informazioni nel record di attivazione di p(z). Se invece viene scelta la terza (in generale l'ultima) clausola, non è più necessario mantenere alcuna informazione nel record di attivazione dal momento che non vi sono punti di scelta aperti e l'ottimizzazione può essere eettuata. Quindi in Prolog l'ottimizzazione della ricorsione tail è possibile solo se la scelta nella valutazione di un predicato p è deterministica o, meglio, se al momento della chiamata ricorsiva (n + 1)-esima di p non vi sono alternative aperte per la chiamata al passo n-esimo (ossia alternative che potrebbero essere considerate in fase di backtracking). Quasi tutti gli interpreti Prolog eettuano l'ottimizzazione della ricorsione tail ed è pertanto conveniente usare il più possibile ricorsione di tipo tail. Riprendiamo la denizione della funzione fattoriale: 1 f a t t ( 0, 1 ). 2 f a t t (N,Y) : N>0, N1 i s N 1, f a t t (N1, Y1), Y i s N Y1. Come possiamo notare, tale funzione non è ricorsiva tail in quanto dopo la chiamata ricorsiva di fatt nella seconda clausola si eettua un'ulteriore elaborazione, proprio sul risultato di tale funzione. Vediamo come sia possibile riscrivere questa funzione come ricorsiva tail: 1 f a t t 1 (N,Y) : f a t t 1 (N, 1, 1,Y). 2 f a t t 1 (N,M,A,A) : M>N. 3 f a t t 1 (N,M, Ai, Ao) : At i s Ai M, M1 i s M+1, f a t t 1 (N,M1, At, Ao).

8 8 CAPITOLO 13. PROLOG: ARITMETICA E RICORSIONE dove si è fatto uso di Ai e Ao che sono rispettivamente un accumulatore in ingresso (inizializzato a 1) ed un accumulatore in uscita. Sono cioè due contatori, uno passato in ingresso ed uno fornito in uscita che, all'ultima iterazione, corrisponderà al valore del fattoriale. Vediamo un'ultimo esempio: come realizzare un programma che calcoli la successione di Fibonacci. Lo facciamo conu na funzione non ricorsiva tail: 1 f i b o ( 0, 0 ). 2 f i b o ( 1, 1 ). 3 f i b o (X, Z) : Y1 i s X 1, Y2 i s X 2, f i b o (Y1,A), f i b o (Y2,B), Z i s A+B.

TABELLA OPERATORI ARITMETICI

TABELLA OPERATORI ARITMETICI ARITMETICA E RICORSIONE Non esiste, in logica, alcun meccanismo per la valutazione di funzioni, operazione fondamentale in un linguaggio di programmazione I numeri interi possono essere rappresentati come

Dettagli

Algoritmo. I dati su cui opera un'istruzione sono forniti all'algoritmo dall'esterno oppure sono il risultato di istruzioni eseguite precedentemente.

Algoritmo. I dati su cui opera un'istruzione sono forniti all'algoritmo dall'esterno oppure sono il risultato di istruzioni eseguite precedentemente. Algoritmo Formalmente, per algoritmo si intende una successione finita di passi o istruzioni che definiscono le operazioni da eseguire su dei dati (=istanza del problema): in generale un algoritmo è definito

Dettagli

Ricorsione. Laboratorio di Programmazione II Corso di Laurea in Bioinformatica Dipartimento di Informatica - Università di Verona.

Ricorsione. Laboratorio di Programmazione II Corso di Laurea in Bioinformatica Dipartimento di Informatica - Università di Verona. Laboratorio di Programmazione II Corso di Laurea in Bioinformatica Dipartimento di Informatica - Università di Verona Sommario Implementazione di Utilizzo ricorsione per processare dati in java vs. multipla

Dettagli

Algebra Booleana ed Espressioni Booleane

Algebra Booleana ed Espressioni Booleane Algebra Booleana ed Espressioni Booleane Che cosa è un Algebra? Dato un insieme E di elementi (qualsiasi, non necessariamente numerico) ed una o più operazioni definite sugli elementi appartenenti a tale

Dettagli

Fondamenti dell Informatica Ricorsione e Iterazione Simona Ronchi Della Rocca (dal testo: Kfoury, Moll and Arbib, cap.5.2)

Fondamenti dell Informatica Ricorsione e Iterazione Simona Ronchi Della Rocca (dal testo: Kfoury, Moll and Arbib, cap.5.2) Fondamenti dell Informatica Ricorsione e Iterazione Simona Ronchi Della Rocca (dal testo: Kfoury, Moll and Arbib, cap.5.2) Definiamo innanzitutto una relazione d ordine tra le funzioni. Siano φ e ψ funzioni

Dettagli

GUIDA BASE DI PASCAL

GUIDA BASE DI PASCAL 1 GUIDA BASE DI PASCAL Un algoritmo, nel suo significato più ampio, è sequenza logica di istruzioni elementari (univocamente interpretabili) che, eseguite in un ordine stabilito, permettono la soluzione

Dettagli

+ / operatori di confronto (espressioni logiche/predicati) / + 5 3 9 = > < Pseudo codice. Pseudo codice

+ / operatori di confronto (espressioni logiche/predicati) / + 5 3 9 = > < Pseudo codice. Pseudo codice Pseudo codice Pseudo codice Paolo Bison Fondamenti di Informatica A.A. 2006/07 Università di Padova linguaggio testuale mix di linguaggio naturale ed elementi linguistici con sintassi ben definita e semantica

Dettagli

AA 2006-07 LA RICORSIONE

AA 2006-07 LA RICORSIONE PROGRAMMAZIONE AA 2006-07 LA RICORSIONE AA 2006-07 Prof.ssa A. Lanza - DIB 1/18 LA RICORSIONE Il concetto di ricorsione nasce dalla matematica Una funzione matematica è definita ricorsivamente quando nella

Dettagli

Gli algoritmi: definizioni e proprietà

Gli algoritmi: definizioni e proprietà Dipartimento di Elettronica ed Informazione Politecnico di Milano Informatica e CAD (c.i.) - ICA Prof. Pierluigi Plebani A.A. 2008/2009 Gli algoritmi: definizioni e proprietà La presente dispensa e da

Dettagli

Brevissima introduzione al Lisp

Brevissima introduzione al Lisp Brevissima introduzione al Lisp Versione preliminare Giorgio Ausiello, Luigi Laura May 16, 2001 Queste pagine costituiscono un riferimento per gli studenti del corso di Informatica Teorica e non hanno

Dettagli

2 Progetto e realizzazione di funzioni ricorsive

2 Progetto e realizzazione di funzioni ricorsive 2 Progetto e realizzazione di funzioni ricorsive Il procedimento costruttivo dato dal teorema di ricorsione suggerisce due fatti importanti. Una buona definizione ricorsiva deve essere tale da garantire

Dettagli

Programmazione I - Laboratorio

Programmazione I - Laboratorio Programmazione I - Laboratorio Esercitazione 2 - Funzioni Gianluca Mezzetti 1 Paolo Milazzo 2 1. Dipartimento di Informatica, Università di Pisa http://www.di.unipi.it/ mezzetti mezzetti di.unipi.it 2.

Dettagli

Programma di Paradigmi e possibili domande. Capitolo 1

Programma di Paradigmi e possibili domande. Capitolo 1 Definizione di macchina astratta Programma di Paradigmi e possibili domande Capitolo 1 Una macchina astratta per il linguaggio L detta ML, è un qualsiasi insieme di algoritmi e strutture dati che permettono

Dettagli

Corso di Informatica

Corso di Informatica Corso di Informatica Modulo T3 1-Sottoprogrammi 1 Prerequisiti Tecnica top-down Programmazione elementare 2 1 Introduzione Lo scopo di questa Unità è utilizzare la metodologia di progettazione top-down

Dettagli

MATLAB. Caratteristiche. Dati. Esempio di programma MATLAB. a = [1 2 3; 4 5 6; 7 8 9]; b = [1 2 3] ; c = a*b; c

MATLAB. Caratteristiche. Dati. Esempio di programma MATLAB. a = [1 2 3; 4 5 6; 7 8 9]; b = [1 2 3] ; c = a*b; c Caratteristiche MATLAB Linguaggio di programmazione orientato all elaborazione di matrici (MATLAB=MATrix LABoratory) Le variabili sono matrici (una variabile scalare equivale ad una matrice di dimensione

Dettagli

Semantica operazionale dei linguaggi di Programmazione

Semantica operazionale dei linguaggi di Programmazione Semantica operazionale dei linguaggi di Programmazione Oggetti sintattici e oggetti semantici Rosario Culmone, Luca Tesei Lucidi tratti dalla dispensa Elementi di Semantica Operazionale R. Barbuti, P.

Dettagli

Appunti del corso di Informatica 1. 6 Introduzione al linguaggio C

Appunti del corso di Informatica 1. 6 Introduzione al linguaggio C Università di Roma Tre Dipartimento di Matematica e Fisica Corso di Laurea in Matematica Appunti del corso di Informatica 1 (IN110 Fondamenti) 6 Introduzione al linguaggio C Marco Liverani (liverani@mat.uniroma3.it)

Dettagli

Lezione 8. La macchina universale

Lezione 8. La macchina universale Lezione 8 Algoritmi La macchina universale Un elaboratore o computer è una macchina digitale, elettronica, automatica capace di effettuare trasformazioni o elaborazioni su i dati digitale= l informazione

Dettagli

Appunti del corso di Informatica 1 (IN110 Fondamenti) 6 Introduzione al linguaggio C

Appunti del corso di Informatica 1 (IN110 Fondamenti) 6 Introduzione al linguaggio C Università di Roma Tre Facoltà di Scienze M.F.N. Corso di Laurea in Matematica Appunti del corso di Informatica 1 (IN110 Fondamenti) 6 Introduzione al linguaggio C Marco Liverani (liverani@mat.uniroma3.it)

Dettagli

Corso di Visual Basic (Parte 9)

Corso di Visual Basic (Parte 9) Corso di Visual Basic (Parte 9) di Maurizio Crespi La nona lezione del corso dedicato alla programmazione in Visual Basic si pone lo scopo di illustrare le funzioni definibili dall'utente e il concetto

Dettagli

Idee guida. Finite State Machine (1) Un automa a stati finiti è definito da una 5- pla: FSM = , dove: Finite State Machine (2)

Idee guida. Finite State Machine (1) Un automa a stati finiti è definito da una 5- pla: FSM = <Q,,, q0, F>, dove: Finite State Machine (2) Idee guida ASM = FSM con stati generalizzati Le ASM rappresentano la forma matematica di Macchine Astratte che estendono la nozione di Finite State Machine Ground Model (descrizioni formali) Raffinamenti

Dettagli

Brevissima introduzione al Lisp

Brevissima introduzione al Lisp Brevissima introduzione al Lisp Giorgio Ausiello, Luigi Laura 2 marzo 2004 Queste pagine costituiscono un riferimento per gli studenti del corso di Informatica Teorica e non hanno nessuna pretesa di completezza

Dettagli

Interpretazione astratta

Interpretazione astratta Interpretazione astratta By Giulia Costantini (819048) e Giuseppe Maggiore (819050) Contents Interpretazione astratta... 2 Idea generale... 2 Esempio di semantica... 2 Semantica concreta... 2 Semantica

Dettagli

DAL DIAGRAMMA AL CODICE

DAL DIAGRAMMA AL CODICE DAL DIAGRAMMA AL CODICE Un diagramma di flusso Appare, come un insieme di blocchi di forme diverse che contengono le istruzioni da eseguire, collegati fra loro da linee orientate che specificano la sequenza

Dettagli

La selezione binaria

La selezione binaria Andrea Marin Università Ca Foscari Venezia Laurea in Informatica Corso di Programmazione part-time a.a. 2011/2012 Introduzione L esecuzione di tutte le istruzioni in sequenza può non è sufficiente per

Dettagli

Laboratorio di Informatica

Laboratorio di Informatica Laboratorio di Informatica Introduzione a Python Dottore Paolo Parisen Toldin - parisent@cs.unibo.it Argomenti trattati Che cosa è python Variabili Assegnazione Condizionale Iterazione in una lista di

Dettagli

Tipi di Dato Ricorsivi

Tipi di Dato Ricorsivi Tipi di Dato Ricorsivi Luca Abeni September 2, 2015 1 Tipi di Dato Vari linguaggi di programmazione permettono all utente di definire nuovi tipi di dato definendo per ogni nuovo tipo l insieme dei suoi

Dettagli

Descrizione di un algoritmo

Descrizione di un algoritmo Descrizione di un algoritmo Un algoritmo descrive due tipi fondamentali di oper: calcoli ottenibili tramite le oper primitive su tipi di dato (valutazione di espressioni) che consistono nella modifica

Dettagli

PROBLEMA DELLA RICERCA DI UN ELEMENTO IN UN ARRAY E ALGORITMI RISOLUTIVI

PROBLEMA DELLA RICERCA DI UN ELEMENTO IN UN ARRAY E ALGORITMI RISOLUTIVI PROBLEMA DELLA RICERCA DI UN ELEMENTO IN UN ARRAY E ALGORITMI RISOLUTIVI PROBLEMA DELLA RICERCA in termini generali: Dati in input un insieme S di elementi (numeri, caratteri, stringhe, ) e un elemento

Dettagli

I Polinomi. Michele Buizza. L'insieme dei numeri interi lo indicheremo con Z. è domenica = non vado a scuola. signica se e solo se.

I Polinomi. Michele Buizza. L'insieme dei numeri interi lo indicheremo con Z. è domenica = non vado a scuola. signica se e solo se. I Polinomi Michele Buizza 1 Insiemi In questa prima sezione ricordiamo la simbologia che useremo in questa breve dispensa. Iniziamo innanzitutto a ricordare i simboli usati per i principali insiemi numerici.

Dettagli

ALGEBRA DELLE PROPOSIZIONI

ALGEBRA DELLE PROPOSIZIONI Università di Salerno Fondamenti di Informatica Corso di Laurea Ingegneria Corso B Docente: Ing. Giovanni Secondulfo Anno Accademico 2010-2011 ALGEBRA DELLE PROPOSIZIONI Fondamenti di Informatica Algebra

Dettagli

Facoltà di Ingegneria Industriale. Matlab/Octave - Esercitazione 3

Facoltà di Ingegneria Industriale. Matlab/Octave - Esercitazione 3 Facoltà di Ingegneria Industriale Laurea in Ingegneria Energetica, Meccanica e dei Trasporti Matlab/Octave - Esercitazione 3 funzioni definizione ed invocazione delle funzioni semantica dell invocazione

Dettagli

4.1 Modelli di calcolo analisi asintotica e ricorrenze

4.1 Modelli di calcolo analisi asintotica e ricorrenze 4 Esercizi Prima Parte 4.1 Modelli di calcolo analisi asintotica e ricorrenze Esercizio 4 1 Rispondere alle seguenti domande: 1. Come misuriamo l efficienza di un algoritmo?. Quali sono gli algoritmi più

Dettagli

Una funzione è detta ricorsiva se chiama, direttamente o indirettamente, se stessa. In C tutte le funzioni possono essere usate ricorsivamente.

Una funzione è detta ricorsiva se chiama, direttamente o indirettamente, se stessa. In C tutte le funzioni possono essere usate ricorsivamente. Ricorsione Funzioni ricorsive Una funzione è detta ricorsiva se chiama, direttamente o indirettamente, se stessa. In C tutte le funzioni possono essere usate ricorsivamente. Un esempio di funzione ricorsiva

Dettagli

2. Leggi finanziarie di capitalizzazione

2. Leggi finanziarie di capitalizzazione 2. Leggi finanziarie di capitalizzazione Si chiama legge finanziaria di capitalizzazione una funzione atta a definire il montante M(t accumulato al tempo generico t da un capitale C: M(t = F(C, t C t M

Dettagli

Introduzione al MATLAB c Parte 2

Introduzione al MATLAB c Parte 2 Introduzione al MATLAB c Parte 2 Lucia Gastaldi Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ 18 gennaio 2008 Outline 1 M-file di tipo Script e Function Script Function 2 Costrutti di programmazione

Dettagli

Corso di Laurea Ingegneria Informatica Fondamenti di Informatica

Corso di Laurea Ingegneria Informatica Fondamenti di Informatica Corso di Laurea Ingegneria Informatica Fondamenti di Informatica Dispensa 19 Ricorsione A. Miola Marzo 2012 http://www.dia.uniroma3.it/~java/fondinf/ Ricorsione 1 Contenuti q Funzioni e domini definiti

Dettagli

Laboratorio di architettura degli elaboratori Progetto finale AA 2005/2006

Laboratorio di architettura degli elaboratori Progetto finale AA 2005/2006 Laboratorio di architettura degli elaboratori Progetto finale AA 2005/2006 Esercizio 1 - Heapsort Si consideri la seguente struttura dati, chiamata heap. Essa è un albero binario semi-completo (ossia un

Dettagli

Costruzione di Siti Web con PHP e MySQL. Lezione 5: Cicli, Funzioni, Operazioni con Stringhe e Date

Costruzione di Siti Web con PHP e MySQL. Lezione 5: Cicli, Funzioni, Operazioni con Stringhe e Date Costruzione di Siti Web con PHP e MySQL Lezione 5: Cicli, Funzioni, Operazioni con Stringhe e Date Argomenti della lezione In questa lezione si riprenderanno le strutture di controllo, verrà introdotto

Dettagli

Ricerche, ordinamenti e fusioni. 5.1 Introduzione. 5.2 Ricerca completa

Ricerche, ordinamenti e fusioni. 5.1 Introduzione. 5.2 Ricerca completa Ricerche, ordinamenti e fusioni 5.1 Introduzione Questo capitolo ci permette di fare pratica di programmazione utilizzando gli strumenti del linguaggio introdotti finora. A una prima lettura possono essere

Dettagli

Matlab: Funzioni. Informatica B. Daniele Loiacono

Matlab: Funzioni. Informatica B. Daniele Loiacono Matlab: Funzioni Informatica B Funzioni A cosa servono le funzioni? 3 x = input('inserisci x: '); fx=1 for i=1:x fx = fx*x if (fx>220) y = input('inserisci y: '); fy=1 for i=1:y fy = fy*y A cosa servono

Dettagli

1 introdurre le monete per l importo necessario. 2 selezionare la quantità di zucchero. 3 selezionare la bevanda desiderata

1 introdurre le monete per l importo necessario. 2 selezionare la quantità di zucchero. 3 selezionare la bevanda desiderata Esempi di Problema: Prendere un Caffè al Distributore Università degli Studi di Udine Facoltà di Ingegneria CORSO DI LAUREA IN SCIENZE dell ARCHITETTURA Elementi di Informatica, e Programmi D. Gubiani

Dettagli

Unità B3 Strutture di controllo

Unità B3 Strutture di controllo (A) CONOSCENZA TERMINOLOGICA Dare una breve descrizione dei termini introdotti: I/O su console Package Blocco di controllo Oggetto System.out Oggetto System.in Oggetto Tastiera Metodo readline() Strutture

Dettagli

Proof. Dimostrazione per assurdo. Consideriamo l insieme complementare di P nell insieme

Proof. Dimostrazione per assurdo. Consideriamo l insieme complementare di P nell insieme G Pareschi Principio di induzione Il Principio di Induzione (che dovreste anche avere incontrato nel Corso di Analisi I) consente di dimostrare Proposizioni il cui enunciato è in funzione di un numero

Dettagli

Capitolo 6: Modelli di calcolo per linguaggi imperativi e funzionali

Capitolo 6: Modelli di calcolo per linguaggi imperativi e funzionali Capitolo 6: Modelli di calcolo per linguaggi imperativi e funzionali 1 Modelli imperativi: le RAM (Random Access Machine) I modelli di calcolo imperativi sono direttamente collegati al modello Von Neumann,

Dettagli

SISTEMI DI NUMERAZIONE E CODICI

SISTEMI DI NUMERAZIONE E CODICI SISTEMI DI NUMERAZIONE E CODICI Il Sistema di Numerazione Decimale Il sistema decimale o sistema di numerazione a base dieci usa dieci cifre, dette cifre decimali, da O a 9. Il sistema decimale è un sistema

Dettagli

Laboratorio teorico-pratico per la preparazione alle gare di matematica

Laboratorio teorico-pratico per la preparazione alle gare di matematica Laboratorio teorico-pratico per la preparazione alle gare di matematica Ercole Suppa Liceo Scientifico A. Einstein, Teramo e-mail: ercolesuppa@gmail.com Teramo, 3 dicembre 2014 USR Abruzzo - PLS 2014-2015,

Dettagli

Elementi di Informatica

Elementi di Informatica Università degli Studi di Udine Facoltà di Ingegneria CORSO DI LAUREA IN SCIENZE dell ARCHITETTURA Elementi di Informatica Algoritmi, e Programmi D. Gubiani 29 marzo 2010 D. Gubiani Algoritmi, e Programmi

Dettagli

4 3 4 = 4 x 10 2 + 3 x 10 1 + 4 x 10 0 aaa 10 2 10 1 10 0

4 3 4 = 4 x 10 2 + 3 x 10 1 + 4 x 10 0 aaa 10 2 10 1 10 0 Rappresentazione dei numeri I numeri che siamo abituati ad utilizzare sono espressi utilizzando il sistema di numerazione decimale, che si chiama così perché utilizza 0 cifre (0,,2,3,4,5,6,7,8,9). Si dice

Dettagli

Funzioni e procedure

Funzioni e procedure Funzioni e procedure DOTT. ING. LEONARDO RIGUTINI DIPARTIMENTO INGEGNERIA DELL INFORMAZIONE UNIVERSITÀ DI SIENA VIA ROMA 56 53100 SIENA UFF. 0577234850-7102 RIGUTINI@DII.UNISI.IT HTTP://WWW.DII.UNISI.IT/~RIGUTINI/

Dettagli

Parte 1. Vettori di bit - AA. 2012/13 1.1

Parte 1. Vettori di bit - AA. 2012/13 1.1 1.1 Parte 1 Vettori di bit 1.2 Notazione posizionale Ogni cifra assume un significato diverso a seconda della posizione in cui si trova Rappresentazione di un numero su n cifre in base b: Posizioni a n

Dettagli

Capitolo 2. Operazione di limite

Capitolo 2. Operazione di limite Capitolo 2 Operazione di ite In questo capitolo vogliamo occuparci dell operazione di ite, strumento indispensabile per scoprire molte proprietà delle funzioni. D ora in avanti riguarderemo i domini A

Dettagli

LOGICA DEI PREDICATI. Introduzione. Predicati e termini individuali. Termini individuali semplici e composti

LOGICA DEI PREDICATI. Introduzione. Predicati e termini individuali. Termini individuali semplici e composti Introduzione LOGICA DEI PREDICATI Corso di Intelligenza Artificiale A.A. 2009/2010 Prof. Ing. Fabio Roli La logica dei predicati, o logica del primo ordine (LPO) considera schemi proposizionali composti

Dettagli

CALCOLATORI ELETTRONICI A cura di Luca Orrù. Lezione n.6. Unità di controllo microprogrammata

CALCOLATORI ELETTRONICI A cura di Luca Orrù. Lezione n.6. Unità di controllo microprogrammata Lezione n.6 Unità di controllo microprogrammata 1 Sommario Unità di controllo microprogrammata Ottimizzazione, per ottimizzare lo spazio di memoria occupato Il moltiplicatore binario Esempio di architettura

Dettagli

int f(char *s, short n, float x) {... } /* definizione di f */ int f(char *, short, float); /* prototipo di f */

int f(char *s, short n, float x) {... } /* definizione di f */ int f(char *, short, float); /* prototipo di f */ Prototipi di funzione Il prototipo di una funzione costituisce una dichiarazione della funzione, e come tale fornisce al compilatore le informazioni necessarie a gestire la funzione stessa. Nella definizione

Dettagli

3. Programmazione strutturata (testo di riferimento: Bellini-Guidi)

3. Programmazione strutturata (testo di riferimento: Bellini-Guidi) Corso di Fondamenti di Informatica Corso di Laurea in Ingegneria Meccanica (A-K) 3. (testo di riferimento: Bellini-Guidi) Ing. Agnese Pinto 1 di 28 Linguaggi di programmazione Un programma è un algoritmo

Dettagli

ALGORITMI 1. GLI ALGORITMI 2. IL LINGUAGGIO DI PROGETTO

ALGORITMI 1. GLI ALGORITMI 2. IL LINGUAGGIO DI PROGETTO ALGORITMI 1. GLI ALGORITMI Un algoritmo è la descrizione del percorso risolutivo di un problema per giungere dai dati iniziali ai risultati finali. Scriviamo l algoritmo pensando di rivolgerci a un esecutore,

Dettagli

anno 2014-15 Introduzione all'algoritmica per i Licei 3 Controllo del flusso di esecuzione.

anno 2014-15 Introduzione all'algoritmica per i Licei 3 Controllo del flusso di esecuzione. anno 2014-15 Introduzione all'algoritmica per i Licei 3 Controllo del flusso di esecuzione. Elio Giovannetti Dipartimento di Informatica Università di Torino versione 1 marzo 2015 Quest'opera è distribuita

Dettagli

Linguaggio del calcolatore. Algebra di Boole AND, OR, NOT. Notazione. And e or. Circuiti e reti combinatorie. Appendice A + dispense

Linguaggio del calcolatore. Algebra di Boole AND, OR, NOT. Notazione. And e or. Circuiti e reti combinatorie. Appendice A + dispense Linguaggio del calcolatore Circuiti e reti combinatorie ppendice + dispense Solo assenza o presenza di tensione: o Tante componenti interconnesse che si basano su e nche per esprimere concetti complessi

Dettagli

Serie numeriche e serie di potenze

Serie numeriche e serie di potenze Serie numeriche e serie di potenze Sommare un numero finito di numeri reali è senza dubbio un operazione che non può riservare molte sorprese Cosa succede però se ne sommiamo un numero infinito? Prima

Dettagli

Sommario. Definizione di informatica. Definizione di un calcolatore come esecutore. Gli algoritmi.

Sommario. Definizione di informatica. Definizione di un calcolatore come esecutore. Gli algoritmi. Algoritmi 1 Sommario Definizione di informatica. Definizione di un calcolatore come esecutore. Gli algoritmi. 2 Informatica Nome Informatica=informazione+automatica. Definizione Scienza che si occupa dell

Dettagli

Informatica. Esistono varie definizioni: Scienza dei calcolatori elettronici (Computer Science) Scienza dell informazione

Informatica. Esistono varie definizioni: Scienza dei calcolatori elettronici (Computer Science) Scienza dell informazione Informatica Esistono varie definizioni: Scienza dei calcolatori elettronici (Computer Science) Scienza dell informazione Scienza della rappresentazione, memorizzazione, ed elaborazione dell informazione.

Dettagli

Tecniche avanzate di sintesi di algoritmi: Programmazione dinamica Algoritmi greedy

Tecniche avanzate di sintesi di algoritmi: Programmazione dinamica Algoritmi greedy Tecniche avanzate di sintesi di algoritmi: Programmazione dinamica Algoritmi greedy Dr Maria Federico Programmazione dinamica Solitamente usata per risolvere problemi di ottimizzazione il problema ammette

Dettagli

Derivate Limiti e funzioni continue

Derivate Limiti e funzioni continue Derivate Limiti e funzioni continue Se il valore di una funzione f() si avvicina al valore l quando si avvicina ad 0 diciamo che f() ha come ite l per tendente ad 0. Noi per rappresentare questo fatto

Dettagli

Esercizi Capitolo 2 - Analisi di Algoritmi

Esercizi Capitolo 2 - Analisi di Algoritmi Esercizi Capitolo - Analisi di Algoritmi Alberto Montresor 19 Agosto, 014 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore PDF lo consente, è possibile saltare

Dettagli

APPUNTI SUL LINGUAGGIO DI PROGRAMMAZIONE PASCAL

APPUNTI SUL LINGUAGGIO DI PROGRAMMAZIONE PASCAL APPUNTI SUL LINGUAGGIO DI PROGRAMMAZIONE PASCAL In informatica il Pascal è un linguaggio di programmazione creato da Niklaus Wirth ed é un linguaggio di programmazione strutturata. I linguaggi di programmazione

Dettagli

INFORMATICA - I puntatori Roberta Gerboni

INFORMATICA - I puntatori Roberta Gerboni 1 2 I puntatori in C++ Il puntatore un tipo di dato scalare, che consente di rappresentare gli indirizzi delle variabili allocate in memoria. Dominio: Il dominio di una variabile di tipo puntatore è un

Dettagli

I tipi di dato astratti

I tipi di dato astratti I tipi di dato astratti.0 I tipi di dato astratti c Diego Calvanese Fondamenti di Informatica Corso di Laurea in Ingegneria Elettronica A.A. 001/00.0 0 I tipi di dato astratti La nozione di tipo di dato

Dettagli

Dispense del corso di Introduzione all Informatica della Facoltà Di Scienze Matematiche, Fisiche e Naturali dell Università della Calabria

Dispense del corso di Introduzione all Informatica della Facoltà Di Scienze Matematiche, Fisiche e Naturali dell Università della Calabria Introduzione all Informatica 1 Dispense del corso di Introduzione all Informatica della Facoltà Di Scienze Matematiche, Fisiche e Naturali dell Università della Calabria Programma del corso Programma di

Dettagli

Ripasso delle matematiche elementari: esercizi svolti

Ripasso delle matematiche elementari: esercizi svolti Ripasso delle matematiche elementari: esercizi svolti I Equazioni e disequazioni algebriche 3 Esercizi su equazioni e polinomi di secondo grado.............. 3 Esercizi sulle equazioni di grado superiore

Dettagli

LA NOTAZIONE SCIENTIFICA

LA NOTAZIONE SCIENTIFICA LA NOTAZIONE SCIENTIFICA Definizioni Ricordiamo, a proposito delle potenze del, che = =.000 =.000.000.000.000 ovvero n è uguale ad seguito da n zeri. Nel caso di potenze con esponente negativo ricordiamo

Dettagli

I SISTEMI DI NUMERAZIONE

I SISTEMI DI NUMERAZIONE ISTITUTO DI ISTRUZIONE SUPERIORE G. M. ANGIOY CARBONIA I SISTEMI DI NUMERAZIONE Prof. G. Ciaschetti Fin dall antichità, l uomo ha avuto il bisogno di rappresentare le quantità in modo simbolico. Sono nati

Dettagli

TEORIA DEI NUMERI SUCCESSIONI

TEORIA DEI NUMERI SUCCESSIONI Liceo Scientifico G. Salvemini Corso di preparazione per la gara provinciale delle OLIMPIADI DELLA MATEMATICA INTRO TEORIA DEI NUMERI SUCCESSIONI NUMERI INTERI QUESITO Un quesito (facile) sulle cifre:

Dettagli

Universita' degli Studi di Udine UNA PROPOSTA PER L'INTRODUZIONE DI CAPACITA' DI META-RAPPRESENTAZIONE IN UN LINGUAGGIO DI PROGRAMMAZIONE LOGICA

Universita' degli Studi di Udine UNA PROPOSTA PER L'INTRODUZIONE DI CAPACITA' DI META-RAPPRESENTAZIONE IN UN LINGUAGGIO DI PROGRAMMAZIONE LOGICA Universita' degli Studi di Udine FACOLTA' DI SCIENZE MATEMATICHE FISICHE E NATURALI UNA PROPOSTA PER L'INTRODUZIONE DI CAPACITA' DI META-RAPPRESENTAZIONE IN UN LINGUAGGIO DI PROGRAMMAZIONE LOGICA Relatore:

Dettagli

Progetto Lauree Scientifiche Liceo Classico L.Ariosto, Ferrara Dipartimento di Matematica Università di Ferrara 24 Gennaio 2012

Progetto Lauree Scientifiche Liceo Classico L.Ariosto, Ferrara Dipartimento di Matematica Università di Ferrara 24 Gennaio 2012 Progetto Lauree Scientifiche Liceo Classico L.Ariosto, Ferrara Dipartimento di Matematica Università di Ferrara 24 Gennaio 2012 Concetti importanti da (ri)vedere Programmazione imperativa Strutture di

Dettagli

3. La sintassi di Java

3. La sintassi di Java pag.9 3. La sintassi di Java 3.1 I tipi di dati statici In Java, come in Pascal, esistono tipi di dati statici predefiniti e sono i seguenti: byte 8 bit da -128 a 127 short 16 bit coincide con l integer

Dettagli

Algebra di Boole: Concetti di base. Fondamenti di Informatica - D. Talia - UNICAL 1. Fondamenti di Informatica

Algebra di Boole: Concetti di base. Fondamenti di Informatica - D. Talia - UNICAL 1. Fondamenti di Informatica Fondamenti di Informatica Algebra di Boole: Concetti di base Fondamenti di Informatica - D. Talia - UNICAL 1 Algebra di Boole E un algebra basata su tre operazioni logiche OR AND NOT Ed operandi che possono

Dettagli

Capitolo 7: Teoria generale della calcolabilitá

Capitolo 7: Teoria generale della calcolabilitá Capitolo 7: Teoria generale della calcolabilitá 1 Differenti nozioni di calcolabilitá (che seguono da differenti modelli di calcolo) portano a definire la stessa classe di funzioni. Le tecniche di simulazione

Dettagli

Tipologie di macchine di Turing

Tipologie di macchine di Turing Tipologie di macchine di Turing - Macchina di Turing standard - Macchina di Turing con un nastro illimitato in una sola direzione - Macchina di Turing multinastro - Macchina di Turing non deterministica

Dettagli

Libreria standard Java possiede un enorme libreria di classi standard organizzata in vari package che raccolgono le classi secondo un organizzazione

Libreria standard Java possiede un enorme libreria di classi standard organizzata in vari package che raccolgono le classi secondo un organizzazione Libreria standard Java possiede un enorme libreria di classi standard organizzata in vari package che raccolgono le classi secondo un organizzazione basata sul campo d utilizzo. I principali package sono:

Dettagli

razionali Figura 1. Rappresentazione degli insiemi numerici Numeri reali algebrici trascendenti frazionari decimali finiti

razionali Figura 1. Rappresentazione degli insiemi numerici Numeri reali algebrici trascendenti frazionari decimali finiti 4. Insiemi numerici 4.1 Insiemi numerici Insieme dei numeri naturali = {0,1,,3,,} Insieme dei numeri interi relativi = {..., 3,, 1,0, + 1, +, + 3, } Insieme dei numeri razionali n 1 1 1 1 = : n, m \{0}

Dettagli

x u v(p(x, fx) q(u, v)), e poi

x u v(p(x, fx) q(u, v)), e poi 0.1. Skolemizzazione. Ogni enunciato F (o insieme di enunciati Γ) è equisoddisfacibile ad un enunciato universale (o insieme di enunciati universali) in un linguaggio estensione del linguaggio di F (di

Dettagli

Corso sul linguaggio Java

Corso sul linguaggio Java Corso sul linguaggio Java Modulo JAVA1 1.3 - Le strutture di controllo 1 Prerequisiti Istruzioni semplici Strutture di controllo Scittura di semplici applicazioni Java 2 1 Introduzione In molti casi le

Dettagli

1 Serie di Taylor di una funzione

1 Serie di Taylor di una funzione Analisi Matematica 2 CORSO DI STUDI IN SMID CORSO DI ANALISI MATEMATICA 2 CAPITOLO 7 SERIE E POLINOMI DI TAYLOR Serie di Taylor di una funzione. Definizione di serie di Taylor Sia f(x) una funzione definita

Dettagli

16.3.1 Alberi binari di ricerca

16.3.1 Alberi binari di ricerca 442 CAPITOLO 16. STRUTTURE DI DATI DINAMICHE root 7 5 11 2 8 13 10 Figura 16.11 Esempio di albero binario: ogni nodo contiene il dato da immagazzinare e tre puntatori che definiscono le sue relazioni di

Dettagli

FUNZIONI ELEMENTARI - ESERCIZI SVOLTI

FUNZIONI ELEMENTARI - ESERCIZI SVOLTI FUNZIONI ELEMENTARI - ESERCIZI SVOLTI 1) Determinare il dominio delle seguenti funzioni di variabile reale: (a) f(x) = x 4 (c) f(x) = 4 x x + (b) f(x) = log( x + x) (d) f(x) = 1 4 x 5 x + 6 ) Data la funzione

Dettagli

L utility Unix awk [Aho-Weinberger-Kernighan]

L utility Unix awk [Aho-Weinberger-Kernighan] L utility Unix awk [Aho-Weinberger-Kernighan] L utility awk serve per processare file di testo secondo un programma specificato dall utente. L utility awk legge riga per riga i file ed esegue una o più

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

Esercitazione 2 di verifica

Esercitazione 2 di verifica Architettura degli Elaboratori, 27-8 Esercitazione 2 di verifica Soluzione: mercoledì 24 ottobre Una unità di elaborazione U è così definita: Domanda 1 i) possiede al suo interno due componenti logici

Dettagli

Alcune nozioni preliminari di teoria elementare di insiemi e funzioni

Alcune nozioni preliminari di teoria elementare di insiemi e funzioni Alcune nozioni preliminari di teoria elementare di insiemi e funzioni Alberto Pinto Corso di Matematica - NUCT 1 Insiemi 1.1 Generalità Diamo la definizione di insieme secondo Georg Cantor, matematico

Dettagli

Esercizi Capitolo 6 - Alberi binari di ricerca

Esercizi Capitolo 6 - Alberi binari di ricerca Esercizi Capitolo 6 - Alberi binari di ricerca Alberto Montresor 23 settembre 200 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore PDF lo consente, è possibile

Dettagli

INFORMATICA 1 L. Mezzalira

INFORMATICA 1 L. Mezzalira INFORMATICA 1 L. Mezzalira Possibili domande 1 --- Caratteristiche delle macchine tipiche dell informatica Componenti hardware del modello funzionale di sistema informatico Componenti software del modello

Dettagli

Corso di Laurea Ingegneria Informatica Fondamenti di Informatica

Corso di Laurea Ingegneria Informatica Fondamenti di Informatica Corso di Laurea Ingegneria Informatica Fondamenti di Informatica Dispensa 05 La rappresentazione dell informazione Carla Limongelli Ottobre 2011 http://www.dia.uniroma3.it/~java/fondinf/ La rappresentazione

Dettagli

Nozione di algoritmo. Gabriella Trucco

Nozione di algoritmo. Gabriella Trucco Nozione di algoritmo Gabriella Trucco Programmazione Attività con cui si predispone l'elaboratore ad eseguire un particolare insieme di azioni su particolari informazioni (dati), allo scopo di risolvere

Dettagli

Informatica. Fondamenti della Programmazione in Java. Leonardo Vanneschi

Informatica. Fondamenti della Programmazione in Java. Leonardo Vanneschi Informatica Fondamenti della Programmazione in Java Leonardo Vanneschi 1 1. Fondamenti Il primo programma in Java Il programma che stampa a video una sequenza di caratteri (o stringa): class Esempio {

Dettagli

Aritmetica dei Calcolatori 2

Aritmetica dei Calcolatori 2 Laboratorio di Architettura 13 aprile 2012 1 Operazioni bit a bit 2 Rappresentazione binaria con segno 3 Esercitazione Operazioni logiche bit a bit AND OR XOR NOT IN OUT A B A AND B 0 0 0 0 1 0 1 0 0 1

Dettagli

Corso di Laurea Ingegneria Informatica Fondamenti di Informatica

Corso di Laurea Ingegneria Informatica Fondamenti di Informatica Corso di Laurea Ingegneria Informatica Fondamenti di Informatica Dispensa E01 Esempi di programmi A. Miola Ottobre 2011 1 Contenuti Vediamo in questa lezione alcuni primi semplici esempi di applicazioni

Dettagli

Laboratorio di Informatica Lezione 2

Laboratorio di Informatica Lezione 2 Laboratorio di Informatica Lezione 2 Cristian Consonni 30 settembre 2015 Cristian Consonni Laboratorio di Informatica, Lezione 2 1 / 42 Outline 1 Commenti e Stampa a schermo 2 Strutture di controllo 3

Dettagli

Analisi Mat. 1 - Ing. Inform. - Soluzioni del compito del 23-3-06

Analisi Mat. 1 - Ing. Inform. - Soluzioni del compito del 23-3-06 Analisi Mat. - Ing. Inform. - Soluzioni del compito del 3-3-6 Sia p il polinomio di quarto grado definito da pz = z 4. Sia S il settore circolare formato dai numeri complessi che hanno modulo minore o

Dettagli

Fondamenti di Informatica 2. Le operazioni binarie

Fondamenti di Informatica 2. Le operazioni binarie Corso di per il corso di Laurea di Ingegneria Gestionale Le operazioni binarie Università degli Studi di Udine - A.A. 2010-2011 Docente Ing. Sandro Di Giusto Ph.D. 1 L'algebra binaria Il fatto di aver

Dettagli