Formule di Gauss Green

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Formule di Gauss Green"

Transcript

1 Formule di Guss Green In queste lezioni voglimo studire il legme esistente tr integrli in domini bidimensionli ed integrli urvilinei sull frontier di questi. In seguito i ouperemo del problem nlogo nello spzio tridimensionle. Il punto di prtenz essenzile è il Teorem Fondmentle del Clolo, il nome del teorem già indi l su importnz. Questo i die he dt un funzione f C([, b]) ed F un su primitiv vle l seguente uguglinz b f(t) dt = F (b) F (). Come ben spete questo i permette di lolre gli integrli definiti di moltissime funzioni, tutto si ridue trovre un primitiv, ovvero un funzione F tle he F = f. Nel so unidimensionle esiste quindi un legme tr l integrle dell derivt di un funzione nell intervllo [, b] ed i vlori dell stess funzione sull frontier ovvero nei punti e b. Tutto iò si può generlizzre l so di n vribili. Per or onsiderimo n = 2. L frontier di un dominio del pino in generle srà un urv. Rihimimo gli integrli di un funzione su un urv. t un urv semplie e regolre γ prmetrizzt trmite (x(t), y(t)) on t [, b] ed un funzione f ontinu su γ definimo l integrle di f su γ ome γ f ds = b f(x(t), y(t)) x (t) 2 + y (t) 2 dt questo integrle non dipende dll prmetrizzzione m solo dl supporto dell urv. Un ltro onetto he vete già inontrto è quello di integrle di un mpo F (F 1, F 2 ) lungo un urv, he h l interpretzione fisi del lvoro lungo un mmino. Questo si può definire ome < F, t > ds (1) γ dove on <, > indihimo il prodotto slre, mentre t è il mpo definito su γ dto dl vettore tngente ll urv normlizzto d 1. In ltre prole 1 t(x(t), y(t)) = x (t) 2 +y (t) 2 (x (t), y (t)). In questo modo l integrle in (1) si risrive ome b F 1 (x(t), y(t))x (t) + F 2 (x(t), y(t))y (t) dt. (2) 1

2 Questo dipende dll prmetrizzzione solo nell selt dl verso del vettore t, ovvero dl verso di perorrenz dell urv, un modo usule per indire (2) è γ F 1 dx + F 2 dy dove on γ sottintendimo oltre l supporto dell urv nhe il suo orientmento. Le definizioni preedenti si estendono filmente l so in ui γ è dt trmite unione finit di urve regolri. to un dominio hiuso R 2 e due funzioni f e g regolri in, i proponimo di dimostrre le seguenti uguglinze, note ome formule di Guss Green f x dxdy = f dy, g y dxdy = g dx. (3) il verso di perorrenz sull frontier di è quello per ui il dominio rimne ll sinistr dell frontier (vedi Figur 1). Queste uguglinze si possono pensre ome un estensione del teorem fondmentle del lolo in R 2. Prim di dimostre le formule di Guss Green nel so di domini prtiolri vedimo un utile pplizione. Considerimo l funzione f(x, y) = x, llor usndo l prim delle uguglinze in (3) ottenimo dxdy = x dy, (4) il primo membro nell uguglinz di sopr oinide on l misur di (l su re) e l (4) i permette di lolre l re di un insieme trmite un integrle urvilineo. Un risultto nlogo lo trovimo usndo l seond delle formule di Guss Green, in tl so usndo l funzione g(x, y) = y ottenimo dxdy = y dx. 2

3 Esempio 1 Si il erhio di entro l origine e rggio 1, vedimo se è verifit l (4). L re di sppimo he è ugule π. Or seglimo ome prmetrizzzione per l lssi (x(t), y(t)) = (os(t), sin(t)) on t [0, 2π]. Osservimo he quest prmetrizzzione i fornise il orretto verso di perorrenz. Il seondo membro dell (4) divent 2π 0 os 2 (t) dt = π. Eserizio 1 Si h(s) un funzione derivbile e positiv nell intervllo [, b], sppimo he b h(s) ds i d l re dell regione he si trov sotto il grfio dell funzione h. Si verifihi questo ftto ttrverso un delle uguglinze di Guss Green. Sommndo l (4) e l formul he l segue si ottiene, dopo ver diviso per 2, l seguente uguglinz A() = dxdy = 1 y dx + x dy. 2 In luni si quest può essere utile, provte d utilizzrl per risolvere l eserizio he segue. Eserizio 2 t l urv (rdioide) di equzioni prmetrihe x(t) = (1 os t) os t, y(t) = (1 os t) sin t, si loli l re del dominio delimitto d tle urv. Cominimo verifire le formule di Guss Green nel generio rettngolo R = [, b] [, d] (, d) γ 3 (b, d) γ 4 R γ 2 (, ) γ 1 (b, ) Verifihimo l prim delle due uguglinze in (3), l ltr seguirà in modo nlogo. Osservimo he l frontier di R si può srivere ome somm di 4 urve regolri γ 1,, γ 4 le ui prmetrizzzioni sono dte rispettivmente d γ 1 (t, ), t [, b], γ 2 (b, t), t [, d], γ 3 (t, d), t [, b], γ 4 (, t), t [, d]. Abbimo sritto γ 3 e γ 4 per riordri he on 3

4 queste prmetrizzzioni le urve sono perorse in verso opposto quello orretto, periò dovremo operre un mbio di segno. Cominimo srivere il seondo membro dell uguglinz he voglimo dimostrre R f dy = 4 i=1 γ i f dy = b 0 dt + d f(b, t) dt b 0 dt d f(, t) dt. Or onsiderimo il primo membro, utilizzndo le note proprietà per gli integrli doppi e il teorem fondmentle del lolo ottenimo R f x (x, y) dxdy = d ( b ) f x (x, y) dx dy = d f(b, y) f(, y) dy. ui segue l verifi dell uguglinz tr i due membri. Provimo or l prim delle uguglinze di Guss Green in un dominio normle rispetto ll vribile y, supponimo quindi he = {(x, y) R 2 : y d, x 1 (y) x x 2 (y)}, dove x 1 e x 2 sono due funzioni regolri. Utilizzndo le formule di riduzione per gli integrli multipli il primo membro dell prim formul di Guss Green si srive ( d ) x2 (t) d f x (x, y) dx dy = f(x 2 (y), y) f(x 1 (y), y) dy. x 1 (t) ltr prte l frontier di si può dividere ome unione di quttro urve, su γ 1 e γ 3 gli integrli sono nulli dl momento he non è vrizione nell 4

5 vribile y, mentre γ 2 (x 2 (t), t) on t [, d] e γ 4 (x 1 (t), t) on t [, d] (vedi figur di sopr). Come prim mettimo il segno meno dvnti γ 4 per puntulizzre il ftto he on quest prmetrizzzione l urv è perors in verso opposto quello di γ 4. Se ndimo onsiderre il seondo membro nell formul di Guss Green ottenimo d d f dy = f dy + f dy = f(x 2 (t), t) dt f(x 1 (t), t) γ 2 γ 4 d ui segue l tesi. Per ripetere l dimostrzione per l ltr formul di Guss Green bbimo bisogno he il dominio si normle rispetto ll vribile x. L ide per dimostrre le formule di Guss Green nel so di domini più generli onsiste nel dividere il dominio dto in tnti sottodomini in ui già sppimo he vlgono le formule di Guss Green. In tl modo le ose funzionno in qunto gli integrli sulle prti di frontier he ggiungimo si elidono perhé vengono ontte 2 volte on segno opposto. Inftti supponimo he il dominio si ome nell figur di sopr, ovvero = n i=1 i 5

6 e he in ogni i vlgno le formule di Guss Green, llor n n f x (x, y) dxdy = f x (x, y) dxdy = f dy = i i e nlogmente g y (x, y) dxdy = i=1 n i=1 i g y (x, y) dxdy = i=1 i=1 n g dx = i f dy. Se sommimo le due uguglinze in (3) ottenimo l seguente f x + g y dxdy = f dy g dx. (5) Possimo dre un interpretzione interessnte dell (5) introduendo il onetto di divergenz di un mpo F. Si F = (F 1,, F n ) un mpo definito in un dominio di R n (ognun delle F i è un funzione in ) llor si definise l funzione divergenz di F trmite div(f ) = x1 F 1 + x2 F xn F n. Usndo quest definizione possimo osservre he l integrnd del primo membro di (5) orrisponde proprio on l divergenz del mpo F = (f, g). Per qunto rigurd il seondo membro, utilizzndo un prmetrizzzione (he i fornise l orientmento dell urv pproprito) lo risrivimo ome b f(x(t), y(t))y (t) g(x(t), y(t))x (t) dt or osservimo he in ogni punto dell urv il vettore n(x(t), y(t)) = 1 x (t) 2 + y (t) 2 (y (t), x (t)) f dy. è il versore normle ll urv nel punto he h ome verso quello he punt ll esterno del dominio. Riepilogndo l (5) si può risrivere ome divf dxdy = < F, n > ds questo si him nhe Teorem dell ivergenz e i die he dto un mpo regolre in un dominio llor l integrle dell divergenz del mpo nel dominio è ugule ll integrle urvilineo sull frontier di dell omponente del mpo lungo l normle estern, ovvero ll quntità di flusso usente d. 6

7 Eserizio 3 to il mpo F = (x 2 y, xy), lolre il flusso del mpo usente dl qudrto Q = [0, 1] [0, 1]. Vedimo nhe un ltr interpretzione dell (5), seglimo un mpo B = (, b), utilizzndo le formule di Guss Green ottenimo b x y dxdy = dx + b dy. (6) Vedimo il senso dell formul preedente. Rihimimo tle proposito l definizione di rotore di un mpo B (, b, ) definito in R 3, questo srà un vettore vente ome omponenti rotb = ( y b z, z x, b x y ). Quindi l integrnd del primo membro dell (6) si può srivere ome (rotb) z, ovvero ome l terz omponente del vettore rotore di B ( volte rotb si indi nhe ome urlb). In questo modo vedimo he l uguglinz (6) si può srivere nhe ome (si riordi l (1)) (rotb) z dxdy = < B, t > ds. (7) Il seondo membro rppresent il lvoro del mpo di forze B lungo l urv hius. L preedente uguglinz prende il nome di Teorem di Stokes. Il Teorem di Stokes è molto utile per risolvere i seguenti eserizi. Eserizio 4 Clolre il lvoro he deve svolgere il mpo di forze F = (xy, x 2xy) nel trsportre un prtiell lungo l frontier del qudrto Q = {(x, y) R 2 : 0 x 1, 0 y 1} perors in senso ntiorrio. Eserizio 5 Clolre il lvoro he deve svolgere il mpo di forze F = ( x 2 y, xy 2 ) nel trsportre un prtiell lungo l ironferenz di entro l origine e rggio 1 perors in senso ntiorrio. Un pplizione molto interessnte del Teorem di Stokes si h nell teori dei mpi irrotzionli. Sppimo he un ondizione neessri ffinhé un mpo si onservtivo, ovvero he questo si il grdiente di un opportun funzione slre, è he il mpo si irrotzionle ioé he bbi rotore nullo, in ltre prole deve essere x F 2 = y F 1. Quest sppimo he è solo un ondizione neessri m non suffiiente, divent suffiiente se il dominio in ui studimo il mpo verifi lune proprietà geometrihe, d esempio se è un insieme stellto. Or l (7) i permette di estendere l insieme dei domini in ui l irrotzionlità impli l onservtività del mpo. 7

8 efinizione 1 Un dominio si die sempliemente onnesso se dt un qulsisi urv hius e regolre trtti, il suo sostegno è l frontier di un insieme B. Un dominio sempliemente onnesso si può pensre ome un insieme he non h buhi. Proposizione 1 Si F = (F 1, F 2 ) un mpo vettorile irrotzionle definito in un dominio sempliemente onnesso, llor il mpo F srà onservtivo in. imostrzione Sppimo he un ondizione neessri e suffiiente ffinhé un mpo si onservtivo in un dominio è he il lvoro ompiuto dl mpo F su qulsisi urv hius regolre trtti ontenut in si nullo. Or fissimo un urv hius γ e vlutimo il lvoro di F su quest. l momento he è sempliemente onnesso bbimo he esiste un insieme B in tle he l urv γ è l frontier di B. Srivimo l formul di Stokes per il dominio B e ottenimo, riordndoi he il mpo è irrotzionle, < F, t > ds = F 1 dx + F 2 dy = x F 2 y F 1 dxdy = 0. γ γ ui l tesi. Cos possimo dire se il dominio non è sempliemente onnesso? Prim os vedimo ome può essere ftto un tle dominio. Se onsiderimo un insieme on un buo questo non srà sempliemente onnesso, in reltà bst he mnhi un solo punto ll insieme per non essere sempliemente onnesso. Esempio lssio R 2 \ {(0, 0)}. Sppimo he il mpo F = ( y B x 2 +y 2, x x 2 +y 2 ) è irrotzionle definito proprio in R 2 \ {(0, 0)} e non è onservtivo in tle insieme. Il teorem di Stokes i d omunque delle informzioni per i mpi irrotzionli. Supponimo di vere un dominio on un buo ome nell figur he segue Se pplihimo l (6) d un mpo irrotzionle F ottenimo < F, t > ds = 0. L frontier di è formt d due urve γ 1 e γ 2, se pensimo entrmbe le urve perorse in senso ntiorrio, bbimo he il giusto verso di perorrenz (quello he lsi ll sinistr il dominio ) è tle he l urv γ 2 si invee perors in senso orrio, per tle motivo è sritto γ 2 nell figur. L uguglinz di sopr si può risrivere 8

9 Figur 1: < F, t > ds = γ 2 < F, t > ds. γ 1 (8) Periò gli integrli urvilinei sulle due urve oinidono. Se or onsiderimo un terz urv hius γ 3 he non irond il buo, ottenimo, pplindo il teorem di Stokes l dominio in ui ess è l frontier, γ 3 < F, t > ds = 0. Se onsiderimo un qurt urv hius γ 4 he gir ttorno l buo bbimo < F, t > ds = γ 2 < F, t > ds = γ 4 < F, t > ds. γ 1 Queste uguglinze si ottengono pplindo il teorem di Stokes rispettivmente i domini delimitti dlle urve γ 2 e γ 4 e γ 4 e γ 1 (vedi figur 2). Le onsiderzioni preedenti permettono di semplifire, nel so di un mpo irrotzionle, il lolo dell integrle del mpo lungo un qulsisi mmino hiuso. Nell esempio preedente bbimo solo 2 si; o il mmino gir intorno l buo oppure no. Nel primo so l integrle si può lolre segliendo un qulsisi urv he irond il buo, quell he i f più omodo, nel seondo l integrle f 0. Cos suede se l urv non è semplie? Se l urv non è semplie e si ttorigli più volte intorno l buo, llor l integrle è dto dl prodotto dell integrle urvilineo di un qulsisi urv semplie he gir intorno l buo moltiplito per il numero di giri he ompie l urv dt. 9

10 Figur 2: Figur 3: Un dominio on 4 buhi, per lolre l integrle sull urv γ bsterà sommre gli integrli ftti sui due mmini I 1 e I 2 10

11 Risultti nloghi si vrnno qundo il dominio in questione h un numero finito n di buhi. In tl so per spere qunto f l integrle del mpo lung un qulsisi urv hius si proederà nel seguente modo. Si selgono n mmini he irondno ognuno un singolo differente buo, si lolno gli integrli su questi mmini. Suessivmente si vede quli buhi irond l urv dt. L integrle del mpo sull urv srà ugule ll somm degli integrli sui singoli buhi irondti (vedi Figur 3). Periò ondizione neessri e suffiiente ffinhé il mpo si onservtivo è he ognuno degli n integrli ftti sui mmini preselti si ugule 0. Esempio 2 Voglimo dimostrre he il mpo F = ( y2 x 2 (x 2 +y 2 ) 2 ), 2xy (x 2 +y 2 ) 2 ) ) è onservtivo nel suo insieme di definizione R 2 \ {(0, 0)}. Questo è un mpo irrotzionle ome si verifi fendo i loli, d ltr prte l insieme in ui è definito non è sempliemente onnesso, inftti mn un punto. Quindi è un dominio on un buo. Or per vedere se il mpo è onservtivo bsterà lolre l integrle del mpo lungo un qulsisi urv hius he irond l origine. Prendimo d esempio l ironferenz C di entro (0, 0) e rggio 1. In tl so si h 2π < F, t > ds = (sin 2 (t) os 2 (t))( sin(t)) 2 sin(t) os(t) os(t) dt C 0 2π = sin(t) dt = 0. 0 Il mpo è onservtivo! Un suo potenzile è dto dll funzione x x 2 +y 2. 11

Formule di Gauss Green

Formule di Gauss Green Formule di Guss Green In queste lezioni voglimo studire il legme esistente tr integrli in domini bidimensionli ed integrli urvilinei sull frontier di questi. In seguito i ouperemo del problem nlogo nello

Dettagli

La parabola. Fuoco. Direttrice y

La parabola. Fuoco. Direttrice y L prol Definizione: si definise prol il luogo geometrio dei punti del pino equidistnti d un punto fisso detto fuoo e d un rett fiss dett direttrie. Un rppresentzione grfi inditiv dell prol nel pino rtesino

Dettagli

Lezione 7: Rette e piani nello spazio

Lezione 7: Rette e piani nello spazio Lezione 7: Rette e pini nello spzio In quest lezione i metteremo in un riferimento rtesino ortonormle dello spzio. I primi oggetti geometrii he individuimo sono le rette e i pini. Per qunto rigurd le rette

Dettagli

Il lemma di ricoprimento di Vitali

Il lemma di ricoprimento di Vitali Il lemm di ricoprimento di Vitli Si I = {I} un fmigli di intervlli ciusi contenuti in R. Diremo ce l fmigli I ricopre l insieme E nel senso di Vitli (oppure ce I è un ricoprimento di Vitli di E) se per

Dettagli

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) =

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) = Note ed esercizi di Anlisi Mtemtic - (Fosci) Ingegneri dell Informzione - 28-29. Lezione del 7 novembre 28. Questi esercizi sono reperibili dll pgin web del corso ttp://utenti.unife.it/dmino.fosci/didttic/mii89.tml

Dettagli

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma INTEGRALI IMPROPRI. Integrli impropri su intervlli itti Dt un funzione f() continu in [, b), ponimo ε f() = f() ε + qundo il ite esiste. Se tle ite esiste finito, l integrle improprio si dice convergente

Dettagli

I Teoremi di Green, della divergenza (o di Gauss) e di Stokes

I Teoremi di Green, della divergenza (o di Gauss) e di Stokes I Teoremi di Green, dell divergenz o di Guss e di Stokes In R Si un sottoinsieme limitto di R semplice rispetto d entrmbi gli ssi crtesini con costituit dll unione di un numero finito di sostegni di curve

Dettagli

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x Appunti elorti dll prof.ss Biondin Gldi Funzione integrle Si y = f() un funzione continu in un intervllo [; ] e si 0 [; ]; l integrle 0 f()d si definisce Funzione Integrle; si chim funzione integrle in

Dettagli

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x).

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x). OMINI NORMALI. efinizione Sino α(), β() due funzioni continue in un intervllo [, b] IR tli che L insieme del pino (figur 5. pg. ) α() β(). = {(, ) [, b] IR : α() β()} si chim dominio normle rispetto ll

Dettagli

1 Integrali doppi di funzioni a scala su rettangoli

1 Integrali doppi di funzioni a scala su rettangoli INEGRALI DOPPI L prim motivzione per lo studio degli integrli di funzioni di due vribili è il lolo di volumi, in nlogi on l pplizione degli integrli di funzioni di un vribile l lolo di ree. L proedur di

Dettagli

Equivalenza tra equazioni di Lagrange e problemi variazionali

Equivalenza tra equazioni di Lagrange e problemi variazionali Equivlenz tr equzioni di Lgrnge e problemi AM Cherubini 20 Aprile 2007 1 / 21 Problemi Mostrimo or come si possono ricvre sistemi di equzioni con struttur lgrngin in un mbito diverso: prim si er crtterizzt

Dettagli

VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE

VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE Soluzioni di quesiti e prolemi trtti dl Corso Bse Blu di Mtemti volume 5 [] (Es. n. 8 pg. 9 V) Dell prol f ( ) si hnno le seguenti informzioni, tutte

Dettagli

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b Integrle Improprio In queste lezioni riprendimo l teori dell integrzione in un vribile, l ide è di estendere l integrle definito nche in csi in cui l funzione integrnd o l intervllo di integrzione non

Dettagli

UTILIA SULL INTEGRALE MULTIPLO SECONDO RIEMANN

UTILIA SULL INTEGRALE MULTIPLO SECONDO RIEMANN UTILIA SULL INTGRAL MULTIPLO SCONDO RIMANN Avvertenz: tutto iò detto nel seguito vle in R n e non solo in R 2. 1. INTGRAL DI RIMANN SU RTTANGOLI Un insieme R 2 si die essere un rettngolo (hiuso) se = [,b]

Dettagli

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito.

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito. Integrli de niti. Il problem di clcolre l re di un regione pin delimitt d gr ci di funzioni si può risolvere usndo l integrle de nito. L integrle de nito st l problem del clcolo di ree come l equzione

Dettagli

] + [ ] [ ] def. ] e [ ], si ha subito:

] + [ ] [ ] def. ] e [ ], si ha subito: OPE OPERAZIONI BINARIE Definizione di operzione inri Dto un insieme A non vuoto, si him operzione (inri) su A ogni pplizione di A in A In generle, un'operzione su A viene indit on il simolo Se (x, y) è

Dettagli

operazioni con vettori

operazioni con vettori omposizione e somposizione + = operzioni on vettori = + = + Se un vettore può essere dto dll omposizione di due o più vettori, questi vettori omponenti possono essere selti lungo direzioni ortogonli fr

Dettagli

13. EQUAZIONI ALGEBRICHE

13. EQUAZIONI ALGEBRICHE G. Smmito, A. Bernrdo, Formulrio di mtemti Equzioni lgerihe F. Cimolin, L. Brlett, L. Lussrdi. EQUAZIONI ALGEBRICHE. Prinipi di equivlenz Si die identità un'uguglinz tr due espressioni ontenenti un o più

Dettagli

Calcolare l area di una regione piana

Calcolare l area di una regione piana Integrli Integrle definito e re con segno Primitiv di un funzione e integrle indefinito Teorem fondmentle del clcolo integrle Clcolo di ree Metodi di integrzione: per prti e per sostituzione Clcolre l

Dettagli

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n.

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n. AUTOVALORI ED AUTOVETTORI Si V uno spzio vettorile di dimensione finit n. Dicesi endomorfismo di V ogni ppliczione linere f : V V dello spzio vettorile in sé. Se f è un endomorfismo di V in V, considert

Dettagli

Dimostrazione del teorema di Gauss Green nel piano

Dimostrazione del teorema di Gauss Green nel piano imostrzione del teorem di Guss Green nel pino Gli eventuli lettori sono pregti di segnlrmi gli eventuli errori di stmp. Grzie! L.V. Ricordimo che: dominio è l chiusur di un perto; dominio normle regolre

Dettagli

Calcolo integrale per funzioni di una variabile

Calcolo integrale per funzioni di una variabile Clolo integrle per unzioni di un vriile Clolo integrle Integrle deinito Si :[,] R, limitt ξ ξ ξ ξ 4 ξ 5 = 4 5 = Costruimo l somm di Cuhy-Riemnn n n S n j j j j j n j Dove l suddivisione dell intervllo

Dettagli

Argomento 10 Integrali impropri

Argomento 10 Integrali impropri Premess Argomento Integrli impropri Nell Arg. 9 è stt introdott l nozione di integrle definito f() d per funzioni ontinue f : [, b] R. Un derog ll ontinuità di f è nhe stt introdott, m solo per onsiderre

Dettagli

5.4 Il teorema fondamentale del calcolo integrale

5.4 Il teorema fondamentale del calcolo integrale Esercizi 5.3. Si f : R R un funzione continu, e supponimo che f bbi sintoti obliqui per ±. Provre che f è uniformemente continu in R.. Esibire un funzione f : R R limitt e di clsse C, m non uniformemente

Dettagli

Corso di Analisi Matematica Calcolo integrale per funzioni di una variabile

Corso di Analisi Matematica Calcolo integrale per funzioni di una variabile Corso di Anlisi Mtemtic Clcolo integrle per funzioni di un vribile Lure in Informtic e Comuniczione Digitle A.A. 2013/2014 Università di Bri ICD (Bri) Anlisi Mtemtic 1 / 40 1 L integrle come limite di

Dettagli

Problema: Calcolo dell'area di una superficie piana

Problema: Calcolo dell'area di una superficie piana Corso di Lure in Disegno Industrile Corso di Metodi Numerii per il Design Lezione 7 Novemre 00 Integrle definito F. Cliò Prolem: Clolo dell're di un superfiie pin Metodi Numerii per il Design - Lezione

Dettagli

= det b, a, b, c R 3. In quest ottica, il determinante del terzo ordine e caratterizzato dalle seguenti proprieta : a a. c c

= det b, a, b, c R 3. In quest ottica, il determinante del terzo ordine e caratterizzato dalle seguenti proprieta : a a. c c Determinnti n = 3. Propriet Possimo rigurdre il determinnte di un mtrie del terzo ordine ome un funzione delle sue olonne: det b = det [, b,,, b, R 3. In quest otti, il determinnte del terzo ordine e rtterizzto

Dettagli

Le equazioni di secondo grado

Le equazioni di secondo grado Le equzioni di seondo grdo Un equzione è di seondo grdo se, dopo ver pplito i prinipi di equivlenz, si può srivere nell form on 0,, R Not: è nhe detto termine noto. Esempio Sviluppimo l seguente equzione:

Dettagli

CALCOLARE L AREA DI UNA REGIONE PIANA

CALCOLARE L AREA DI UNA REGIONE PIANA INTEGRALI Integrle definito e re con segno Primitiv di un funzione e integrle indefinito Teorem fondmentle del clcolo integrle Clcolo di ree Metodi di integrzione: per prti e per sostituzione CALCOLARE

Dettagli

1. Integrali impropri (o generalizzati)

1. Integrali impropri (o generalizzati) Corso di Lure in Ingegneri delle Teleomunizioni - A.A.- Tri del orso di Anlisi Mtemti L-B. Integrli impropri (o generlizzti) Riferimenti. Brozzi: PCAM, pr..8; Minnj: Mtemti Due, pr.. http://eulero.ing.unibo.it/~brozzi/scam/scam-tr.pdf.

Dettagli

Esercizi della 8 lezione sulla Geomeria Linere ESERCIZI SULLA CIRCONFERENZA ESERCIZI SULLA PARABOLA ESERCIZI SULL' ELLISSE ERCIZI SULL' IPERBOLE

Esercizi della 8 lezione sulla Geomeria Linere ESERCIZI SULLA CIRCONFERENZA ESERCIZI SULLA PARABOLA ESERCIZI SULL' ELLISSE ERCIZI SULL' IPERBOLE Eserizi dell lezione sull Geomeri Linere ESERCIZI SULLA CIRCONFERENZA ESERCIZI SULLA PARABOLA ESERCIZI SULL' ELLISSE ES ERCIZI SULL' IPERBOLE ESERCIZI SULLA CIRCONFERENZA. Determinre l equzione dell ironferenz

Dettagli

F (r(t)), d dt r(t) dt

F (r(t)), d dt r(t) dt Cmpi vettorili Un cmpo vettorile è un funzione vlori vettorili F : A R, con A R n, ove in questo cso l imensione el ominio e el coominio è l stess. F ( 1, 2,..., n ) (f 1 ( 1, 2,..., n ), f 2 ( 1, 2,...,

Dettagli

n! A = lim ; 2 2n (n!) 2 (2n)! n = a2 n a 2n a 2 n a 2n 2 2 = A, n n n+ 1 2

n! A = lim ; 2 2n (n!) 2 (2n)! n = a2 n a 2n a 2 n a 2n 2 2 = A, n n n+ 1 2 Il 3 o psso è provto. 4 o psso Conludimo l dimostrzione: Dl o psso bbimo n! ( e n A = lim ; n n n) d ltronde risult, ome è file verifire, e pertnto di pssi 3 e segue 2 2n (n!) 2 (2n)! n = 2 n 2n 2, 2 π

Dettagli

1 Integrali Doppi e Cambiamento nell Ordine di Integrazione

1 Integrali Doppi e Cambiamento nell Ordine di Integrazione 1 Integrli Doppi e Cmbimento nell Ordine di Integrzione Introduimo il onetto di Integrle Doppio in modo ssolutmente non rigoroso. Considerimo il seguente gr o y d b x Supponimo di dividere il rettngolo

Dettagli

Integrali impropri in R

Integrali impropri in R Integrli impropri in Flvino Bttelli Diprtimento di Scienze Mtemtiche Università Politecnic delle Mrche Ancon Integrli impropri Indichimo con = {1, 2, 3,...} l insieme dei numeri nturli, con 0 = {0, 1,

Dettagli

Definizione (primitiva, integrale indefinito). Data una funzione f diremo che una funzione F è una primitiva di f se

Definizione (primitiva, integrale indefinito). Data una funzione f diremo che una funzione F è una primitiva di f se Cpitolo 6 Integrli L opertore derivt D ssoci d un funzione f l su derivt: Df f 0 Ci ciedimo se è possiile invertire quest operzione, vle dire trovre un funzione l cui derivt si un funzione ssegnt Definizione

Dettagli

Relazioni e funzioni. Relazioni

Relazioni e funzioni. Relazioni Relzioni e unzioni Relzioni Deinizione: dti due insiemi A e B, si deinise un relzione R tr A e B un orrispondenz stilit d un proposizione tr un elemento A e B, in tl so si die he è in relzione on e si

Dettagli

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didattica N 11 Le equazioni di secondo grado ad una incognita

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didattica N 11 Le equazioni di secondo grado ad una incognita 86 Unità Didtti N Le equzioni di seondo grdo d un inognit Unità Didtti N Le equzioni di seondo grdo d un inognit ) L definizione di equzione di seondo grdo d un inognit ) L risoluzione delle equzioni di

Dettagli

Alcune note introduttive alle serie di Fourier.

Alcune note introduttive alle serie di Fourier. Alcune note introduttive lle serie di Fourier. Definizione. Si f : IR IR periodic di periodo e integrbile su [, ]. Diremo coefficienti di Fourier di f i numeri reli = f dx, = IN f cos dx, b = IN e serie

Dettagli

Capitolo 5. Integrali. 5.1 Integrali di funzioni a gradinata

Capitolo 5. Integrali. 5.1 Integrali di funzioni a gradinata Cpitolo 5 Integrli 5.1 Integrli di funzioni grdint Un concetto molto semplice m di fondmentle importnz per l trttzione dell integrle di Riemnn è quello di divisione di un intervllo [, b]. In sostnz si

Dettagli

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didtti N Le equzioni di seondo grdo d un inognit Unità Didtti N Le equzioni di seondo grdo d un inognit ) L definizione di equzione di seondo grdo d un inognit ) L risoluzione delle equzioni di seondo

Dettagli

Simulazione seconda prova parziale

Simulazione seconda prova parziale Simulzione seond prov przile Test. x + dx = x () {( ) + ln [( ) ( + )]} {( ) [( ) ( )]} () + ln + (b) {( ) + ln [( + ) ( + )]} (d) {( + ) + ln [( + ) ( )]}. Si f(x) = x + x. Allor 0 f (y)dy = () (b) ()

Dettagli

Anno 2. Triangoli rettangoli e teorema delle corde

Anno 2. Triangoli rettangoli e teorema delle corde Anno Tringoli rettngoli e teorem delle orde 1 Introduzione In quest lezione impreri d pplire i teoremi di Eulide e di Pitgor e sopriri quli prtiolrità nsondono i tringoli rettngoli on ngoli prtiolri. Infine,

Dettagli

Integrale di Riemann

Integrale di Riemann Integrle di Riemnn Hynek Kovrik Università di Bresci Anlisi Mtemtic Hynek Kovrik (Università di Bresci) Integrle di Riemnn Anlisi Mtemtic / 50 Motivzione: clcolo di re Hynek Kovrik (Università di Bresci)

Dettagli

13 - Integrali Impropri

13 - Integrali Impropri Università degli Studi di Plermo Fcoltà di Economi Diprtimento di Scienze Economiche, Aziendli e Sttistiche Appunti del corso di Mtemtic 3 - Integrli Impropri Accdemico 25/26 M. Tumminello, V. Lcgnin,

Dettagli

VERIFICA DI UN CIRCUITO RESISTIVO CONTENENTE PIÙ GENERATORI CON UN TERMINALE COMUNE E SENZA TERMINALE COMUNE.

VERIFICA DI UN CIRCUITO RESISTIVO CONTENENTE PIÙ GENERATORI CON UN TERMINALE COMUNE E SENZA TERMINALE COMUNE. FCA D UN CCUTO SSTO CONTNNT PÙ GNATO CON UN TMNAL COMUN SNZA TMNAL COMUN. Si verifino quttro iruiti on due genertori: genertori on polrità onorde e un terminle omune genertori on polrità disorde e un terminle

Dettagli

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica Nome Cognome cls 5D 18 Mrzo 01 Problem Verific di mtemtic In un sistem di riferimento crtesino Oy, si consideri l funzione: ln f ( > 0 0 e si determini il vlore del prmetro rele in modo tle che l funzione

Dettagli

Teorema fondamentale del calcolo integrale

Teorema fondamentale del calcolo integrale Clcolo integrle Proprietà dell integrle deinito Teorem dell medi integrle Corollri del Teorem ond. clc. int. Regole di integrzione deinit Clcolo di ree 2 26 Politecnico di Torino 1 Estensione dell integrle

Dettagli

Vettori - Definizione

Vettori - Definizione Vettori - Definizione z Verso Origine Modulo Direzione V y Form geometri x Form nliti Un vettore è un ente geometrio definito d: - Direzione: rett sull qule gie il vettore, he ne indi l orientmento nello

Dettagli

Curve e integrali curvilinei

Curve e integrali curvilinei Curve e integrli curvilinei E. Polini 13 ottobre 214 curve prmetrizzte Un curv prmetrizzt è un funzione : [, b] R n. Al vrire di t nell intervllo [, b] (con < b) il punto (t) descrive un triettori nello

Dettagli

ANALISI REALE E COMPLESSA a.a. 2007-2008

ANALISI REALE E COMPLESSA a.a. 2007-2008 ANALISI REALE E COMPLESSA.. 2007-2008 1 Successioni e serie di funzioni 1.1 Introduzione In questo cpitolo studimo l convergenz di successioni del tipo n f n, dove le f n sono tutte funzioni vlori reli

Dettagli

Integrali dipendenti da un parametro e derivazione sotto il segno di integrale.

Integrali dipendenti da un parametro e derivazione sotto il segno di integrale. 1 Integrli dipendenti d un prmetro e derivzione sotto il segno di integrle. Considerimo l funzione f(x, t) : A [, b] R definit nel rettngolo A [, b], essendo A un sottoinsieme perto di R e [, b] un intervllo

Dettagli

x = x(t) y = y(t) t [a, b]

x = x(t) y = y(t) t [a, b] Dt un curv continu. Curve ed integrli di line : t [, b] i punti () = (x(), y()) e (b) = (x(b), y(b)) si chimno primo e secondo estremo dell curv, rispettivmente. L curv si dice chius se () = (b). L curv

Dettagli

Integrali su intervalli illimitati Criteri di convergenza 1 Integrali di funzioni non limitate Criteri di convergenza 2 Altri integrali impropri

Integrali su intervalli illimitati Criteri di convergenza 1 Integrali di funzioni non limitate Criteri di convergenza 2 Altri integrali impropri Clcolo integrle Integrli su intervlli illimitti Criteri di convergenz Integrli di funzioni non limitte Criteri di convergenz 2 Altri integrli impropri 2 2006 Politecnico di Torino Definizione Considerimo

Dettagli

Esercizi sulle serie di Fourier

Esercizi sulle serie di Fourier Esercizi sulle serie di Fourier Corso di Fisic Mtemtic,.. 3- Diprtimento di Mtemtic, Università di Milno Novembre 3 Sviluppo in serie di Fourier (esponenzile) In questi esercizi, si richiede di sviluppre

Dettagli

Campi. Una funzione F di n variabili reali e a valori in R n è detta campo di vettori. Nel seguito considereremo F : A R n con A aperto di R n.

Campi. Una funzione F di n variabili reali e a valori in R n è detta campo di vettori. Nel seguito considereremo F : A R n con A aperto di R n. Cmpi Ultimo ggiornmento: 18 febbrio 217 Un funzione F di n vribili reli e vlori in R n è dett cmpo di vettori. Nel seguito considereremo F : A R n con A perto di R n. 1. Integrli curvilinei di second specie

Dettagli

Politecnico di Milano Corso di Analisi e Geometria 1. Federico Lastaria

Politecnico di Milano Corso di Analisi e Geometria 1. Federico Lastaria Politecnico di Milno Corso di Anlisi e Geometri Federico Lstri federico.lstri@polimi.it Teoremi per l second prov. Dimostrzioni. 8 Dicembre 208 Indice Teoremi per l second prov in itinere. Dimostrzioni.

Dettagli

La rappresentazione per elencazione consiste nell elencare tutte le coppie ordinate che verificano la relazione

La rappresentazione per elencazione consiste nell elencare tutte le coppie ordinate che verificano la relazione RELAZIONI E FUNZIONI Relzioni inrie Dti ue insiemi non vuoti e (he possono eventulmente oiniere), si ie relzione tr e un qulsisi legge he ssoi elementi elementi. L insieme A è etto insieme i prtenz. L

Dettagli

Politecnico di Milano Corso di Analisi e Geometria 1. Federico Lastaria

Politecnico di Milano Corso di Analisi e Geometria 1. Federico Lastaria Politecnico di Milno orso di Anlisi e Geometri 1 Federico Lstri federico.lstri@polimi.it Integrli di line di prim specie (Integrli di densità lungo cmmini non orientti) Gennio 213 Indice 1 Integrli di

Dettagli

Appunti di calcolo integrale

Appunti di calcolo integrale prte II Integrle definito Liceo Scientifico A. Volt - Milno 23 mrzo 2017 Integrle definito Si y = f (x) un funzione continu in I = [, b]. Si chim trpezoide l figur curviline pin delimitt: dl grfico dell

Dettagli

L ELLISSE 1. L'ellisse come luogo geometrico ellisse fuochi. centro

L ELLISSE 1. L'ellisse come luogo geometrico ellisse fuochi. centro L ELLISSE 1. L ellisse ome luogo geometrio.. Equzione dell ellisse on i fuohi sull sse. 3. Le proprietà dell ellisse.. Clolo dei semissi, dei vertii, dei fuohi e rppresentzione grfi. 5. Equzione dell ellisse

Dettagli

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi:

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi: Integrli Il concetto di integrle nsce per risolvere due clssi di problemi: clcolo delle ree di figure delimitte d curve, clcolo di volumi, clcolo del lvoro di un forz, clcolo dello spzio percorso,... integrle

Dettagli

Integrali in senso generalizzato

Integrali in senso generalizzato Integrli in senso generlizzto Pol Rubbioni Integrzione su domini non itti Definizione.. Un funzione continu f : [, + [ R si dice integrbile in senso generlizzto (brevemente, G-integrbile) se esiste finito

Dettagli

8. Calcolo integrale.

8. Calcolo integrale. Politenio di Milno - Foltà di Arhitettur Corso di Lure in Edilizi Istituzioni di Mtemtihe - Appunti per le lezioni - Anno Ademio 200/20 26 8 Clolo integrle 8 Signifito geometrio dell integrle definito

Dettagli

01 Matematica Liceo \ Unità Didattica N 6 La retta 1

01 Matematica Liceo \ Unità Didattica N 6 La retta 1 Mtemti Lieo \ Unità Didtti N 6 L rett Unità didtti N 6 L rett rtesin ) Equzione vettorile dell rett 2) Equzioni prmetrihe dell rett 3) Equzione dell rett pssnte per due punti 4) Equzione dell rett pssnte

Dettagli

Appunti di Algebra Lineare. Mappe Lineari. 10 maggio 2013

Appunti di Algebra Lineare. Mappe Lineari. 10 maggio 2013 Appunti di Algebr Linere Mppe Lineri 0 mggio 203 Indie Ripsso di Teori 2. Cos è un mpp linere.................................. 2.2 Aluni ftti importnti................................... 3 2 Eserizi 4

Dettagli

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi:

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi: Integrli Il concetto di integrle nsce per risolvere due clssi di problemi: clcolo delle ree di figure delimitte d curve, clcolo di volumi, clcolo del lvoro di un forz, clcolo dello spzio percorso,... integrle

Dettagli

Politecnico di Milano Corso di Analisi e Geometria 1. Federico Lastaria

Politecnico di Milano Corso di Analisi e Geometria 1. Federico Lastaria Teoremi per l second prov. Dimostrzioni. Federico Lstri, Anlisi e Geometri Politecnico di Milno Corso di Anlisi e Geometri Federico Lstri federico.lstri@polimi.it Teoremi per l second prov. Dimostrzioni.

Dettagli

Chapter 1. Integrali doppi

Chapter 1. Integrali doppi Chpter 1 Integrli doppi Nelle presenti note esporremo un pproccio semplificto ll teori degli integrli doppi. efiniremo tli integrli direttmente su domini normli, come limiti di opportune somme integrli.

Dettagli

Come ulteriore sviluppo dell integrazione secondo Riemann, vogliamo dare signi cato all integrale per una classe più ampia di funzioni Z f(x)dx I

Come ulteriore sviluppo dell integrazione secondo Riemann, vogliamo dare signi cato all integrale per una classe più ampia di funzioni Z f(x)dx I Cpitolo 8 Integrli impropri 8. Generlità Come ulteriore sviluppo dell integrzione seondo Riemnn, vogo dre signi to ll integrle per un lsse più mpi di funzioni Z I on I intervllo generio (non hiuso e/o

Dettagli

Integrali in senso generalizzato

Integrali in senso generalizzato Integrli in senso generlizzto Pol Rubbioni Anlisi Mtemtic II - CdL in Ingegneri Informtic ed Elettronic.. 6/7 Integrzione su domini non itti Definizione. Un funzione continu f : [, + [ R si dice integrbile

Dettagli

SOLUZIONE PROBLEMA 1. Punto 1 Osserviamo anzitutto che la funzione

SOLUZIONE PROBLEMA 1. Punto 1 Osserviamo anzitutto che la funzione SOLUZIONE PROBLEMA 1 Punto 1 Osservimo nzitutto che l funzione g(x) = (x b)e,-,. è continu e derivbile in R in qunto composizione di funzioni continue e derivbili. Per discutere l presenz di punti di mssimo

Dettagli

Un polinomio trigonometrico di grado N nell intervallo [ π, π] è una funzione g(x), periodica di periodo 2π, della forma. c n e inx.

Un polinomio trigonometrico di grado N nell intervallo [ π, π] è una funzione g(x), periodica di periodo 2π, della forma. c n e inx. Cpitolo 6 Serie di Fourier 6.1. Introduzione Un polinomio trigonometrico di grdo N nell intervllo [, π] è un funzione g(x), periodic di periodo, dell form g(x) = N n= N c n e inx per un qulche scelt delle

Dettagli

CURVE NELLO SPAZIO LORENZO BRASCO. x i. i=1

CURVE NELLO SPAZIO LORENZO BRASCO. x i. i=1 CURVE NELLO SPAZIO LORENZO BRASCO Indice 1. Preliminri 1 2. Definizioni 3 3. Curve rettificbili 6 4. Riprmetrizzzioni 9 5. Curve nel pino 11 5.1. Curve in form crtesin 11 5.2. Curve in form polre 11 5.3.

Dettagli

3. Funzioni iniettive, suriettive e biiettive (Ref p.14)

3. Funzioni iniettive, suriettive e biiettive (Ref p.14) . Funzioni iniettive, suriettive e iiettive (Ref p.4) Dll definizione di funzione si ricv che, not un funzione y f( ), comunque preso un vlore di pprtenente l dominio di f( ) esiste un solo vlore di y

Dettagli

26/03/2012. Integrale Definito. Calcolo delle Aree. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi:

26/03/2012. Integrale Definito. Calcolo delle Aree. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi: ppunti di nlisi mtemtic: Integrle efinito Il concetto d integrle nsce per risolvere due clssi di prolemi: Integrle efinito lcolo delle ree di fig. delimitte d curve clcolo di volumi clcolo del lvoro di

Dettagli

Campi Vettoriali. Francesca G. Alessio 1 Si dice campo vettoriale in R n un applicazione F : A R n R n. Posto F(x) =

Campi Vettoriali. Francesca G. Alessio 1 Si dice campo vettoriale in R n un applicazione F : A R n R n. Posto F(x) = Cmpi Vettorili Frncesc G. Alessio 1 Si dice cmpo vettorile in R n un ppliczione F : A R n R n. Posto F(x) = (F 1 (x), F 2 (x),..., F n (x)), x A, le funzioni F i : A R n R, i = 1,..., n, che definiscono

Dettagli

Integrali impropri ( ) f x dx. c f x dx. Nel primo caso diciamo che l integrale improprio (o integrale generalizzato)

Integrali impropri ( ) f x dx. c f x dx. Nel primo caso diciamo che l integrale improprio (o integrale generalizzato) Integrli impropri. Introduzione Abbimo introdotto il onetto di integrle onsiderndo unzioni ontinue (o ontinue trtti) in un intervllo limitto. Quest restrizione viene or rimoss onsiderndo dpprim unzioni

Dettagli

" Osservazione. 6.1 Integrale indefinito. R Definizione (Primitiva) E Esempio 6.1 CAPITOLO 6

 Osservazione. 6.1 Integrale indefinito. R Definizione (Primitiva) E Esempio 6.1 CAPITOLO 6 CAPITOLO 6 Clcolo integrle 6. Integrle indefinito L nozione fondmentle del clcolo integrle è quell di funzione primitiv di un funzione f (). Tle nozione è in qulche modo speculre ll nozione di funzione

Dettagli

Anno 5. Applicazione del calcolo degli integrali definiti

Anno 5. Applicazione del calcolo degli integrali definiti Anno 5 Appliczione del clcolo degli integrli definiti 1 Introduzione In quest lezione vedremo come pplicre il clcolo dell integrle definito per determinre le ree di prticolri figure pine, i volumi dei

Dettagli

Il lavoro di una forza

Il lavoro di una forza Il lvoro di un forz Definizione Nello svolgimento che segue, ci limiteremo lvorre in due dimensioni, su un pino. L grn prte dei risultti che troveremo potrà essere estes immeditmente e senz difficoltà

Dettagli

Serie di Potenze. Introduciamo il concetto di convergenza puntuale ed uniforme per successioni. { 0 se 1 < x < 1

Serie di Potenze. Introduciamo il concetto di convergenza puntuale ed uniforme per successioni. { 0 se 1 < x < 1 Serie di Potenze Introducimo il concetto di convergenz puntule ed uniforme per successioni di funzioni. Definizione 1 Si I un intervllo di R. Si dt l vrire di n N l funzione f n : I R. Dicimo che l successione

Dettagli

1) Si ha quindi Un cateto è uguale al prodotto dell ipotenusa per il seno dell angolo opposto.

1) Si ha quindi Un cateto è uguale al prodotto dell ipotenusa per il seno dell angolo opposto. Trigonometri prte esy mtemti Elin pgin TRIANGOLO RETTANGOLO Considerimo i tringoli rettngoli OPQ e OP ' Q A γ C Essi sono simili per ui Q P : QP OP : OP Essendo Q ' P ' QP sin OP OP ottenimo : sen : e

Dettagli

Integrazione per parti. II

Integrazione per parti. II Integrzione per prti. II L regol di integrzione per prti f xgx dx [ f xgx] b f xg x dx f, g funzioni derivbili con funzione derivt continu su [, b], pplict ripetutmente, permette in prticolre di integrre

Dettagli

KIT ESTIVO MATEMATICA A.S. 2015/16 CLASSI SECONDE IeFP OPERATORE GRAFICO

KIT ESTIVO MATEMATICA A.S. 2015/16 CLASSI SECONDE IeFP OPERATORE GRAFICO ZENALE e BUTIINONE KIT ESTIVO MATEMATICA A.S. 0/ CLASSI SECONDE IeFP OPERATORE GRAFICO Al fine di tenere in llenmento le ilità mtemtihe propedeutihe ll lsse terz, onsiglimo lo svolgimento piere di eserizi

Dettagli

S D f = M k (f)(x k x k 1 ). k=1. Dalla definizione discende immediatamente che SD f S D f per ogni

S D f = M k (f)(x k x k 1 ). k=1. Dalla definizione discende immediatamente che SD f S D f per ogni Integrle di Riemnn 1 Funzioni integrbili Dto un intervllo non degenere [, b], indichimo con T[, b] l collezione dei sottoinsiemi finiti di [, b] che contengono {, b}. Ogni D T[, b] si chimerà suddivisione

Dettagli

Matematica A, Area dell Informazione. Complementi al testo

Matematica A, Area dell Informazione. Complementi al testo 1 Preinri Mtemtic A, Are dell Informzione.. 2001-2002, corso prof. Brdi Complementi l testo Proposizione 1 (Proprietà crtteristiche di sup e inf) Si A R un insieme non vuoto e si x R. Allor x = sup A se

Dettagli

8 Equazioni parametriche di II grado

8 Equazioni parametriche di II grado Equzioni prmetrihe di II grdo Un equzione he oltre ll inognit (o lle inognite) ontiene ltre lettere (un o più) si die letterri o prmetri e le lettere sono himte, nhe, prmetri; si suppong he l equzione

Dettagli

FUNZIONI IPERBOLICHE

FUNZIONI IPERBOLICHE FUNZIONI IPERBOLICHE Umberto Mrconi Diprtimento di Mtemtic Pur e Applict Pdov Premess Si [, [, fissto. Voglimo cpire cos signific: w dw perché l funzione integrnd è illimitt. Se considerimo, per b [, [,

Dettagli

EQUAZIONI DI SECONDO GRADO

EQUAZIONI DI SECONDO GRADO Autore: Enrio Mnfui - 30/04/0 EQUAZIONI DI SECONDO GRADO Le equzioni di seondo grdo in un inognit sono uguglinze di due polinomi di ui lmeno uno è di seondo grdo e l ltro è di grdo minore o ugule due.

Dettagli

Volume di un solido di rotazione

Volume di un solido di rotazione Volume di un solido di rotione Si un rco di curv vente equione f. Se f() è un funione continu e non negtiv nell'intervllo limitto e chiuso,, si dimostr che il volume del solido generto dl trpeoide CD in

Dettagli

Capitolo 6. Integrali di funzioni di una variabile

Capitolo 6. Integrali di funzioni di una variabile Cpitolo 6 Integrli di funzioni di un vribile Ci si pone il problem del riuscire misurre l re di figure il cui contorno non è costituit d segmenti. 6. L integrle definito Si f : [, b] R R un funzione limitt

Dettagli

TEORIA ELEMENTARE DEL PROBLEMA DI CAUCHY

TEORIA ELEMENTARE DEL PROBLEMA DI CAUCHY TEORIA ELEMENTARE DEL PROBLEMA DI CAUCHY DANIELE ANDREUCCI DIP. METODI E MODELLI, UNIVERSITÀ LA SAPIENZA VIA A.SCARPA 16, 00161 ROMA, ITALY ndreucci@dmmm.unirom1.it 1. Notzione fondmentle e prime definizioni

Dettagli

Capitolo 2. Il problema del calcolo delle aree

Capitolo 2. Il problema del calcolo delle aree Cpitolo 2 Il prolem del clcolo delle ree Introduzione Il prolem del clcolo delle ree nsce più di 2000 nni f qundo i greci tentrono di clcolre le ree con un metodo detto di esustione. Tle metodo può essere

Dettagli

Area di una superficie piana o gobba 1. Area di una superficie piana. f x dx 0 e quindi :

Area di una superficie piana o gobba 1. Area di una superficie piana. f x dx 0 e quindi : Are di un superficie pin o go Are di un superficie pin L're dell superficie del trpezoide si B ottiene pplicndo l seguente formul: f d [] A T e risult 0 [, ] è f f d 0 e quindi : [] f d f d f d f d c Nel

Dettagli

j Verso la scuola superiore +l calcolo letterale Monomi Polinomi e prodotti notevoli Equazioni

j Verso la scuola superiore +l calcolo letterale Monomi Polinomi e prodotti notevoli Equazioni j Verso l suol superiore +l lolo letterle Monomi Polinomi e prodotti notevoli Equzioni Monomi Il monomio x 4 y è simile : x 4 y 5 +x 4 y x y Due monomi sono simili se hnno l prte letterle ugule e, siome

Dettagli

Integrali impropri fondamentali

Integrali impropri fondamentali Integrli impropri fondmentli ) Studimo il rttere dell integrle improprio dx () x dove > è un numero ssegnto e è un rbitrrio numero rele. Notimo, nzitutto, he l funzione f(x) = è lolmente integrbile in

Dettagli

3) Sia (X, d) uno spazio metrico. Dimostrare che è una distanza su X la funzione

3) Sia (X, d) uno spazio metrico. Dimostrare che è una distanza su X la funzione Anlisi Rele Esercizi 3 ottobre 2008 ) Tutte le distnze introdotte lezione sono invrinti per trslzioni; ovvero d(x y) = d(x + z y + z) per ogni x y e z. Definire su X = R un metric non invrinte per trslzioni.

Dettagli

Facoltà di Economia - Università di Sassari Anno Accademico 2004-2005. Dispense Corso di Econometria Docente: Luciano Gutierrez.

Facoltà di Economia - Università di Sassari Anno Accademico 2004-2005. Dispense Corso di Econometria Docente: Luciano Gutierrez. Fcoltà di Economi - Università di Sssri Anno Accdemico 2004-2005 Dispense Corso di Econometri Docente: Lucino Gutierrez Algebr Linere Progrmm: 1.1 Definizione di mtrice e vettore 1.2 Addizione e sottrzione

Dettagli

Lezione 4: Introduzione al calcolo integrale

Lezione 4: Introduzione al calcolo integrale Lezione 4: Introduzione l clcolo integrle PARTE In quest prim prte si introdurrnno i concetti di integrle indenito, denito e improprio. In prticolre si cercherà di trttre in modo intuitivo l'interpretzione

Dettagli