Formule di Gauss Green

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Formule di Gauss Green"

Transcript

1 Formule di Guss Green In queste lezioni voglimo studire il legme esistente tr integrli in domini bidimensionli ed integrli urvilinei sull frontier di questi. In seguito i ouperemo del problem nlogo nello spzio tridimensionle. Il punto di prtenz essenzile è il Teorem Fondmentle del Clolo, il nome del teorem già indi l su importnz. Questo i die he dt un funzione f C([, b]) ed F un su primitiv vle l seguente uguglinz b f(t) dt = F (b) F (). Come ben spete questo i permette di lolre gli integrli definiti di moltissime funzioni, tutto si ridue trovre un primitiv, ovvero un funzione F tle he F = f. Nel so unidimensionle esiste quindi un legme tr l integrle dell derivt di un funzione nell intervllo [, b] ed i vlori dell stess funzione sull frontier ovvero nei punti e b. Tutto iò si può generlizzre l so di n vribili. Per or onsiderimo n = 2. L frontier di un dominio del pino in generle srà un urv. Rihimimo gli integrli di un funzione su un urv. t un urv semplie e regolre γ prmetrizzt trmite (x(t), y(t)) on t [, b] ed un funzione f ontinu su γ definimo l integrle di f su γ ome γ f ds = b f(x(t), y(t)) x (t) 2 + y (t) 2 dt questo integrle non dipende dll prmetrizzzione m solo dl supporto dell urv. Un ltro onetto he vete già inontrto è quello di integrle di un mpo F (F 1, F 2 ) lungo un urv, he h l interpretzione fisi del lvoro lungo un mmino. Questo si può definire ome < F, t > ds (1) γ dove on <, > indihimo il prodotto slre, mentre t è il mpo definito su γ dto dl vettore tngente ll urv normlizzto d 1. In ltre prole 1 t(x(t), y(t)) = x (t) 2 +y (t) 2 (x (t), y (t)). In questo modo l integrle in (1) si risrive ome b F 1 (x(t), y(t))x (t) + F 2 (x(t), y(t))y (t) dt. (2) 1

2 Questo dipende dll prmetrizzzione solo nell selt dl verso del vettore t, ovvero dl verso di perorrenz dell urv, un modo usule per indire (2) è γ F 1 dx + F 2 dy dove on γ sottintendimo oltre l supporto dell urv nhe il suo orientmento. Le definizioni preedenti si estendono filmente l so in ui γ è dt trmite unione finit di urve regolri. to un dominio hiuso R 2 e due funzioni f e g regolri in, i proponimo di dimostrre le seguenti uguglinze, note ome formule di Guss Green f x dxdy = f dy, g y dxdy = g dx. (3) il verso di perorrenz sull frontier di è quello per ui il dominio rimne ll sinistr dell frontier (vedi Figur 1). Queste uguglinze si possono pensre ome un estensione del teorem fondmentle del lolo in R 2. Prim di dimostre le formule di Guss Green nel so di domini prtiolri vedimo un utile pplizione. Considerimo l funzione f(x, y) = x, llor usndo l prim delle uguglinze in (3) ottenimo dxdy = x dy, (4) il primo membro nell uguglinz di sopr oinide on l misur di (l su re) e l (4) i permette di lolre l re di un insieme trmite un integrle urvilineo. Un risultto nlogo lo trovimo usndo l seond delle formule di Guss Green, in tl so usndo l funzione g(x, y) = y ottenimo dxdy = y dx. 2

3 Esempio 1 Si il erhio di entro l origine e rggio 1, vedimo se è verifit l (4). L re di sppimo he è ugule π. Or seglimo ome prmetrizzzione per l lssi (x(t), y(t)) = (os(t), sin(t)) on t [0, 2π]. Osservimo he quest prmetrizzzione i fornise il orretto verso di perorrenz. Il seondo membro dell (4) divent 2π 0 os 2 (t) dt = π. Eserizio 1 Si h(s) un funzione derivbile e positiv nell intervllo [, b], sppimo he b h(s) ds i d l re dell regione he si trov sotto il grfio dell funzione h. Si verifihi questo ftto ttrverso un delle uguglinze di Guss Green. Sommndo l (4) e l formul he l segue si ottiene, dopo ver diviso per 2, l seguente uguglinz A() = dxdy = 1 y dx + x dy. 2 In luni si quest può essere utile, provte d utilizzrl per risolvere l eserizio he segue. Eserizio 2 t l urv (rdioide) di equzioni prmetrihe x(t) = (1 os t) os t, y(t) = (1 os t) sin t, si loli l re del dominio delimitto d tle urv. Cominimo verifire le formule di Guss Green nel generio rettngolo R = [, b] [, d] (, d) γ 3 (b, d) γ 4 R γ 2 (, ) γ 1 (b, ) Verifihimo l prim delle due uguglinze in (3), l ltr seguirà in modo nlogo. Osservimo he l frontier di R si può srivere ome somm di 4 urve regolri γ 1,, γ 4 le ui prmetrizzzioni sono dte rispettivmente d γ 1 (t, ), t [, b], γ 2 (b, t), t [, d], γ 3 (t, d), t [, b], γ 4 (, t), t [, d]. Abbimo sritto γ 3 e γ 4 per riordri he on 3

4 queste prmetrizzzioni le urve sono perorse in verso opposto quello orretto, periò dovremo operre un mbio di segno. Cominimo srivere il seondo membro dell uguglinz he voglimo dimostrre R f dy = 4 i=1 γ i f dy = b 0 dt + d f(b, t) dt b 0 dt d f(, t) dt. Or onsiderimo il primo membro, utilizzndo le note proprietà per gli integrli doppi e il teorem fondmentle del lolo ottenimo R f x (x, y) dxdy = d ( b ) f x (x, y) dx dy = d f(b, y) f(, y) dy. ui segue l verifi dell uguglinz tr i due membri. Provimo or l prim delle uguglinze di Guss Green in un dominio normle rispetto ll vribile y, supponimo quindi he = {(x, y) R 2 : y d, x 1 (y) x x 2 (y)}, dove x 1 e x 2 sono due funzioni regolri. Utilizzndo le formule di riduzione per gli integrli multipli il primo membro dell prim formul di Guss Green si srive ( d ) x2 (t) d f x (x, y) dx dy = f(x 2 (y), y) f(x 1 (y), y) dy. x 1 (t) ltr prte l frontier di si può dividere ome unione di quttro urve, su γ 1 e γ 3 gli integrli sono nulli dl momento he non è vrizione nell 4

5 vribile y, mentre γ 2 (x 2 (t), t) on t [, d] e γ 4 (x 1 (t), t) on t [, d] (vedi figur di sopr). Come prim mettimo il segno meno dvnti γ 4 per puntulizzre il ftto he on quest prmetrizzzione l urv è perors in verso opposto quello di γ 4. Se ndimo onsiderre il seondo membro nell formul di Guss Green ottenimo d d f dy = f dy + f dy = f(x 2 (t), t) dt f(x 1 (t), t) γ 2 γ 4 d ui segue l tesi. Per ripetere l dimostrzione per l ltr formul di Guss Green bbimo bisogno he il dominio si normle rispetto ll vribile x. L ide per dimostrre le formule di Guss Green nel so di domini più generli onsiste nel dividere il dominio dto in tnti sottodomini in ui già sppimo he vlgono le formule di Guss Green. In tl modo le ose funzionno in qunto gli integrli sulle prti di frontier he ggiungimo si elidono perhé vengono ontte 2 volte on segno opposto. Inftti supponimo he il dominio si ome nell figur di sopr, ovvero = n i=1 i 5

6 e he in ogni i vlgno le formule di Guss Green, llor n n f x (x, y) dxdy = f x (x, y) dxdy = f dy = i i e nlogmente g y (x, y) dxdy = i=1 n i=1 i g y (x, y) dxdy = i=1 i=1 n g dx = i f dy. Se sommimo le due uguglinze in (3) ottenimo l seguente f x + g y dxdy = f dy g dx. (5) Possimo dre un interpretzione interessnte dell (5) introduendo il onetto di divergenz di un mpo F. Si F = (F 1,, F n ) un mpo definito in un dominio di R n (ognun delle F i è un funzione in ) llor si definise l funzione divergenz di F trmite div(f ) = x1 F 1 + x2 F xn F n. Usndo quest definizione possimo osservre he l integrnd del primo membro di (5) orrisponde proprio on l divergenz del mpo F = (f, g). Per qunto rigurd il seondo membro, utilizzndo un prmetrizzzione (he i fornise l orientmento dell urv pproprito) lo risrivimo ome b f(x(t), y(t))y (t) g(x(t), y(t))x (t) dt or osservimo he in ogni punto dell urv il vettore n(x(t), y(t)) = 1 x (t) 2 + y (t) 2 (y (t), x (t)) f dy. è il versore normle ll urv nel punto he h ome verso quello he punt ll esterno del dominio. Riepilogndo l (5) si può risrivere ome divf dxdy = < F, n > ds questo si him nhe Teorem dell ivergenz e i die he dto un mpo regolre in un dominio llor l integrle dell divergenz del mpo nel dominio è ugule ll integrle urvilineo sull frontier di dell omponente del mpo lungo l normle estern, ovvero ll quntità di flusso usente d. 6

7 Eserizio 3 to il mpo F = (x 2 y, xy), lolre il flusso del mpo usente dl qudrto Q = [0, 1] [0, 1]. Vedimo nhe un ltr interpretzione dell (5), seglimo un mpo B = (, b), utilizzndo le formule di Guss Green ottenimo b x y dxdy = dx + b dy. (6) Vedimo il senso dell formul preedente. Rihimimo tle proposito l definizione di rotore di un mpo B (, b, ) definito in R 3, questo srà un vettore vente ome omponenti rotb = ( y b z, z x, b x y ). Quindi l integrnd del primo membro dell (6) si può srivere ome (rotb) z, ovvero ome l terz omponente del vettore rotore di B ( volte rotb si indi nhe ome urlb). In questo modo vedimo he l uguglinz (6) si può srivere nhe ome (si riordi l (1)) (rotb) z dxdy = < B, t > ds. (7) Il seondo membro rppresent il lvoro del mpo di forze B lungo l urv hius. L preedente uguglinz prende il nome di Teorem di Stokes. Il Teorem di Stokes è molto utile per risolvere i seguenti eserizi. Eserizio 4 Clolre il lvoro he deve svolgere il mpo di forze F = (xy, x 2xy) nel trsportre un prtiell lungo l frontier del qudrto Q = {(x, y) R 2 : 0 x 1, 0 y 1} perors in senso ntiorrio. Eserizio 5 Clolre il lvoro he deve svolgere il mpo di forze F = ( x 2 y, xy 2 ) nel trsportre un prtiell lungo l ironferenz di entro l origine e rggio 1 perors in senso ntiorrio. Un pplizione molto interessnte del Teorem di Stokes si h nell teori dei mpi irrotzionli. Sppimo he un ondizione neessri ffinhé un mpo si onservtivo, ovvero he questo si il grdiente di un opportun funzione slre, è he il mpo si irrotzionle ioé he bbi rotore nullo, in ltre prole deve essere x F 2 = y F 1. Quest sppimo he è solo un ondizione neessri m non suffiiente, divent suffiiente se il dominio in ui studimo il mpo verifi lune proprietà geometrihe, d esempio se è un insieme stellto. Or l (7) i permette di estendere l insieme dei domini in ui l irrotzionlità impli l onservtività del mpo. 7

8 efinizione 1 Un dominio si die sempliemente onnesso se dt un qulsisi urv hius e regolre trtti, il suo sostegno è l frontier di un insieme B. Un dominio sempliemente onnesso si può pensre ome un insieme he non h buhi. Proposizione 1 Si F = (F 1, F 2 ) un mpo vettorile irrotzionle definito in un dominio sempliemente onnesso, llor il mpo F srà onservtivo in. imostrzione Sppimo he un ondizione neessri e suffiiente ffinhé un mpo si onservtivo in un dominio è he il lvoro ompiuto dl mpo F su qulsisi urv hius regolre trtti ontenut in si nullo. Or fissimo un urv hius γ e vlutimo il lvoro di F su quest. l momento he è sempliemente onnesso bbimo he esiste un insieme B in tle he l urv γ è l frontier di B. Srivimo l formul di Stokes per il dominio B e ottenimo, riordndoi he il mpo è irrotzionle, < F, t > ds = F 1 dx + F 2 dy = x F 2 y F 1 dxdy = 0. γ γ ui l tesi. Cos possimo dire se il dominio non è sempliemente onnesso? Prim os vedimo ome può essere ftto un tle dominio. Se onsiderimo un insieme on un buo questo non srà sempliemente onnesso, in reltà bst he mnhi un solo punto ll insieme per non essere sempliemente onnesso. Esempio lssio R 2 \ {(0, 0)}. Sppimo he il mpo F = ( y B x 2 +y 2, x x 2 +y 2 ) è irrotzionle definito proprio in R 2 \ {(0, 0)} e non è onservtivo in tle insieme. Il teorem di Stokes i d omunque delle informzioni per i mpi irrotzionli. Supponimo di vere un dominio on un buo ome nell figur he segue Se pplihimo l (6) d un mpo irrotzionle F ottenimo < F, t > ds = 0. L frontier di è formt d due urve γ 1 e γ 2, se pensimo entrmbe le urve perorse in senso ntiorrio, bbimo he il giusto verso di perorrenz (quello he lsi ll sinistr il dominio ) è tle he l urv γ 2 si invee perors in senso orrio, per tle motivo è sritto γ 2 nell figur. L uguglinz di sopr si può risrivere 8

9 Figur 1: < F, t > ds = γ 2 < F, t > ds. γ 1 (8) Periò gli integrli urvilinei sulle due urve oinidono. Se or onsiderimo un terz urv hius γ 3 he non irond il buo, ottenimo, pplindo il teorem di Stokes l dominio in ui ess è l frontier, γ 3 < F, t > ds = 0. Se onsiderimo un qurt urv hius γ 4 he gir ttorno l buo bbimo < F, t > ds = γ 2 < F, t > ds = γ 4 < F, t > ds. γ 1 Queste uguglinze si ottengono pplindo il teorem di Stokes rispettivmente i domini delimitti dlle urve γ 2 e γ 4 e γ 4 e γ 1 (vedi figur 2). Le onsiderzioni preedenti permettono di semplifire, nel so di un mpo irrotzionle, il lolo dell integrle del mpo lungo un qulsisi mmino hiuso. Nell esempio preedente bbimo solo 2 si; o il mmino gir intorno l buo oppure no. Nel primo so l integrle si può lolre segliendo un qulsisi urv he irond il buo, quell he i f più omodo, nel seondo l integrle f 0. Cos suede se l urv non è semplie? Se l urv non è semplie e si ttorigli più volte intorno l buo, llor l integrle è dto dl prodotto dell integrle urvilineo di un qulsisi urv semplie he gir intorno l buo moltiplito per il numero di giri he ompie l urv dt. 9

10 Figur 2: Figur 3: Un dominio on 4 buhi, per lolre l integrle sull urv γ bsterà sommre gli integrli ftti sui due mmini I 1 e I 2 10

11 Risultti nloghi si vrnno qundo il dominio in questione h un numero finito n di buhi. In tl so per spere qunto f l integrle del mpo lung un qulsisi urv hius si proederà nel seguente modo. Si selgono n mmini he irondno ognuno un singolo differente buo, si lolno gli integrli su questi mmini. Suessivmente si vede quli buhi irond l urv dt. L integrle del mpo sull urv srà ugule ll somm degli integrli sui singoli buhi irondti (vedi Figur 3). Periò ondizione neessri e suffiiente ffinhé il mpo si onservtivo è he ognuno degli n integrli ftti sui mmini preselti si ugule 0. Esempio 2 Voglimo dimostrre he il mpo F = ( y2 x 2 (x 2 +y 2 ) 2 ), 2xy (x 2 +y 2 ) 2 ) ) è onservtivo nel suo insieme di definizione R 2 \ {(0, 0)}. Questo è un mpo irrotzionle ome si verifi fendo i loli, d ltr prte l insieme in ui è definito non è sempliemente onnesso, inftti mn un punto. Quindi è un dominio on un buo. Or per vedere se il mpo è onservtivo bsterà lolre l integrle del mpo lungo un qulsisi urv hius he irond l origine. Prendimo d esempio l ironferenz C di entro (0, 0) e rggio 1. In tl so si h 2π < F, t > ds = (sin 2 (t) os 2 (t))( sin(t)) 2 sin(t) os(t) os(t) dt C 0 2π = sin(t) dt = 0. 0 Il mpo è onservtivo! Un suo potenzile è dto dll funzione x x 2 +y 2. 11

La parabola. Fuoco. Direttrice y

La parabola. Fuoco. Direttrice y L prol Definizione: si definise prol il luogo geometrio dei punti del pino equidistnti d un punto fisso detto fuoo e d un rett fiss dett direttrie. Un rppresentzione grfi inditiv dell prol nel pino rtesino

Dettagli

Lezione 7: Rette e piani nello spazio

Lezione 7: Rette e piani nello spazio Lezione 7: Rette e pini nello spzio In quest lezione i metteremo in un riferimento rtesino ortonormle dello spzio. I primi oggetti geometrii he individuimo sono le rette e i pini. Per qunto rigurd le rette

Dettagli

I Teoremi di Green, della divergenza (o di Gauss) e di Stokes

I Teoremi di Green, della divergenza (o di Gauss) e di Stokes I Teoremi di Green, dell divergenz o di Guss e di Stokes In R Si un sottoinsieme limitto di R semplice rispetto d entrmbi gli ssi crtesini con costituit dll unione di un numero finito di sostegni di curve

Dettagli

Il lemma di ricoprimento di Vitali

Il lemma di ricoprimento di Vitali Il lemm di ricoprimento di Vitli Si I = {I} un fmigli di intervlli ciusi contenuti in R. Diremo ce l fmigli I ricopre l insieme E nel senso di Vitli (oppure ce I è un ricoprimento di Vitli di E) se per

Dettagli

VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE

VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE Soluzioni di quesiti e prolemi trtti dl Corso Bse Blu di Mtemti volume 5 [] (Es. n. 8 pg. 9 V) Dell prol f ( ) si hnno le seguenti informzioni, tutte

Dettagli

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) =

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) = Note ed esercizi di Anlisi Mtemtic - (Fosci) Ingegneri dell Informzione - 28-29. Lezione del 7 novembre 28. Questi esercizi sono reperibili dll pgin web del corso ttp://utenti.unife.it/dmino.fosci/didttic/mii89.tml

Dettagli

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito.

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito. Integrli de niti. Il problem di clcolre l re di un regione pin delimitt d gr ci di funzioni si può risolvere usndo l integrle de nito. L integrle de nito st l problem del clcolo di ree come l equzione

Dettagli

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma INTEGRALI IMPROPRI. Integrli impropri su intervlli itti Dt un funzione f() continu in [, b), ponimo ε f() = f() ε + qundo il ite esiste. Se tle ite esiste finito, l integrle improprio si dice convergente

Dettagli

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x Appunti elorti dll prof.ss Biondin Gldi Funzione integrle Si y = f() un funzione continu in un intervllo [; ] e si 0 [; ]; l integrle 0 f()d si definisce Funzione Integrle; si chim funzione integrle in

Dettagli

] + [ ] [ ] def. ] e [ ], si ha subito:

] + [ ] [ ] def. ] e [ ], si ha subito: OPE OPERAZIONI BINARIE Definizione di operzione inri Dto un insieme A non vuoto, si him operzione (inri) su A ogni pplizione di A in A In generle, un'operzione su A viene indit on il simolo Se (x, y) è

Dettagli

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b

Integrale Improprio. f(x) dx =: Osserviamo che questa definizione ha senso dal momento che per ogni y è ben definito l integrale b Integrle Improprio In queste lezioni riprendimo l teori dell integrzione in un vribile, l ide è di estendere l integrle definito nche in csi in cui l funzione integrnd o l intervllo di integrzione non

Dettagli

13. EQUAZIONI ALGEBRICHE

13. EQUAZIONI ALGEBRICHE G. Smmito, A. Bernrdo, Formulrio di mtemti Equzioni lgerihe F. Cimolin, L. Brlett, L. Lussrdi. EQUAZIONI ALGEBRICHE. Prinipi di equivlenz Si die identità un'uguglinz tr due espressioni ontenenti un o più

Dettagli

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x).

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x). OMINI NORMALI. efinizione Sino α(), β() due funzioni continue in un intervllo [, b] IR tli che L insieme del pino (figur 5. pg. ) α() β(). = {(, ) [, b] IR : α() β()} si chim dominio normle rispetto ll

Dettagli

operazioni con vettori

operazioni con vettori omposizione e somposizione + = operzioni on vettori = + = + Se un vettore può essere dto dll omposizione di due o più vettori, questi vettori omponenti possono essere selti lungo direzioni ortogonli fr

Dettagli

Equivalenza tra equazioni di Lagrange e problemi variazionali

Equivalenza tra equazioni di Lagrange e problemi variazionali Equivlenz tr equzioni di Lgrnge e problemi AM Cherubini 20 Aprile 2007 1 / 21 Problemi Mostrimo or come si possono ricvre sistemi di equzioni con struttur lgrngin in un mbito diverso: prim si er crtterizzt

Dettagli

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n.

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n. AUTOVALORI ED AUTOVETTORI Si V uno spzio vettorile di dimensione finit n. Dicesi endomorfismo di V ogni ppliczione linere f : V V dello spzio vettorile in sé. Se f è un endomorfismo di V in V, considert

Dettagli

ANALISI REALE E COMPLESSA a.a. 2007-2008

ANALISI REALE E COMPLESSA a.a. 2007-2008 ANALISI REALE E COMPLESSA.. 2007-2008 1 Successioni e serie di funzioni 1.1 Introduzione In questo cpitolo studimo l convergenz di successioni del tipo n f n, dove le f n sono tutte funzioni vlori reli

Dettagli

1 Integrali Doppi e Cambiamento nell Ordine di Integrazione

1 Integrali Doppi e Cambiamento nell Ordine di Integrazione 1 Integrli Doppi e Cmbimento nell Ordine di Integrzione Introduimo il onetto di Integrle Doppio in modo ssolutmente non rigoroso. Considerimo il seguente gr o y d b x Supponimo di dividere il rettngolo

Dettagli

Corso di Analisi Matematica Calcolo integrale per funzioni di una variabile

Corso di Analisi Matematica Calcolo integrale per funzioni di una variabile Corso di Anlisi Mtemtic Clcolo integrle per funzioni di un vribile Lure in Informtic e Comuniczione Digitle A.A. 2013/2014 Università di Bri ICD (Bri) Anlisi Mtemtic 1 / 40 1 L integrle come limite di

Dettagli

Anno 2. Triangoli rettangoli e teorema delle corde

Anno 2. Triangoli rettangoli e teorema delle corde Anno Tringoli rettngoli e teorem delle orde 1 Introduzione In quest lezione impreri d pplire i teoremi di Eulide e di Pitgor e sopriri quli prtiolrità nsondono i tringoli rettngoli on ngoli prtiolri. Infine,

Dettagli

" Osservazione. 6.1 Integrale indefinito. R Definizione (Primitiva) E Esempio 6.1 CAPITOLO 6

 Osservazione. 6.1 Integrale indefinito. R Definizione (Primitiva) E Esempio 6.1 CAPITOLO 6 CAPITOLO 6 Clcolo integrle 6. Integrle indefinito L nozione fondmentle del clcolo integrle è quell di funzione primitiv di un funzione f (). Tle nozione è in qulche modo speculre ll nozione di funzione

Dettagli

Relazioni e funzioni. Relazioni

Relazioni e funzioni. Relazioni Relzioni e unzioni Relzioni Deinizione: dti due insiemi A e B, si deinise un relzione R tr A e B un orrispondenz stilit d un proposizione tr un elemento A e B, in tl so si die he è in relzione on e si

Dettagli

x = x(t) y = y(t) t [a, b]

x = x(t) y = y(t) t [a, b] Dt un curv continu. Curve ed integrli di line : t [, b] i punti () = (x(), y()) e (b) = (x(b), y(b)) si chimno primo e secondo estremo dell curv, rispettivmente. L curv si dice chius se () = (b). L curv

Dettagli

Vettori - Definizione

Vettori - Definizione Vettori - Definizione z Verso Origine Modulo Direzione V y Form geometri x Form nliti Un vettore è un ente geometrio definito d: - Direzione: rett sull qule gie il vettore, he ne indi l orientmento nello

Dettagli

8. Calcolo integrale.

8. Calcolo integrale. Politenio di Milno - Foltà di Arhitettur Corso di Lure in Edilizi Istituzioni di Mtemtihe - Appunti per le lezioni - Anno Ademio 200/20 26 8 Clolo integrle 8 Signifito geometrio dell integrle definito

Dettagli

Esercizi della 8 lezione sulla Geomeria Linere ESERCIZI SULLA CIRCONFERENZA ESERCIZI SULLA PARABOLA ESERCIZI SULL' ELLISSE ERCIZI SULL' IPERBOLE

Esercizi della 8 lezione sulla Geomeria Linere ESERCIZI SULLA CIRCONFERENZA ESERCIZI SULLA PARABOLA ESERCIZI SULL' ELLISSE ERCIZI SULL' IPERBOLE Eserizi dell lezione sull Geomeri Linere ESERCIZI SULLA CIRCONFERENZA ESERCIZI SULLA PARABOLA ESERCIZI SULL' ELLISSE ES ERCIZI SULL' IPERBOLE ESERCIZI SULLA CIRCONFERENZA. Determinre l equzione dell ironferenz

Dettagli

Integrali dipendenti da un parametro e derivazione sotto il segno di integrale.

Integrali dipendenti da un parametro e derivazione sotto il segno di integrale. 1 Integrli dipendenti d un prmetro e derivzione sotto il segno di integrle. Considerimo l funzione f(x, t) : A [, b] R definit nel rettngolo A [, b], essendo A un sottoinsieme perto di R e [, b] un intervllo

Dettagli

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi:

Integrali. Il concetto di integrale nasce per risolvere due classi di problemi: Integrli Il concetto di integrle nsce per risolvere due clssi di problemi: clcolo delle ree di figure delimitte d curve, clcolo di volumi, clcolo del lvoro di un forz, clcolo dello spzio percorso,... integrle

Dettagli

TEORIA ELEMENTARE DEL PROBLEMA DI CAUCHY

TEORIA ELEMENTARE DEL PROBLEMA DI CAUCHY TEORIA ELEMENTARE DEL PROBLEMA DI CAUCHY DANIELE ANDREUCCI DIP. METODI E MODELLI, UNIVERSITÀ LA SAPIENZA VIA A.SCARPA 16, 00161 ROMA, ITALY ndreucci@dmmm.unirom1.it 1. Notzione fondmentle e prime definizioni

Dettagli

Appunti di Algebra Lineare. Mappe Lineari. 10 maggio 2013

Appunti di Algebra Lineare. Mappe Lineari. 10 maggio 2013 Appunti di Algebr Linere Mppe Lineri 0 mggio 203 Indie Ripsso di Teori 2. Cos è un mpp linere.................................. 2.2 Aluni ftti importnti................................... 3 2 Eserizi 4

Dettagli

Serie di Potenze. Introduciamo il concetto di convergenza puntuale ed uniforme per successioni. { 0 se 1 < x < 1

Serie di Potenze. Introduciamo il concetto di convergenza puntuale ed uniforme per successioni. { 0 se 1 < x < 1 Serie di Potenze Introducimo il concetto di convergenz puntule ed uniforme per successioni di funzioni. Definizione 1 Si I un intervllo di R. Si dt l vrire di n N l funzione f n : I R. Dicimo che l successione

Dettagli

Integrali impropri ( ) f x dx. c f x dx. Nel primo caso diciamo che l integrale improprio (o integrale generalizzato)

Integrali impropri ( ) f x dx. c f x dx. Nel primo caso diciamo che l integrale improprio (o integrale generalizzato) Integrli impropri. Introduzione Abbimo introdotto il onetto di integrle onsiderndo unzioni ontinue (o ontinue trtti) in un intervllo limitto. Quest restrizione viene or rimoss onsiderndo dpprim unzioni

Dettagli

Facoltà di Economia - Università di Sassari Anno Accademico 2004-2005. Dispense Corso di Econometria Docente: Luciano Gutierrez.

Facoltà di Economia - Università di Sassari Anno Accademico 2004-2005. Dispense Corso di Econometria Docente: Luciano Gutierrez. Fcoltà di Economi - Università di Sssri Anno Accdemico 2004-2005 Dispense Corso di Econometri Docente: Lucino Gutierrez Algebr Linere Progrmm: 1.1 Definizione di mtrice e vettore 1.2 Addizione e sottrzione

Dettagli

Integrali curvilinei e integrali doppi

Integrali curvilinei e integrali doppi Integrli curvilinei e integrli doppi Integrli curvilinei di prim specie Prim di inizire l trttzione di questo rgomento dimo l definizione di curv. Per curv nello 3 3 spzio R intendimo un sottoinsieme di

Dettagli

F (r(t)), d dt r(t) dt

F (r(t)), d dt r(t) dt Cmpi vettorili Un cmpo vettorile è un funzione vlori vettorili F : A R, con A R n, ove in questo cso l imensione el ominio e el coominio è l stess. F ( 1, 2,..., n ) (f 1 ( 1, 2,..., n ), f 2 ( 1, 2,...,

Dettagli

1) Si ha quindi Un cateto è uguale al prodotto dell ipotenusa per il seno dell angolo opposto.

1) Si ha quindi Un cateto è uguale al prodotto dell ipotenusa per il seno dell angolo opposto. Trigonometri prte esy mtemti Elin pgin TRIANGOLO RETTANGOLO Considerimo i tringoli rettngoli OPQ e OP ' Q A γ C Essi sono simili per ui Q P : QP OP : OP Essendo Q ' P ' QP sin OP OP ottenimo : sen : e

Dettagli

Risoluzione. dei triangoli. e dei poligoni

Risoluzione. dei triangoli. e dei poligoni UNITÀ Risoluzione dei tringoli e dei poligoni TEORI Relzioni tr lti e ngoli di un tringolo qulunque (sleno) riteri per risolvere i tringoli qulunque 3 re dei tringoli 4 erhi notevoli dei tringoli 5 ltezze,

Dettagli

8 Equazioni parametriche di II grado

8 Equazioni parametriche di II grado Equzioni prmetrihe di II grdo Un equzione he oltre ll inognit (o lle inognite) ontiene ltre lettere (un o più) si die letterri o prmetri e le lettere sono himte, nhe, prmetri; si suppong he l equzione

Dettagli

Le proprietà fondamentali del campo magnetico

Le proprietà fondamentali del campo magnetico 1) Ftti sperimentli. Le proprietà fonmentli el mpo mgnetio Riportimo ue ftti sperimentli: ) Un filo rettilineo infinito perorso orrente I gener un mpo mgnetio on le seguenti proprietà: l intensità ument

Dettagli

Anno 5. Applicazione del calcolo degli integrali definiti

Anno 5. Applicazione del calcolo degli integrali definiti Anno 5 Appliczione del clcolo degli integrli definiti 1 Introduzione In quest lezione vedremo come pplicre il clcolo dell integrle definito per determinre le ree di prticolri figure pine, i volumi dei

Dettagli

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica Nome Cognome cls 5D 18 Mrzo 01 Problem Verific di mtemtic In un sistem di riferimento crtesino Oy, si consideri l funzione: ln f ( > 0 0 e si determini il vlore del prmetro rele in modo tle che l funzione

Dettagli

26/03/2012. Integrale Definito. Calcolo delle Aree. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi:

26/03/2012. Integrale Definito. Calcolo delle Aree. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi: ppunti di nlisi mtemtic: Integrle efinito Il concetto d integrle nsce per risolvere due clssi di prolemi: Integrle efinito lcolo delle ree di fig. delimitte d curve clcolo di volumi clcolo del lvoro di

Dettagli

FUNZIONI IPERBOLICHE

FUNZIONI IPERBOLICHE FUNZIONI IPERBOLICHE Umberto Mrconi Diprtimento di Mtemtic Pur e Applict Pdov Premess Si [, [, fissto. Voglimo cpire cos signific: w dw perché l funzione integrnd è illimitt. Se considerimo, per b [, [,

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2003

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2003 ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. Il cndidto risolv uno dei due problemi e 5 dei quesiti in cui si rticol il questionrio. PROBLEMA Nel pino sono dti: il cerchio di dimetro OA,

Dettagli

EQUAZIONI DI SECONDO GRADO

EQUAZIONI DI SECONDO GRADO Autore: Enrio Mnfui - 30/04/0 EQUAZIONI DI SECONDO GRADO Le equzioni di seondo grdo in un inognit sono uguglinze di due polinomi di ui lmeno uno è di seondo grdo e l ltro è di grdo minore o ugule due.

Dettagli

Liceo Scientifico Sperimentale anno 2002-2003 Problema 1 Bernardo Pedone. ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PNI anno 2002-2003

Liceo Scientifico Sperimentale anno 2002-2003 Problema 1 Bernardo Pedone. ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PNI anno 2002-2003 Liceo Scientifico Sperimentle nno - Problem Bernrdo Pedone ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PNI nno - PROBLEMA Nel pino sono dti: il cerchio γ di dimetro OA =, l rett t tngente γ

Dettagli

Dispense di MATEMATICA PER L INGEGNERIA 4

Dispense di MATEMATICA PER L INGEGNERIA 4 ispense di MATEMATICA PER L INGEGNERIA 4 Qurto trimestre del o nno del Corso di Lure in Ingegneri Elettronic ocente: Murizio Romeo Mggio 25 ii Indice Integrzione delle funzioni di più vribili. Insiemi

Dettagli

La rappresentazione per elencazione consiste nell elencare tutte le coppie ordinate che verificano la relazione

La rappresentazione per elencazione consiste nell elencare tutte le coppie ordinate che verificano la relazione RELAZIONI E FUNZIONI Relzioni inrie Dti ue insiemi non vuoti e (he possono eventulmente oiniere), si ie relzione tr e un qulsisi legge he ssoi elementi elementi. L insieme A è etto insieme i prtenz. L

Dettagli

VERIFICA DI UN CIRCUITO RESISTIVO CONTENENTE PIÙ GENERATORI CON UN TERMINALE COMUNE E SENZA TERMINALE COMUNE.

VERIFICA DI UN CIRCUITO RESISTIVO CONTENENTE PIÙ GENERATORI CON UN TERMINALE COMUNE E SENZA TERMINALE COMUNE. FCA D UN CCUTO SSTO CONTNNT PÙ GNATO CON UN TMNAL COMUN SNZA TMNAL COMUN. Si verifino quttro iruiti on due genertori: genertori on polrità onorde e un terminle omune genertori on polrità disorde e un terminle

Dettagli

1 Integrale delle funzioni a scala

1 Integrale delle funzioni a scala INTEGRALE DELLE FUNZIONI DI UNA VARIABILE Teori di Riemnn 1 Integrle delle funzioni scl (1.1) Definizione Si dice suddivisione di un intervllo chiuso e limitto [, b] un sottoinsieme {,..., n } di [, b]

Dettagli

FUNZIONI CONTINUE A TRATTI E LORO INTEGRALI

FUNZIONI CONTINUE A TRATTI E LORO INTEGRALI FUNZIONI CONTINUE A TRATTI E LORO INTEGRALI Considerimo un funzione f : I R, dove I è un intervllo di R. Si c un punto interno I in cui f è discontinu. Diremo che c è un punto di discontinuità di prim

Dettagli

Pietro Baldi Successioni e serie di funzioni. 1 Convergenza puntuale

Pietro Baldi Successioni e serie di funzioni. 1 Convergenza puntuale Pietro Bldi Successioni e serie di funzioni Testi di riferimento: W. Rudin, Principi di Anlisi Mtemtic, McGrw-Hill Libri Itli; N. Fusco, P. Mrcellini, C. Sbordone, Anlisi Mtemtic Due, Liguori Editore;

Dettagli

Geometria Analitica Domande, Risposte & Esercizi

Geometria Analitica Domande, Risposte & Esercizi Geometri Anliti Domnde, Risposte & Eserizi L ellisse. Dre l definizione di ellisse ome luogo di punti. L ellisse è un luogo di punti, è ioè un insieme di punti del pino le ui distnze d due punti fissi

Dettagli

Scuola di Dottorato in Scienze e Tecnologie dell Informazione e della Comunicazione.

Scuola di Dottorato in Scienze e Tecnologie dell Informazione e della Comunicazione. T. ZOLZZI. Appunti del corso di Introduzione ll Anlisi Funzionle Scuol di Dottorto in Scienze e Tecnologie dell Informzione e dell Comuniczione. NOTA. L utore desider ringrzire le studentesse di dottorto,

Dettagli

Es1 Es2 Es3 Es4 Es5 tot

Es1 Es2 Es3 Es4 Es5 tot Ottore lsse E Verifi sommtiv Cognome Nome rgomenti: onihe, funzione esponenzile e grfii derivti Tempo disposizione: ore Voto Es Es Es Es Es tot.... Considert l ellisse vente ome sse fole l sse, eentriità

Dettagli

Teorema della Divergenza (di Gauss)

Teorema della Divergenza (di Gauss) eorem dell ivergenz (di Guss) i un dominio tridimensionle regolre, l cui frontier è un superficie chius orientt con cmpo normle unitrionˆ uscente d. e F(,,z) F (,,z) i F (,,z) j F (,,z) k è un cmpo vettorile

Dettagli

I PRODOTTI NOTEVOLI. Nel calcolo letterale capita spesso di incontrare moltiplicazioni tra particolari polinomi.

I PRODOTTI NOTEVOLI. Nel calcolo letterale capita spesso di incontrare moltiplicazioni tra particolari polinomi. I PRODOTTI NOTEVOLI Nel lolo letterle pit spesso di inontrre moltiplizioni tr prtiolri polinomi. I reltivi sviluppi si ottengono pplindo le regole fin qui viste, m i risultti, opportunmente semplifiti,

Dettagli

Robotica industriale. Motori a magneti permanenti. Prof. Paolo Rocco (paolo.rocco@polimi.it)

Robotica industriale. Motori a magneti permanenti. Prof. Paolo Rocco (paolo.rocco@polimi.it) Rooti industrile Motori mgneti permnenti Prof. Polo Roo (polo.roo@polimi.it) Generzione di oppi L legge di Lorentz i die he un ri elettri q in moto on veloità v in un mpo mgnetio di intensità B è soggett

Dettagli

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didtti N Le equzioni di seondo grdo d un inognit Unità Didtti N Le equzioni di seondo grdo d un inognit 0) L definizione di equzione di seondo grdo d un inognit 0) L risoluzione delle equzioni di

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione straordinaria

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione straordinaria ESAME DI STAT DI LICE SCIENTIFIC CRS DI RDINAMENT 00 Sessione strordinri Il cndidto risolv uno dei due problemi e 5 dei 0 quesiti in cui si rticol il questionrio. PRBLEMA Con riferimento un sistem monometrico

Dettagli

A.A.2009/10 Fisica 1 1

A.A.2009/10 Fisica 1 1 Mhine termihe e frigoriferi Un mhin termi è un mhin he, grzie un sequenz i trsformzioni termoinmihe i un t sostnz, proue lvoro he può essere utilizzto. Un mhin solitmente lvor su i un ilo i trsformzioni

Dettagli

Appunti di Analisi Matematica 1

Appunti di Analisi Matematica 1 Appunti di Anlisi Mtemtic 1 MASTER IN ECONOMIA DIGITALE & e-business Centro per lo studio dei sistemi complessi Università di Sien Mrzo 2005 Prof. Polo Nistri Un funzione (o ppliczione) tr due insiemi

Dettagli

Il problema delle aree. Metodo di esaustione.

Il problema delle aree. Metodo di esaustione. INTEGRALE DEFINITO. DEFINIZIONE E SIGNIFICATO GEOMETRICO. PROPRIETA DELL INTEGRALE DEFINITO. FUNZIONE INTEGRALE. TEOREMA DELLA MEDIA. TEOREMA FONDAMENTALE DEL CALCOLO INTEGRALE. FORMULA DI LEIBNITZ NEWTON.

Dettagli

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo:

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo: Sistemi lineri Un equzione linere nelle n incognite x 1, x 2, x,, x n è un equzione nell qule le incognite ppiono solo con esponente 1, ossi del tipo: 1 x 1 + 2 x 2 + x +!+ n x n = b con 1, 2,,, n numeri

Dettagli

Successioni di funzioni

Successioni di funzioni Successioni di funzioni 3.1 Introduzione Considerimo l successione (x n ) n0,icuiterminisono 1, x,x 2,x 3,..., x n,... Si trtt dell progressione geometric di termine inizile 1 e rgione x, che bbimo già

Dettagli

ESERCIZI IN PIÙ ESERCIZI DI FINE CAPITOLO

ESERCIZI IN PIÙ ESERCIZI DI FINE CAPITOLO L RLZIONI L FUNZIONI serizi in più SRIZI IN PIÙ SRIZI I FIN PITOLO TST Nell insieme ell figur, l relzione rppresentt goe ell o elle proprietà: TST L relzione «essere isenente i», efinit nell insieme egli

Dettagli

Equazioni di secondo grado Capitolo

Equazioni di secondo grado Capitolo Equzioni i seono gro Cpitolo Risoluzione lgeri Verifi per l lsse seon COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

Il volume del cilindro è dato dal prodotto della superficie di base per l altezza, quindi

Il volume del cilindro è dato dal prodotto della superficie di base per l altezza, quindi Mtemtic per l nuov mturità scientific A. Bernrdo M. Pedone 3 Questionrio Quesito 1 Provre che un sfer è equivlente i /3 del cilindro circoscritto. r 4 3 Il volume dell sfer è 3 r Il volume del cilindro

Dettagli

Lezione 16 Derivate ed Integrali

Lezione 16 Derivate ed Integrali Lezione 16 Derivte ed Integrli Frnk Sullivn 1 Dicembre 11 1 Prim Or Compiti di letture ed esercizi per 3 Dicembre Durnte l lezione di oggi pplicheremo le regole per differenzire funzioni l clcolo di integrli.

Dettagli

Si noti che da questa definizione segue che il punto C è il punto medio del segmento PP'. Figura 1

Si noti che da questa definizione segue che il punto C è il punto medio del segmento PP'. Figura 1 APITOLO 3 LE SIMMETRIE 3. Richimi di teori Definizione. Si dto un punto del pino; si chim simmetri centrle di centro (che si indic con il simbolo s ) l corrispondenz dl pino in sé che d ogni punto P del

Dettagli

INTEGRALI IMPROPRI. c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Integrali impropri cap10.pdf 1

INTEGRALI IMPROPRI. c Paola Gervasio - Analisi Matematica 1 - A.A. 16/17 Integrali impropri cap10.pdf 1 INTEGRALI IMPROPRI c Pol Gervsio - Anlisi Mtemtic - A.A. 6/7 Integrli impropri cp.pdf Abbimo visto che l integrle di Riemnn è definito per funzioni limitte e su intervlli limitti. Si or I R un intervllo

Dettagli

a b c Triangolo rettangolo In un triangolo rettangolo : un cateto è uguale al prodotto dell ipotenusa per il seno dell angolo opposto al cateto.

a b c Triangolo rettangolo In un triangolo rettangolo : un cateto è uguale al prodotto dell ipotenusa per il seno dell angolo opposto al cateto. Tringolo rettngolo In un tringolo rettngolo : un teto è ugule l prodotto dell ipotenus per il seno dell ngolo opposto l teto. = sen = sen un teto è ugule l prodotto dell ipotenus per il oseno dell ngolo

Dettagli

Test di autovalutazione

Test di autovalutazione UNITÀ ELEMENTI DI CALCOLO ALGEBRICO Test di utovlutzione 0 0 0 0 0 0 60 0 80 90 00 n Il mio punteggio, in entesimi, è n Rispondi ogni quesito segnndo un sol delle lterntive. n Confront le tue risposte

Dettagli

Definizione. Si chiama similitudine una corrispondenza biunivoca dal piano in sé tale che,

Definizione. Si chiama similitudine una corrispondenza biunivoca dal piano in sé tale che, CAPITOLO 6 LE SIMILITUDINI 6 Rihimi i teori Definizione Si him similituine un orrisponenz iunivo l pino in sé tle he presi ue punti qulunque A B el pino e etti A B i loro orrisponenti si h he esiste un

Dettagli

Integrale Definito. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi: Integrale Definito

Integrale Definito. Appunti di analisi matematica: Il concetto d integrale nasce per risolvere due classi di problemi: Integrale Definito Appunti di nlisi mtemtic: Integrle Deinito Il concetto d integrle nsce per risolvere due clssi di prolemi: Integrle Deinito Clcolo delle ree di ig. delimitte d curve clcolo di volumi clcolo del lvoro di

Dettagli

Esercizi sulle serie di Fourier

Esercizi sulle serie di Fourier Esercizi sulle serie di Fourier Corso di Fisic Mtemtic,.. 3- Diprtimento di Mtemtic, Università di Milno Novembre 3 Sviluppo in serie di Fourier (esponenzile) In questi esercizi, si richiede di sviluppre

Dettagli

Appunti di Analisi matematica 1. Paolo Acquistapace

Appunti di Analisi matematica 1. Paolo Acquistapace Appunti di Anlisi mtemtic Polo Acquistpce 23 febbrio 205 Indice Numeri 4. Alfbeto greco................................. 4.2 Insiemi..................................... 4.3 Funzioni....................................

Dettagli

Osserviamo che per trovare le costanti A e B possiamo anche ragionare così: se moltiplichiamo l equazione x + 1 (x + 2)(x + 3) = A.

Osserviamo che per trovare le costanti A e B possiamo anche ragionare così: se moltiplichiamo l equazione x + 1 (x + 2)(x + 3) = A. 88 Roberto Turso - Anlisi 2 Osservimo che per trovre le costnti A e B possimo nche rgionre così: se moltiplichimo l equzione + ( + 2)( + 3) = A + 2 + B + 3 per + 2, dopo ver semplificto, ottenimo + + 3

Dettagli

FUNZIONI MATEMATICHE. Una funzione lineare è del tipo:

FUNZIONI MATEMATICHE. Una funzione lineare è del tipo: FUNZIONI MATEMATICHE Le relzioni mtemtihe utilizzte per desrivere fenomeni nturli, in iologi ome in ltre sienze, possono ovvimente essere le più svrite. Per lo più si trtt di equzioni lineri, qudrtihe,

Dettagli

QUADERNI DIDATTICI. Dipartimento di Matematica

QUADERNI DIDATTICI. Dipartimento di Matematica Università ditorino QUADERNI DIDATTICI del Diprtimento di Mtemtic G. Zmpieri Anlisi Vettorile.. 21/22 Quderno # 1 - Novembre 21........... Getno Zmpieri - Anlisi Vettorile 1 PREFAZIONE Questo quderno

Dettagli

1 Il problema del calcolo dell area di una regione piana limitata

1 Il problema del calcolo dell area di una regione piana limitata Anlisi Mtemtic 2 1 CORSO DI STUDI IN SMID CORSO DI ANALISI MATEMATICA 2 CAPITOLO 1 INTEGRALI DI FUNZIONI DI UNA VARIABILE REALE 1 Il problem del clcolo dell re di un regione pin limitt Se si consider un

Dettagli

Integrale definito. Introduzione: il problema delle aree

Integrale definito. Introduzione: il problema delle aree Integrle definito Introduzione: il prolem delle ree Il prolem delle ree è uno dei tre grndi prolemi che ci sono stti trmndti dgli ntichi, che lo definivno come il prolem dell qudrtur del cerchio: trovre,

Dettagli

3. Funzioni iniettive, suriettive e biiettive (Ref p.14)

3. Funzioni iniettive, suriettive e biiettive (Ref p.14) . Funzioni iniettive, suriettive e iiettive (Ref p.4) Dll definizione di funzione si ricv che, not un funzione y f( ), comunque preso un vlore di pprtenente l dominio di f( ) esiste un solo vlore di y

Dettagli

COMBINAZIONI DI CARICO SOLAI

COMBINAZIONI DI CARICO SOLAI COMBINAZIONI DI CARICO SOLAI (ppunti di Mrio Zfonte in fse di elorzione) Ai fini delle verifihe degli stti limite, seondo unto indito dll normtiv, in generle le ondizioni di rio d onsiderre, sono uelle

Dettagli

Ing. Alessandro Pochì

Ing. Alessandro Pochì Dispense di Mtemtic clsse quint -Gli integrli Quest oper è distriuit con: Licenz Cretive Commons Attriuzione - Non commercile - Non opere derivte. Itli Ing. Alessndro Pochì Appunti di lezione svolti ll

Dettagli

1 Integrali generalizzati su intervalli illimitati

1 Integrali generalizzati su intervalli illimitati Lezioni per il corso di Anlisi 2, AA 07-08. Dott.ss Sndr Lucente Argomento: Integrli generlizzti 1 1 Integrli generlizzti su intervlli ilitti Definizione 1.1. Si f : [,[ R un funzione continu. Se esiste

Dettagli

Differenziale. Consideriamo la variazione finita, x della variabile indipendente a cui corrisponde una variazione finita della funzione f x, f x y

Differenziale. Consideriamo la variazione finita, x della variabile indipendente a cui corrisponde una variazione finita della funzione f x, f x y Differenzile Considerimo l vrizione finit, dell vriile indipendente cui corrisponde un vrizione finit dell funzione f, f y Δf 1 Δ 2 L vrizione dell vriile dipendente puo' essere molto piccol, infinitesim

Dettagli

Stabilità dei sistemi di controllo in retroazione

Stabilità dei sistemi di controllo in retroazione Stbilità dei sistemi di controllo in retrozione Criterio di Nyquist Il criterio di Nyquist Estensione G (s) con gudgno vribile Appliczione sistemi con retrozione positiv 2 Criterio di Nyquist Stbilità

Dettagli

Teoremi di Green, Stokes e Gauss

Teoremi di Green, Stokes e Gauss pprofondimenti Teoremi di Green, Stokes e Guss In quest sezione dimostrimo i Teoremi di Greendetto nche Formul di Guss-Green, di Stokes o del rotore e di Guss o dell divergenz. 1.1 Teorem di Green 1.1

Dettagli

( X, Y ) che danno un livello costante di utilità (curva di livello). Fissando per esempio il valore U 0 per

( X, Y ) che danno un livello costante di utilità (curva di livello). Fissando per esempio il valore U 0 per Funzioni di utilità (finlmente un po di geroglifici, dopo i grffiti) NB: non fte leggere queste pgine un mtemtico, ltrimenti mi msscr!. Definizione e proprietà Considerimo due eni e di interesse per un

Dettagli

Integrale di Riemann su R n

Integrale di Riemann su R n CAPITOLO 5 Integrle di iemnn su n 1. Funzioni integrbili secondo iemnn In questo cpitolo dremo l definizione di funzione integrbile secondo iemnn su n. Come già ftto nel cso delle funzioni integrbili su,

Dettagli

TEORIA DELLA PROBABILITÀ II

TEORIA DELLA PROBABILITÀ II TEORIA DELLA PROBABILITÀ II Diprtimento di Mtemti ITIS V.Volterr Sn Donà di Pive Versione [14-15] Indie 1 Clolo omintorio 1 1.1 Introduzione............................................ 1 1.2 Permutzioni...........................................

Dettagli

Scheda Sei ESPONENZIALI E LOGARITMI. 0,+. Inoltre valgono le

Scheda Sei ESPONENZIALI E LOGARITMI. 0,+. Inoltre valgono le Sched Sei ESPONENZIALI E LOGARITMI L funzione esponenzile Assegnto un numero rele >0, si dice funzione esponenzile in bse l funzione Grfici dell funzione esponenzile Se = l funzione esponenzile è costnte:

Dettagli

DISPENSE DI ANALISI MATEMATICA. Indice

DISPENSE DI ANALISI MATEMATICA. Indice DISPENSE DI ANALISI MATEMATICA ANNAMARIA MONTANARI Indice. Integrle di Riemnn.. Proprietà elementri dell integrle di Riemnn 5.2. Teorem fondmentle del clcolo integrle. Primitive 6.3. Integrle generlizzto

Dettagli

Corso di Analisi Matematica. Calcolo integrale

Corso di Analisi Matematica. Calcolo integrale .. 2011/12 Lure triennle in Informtic Corso di Anlisi Mtemtic Clcolo integrle Avvertenz Questi sono ppunti informli delle lezioni, che vengono resi disponibili per comodità degli studenti. Prte del mterile

Dettagli

Analisi e Geometria 1

Analisi e Geometria 1 Anlisi e Geometri Esercizi sugli integrli Integrli propri. Clcolre i seguenti integrli immediti: I = I = I 5 = ln e e d I = e + e + 6e + e d I = rtg ln ( + ln ) d I 6 = e e + d d rtg + ( + ) ( + ( + )

Dettagli

APPLICAZIONI LINEARI e MATRICI ASSOCIATE

APPLICAZIONI LINEARI e MATRICI ASSOCIATE APPLICAZIONI LINEARI e MATRICI ASSOCIATE Dt un ppliczione f: V W con V e W spzi vettorili si dice che f è un ppliczione linere o omomorfismo f(v + v 2 ) = f(v ) + f(v 2 ) v, v 2 V f(αv) = α f(v) v V e

Dettagli

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio.

b a 2. Il candidato spieghi, avvalendosi di un esempio, il teorema del valor medio. Domnde preprzione terz prov. Considert, come esempio, l funzione nell intervllo [,], il cndidto illustri il concetto di integrle definito. INTEGRALE DEFINITO, prendendo in esme un generic funzione f()

Dettagli

COME SOPRAVVIVERE ALLA MATEMATICA. 1. La funzione matematica e la sua utilità in economia

COME SOPRAVVIVERE ALLA MATEMATICA. 1. La funzione matematica e la sua utilità in economia COME SOPRAVVIVERE ALLA MATEMATICA di Giuli Cnzin e Dominique Cppelletti Come potrete notre inoltrndovi nel corso di Introduzione ll economi, l interpretzione dell teori economic non presuppone conoscenze

Dettagli

7.5. BARICENTRI 99. Esempio 7.18 (Baricentro di una lamina ellissoidale omogenea). Consideriamo la lamina ellissoidale omogenea in figura.

7.5. BARICENTRI 99. Esempio 7.18 (Baricentro di una lamina ellissoidale omogenea). Consideriamo la lamina ellissoidale omogenea in figura. 7.5. BAICENTI 99 P J Q Gli ssi HJ e PQ (che isecno i lti opposti del rettngolo) sono ssi di simmetri mterile. il ricentro dell lmin coincide con l intersezione dei due ssi: G, G H Esempio 7.18 (Bricentro

Dettagli