È bene attribuire lo stesso verso (orario o antiorario) a tutte le correnti fittizie. E 1 = 6V ; E 4 = 4V ; I o = 2mA. R 1 = R 5 = 2kΩ ; R 4 = 1kΩ

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "È bene attribuire lo stesso verso (orario o antiorario) a tutte le correnti fittizie. E 1 = 6V ; E 4 = 4V ; I o = 2mA. R 1 = R 5 = 2kΩ ; R 4 = 1kΩ"

Transcript

1 MTODO DLL CONT CCLCH O D MAXWLL TNSON TA DU PUNT D UNA T. LGG D OHM GNALZZATA MTODO DL POTNZAL A NOD TASFOMAZON STLLA-TANGOLO TANGOLO-STLLA prinipi di Kirhhoff onsentono di risolvere un qulunque rete linere, srivendo r equzioni linermente indipendenti (i nodi indipendenti e lle mglie indipendenti), qunte sono le orrenti inognite ( r numero dei rmi). Al fine di ridurre il numero di equzioni del sistem d risolvere, si sono sviluppti ltri metodi equivlenti he onsiderno un numero ridotto di equzioni. MTODO DLL CONT CCLCH O D MAXWLL l metodo delle orrenti ilihe (o di Mxwell) onsider solmente le equzioni lle mglie indipendenti ontigue [m r (n )], on m orrenti inognite fittizie, in funzione delle quli si rivno, poi, le r orrenti inognite reli. Si proede nel seguente modo:. si onsiderno le m mglie indipendenti ontigue e si ttriuise d ogni mgli diente un orrente ili fittizi di mgli il ui verso oinide on quello di perorrenz selto. Si hnno osì tnte orrenti fittizie inognite qunte sono le mglie indipendenti. Si espliitno le orrenti nei rmi in funzione delle orrenti ilihe.. si srivono le equzioni lle mglie in funzione delle suddette orrenti fittizie. Se nell mgli è presente un genertore di orrente è inutile srivere l equzione tle mgli in qunto l orrente ili oinide on l orrente del genertore di orrente.. si risolve il sistem e si rivno le m orrenti fittizie inognite.. si lol l orrente rele in ogni rmo lolndo l somm lgeri delle orrenti fittizie su quel rmo si sommno se hnno lo stesso verso, si sottrggono se hnno verso opposto). È ene ttriuire lo stesso verso (orrio o ntiorrio) tutte le orrenti fittizie. Ad esempio, si risolve il iruito di figur. ; ; o ma kω ; kω kω i sono nodi e rmi; le mglie indipendenti sono m. le mglie ontigue sono individute dlle lettere,,, d.

2 . Si ttriuise isun mgli diente un orrente ili fittizi in senso orrio:,,, d. si espliitno le orrenti nei rmi (,,, ) in funzione delle orrenti ilihe. d o Poihé nell mgli d è presente un genertore di orrente, si h: d - o ma. estno, dunque, tre inognite:,,.. Si srivono le equzioni lle mglie,,. mgli mgli mgli o o o. Si sostituisono i vlori noti e si risolve il sistem. Dll prim non semplifit si sottre l terz moltiplit per. Si sostituise nell seond e si riv e poi.

3 ,ma,,77ma Sostituendo nell prim si lol.,,77,,ma Le orrenti reli nei rmi sono:,ma ;,,77,7mA,77,,mA ;,ma o,77,77ma l verso effettivo dell orrente è opposto quello selto.

4 TNSON TA DU PUNT D UNA T. LGG D OHM GNALZZATA. L tensione tr due punti A e B di un rete linere si lol sommndo lgerimente tutte le tensioni inontrte lungo un perorso ritrrio he onnette A on B. Supposto il potenzile di A mggiore di quello di B ( AB > ),nell somm si prendono on segno positivo le tensioni he presentno il segno positivo verso A, on segno negtivo quelle he presentno il segno positivo verso B (nel so di dute di tensione su resistenze, tle dut di tensione si prende on segno positivo se l orrente v d A verso B, negtiv se v d B verso A). Ad esempio, si lol l tensione AB del iruito di figur seguendo vri perorsi. Perorso B : AB Perorso B : AB Perorso ADB : AB 88 Se il trtto di iruito tr A e B è un rmo ontenente un resistenz e un genertore, l relzione he esprime l tensione AB prende il nome di Legge di Ohm generlizzt, e si hnno i seguenti quttro si (si suppone AB > ): o AB AB AB < AB AB > o AB AB < AB AB AB <

5 MTODO DL POTNZAL A NOD l metodo del potenzile i nodi deriv nh esso d Kirhhoff, m onsider solo le equzioni i nodi. È sto sull impostzione di un sistem ridotto, formto d n equzioni, dove n è il numero dei nodi, le ui inognite sono le tensioni dei vri nodi rispetto d un nodo qulsisi preso ome riferimento. Le orrenti nei rmi vengono poi rivte utilizzndo l legge di Ohm generlizzt. Si proede nel seguente modo:. Si seglie un nodo di riferimento e si ttriuise un vlore inognito di tensione fr isun nodo e il riferimento.. si ttriuise un verso ritrrio lle orrenti in ogni rmo.. si esprimono le orrenti in isun rmo in funzione delle tensioni inognite i pi dello stesso rmo, utilizzndo le espressioni dell legge di Ohm generlizzt.. Si srive il sistem di n equzioni gli n nodi, utilizzndo le espressioni delle orrenti rivte l punto.. Si rivno le tensioni i nodi risolvendo il sistem.. Sostituendo queste tensioni nelle equzioni del punto si rivno le orrenti. Ad esempio, si risolve il iruito di figur. ; ; o ma kω ; kω kω. Si ssume ome riferimento il nodo C; le tensioni inognite sono: e.. Si ttriuisono i versi delle orrenti nei rmi ome in figur.. Si rivno le espressioni delle orrenti: AB. Si impostno le due equzioni i nodi:

6 nodo A : nodo B : o Sostituendo lle orrenti l loro espressione rivt l punto, si h: o. Si sostituisono i vlori e si risolve , 7 7,. Si lolno le orrenti.,9,97,97,ma,7ma,97,,97,,ma,ma,,77ma l verso effettivo di è opposto quello selto.

7 TASFOMAZON STLLA-TANGOLO TANGOLO-STLLA sistono reti di resistenze he non sono somponiili in gruppi serie e prllelo, ome quell di figur. Per potere lolre l resistenz equivlente di tli iruiti si utilizz l trsformzione stelltringolo. Sistem tringolo Sistem stell due sistemi risultno equivlenti se un ugule tern di tensioni,,, pplite tr i punti,,, produono nei orrispondenti onduttori esterni i due sistemi due terne uguli di orrenti,, ; l equivlenz è, periò, riferit lle tensioni e lle orrenti esterne i due sistemi, mentre ll interno di essi le singole resistenze sono soggette tensioni differenti (nel ollegmento stell) e orrenti diverse (nel ollegmento tringolo). Le relzioni di equivlenz si ottengono pplindo i prinipi di Kirhhoff isuno dei due shemi.. Per il sistem stell si ppli il primo prinipio di Kirhhoff l sistem ed il seondo prinipio lle due mglie (A, A, D, C, C) e (B, B, D, C, C). ( ) Sostituendo l espressione di C rivt dll prim equzione nelle ltre due, si h: 7

8 ( ) ( ) ( ) ( ) (). Per il sistem tringolo si ppli il primo prinipio di Kirhhoff l sistem e i due nodi A e B. Per l legge di Ohm pplit lle tre resistenze onnesse tringolo, si h: AB CA Sostituendo nelle ultime due equzioni i nodi (A e B), si h: ( ) ( ) Si risolve rispetto e : ( ) ( ) ( ) ( ) Sostituendo in, si h: 8

9 ( ) ( ) ( ) issumendo ( ) ( ) () Affinhé i sistemi di equzioni () e () ottenuti (reltivi, rispettivmente, lle due onnessioni stell e tringolo) risultino identimente soddisftti, per qulsisi ominzione di orrenti, devono essere ordintmente uguli nei due sistemi i oeffiienti delle due orrenti e. Le ondizioni di equivlenz tr i due sistemi onsiderti sono espresse dlle tre relzioni seguenti: ( ) ( ) () Sottrendo l seond dll prim e dll terz, si h: 9

10 issumendo Tli equzioni sono reltive ll trsformzione tringolo-stell.. L soluzione del prolem inverso si ottiene espliitndo le equzioni dei sistemi ssoiti ll stell e l tringolo in funzione delle orrenti e imponendo l uguglinz dei oeffiienti.. Sistem stell. Dl sistem () si riv dll prim equzione e si sostituise nell seond: Si sostituise nell equzione di :

11 issumendo (). Sistem tringolo. Dl sistem () si espliitno e in funzione di AB e : () Affinhé i sistemi di equzioni () e () ottenuti (reltivi, rispettivmente, lle due onnessioni stell e tringolo) risultino identimente soddisftti, per qulsisi ominzione di tensioni, devono essere ordintmente uguli nei due sistemi i oeffiienti delle due tensioni AB e. Le ondizioni di equivlenz tr i due sistemi onsiderti sono espresse dlle tre relzioni seguenti: Sottrendo l seond dll prim e dll terz, si h:

12 issumendo Tli equzioni sono reltive ll trsformzione stell-tringolo. Se le resistenze onnesse stell sono tutte uguli fr loro ed hnno il vlore, nhe le tre resistenze del tringolo equivlente sono uguli, di vlore e inversmente sempio : Trsformzione tringolo-stell. Del iruito di figur lolre l resistenz equivlente, le tensioni e le orrenti. kω ; kω kω Si trsform il tringolo A in un stell.

13 Le equzioni per l trsformzione tringolo-stell, on,,, sono le seguenti: KΩ KΩ,KΩ Clolo dell resistenz equivlente. ( )( ) (, )( ), Ω eq K,,8mA A,8,8, eq D 8, A,8 8,,8mA, D D 8,,mA CD,8 7, BD,, CB CD BD 7,,, CB,,mA AB AD BD BD,,88

14 ,7 7, CD CD AD,8mA,7 ma,7,88 AB Al fine di ontrollre l esttezz dei risultti, si risolve il iruito ol metodo delle orrenti ilihe di mgli. Si fissno i versi delle orrenti ilihe e di perorrenz delle mglie ome in figur e si srivono le equzioni lle mglie pplindo il seondo prinipio di Kirhhoff. mgli mgli mgli ,7mA 8,mA,7 8 8,8mA,,7

15 ,8mA,8,7,7mA,7mA,,7,7mA,8,,8mA,7,7 CB,7,,mA AB,7,88 CD,8 7, BD,, Stessi vlori di prim. sempio : Trsformzione stell-tringolo. Del iruito di figur lolre l resistenz equivlente, le tensioni e le orrenti. kω ; kω kω Si trsform l stell A in un tringolo e si risolve.

16 Le equzioni per l trsformzione stell-tringolo, on,,, sono le seguenti: Ω Ω Ω k 7k,k Clolo dell resistenz equivlente. Ω k,78,, Ω k, 7 7 Ω k,,,78 Ω k,,, Ω k,, eq

17 ,ma,,, eq,,,8,8,9ma,8,ma AB,78,,,,,,,,mA AB,,,7mA,7mA, 7,,9mA,7,9,9mA,7,7,mA,9,9,9,7,mA,,88,, Al fine di ontrollre l esttezz dei risultti, si risolve il iruito ol metodo delle orrenti ilihe di mgli. Si fissno i versi delle orrenti ilihe e di perorrenz delle mglie ome in figur e si srivono le equzioni lle mglie pplindo il seondo prinipio di Kirhhoff. 7

18 8 mgli mgli mgli ,mA 9 8,mA,,mA,,,mA,mA ma,9,,,9ma,,,ma,ma,,,,,,,9,9,9,9,9,,8, Stessi vlori di prim.

VERIFICA DI UN CIRCUITO RESISTIVO CONTENENTE PIÙ GENERATORI CON UN TERMINALE COMUNE E SENZA TERMINALE COMUNE.

VERIFICA DI UN CIRCUITO RESISTIVO CONTENENTE PIÙ GENERATORI CON UN TERMINALE COMUNE E SENZA TERMINALE COMUNE. FCA D UN CCUTO SSTO CONTNNT PÙ GNATO CON UN TMNAL COMUN SNZA TMNAL COMUN. Si verifino quttro iruiti on due genertori: genertori on polrità onorde e un terminle omune genertori on polrità disorde e un terminle

Dettagli

Unità Didattica N 08 I sistemi di primo grado a due incognite U.D. N 08 I sistemi di primo grado a due incognite

Unità Didattica N 08 I sistemi di primo grado a due incognite U.D. N 08 I sistemi di primo grado a due incognite 66 Unità idtti N 08 I sistemi di primo grdo due inognite U.. N 08 I sistemi di primo grdo due inognite 01) Coordinte rtesine 0) I sistemi di primo grdo due inognite 0) Metodo di sostituzione 04) Metodo

Dettagli

8 Equazioni parametriche di II grado

8 Equazioni parametriche di II grado Equzioni prmetrihe di II grdo Un equzione he oltre ll inognit (o lle inognite) ontiene ltre lettere (un o più) si die letterri o prmetri e le lettere sono himte, nhe, prmetri; si suppong he l equzione

Dettagli

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didattica N 11 Le equazioni di secondo grado ad una incognita

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didattica N 11 Le equazioni di secondo grado ad una incognita 86 Unità Didtti N Le equzioni di seondo grdo d un inognit Unità Didtti N Le equzioni di seondo grdo d un inognit ) L definizione di equzione di seondo grdo d un inognit ) L risoluzione delle equzioni di

Dettagli

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didtti N Le equzioni di seondo grdo d un inognit Unità Didtti N Le equzioni di seondo grdo d un inognit ) L definizione di equzione di seondo grdo d un inognit ) L risoluzione delle equzioni di seondo

Dettagli

MATRICI E DETERMINANTI

MATRICI E DETERMINANTI MTRICI E DETERMINNTI di vinenzo sudero 1 DEFINIZIONI Per mtrie si intende un tell di elementi ordinti per righe e per olonne Di un mtrie oorre speifire il numero di righe, di olonne e l insieme ui pprtengono

Dettagli

j Verso la scuola superiore +l calcolo letterale Monomi Polinomi e prodotti notevoli Equazioni

j Verso la scuola superiore +l calcolo letterale Monomi Polinomi e prodotti notevoli Equazioni j Verso l suol superiore +l lolo letterle Monomi Polinomi e prodotti notevoli Equzioni Monomi Il monomio x 4 y è simile : x 4 y 5 +x 4 y x y Due monomi sono simili se hnno l prte letterle ugule e, siome

Dettagli

Le equazioni di secondo grado

Le equazioni di secondo grado Le equzioni di seondo grdo Un equzione è di seondo grdo se, dopo ver pplito i prinipi di equivlenz, si può srivere nell form on 0,, R Not: è nhe detto termine noto. Esempio Sviluppimo l seguente equzione:

Dettagli

Vettori - Definizione

Vettori - Definizione Vettori - Definizione z Verso Origine Modulo Direzione V y Form geometri x Form nliti Un vettore è un ente geometrio definito d: - Direzione: rett sull qule gie il vettore, he ne indi l orientmento nello

Dettagli

= det b, a, b, c R 3. In quest ottica, il determinante del terzo ordine e caratterizzato dalle seguenti proprieta : a a. c c

= det b, a, b, c R 3. In quest ottica, il determinante del terzo ordine e caratterizzato dalle seguenti proprieta : a a. c c Determinnti n = 3. Propriet Possimo rigurdre il determinnte di un mtrie del terzo ordine ome un funzione delle sue olonne: det b = det [, b,,, b, R 3. In quest otti, il determinnte del terzo ordine e rtterizzto

Dettagli

1) Si ha quindi Un cateto è uguale al prodotto dell ipotenusa per il seno dell angolo opposto.

1) Si ha quindi Un cateto è uguale al prodotto dell ipotenusa per il seno dell angolo opposto. Trigonometri prte esy mtemti Elin pgin TRIANGOLO RETTANGOLO Considerimo i tringoli rettngoli OPQ e OP ' Q A γ C Essi sono simili per ui Q P : QP OP : OP Essendo Q ' P ' QP sin OP OP ottenimo : sen : e

Dettagli

I PRODOTTI NOTEVOLI. Nel calcolo letterale capita spesso di incontrare moltiplicazioni tra particolari polinomi.

I PRODOTTI NOTEVOLI. Nel calcolo letterale capita spesso di incontrare moltiplicazioni tra particolari polinomi. I PRODOTTI NOTEVOLI Nel lolo letterle pit spesso di inontrre moltiplizioni tr prtiolri polinomi. I reltivi sviluppi si ottengono pplindo le regole fin qui viste, m i risultti, opportunmente semplifiti,

Dettagli

L IPERBOLE. L iperbole è il luogo geometrico dei punti del piano per i quali è costante la differenza delle distanze da due punti fissi detti fuochi.

L IPERBOLE. L iperbole è il luogo geometrico dei punti del piano per i quali è costante la differenza delle distanze da due punti fissi detti fuochi. prof.ss Cterin Vespi 1 Appunti di geometri nliti L IPERBOLE L iperole è il luogo geometrio dei punti del pino per i quli è ostnte l differenz delle distnze d due punti fissi detti fuohi. Sino F1 e F i

Dettagli

Relazioni e funzioni. Relazioni

Relazioni e funzioni. Relazioni Relzioni e unzioni Relzioni Deinizione: dti due insiemi A e B, si deinise un relzione R tr A e B un orrispondenz stilit d un proposizione tr un elemento A e B, in tl so si die he è in relzione on e si

Dettagli

L ELLISSE 1. L'ellisse come luogo geometrico ellisse fuochi. centro

L ELLISSE 1. L'ellisse come luogo geometrico ellisse fuochi. centro L ELLISSE 1. L ellisse ome luogo geometrio.. Equzione dell ellisse on i fuohi sull sse. 3. Le proprietà dell ellisse.. Clolo dei semissi, dei vertii, dei fuohi e rppresentzione grfi. 5. Equzione dell ellisse

Dettagli

a è detta PARTE LETTERALE

a è detta PARTE LETTERALE I MONOMI Si die MONOMIO un espressione letterle in ui le unihe operzioni presenti sino il prodotto e l divisione. Esempio è detto COEFFICIENTE del monomio e è dett PARTE LETTERALE Un monomio si die ridotto

Dettagli

Δlessio abelli. Studente di Matematica Sapienza - Università di Roma. Dipartimento di Matematica Guido Castelnuovo

Δlessio abelli. Studente di Matematica Sapienza - Università di Roma. Dipartimento di Matematica Guido Castelnuovo Δlessio elli Studente di Mtemti Spienz - Università di Rom Diprtimento di Mtemti Guido Cstelnuovo we-site: www.selli87.ltervist.org EQUAZIONI DI II GRADO. DEFINIZIONI Si die equzione di seondo grdo nell

Dettagli

APPUNTI DI GEOMETRIA ANALITICA

APPUNTI DI GEOMETRIA ANALITICA Prof. Luigi Ci 1 nno solstio 13-14 PPUNTI DI GEOMETRI NLITIC Rett orientt Un rett r si die orientt qundo: 1. È fissto un punto di riferimento, detto origine;. Dei due possiili versi in ui un punto si può

Dettagli

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didtti N Le equzioni di seondo grdo d un inognit Unità Didtti N Le equzioni di seondo grdo d un inognit 0) L definizione di equzione di seondo grdo d un inognit 0) L risoluzione delle equzioni di

Dettagli

01 Matematica Liceo \ Unità Didattica N 6 La retta 1

01 Matematica Liceo \ Unità Didattica N 6 La retta 1 Mtemti Lieo \ Unità Didtti N 6 L rett Unità didtti N 6 L rett rtesin ) Equzione vettorile dell rett 2) Equzioni prmetrihe dell rett 3) Equzione dell rett pssnte per due punti 4) Equzione dell rett pssnte

Dettagli

4 ; messo in forma = 2. 4 Le tangenti saranno: = x + 8. La circonferenza (Paolo Urbani prima stesura settembre 2002 aggiornamento novembre 2013)

4 ; messo in forma = 2. 4 Le tangenti saranno: = x + 8. La circonferenza (Paolo Urbani prima stesura settembre 2002 aggiornamento novembre 2013) Fsio iproprio di rette prllele r: ipliit risult q r si h: q ; esso in for. onsiderndo he ( ;) q ( q) q e 8 q q q q 6q 6 q ± 6 q 8; q Le tngenti srnno: 8, ; L ironferenz (Polo Urni pri stesur settere ggiornento

Dettagli

13. EQUAZIONI ALGEBRICHE

13. EQUAZIONI ALGEBRICHE G. Smmito, A. Bernrdo, Formulrio di mtemti Equzioni lgerihe F. Cimolin, L. Brlett, L. Lussrdi. EQUAZIONI ALGEBRICHE. Prinipi di equivlenz Si die identità un'uguglinz tr due espressioni ontenenti un o più

Dettagli

Anno 2. Triangoli rettangoli e teorema delle corde

Anno 2. Triangoli rettangoli e teorema delle corde Anno Tringoli rettngoli e teorem delle orde 1 Introduzione In quest lezione impreri d pplire i teoremi di Eulide e di Pitgor e sopriri quli prtiolrità nsondono i tringoli rettngoli on ngoli prtiolri. Infine,

Dettagli

Geometria Analitica Domande, Risposte & Esercizi

Geometria Analitica Domande, Risposte & Esercizi Geometri Anliti Domnde, Risposte & Eserizi L ironferenz. Dre l definizione di ironferenz ome luogo di punti. L ironferenz è un luogo di punti, è ioè un insieme di punti del pino le ui distnze d un punto

Dettagli

Equazioni 1 grado. Definizioni Classificazione Risoluzione Esercizi

Equazioni 1 grado. Definizioni Classificazione Risoluzione Esercizi Equzioni grdo Definizioni Clssificzione Risoluzione Esercizi Mteri: Mtemtic Autore: Mrio De Leo Definizioni Prendimo in esme le due espressioni numeriche 8 entrmbe sono uguli 7, e l scrittur si chim uguglinz

Dettagli

Test di autovalutazione

Test di autovalutazione UNITÀ ELEMENTI DI CALCOLO ALGEBRICO Test di utovlutzione 0 0 0 0 0 0 60 0 80 90 00 n Il mio punteggio, in entesimi, è n Rispondi ogni quesito segnndo un sol delle lterntive. n Confront le tue risposte

Dettagli

Es1 Es2 Es3 Es4 Es5 tot

Es1 Es2 Es3 Es4 Es5 tot Ottore lsse E Verifi sommtiv Cognome Nome rgomenti: onihe, funzione esponenzile e grfii derivti Tempo disposizione: ore Voto Es Es Es Es Es tot.... Considert l ellisse vente ome sse fole l sse, eentriità

Dettagli

+ numeri reali Numeri decimali e periodici Estrazione di radice

+ numeri reali Numeri decimali e periodici Estrazione di radice numeri reli Numeri deimli e periodii Estrzione di rdie Numeri deimli e periodii SEZ. G Clol il vlore delle seguenti espressioni. 0 (, ), Trsformimo i numeri deimli nell orrispondente frzione genertrie

Dettagli

ISTITUTO TECNICO INDUSTRIALE "E. Fermi" LUCCA Anno Scolastico 2017/2018 Programma di MATEMATICA classe prima Sez. G Insegnante: MUSUMECI LUCIANA

ISTITUTO TECNICO INDUSTRIALE E. Fermi LUCCA Anno Scolastico 2017/2018 Programma di MATEMATICA classe prima Sez. G Insegnante: MUSUMECI LUCIANA ISTITUTO TENIO INDUSTILE "E. Fermi" LU nno Solstio / Progrmm di MTEMTI lsse prim Sez. G Insegnnte MUSUMEI LUIN Gli insiemi ppresentzione di un insieme. I sottoinsiemi. Le operzioni on gli insiemi unione

Dettagli

Unità 3 Metodi particolari per il calcolo di reti

Unità 3 Metodi particolari per il calcolo di reti Unità 3 Metodi prticolri per il clcolo di reti 1 Cos c è nell unità Metodi prticolri per il clcolo di reti con un solo genertore Prtitore di tensione Prtitore di corrente Metodi di clcolo di reti con più

Dettagli

Corso di ELETTRONICA INDUSTRIALE

Corso di ELETTRONICA INDUSTRIALE 0. Corso di LRONCA NDUSRAL 1 MODULAZON ORAL. CONROLLO D CORRN D NROR A NSON MPRSSA 0. 0. 4 Rppresentzione vettorile Rppresentzione vettorile rsformzioni dirett ed invers 0. 0. 5 6 Rppresentzione vettorile

Dettagli

15. Cambiamenti di base in uno spazio vettoriale.

15. Cambiamenti di base in uno spazio vettoriale. 5 Cmbimenti di bse in uno spzio vettorile 5 Esempio Si VR uno spzio vettorile di dimensione e si B = (u, u, u ) un su bse Sino v = 5u + 6u, v = u u + 5u, v = u + u + u, v = u 4u 7u Si M l mtrice vente

Dettagli

a b c Triangolo rettangolo In un triangolo rettangolo : un cateto è uguale al prodotto dell ipotenusa per il seno dell angolo opposto al cateto.

a b c Triangolo rettangolo In un triangolo rettangolo : un cateto è uguale al prodotto dell ipotenusa per il seno dell angolo opposto al cateto. Tringolo rettngolo In un tringolo rettngolo : un teto è ugule l prodotto dell ipotenus per il seno dell ngolo opposto l teto. = sen = sen un teto è ugule l prodotto dell ipotenus per il oseno dell ngolo

Dettagli

corrispondenza dal piano in sé, che ad ogni punto P del piano fa corrispondere il punto P' in

corrispondenza dal piano in sé, che ad ogni punto P del piano fa corrispondere il punto P' in Cpitolo 5 Le omotetie 5. Richimi di teori Definizione Sino fissti un punto C del pino ed un numero rele. Si chim omoteti di centro C e rpporto ( che si indic con il simolo O, ) l corrispondenz dl pino

Dettagli

Le equazioni di secondo grado. Appunti delle lezioni di Armando Pisani A.S Liceo Classico Dante Alighieri (GO)

Le equazioni di secondo grado. Appunti delle lezioni di Armando Pisani A.S Liceo Classico Dante Alighieri (GO) Le equzioni di seondo grdo Appunti delle lezioni di Armndo Pisni A.S. 3- Lieo Clssio Dnte Alighieri (GO) Not Questi ppunti sono d intendere ome guid llo studio e ome rissunto di qunto illustrto durnte

Dettagli

Metodologie informatiche per la chimica

Metodologie informatiche per la chimica Metodologie informtihe per l himi Dr. Sergio Brutti Mtrii Determinnti: metodo dei minori Dt un mtrie n n on elementi ij Il suo erminnte srà dto dll somm dei erminnti di tutti i suoi minori (n-) (n-) ottenuti

Dettagli

( ) 1. Scrivi l equazione della parabola ad asse verticale passante per il punto ( ) P e con vertice. Soluzione Dall equazione generica della parabola

( ) 1. Scrivi l equazione della parabola ad asse verticale passante per il punto ( ) P e con vertice. Soluzione Dall equazione generica della parabola . Srivi l euzione dell prol d sse vertile pssnte per il punto ( ) ; P e on vertie ( ) ; V. Dll euzione generi dell prol e dll onosenze del vertie, le ui oordinte generihe sono V ; possimo srivere sostituendo

Dettagli

Verifica di matematica

Verifica di matematica Nome Cognome. Clsse D 7 Mrzo Verifi di mtemti ) Dt l equzione: (punti ) k ) Srivi per quli vlori di k rppresent un ellisse, preisndo per quli vlori è un ironferenz b) Srivi per quli vlori di k rppresent

Dettagli

8. Calcolo integrale.

8. Calcolo integrale. Politenio di Milno - Foltà di Arhitettur Corso di Lure in Edilizi Istituzioni di Mtemtihe - Appunti per le lezioni - Anno Ademio 200/20 26 8 Clolo integrle 8 Signifito geometrio dell integrle definito

Dettagli

Ing. Alessandro Pochì

Ing. Alessandro Pochì Dispense di Mtemti lsse terz Prol ed ellisse Quest oper è distriuit on: Lienz Cretive Commons Attriuzione - Non ommerile - Non opere derivte 3.0 Itli Ing. Alessndro Pohì ( Appunti di lezione svolti ll

Dettagli

d: sf. 180 Shem di luni ollegmenti Yy di un trsformtore trifse: sopr = shem on vvolgimenti disegnti prllelmente; sotto = shem on orientzione elettri degli vvolgimenti. Nell ordine, d sinistr destr: Yy0,

Dettagli

Utilità dei sistemi trifase

Utilità dei sistemi trifase Sistemi trifse Intro Genertori trifse, enni tensioni stellte Tensioni equilirte: sistem diretto e sistem inverso Ciruiti trifse ( fili) Tensioni di line o ontente Correnti di line Crio equilirto stell

Dettagli

Esercizi sulle reti elettriche in corrente continua

Esercizi sulle reti elettriche in corrente continua serizi sulle reti elettrihe in orrente ontinua serizio 1: eterminare la P erogata generatore, e la P R assorita resistore R del iruito in figura 4 Ω Ω Ω 15 Ω 5 Ω Ω R Ω 10 Ω Soluzione: P = 150 W P R =.08

Dettagli

61 LE EQUAZIONI DI 2 GRADO - SECONDA PARTE. a) RELAZIONI FRA SOLUZIONI E COEFFICIENTI IN UN EQUAZIONE DI 2 GRADO

61 LE EQUAZIONI DI 2 GRADO - SECONDA PARTE. a) RELAZIONI FRA SOLUZIONI E COEFFICIENTI IN UN EQUAZIONE DI 2 GRADO 6 LE EQUAZIONI DI GRADO - SECONDA PARTE NOTA - Preliminre questi rgomenti, è l onosenz dei numeri omplessi (pitolo preedente) ) RELAZIONI FRA SOLUZIONI E COEFFICIENTI IN UN EQUAZIONE DI GRADO In ogni equzione

Dettagli

EQUAZIONI DI SECONDO GRADO

EQUAZIONI DI SECONDO GRADO Autore: Enrio Mnfui - 30/04/0 EQUAZIONI DI SECONDO GRADO Le equzioni di seondo grdo in un inognit sono uguglinze di due polinomi di ui lmeno uno è di seondo grdo e l ltro è di grdo minore o ugule due.

Dettagli

SOLUZIONE PROBLEMA 1. Punto 1 Osserviamo anzitutto che la funzione

SOLUZIONE PROBLEMA 1. Punto 1 Osserviamo anzitutto che la funzione SOLUZIONE PROBLEMA 1 Punto 1 Osservimo nzitutto che l funzione g(x) = (x b)e,-,. è continu e derivbile in R in qunto composizione di funzioni continue e derivbili. Per discutere l presenz di punti di mssimo

Dettagli

Matematica II. Un sistema lineare è un sistema di m equazioni lineari (cioè di primo grado) in n incognite x 1,, x n :

Matematica II. Un sistema lineare è un sistema di m equazioni lineari (cioè di primo grado) in n incognite x 1,, x n : Mtemtic II. Generlità sui sistemi lineri Un sistem linere è un sistem di m equzioni lineri (cioè di primo grdo) in n incognite,, n : n n b b m mn n m (*) Un soluzione del sistem linere è un n-upl di numeri

Dettagli

DISEQUAZIONI RAZIONALI

DISEQUAZIONI RAZIONALI DISEQUAZIONI RAZIONALI Un disequzione è un disuulinz r due espressioni letterli per l qule si rierno i vlori delle lettere he rendono l disuulinz ver. Primo prinipio di equivlenz: A B A ± M B ± M dove

Dettagli

La parabola. Fuoco. Direttrice y

La parabola. Fuoco. Direttrice y L prol Definizione: si definise prol il luogo geometrio dei punti del pino equidistnti d un punto fisso detto fuoo e d un rett fiss dett direttrie. Un rppresentzione grfi inditiv dell prol nel pino rtesino

Dettagli

c β Figura F2.1 Angoli e lati in un triangolo rettangolo.

c β Figura F2.1 Angoli e lati in un triangolo rettangolo. F. Trigonometri F. Risoluzione dei tringoli rettngoli Risolvere un tringolo rettngolo signifi trovre tutti i suoi lti e tutti i suoi ngoli. Un ngolo lo si onose già ed è l ngolo retto. Le inognite sono

Dettagli

POTENZA CON ESPONENTE REALE

POTENZA CON ESPONENTE REALE PRECORSO DI MATEMATICA VIII Lezione ESPONENZIALI E LOGARITMI E. Modic mtemtic@blogscuol.it www.mtemtic.blogscuol.it POTENZA CON ESPONENTE REALE Definizione: Dti un numero rele > 0 ed un numero rele qulunque,

Dettagli

MATEMATICA Classe Prima

MATEMATICA Classe Prima Liceo Clssico di Treiscce Esercizi per le vcnze estive 0 MATEMATICA Clsse Prim Cpitolo Numeri nturli Primi ogni pgin del cpitolo Cpitolo Numeri nturli Primi ogni pgin del cpitolo Per gli llievi promossi

Dettagli

I S I E. Fermi - Lucca Istituto Tecnico settore Tecnologico

I S I E. Fermi - Lucca Istituto Tecnico settore Tecnologico I S I E. Fermi - Lu Istituto Tenio settore Tenologio nno solstio / Progrmm di MTEMTI lsse I Insegnnte Podestà Tizin Gli insiemi numerii I numeri nturli, i numeri interi, i numeri rzionli. ddizione, sottrzione,

Dettagli

KIT ESTIVO MATEMATICA A.S. 2015/16 CLASSI SECONDE IeFP OPERATORE GRAFICO

KIT ESTIVO MATEMATICA A.S. 2015/16 CLASSI SECONDE IeFP OPERATORE GRAFICO ZENALE e BUTIINONE KIT ESTIVO MATEMATICA A.S. 0/ CLASSI SECONDE IeFP OPERATORE GRAFICO Al fine di tenere in llenmento le ilità mtemtihe propedeutihe ll lsse terz, onsiglimo lo svolgimento piere di eserizi

Dettagli

quattro trasformazioni

quattro trasformazioni ilo di rnot e un ilo termio ostituito d quttro trsformzioni p() reversibili di un gs perfetto : un espnsione isoterm d tempertur un espnsione dibti d un ompressione isoterm d tempertur un ompressione dibti

Dettagli

operazioni con vettori

operazioni con vettori omposizione e somposizione + = operzioni on vettori = + = + Se un vettore può essere dto dll omposizione di due o più vettori, questi vettori omponenti possono essere selti lungo direzioni ortogonli fr

Dettagli

I S I E. Fermi - Lucca Istituto Tecnico settore Tecnologico

I S I E. Fermi - Lucca Istituto Tecnico settore Tecnologico I S I E. Fermi - Lu Istituto Tenio settore Tenologio nno solstio / Progrmm di MTEMTI lsse I Insegnnte Podestà Tizin Gli insiemi numerii I numeri nturli, i numeri interi, i numeri rzionli. ddizione, sottrzione,

Dettagli

Equazioni di primo grado

Equazioni di primo grado Cpitolo Equzioni i primo gro Equzioni i primo gro erifi per l lsse prim COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

Ellisse ed iperbole. Osservazione. Considereremo sempre ellissi della forma + = 1 le quali hanno tutte centro nell origine degli

Ellisse ed iperbole. Osservazione. Considereremo sempre ellissi della forma + = 1 le quali hanno tutte centro nell origine degli Ellisse ed iperole Ellisse Definizione: si definise ellisse il luogo geometrio dei punti del pino per i quli è ostnte l somm delle distnze d due punti fissi F e F detti fuohi. L equzione noni dell ellisse

Dettagli

Appunti di Algebra Lineare. Mappe Lineari. 10 maggio 2013

Appunti di Algebra Lineare. Mappe Lineari. 10 maggio 2013 Appunti di Algebr Linere Mppe Lineri 0 mggio 203 Indie Ripsso di Teori 2. Cos è un mpp linere.................................. 2.2 Aluni ftti importnti................................... 3 2 Eserizi 4

Dettagli

RECUPERO EQUAZIONI E DISEQUAZIONI CON COEFFICIENTI IRRAZIONALI

RECUPERO EQUAZIONI E DISEQUAZIONI CON COEFFICIENTI IRRAZIONALI I NUMERI REALI E I RADICALI Recupero RECUPERO EQUAZIONI E DISEQUAZIONI CON COEFFICIENTI IRRAZIONALI COMPLETA Risolvi l disequzione ( ). ( ) ( ) ( ) Elimin le prentesi clcolndo il prodotto. Applic l regol

Dettagli

Algebra lineare ... Per indicare la relazione tra vettore riga e vettore colonna si usa il simbolo T (operazione di trasposizione)

Algebra lineare ... Per indicare la relazione tra vettore riga e vettore colonna si usa il simbolo T (operazione di trasposizione) Alger linere. Vettori: definizioni Un ettore x n dimensioni è un insieme ordinto di n numeri x ( x x...x n ) I numeri x x...xn sono detti omponenti del ettore x. I ettori possono essere sritti sotto form

Dettagli

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA ESPONENZIALI E LOGARITMI Dr. Ersmo Modic ersmo@glois.it www.glois.it POTENZA CON ESPONENTE REALE Definizione: Dti un numero

Dettagli

Equazioni di secondo grado Capitolo

Equazioni di secondo grado Capitolo Equzioni i seono gro Cpitolo Risoluzione lgeri Verifi per l lsse seon COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

Definizione. Si chiama similitudine una corrispondenza biunivoca dal piano in sé tale che,

Definizione. Si chiama similitudine una corrispondenza biunivoca dal piano in sé tale che, CAPITOLO 6 LE SIMILITUDINI 6 Rihimi i teori Definizione Si him similituine un orrisponenz iunivo l pino in sé tle he presi ue punti qulunque A B el pino e etti A B i loro orrisponenti si h he esiste un

Dettagli

Introduzione e strumenti

Introduzione e strumenti Introduzione e strumenti Schemi blocchi Convenzioni generli ed elementi di bse Dll equzione ll rppresentzione grfic L lgebr dei blocchi Clcolo di funzioni di trsferimento di schemi interconnessi 2 Schemi

Dettagli

EQUAZIONE ALGEBRICA DI SECONDO GRADO o QUADRATICA in una incognita

EQUAZIONE ALGEBRICA DI SECONDO GRADO o QUADRATICA in una incognita EQUAZONE ALGEBRCA D SECONDO GRADO o QUADRATCA in un inognit 1 form omplet oeffiienti b 4 (disriminnte) formule risolutive b se > due rdii reli e distinte (se e hnno segni disordi è positivo) b b (form

Dettagli

Introduzione e strumenti. Schemi a blocchi

Introduzione e strumenti. Schemi a blocchi Introduzione e strumenti Schemi blocchi Schemi blocchi Convenzioni generli ed elementi bse Dll equzione ll rppresentzione grfic L lgebr dei blocchi Clcolo di funzioni di trsferimento di schemi interconnessi

Dettagli

Le equazioni di secondo grado

Le equazioni di secondo grado Le equzioni di seondo grdo Un equzione è di seondo grdo se, dopo ver pplito i prinipi di equivlenz, si può srivere nell form on,, R Not: è nhe detto termine noto. Esempio Sviluppimo l seguente equzione:

Dettagli

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo:

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo: Sistemi lineri Un equzione linere nelle n incognite x 1, x 2, x,, x n è un equzione nell qule le incognite ppiono solo con esponente 1, ossi del tipo: 1 x 1 + 2 x 2 + x +!+ n x n = b con 1, 2,,, n numeri

Dettagli

Metodologie informatiche per la chimica

Metodologie informatiche per la chimica Metodologie informtihe per l himi Dr. Sergio Brutti Mtrii Prodotto tr mtrii d Dte mtrii x Il prodotto delle due mtrii produe un nuov mtrie on un numero di righe pri l numero di righe dell mtrie e numero

Dettagli

Introduzione e strumenti

Introduzione e strumenti Controlli utomtici Introduzione e strumenti Convenzioni generli ed elementi di bse Dll equzione ll rppresentzione grfic L lgebr dei blocchi Clcolo di funzioni di trsferimento di schemi interconnessi 2

Dettagli

I. S. I. E. Fermi - Lucca Istituto Tecnico settore Tecnologico

I. S. I. E. Fermi - Lucca Istituto Tecnico settore Tecnologico I. S. I. E. Fermi - Lu Istituto Tenio settore Tenologio nno solstio / Progrmm di MTEMTI lsse I Insegnnte Ghilrdui Pol Gli insiemi numerii I numeri nturli i numeri interi reltivi i numeri rzionli. ddizione

Dettagli

Parabola Materia: Matematica Autore: Mario De Leo

Parabola Materia: Matematica Autore: Mario De Leo Prol Definizioni Prol on sse prllelo ll sse Prol on sse prllelo ll sse Prole prtiolri Rppresentzione grfi Esepi di eserizi Rett tngente d un prol Eserizi Mteri: Mteti Autore: Mrio De Leo Definizioni Luogo

Dettagli

SPAZI VETTORIALI. 1. Spazi e sottospazi vettoriali

SPAZI VETTORIALI. 1. Spazi e sottospazi vettoriali SPAZI VETTORIALI 1. Spzi e sottospzi vettorili Definizione: Dto un insieme V non vuoto e un corpo K di sostegno si dice che V è un K-spzio vettorile o uno spzio vettorile su K se sono definite un operzione

Dettagli

KIT ESTIVO MATEMATICA A.S. 2018/19

KIT ESTIVO MATEMATICA A.S. 2018/19 ZENALE e BUTIINONE KIT ESTIVO MATEMATICA A.S. 8/ CLASSI PRIME IeFP OPERATORE GRAFICO Al fine di tenere in llenmento le ilità mtemtihe propedeutihe ll lsse seond, onsiglimo lo svolgimento piere di eserizi

Dettagli

COMBINAZIONI DI CARICO SOLAI

COMBINAZIONI DI CARICO SOLAI COMBINAZIONI DI CARICO SOLAI (ppunti di Mrio Zfonte in fse di elorzione) Ai fini delle verifihe degli stti limite, seondo unto indito dll normtiv, in generle le ondizioni di rio d onsiderre, sono uelle

Dettagli

VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE

VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE Soluzioni di quesiti e prolemi trtti dl Corso Bse Blu di Mtemti volume 5 [] (Es. n. 8 pg. 9 V) Dell prol f ( ) si hnno le seguenti informzioni, tutte

Dettagli

Geometria analitica +l piano cartesiano Le funzioni retta, parabola, iperbole Le trasformazioni sul piano cartesiano

Geometria analitica +l piano cartesiano Le funzioni retta, parabola, iperbole Le trasformazioni sul piano cartesiano Geometri nliti +l pino rtesino Le funzioni rett, prol, iperole Le trsformzioni sul pino rtesino SEZ. P +l pino rtesino Osserv le oorinte ei seguenti punti: (, 0), (, ), C(, +), D + +, E(+, 9)., Che os

Dettagli

Circuiti Elettrici Lineari Circuiti trifase

Circuiti Elettrici Lineari Circuiti trifase Foltà di Ingegneri Università degli studi di Pvi Corso di Lure Triennle in Ingegneri Elettroni e Informti Ciruiti Elettrii Lineri Ciruiti trifse Ciruiti Elettrii Lineri.. 018/19 Prof. Lu Perregrini Ciruiti

Dettagli

Prova Scritta Elettromagnetismo (a.a. 2016/17, S. Giagu/F. Lacava/S. Petrarca)

Prova Scritta Elettromagnetismo (a.a. 2016/17, S. Giagu/F. Lacava/S. Petrarca) Prov Sritt Elettromgnetismo - 24.7.2017 (.. 2016/17, S. Gigu/F. Lv/S. Petrr) reupero primo esonero: risolvere l eserizio 1: tempo mssimo 1.5 ore. reupero seondo esonero: risolvere l eserizio 2: tempo mssimo

Dettagli

32 Capitolo 2. Radicali Esercizi dei singoli paragrafi ; ; ; , , 3 25, 100, 125; 216; 8 27 ;

32 Capitolo 2. Radicali Esercizi dei singoli paragrafi ; ; ; , , 3 25, 100, 125; 216; 8 27 ; Cpitolo Rdicli Esercizi Esercizi dei singoli prgrfi - Rdici Determin le seguenti rdici qudrte rzionli qundo è possibile clcolrle) 9 9 9 00 m ) n ) o ) 0, 0 0, 09 0, 000 9 0, Determin le seguenti rdici

Dettagli

Controlli Automatici. Trasformate L e Z e schemi a blocchi. Esercizi sulle trasformate L e Z

Controlli Automatici. Trasformate L e Z e schemi a blocchi. Esercizi sulle trasformate L e Z Controlli Automtici Trsformte L e Z e schemi blocchi Esercizi sulle trsformte L e Z Esercizi sulle trsformte L e Z Proposte di esercizi e soluzioni in tempo rele trsformt L di y(t) dt trsformt Z di y(i)

Dettagli

Soluzioni A - Test d ingresso alla Prova Scritta di Controlli Automatici A del 8 Maggio 2004

Soluzioni A - Test d ingresso alla Prova Scritta di Controlli Automatici A del 8 Maggio 2004 Soluzioni A - Tet d ingreo ll Prov Sritt di Controlli Automtii A del 8 Mggio 004 ) Srivere l funzione di trferimento di un item dinmio vente i modi{ t in(4 t e t ϕ), te in(4 t ϕ) } T() ( ) 6 ( ) ) Dto

Dettagli

Appunti di Matematica Computazionale Lezione 1. Equazioni non lineari. Consideriamo il problema della determinazione delle radici dell equazione

Appunti di Matematica Computazionale Lezione 1. Equazioni non lineari. Consideriamo il problema della determinazione delle radici dell equazione Appunti di Mtemti Computzionle Lezione Equzioni non lineri Considerimo il prolem dell determinzione delle rdii dell equzione dove è un funzione definit in [,]. Teorem: Zeri di unzioni Continue Si un funzione

Dettagli

Geometria. Domande introduttive

Geometria. Domande introduttive PT, 695 noio Geometri si di mtemti per l MPT 3 Tringoli L pdronnz delle rtteristihe e delle proprietà dei tringoli è fondmentle per pire il pitolo dell trigonometri, uno dei pitoli di geometri non trttto

Dettagli

ENS: Esame e seconda prova in itinere del 1 Luglio 2008 Per la discussione dello scritto si contatti il docente via

ENS: Esame e seconda prova in itinere del 1 Luglio 2008 Per la discussione dello scritto si contatti il docente via ENS: Esme e seond prov in itinere del Luglio 8 Per l disussione dello sritto si onttti il doente vi e-mil: ro@elet.polimi.it Eserizio (foglio ino) Esme primo ppello: punti : Filtri FIR e IIR Si onsideri

Dettagli

Calcolo integrale per funzioni di una variabile

Calcolo integrale per funzioni di una variabile Clolo integrle per unzioni di un vriile Clolo integrle Integrle deinito Si :[,] R, limitt ξ ξ ξ ξ 4 ξ 5 = 4 5 = Costruimo l somm di Cuhy-Riemnn n n S n j j j j j n j Dove l suddivisione dell intervllo

Dettagli

Misura degli archi e degli angoli

Misura degli archi e degli angoli Misur degli rhi e degli ngoli. Si definise ome positivo il verso ntiorrio di perorrenz di un ironferenz; ome negtivo il verso orrio.. Fissto su un ironferenz un punto A ome origine e un punto B ome estremo

Dettagli

Sistemi a Radiofrequenza II. Guide Monomodali

Sistemi a Radiofrequenza II. Guide Monomodali Eserizio. Ordinre le frequenze di tglio dei modi di un guid rettngolre on b, qundo: b / < b < b / Soluzione: L ostnte riti è ugule per modi TE e TM: K Frequenz Criti: f K V f m V n f π b Tglio dei modi:

Dettagli

IL CALCOLO LETTERALE: I MONOMI Conoscenze. per a = - 2 vale:

IL CALCOLO LETTERALE: I MONOMI Conoscenze. per a = - 2 vale: IL CALCOLO LETTERALE: I MONOMI Conoscenze. Complet.. Un espressione letterle è un scrittur in cui compiono operzioni tr numeri rppresentti, tutti o in prte, d lettere. Per clcolre il vlore numerico di

Dettagli

Geometria Analitica Domande, Risposte & Esercizi

Geometria Analitica Domande, Risposte & Esercizi Geometri Anliti Domnde, Risposte & Eserizi L ellisse. Dre l definizione di ellisse ome luogo di punti. L ellisse è un luogo di punti, è ioè un insieme di punti del pino le ui distnze d due punti fissi

Dettagli

2^ Lezione. Equazioni di 1. Equazioni di 2. Equazioni fattoriali. Equazioni biquadratiche. Equazioni binomie. Equazioni fratte. Allegato Esercizi.

2^ Lezione. Equazioni di 1. Equazioni di 2. Equazioni fattoriali. Equazioni biquadratiche. Equazioni binomie. Equazioni fratte. Allegato Esercizi. Corso di Anli Alger di Bse ^ Lezione Equzioni di. Equzioni di. Equzioni fttorili. Equzioni iqudrtihe. Equzioni inomie. Equzioni frtte. Allegto Eserizi. EQUAZIONI ALGEBRICHE EQUAZIONI DI GRADO Con il termine

Dettagli

B8. Equazioni di secondo grado

B8. Equazioni di secondo grado B8. Equzioni di secondo grdo B8.1 Legge di nnullmento del prodotto Spendo che b0 si può dedurre che 0 oppure b0. Quest è l legge di nnullmento del prodotto. Pertnto spendo che (-1) (+)0 llor dovrà vlere

Dettagli

Simulazione seconda prova parziale

Simulazione seconda prova parziale Simulzione seond prov przile Test. x + dx = x () {( ) + ln [( ) ( + )]} {( ) [( ) ( )]} () + ln + (b) {( ) + ln [( + ) ( + )]} (d) {( + ) + ln [( + ) ( )]}. Si f(x) = x + x. Allor 0 f (y)dy = () (b) ()

Dettagli

ISTITUTO TECNICO INDUSTRIALE "E. Fermi" LUCCA Anno Scolastico 2016/2017 Programma di MATEMATICA classe prima Sez. G Insegnante: MUSUMECI LUCIANA

ISTITUTO TECNICO INDUSTRIALE E. Fermi LUCCA Anno Scolastico 2016/2017 Programma di MATEMATICA classe prima Sez. G Insegnante: MUSUMECI LUCIANA ISTITUTO TENIO INDUSTILE "E. Fermi" LU nno Solstio / Progrmm di MTEMTI lsse prim Sez. G Insegnnte MUSUMEI LUIN Gli insiemi ppresentzione di un insieme. I sottoinsiemi. Le operzioni on gli insiemi unione

Dettagli

riferimento (assi coordinati) monodimensionale (retta orientata, x), bidimensionale (piano, xy) tridimensionale (spazio tridim.

riferimento (assi coordinati) monodimensionale (retta orientata, x), bidimensionale (piano, xy) tridimensionale (spazio tridim. I vettori rppresentti come segmenti orientti (rppresentzione geometric) si intendono con l origine coincidente con l origine del sistem di riferimento (ssi coordinti) eccetto nei csi in cui si prli di

Dettagli

j Verso la scuola superiore Verso l algebra astratta

j Verso la scuola superiore Verso l algebra astratta j erso l suol superiore erso l lger strtt +nsiemi unzioni Operzioni inrie e strutture lgerihe Relzioni Logi Proilità +nsiemi ndividu l rispost estt. Un insieme è finito se: è formto d pohi elementi. è

Dettagli

Disequazioni di primo grado

Disequazioni di primo grado Cpitolo Disequzioni i primo gro Risoluzione lgeri Verifi per l lsse seon COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli