Prima di risolverli, è necessario prevedere se ci saranno soluzioni e, eventualmente, quante saranno.
|
|
- Flavia Speranza
- 2 anni fa
- Visualizzazioni
Transcript
1 Sistemi lineari Prima di risolverli, è necessario prevedere se ci saranno soluzioni e, eventualmente, quante saranno. La discussione di un sistema si imposta in questo modo: 1 studiare il rango della matrice del sistema e studiare il rango della matrice completa; 2 dedurre la risolubilità attraverso il T. di Rouchè -Capelli (il sistema è compatibile se e solo se i due ranghi sono uguali); 3 se compatibile, dedurre il numero di soluzioni (legato alla dimensione del sottospazio delle soluzioni del sistema omogeneo associato): n r, dove n è il numero di incognite e r il rango della matrice del sistema; 4 risolverlo, utilizzando un metodo opportuno.
2 Teorema di Rouchè-Capelli Un sistema lineare (in n incognite) è compatibile (=risolubile) se e solo se il rango (r) della matrice dei coefficienti coincide con il rango della matrice completa. In tal caso il numero di soluzioni è n r.
3 Esercizio 1. (T. Rouchè-Capelli) Discutere, al variare del parametro reale k, la risolubilità del seguente sistema: x + kz = 1 3y = 2 6x 2y + 2z = 0
4 Teorema di Cramer (sistemi quadrati) Un sistema di n equazioni in n incognite ammette soluzione unica se e solo la matrice dei coefficienti è non singolare.
5 Esercizio 2. (T. Rouchè-Capelli e Cramer) Risolvere i seguenti sistemi (α R). x + z = 1 a) 3y = 2 6x 2y + 2z = 0 d) c) b) x + y + z = 1 x y = 2 2x + z = 3 x + 2y = 1 2x + 3y = 0 x y = 2 { 2x + 3y + z = 5 x + 4y + z = 7 (risolvere per compito) (discutere la risolubilità per compito)
6 Esercizio 2. (T. Rouchè-Capelli e Cramer) Risolvere i seguenti sistemi (α R). x + z = 1 a) 3y = 2 6x 2y + 2z = 0 d) c) b) x + y + z = 1 x y = 2 2x + z = 3 x + 2y = 1 2x + 3y = 0 x y = 2 { 2x + 3y + z = 5 x + 4y + z = 7 (risolvere per compito) (discutere la risolubilità per compito)
7 Esercizio 2. (T. Rouchè-Capelli e Cramer) Risolvere i seguenti sistemi (α R). x + z = 1 a) 3y = 2 6x 2y + 2z = 0 d) c) b) x + y + z = 1 x y = 2 2x + z = 3 x + 2y = 1 2x + 3y = 0 x y = 2 { 2x + 3y + z = 5 x + 4y + z = 7 (risolvere per compito) (discutere la risolubilità per compito)
8 Esercizio 2. (T. Rouchè-Capelli e Cramer) e) y + αz = 1 α 2x + (α 3)y + 4z = α + 1 x + αy αz = 1 f) 2x + y = 1 3x y + z = 1 x + y + z = 1 x 2y + z = 0, α R
9 Esercizio 2. (T. Rouchè-Capelli e Cramer) e) y + αz = 1 α 2x + (α 3)y + 4z = α + 1 x + αy αz = 1 f) 2x + y = 1 3x y + z = 1 x + y + z = 1 x 2y + z = 0, α R
10 Esercizio 2. (Sistemi omogenei, regola dei minori) Regola dei minori (dispensa p. 60): h) g) { 2x + 3y + 5z = 0 x + 5y 2z = 0 4x 2y + 3z + t = 0 5x + ky + 4z + t = 0 3x y + 2z + t = 0
11 Esercizio 2. (Sistemi omogenei, regola dei minori) Regola dei minori (dispensa p. 60): h) g) { 2x + 3y + 5z = 0 x + 5y 2z = 0 4x 2y + 3z + t = 0 5x + ky + 4z + t = 0 3x y + 2z + t = 0
12 Esercizio 2. (Sistemi omogenei, regola dei minori) Regola dei minori (dispensa p. 60): h) g) { 2x + 3y + 5z = 0 x + 5y 2z = 0 4x 2y + 3z + t = 0 5x + ky + 4z + t = 0 3x y + 2z + t = 0
13 Esercizio 3. Risolvere il sistema A x = b, al variare del parametro reale a, dove a a [ A = 1 a, b = a 1 x, x =. y] 1 2 1
14 Esercizio 4. Considerato il sistema A k x = b k, dove k x A k = 1 1 k, bk = k, x = y, z determinare, al variare di k R: a) il rango di A k ; b) il rango di [A k b k ]; c) i valori di k per i quali il sistema è compatibile e, in tal caso, dire quante sono le soluzioni; d) posto k = 0, determinare l insieme delle soluzioni.
15 Esercizio 5. Discutere, al variare del parametro λ R la risolubilità dei seguenti sistemi: x λy = 1 a) 4x + λy = 0 ; 2x + 3y = 2λ b)compito (λ 1)x + z = 1 (λ + 1)y = λ 3λx λy + 2z = 0.
16 Compito. a) Determinare i valori di k R per i quali il sistema è compatibile e dire quante sono le soluzioni. Successivamente risolverlo per k = 0: 2y + kz = 1 k (k 1)x + (k 1)y + k 2 z = k (2 k)y + kz = 1 k b) Determinare i valori di a R per i quali il sistema è compatibile e dire quante sono le soluzioni. Successivamente risolverlo per a = 1: ax + (a + 1)y = 2a + 1 2x + (a + 1)y = a + 3 (2 a)x = 2 a..
17 Eliminazione di Gauss Consiste nel rendere la matrice a scalini attraverso: scambi di righe (=scambi di equazioni del sistema); sostituzioni di una riga con una c.l. di essa con un altra (=sostituzioni di equazioni con c.l. dell equazione sostituita con un altra) Esercizio 6. In R risolvere, se possibile, i seguenti sistemi: x + y z = 1 a) 2x + y z = 3 x + 2y + z = 0 b) x + 2y z t = 10 2x 2y z = 3 y + t = 6
18 Eliminazione di Gauss Consiste nel rendere la matrice a scalini attraverso: scambi di righe (=scambi di equazioni del sistema); sostituzioni di una riga con una c.l. di essa con un altra (=sostituzioni di equazioni con c.l. dell equazione sostituita con un altra) Esercizio 6. In R risolvere, se possibile, i seguenti sistemi: x + y z = 1 a) 2x + y z = 3 x + 2y + z = 0 b) x + 2y z t = 10 2x 2y z = 3 y + t = 6
19 Eliminazione di Gauss Consiste nel rendere la matrice a scalini attraverso: scambi di righe (=scambi di equazioni del sistema); sostituzioni di una riga con una c.l. di essa con un altra (=sostituzioni di equazioni con c.l. dell equazione sostituita con un altra) Esercizio 6. In R risolvere, se possibile, i seguenti sistemi: x + y z = 1 a) 2x + y z = 3 x + 2y + z = 0 b) x + 2y z t = 10 2x 2y z = 3 y + t = 6
20 Eliminazione di Gauss Consiste nel rendere la matrice a scalini attraverso: scambi di righe (=scambi di equazioni del sistema); sostituzioni di una riga con una c.l. di essa con un altra (=sostituzioni di equazioni con c.l. dell equazione sostituita con un altra) Esercizio 6. In R risolvere, se possibile, i seguenti sistemi: x + y z = 1 a) 2x + y z = 3 x + 2y + z = 0 b) x + 2y z t = 10 2x 2y z = 3 y + t = 6
21 Compito Risolvere il seguente sistema con il metodo di eleminazione di Gauss: 2x + y + z = 2 x + z = 1. 2y + z = 1
22 Esercizio 7. Tema esame del 12 dicembre 2007
23 Compito. Tema esame del 15 giugno 2004
Corso di Geometria BIAR, BSIR Esercizi 3: soluzioni
Corso di Geometria - BIAR, BSIR Esercizi : soluzioni Rango e teorema di Rouché-Capelli Esercizio. Calcolare il rango di ciascuna delle seguenti matrici: ( ) ( ) ( ) A =, A =, A =, A 4 = ( ). a a a Soluzione.
Corso di Matematica B - Ingegneria Informatica Testi di Esercizi
A. Languasco - Esercizi Matematica B - 1. Sistemi lineari e Matrici 1 A: Sistemi lineari: eliminazione gaussiana Corso di Matematica B - Ingegneria Informatica Testi di Esercizi A1. Determinare, con il
SISTEMI LINEARI. x y + 2t = 0 2x + y + z t = 0 x z t = 0 ; S 3 : ; S 5x 2y z = 1 4x 7y = 3
SISTEMI LINEARI. Esercizi Esercizio. Verificare se (,, ) è soluzione del sistema x y + z = x + y z = 3. Trovare poi tutte le soluzioni del sistema. Esercizio. Scrivere un sistema lineare di 3 equazioni
Esercizi svolti sui sistemi lineari
Esercizio 1. Risolvere il seguente sistema lineare al variare del parametro reale t: t x + (t 1)y + z = 1 (t 1)y + t z = 1 2 x + z = 5 Soluzione. Il determinante della matrice dei coefficienti è t t 1
Esercizio 1 Dato il sistema:
Leione - Esercitaioni di Algebra e Geometria - Anno accademico 9- Eserciio Dato il sistema: R ) ( a) studiare il rango della matrice incompleta del sistema; b) studiare il rango della matrice completa
Argomento 13 Sistemi lineari
Sistemi lineari: definizioni Argomento Sistemi lineari Un equazione nelle n incognite x,, x n della forma c x + + c n x n = b ove c,, c n sono numeri reali (detti coefficienti) e b è un numero reale (detto
CORSI DI LAUREA IN MATEMATICA E FISICA. Esercizio 1.1. Risolvere graficamente e algebricamente i seguenti sistemi di due equazioni in due incognite:
CORS D LAUREA N MATEMATCA E FSCA FOGLO D ESERCZ # 1 GEOMETRA 1 Esercizio 1.1. Risolvere graficamente e algebricamente i seguenti sistemi di due equazioni in due incognite: 2x + y = 4 x 2y = 6 x + 3y =
Sistemi Lineari. Andrea Galasso
Sistemi Lineari Andrea Galasso Esercizi svolti Teorema. (Rouché-Capelli. Un sistema lineare Ax = b ammette soluzioni se e solo se il rango della matrice dei coefficienti A è uguale al rango della matrice
Federica Gregorio e Cristian Tacelli
1 Sistemi lineari Federica Gregorio e Cristian Tacelli Un sistema lineare m n (m equazioni in n incognite) è un insieme di equazioni lineari che devono essere soddisfatte contemporaneamente a 11 x 1 +
Note sui sistemi lineari
Note sui sistemi lineari Sia K un campo e siano m e n due numeri interi positivi. Sia A M(m n, K) e sia b K m. Consideriamo il sistema lineare Ax = b nell incognita x K n (o, se preferite, nelle incognite
Esercizio 1 Trovare, se esistono, le soluzioni del sistema lineare. y + 3z = 3 x y + z = 0. { x + y = 1
Esercizio 1 Trovare, se esistono, le soluzioni del lineare y + 3z = 3 x y + z = 0 x + y = 1 0 1 3 3 1 1 1 0 1 1 1 0 = 0 1 3 3 = 1 1 0 1 1 1 0 1 = 1 1 1 0 0 1 3 3 0 1 1 = Il di partenza è quindi equivalente
Esercitazione 6 - Soluzione
Anno Accademico 28-29 Corso di Algebra Lineare e Calcolo Numerico per Ingegneria Meccanica Esercitazione 6 - Soluzione Immagine, nucleo. Teorema di Rouché-Capelli. Esercizio Sia L : R 3 R 3 l applicazione
Note per le esercitazioni di Geometria 1 a.a. 2007/08 A. Lotta. Metodi per il calcolo del rango di una matrice
Note per le esercitazioni di Geometria 1 a.a. 2007/08 A. Lotta Versione del 21/12/07 Metodi per il calcolo del rango di una matrice Sia A M m,n (K). Denotiamo con A (i) la riga i-ma di A, i {1,..., m}.
Risoluzione di sistemi lineari
Risoluzione di sistemi lineari Teorema (Rouché-Capelli) Dato il sistema di m equazioni in n incognite Ax = b, con A M at(m, n) b R n x R n [A b] si ha che: matrice dei coefficienti, vettore dei termini
Esercizi di GEOMETRIA I - Algebra Lineare B = , calcolare A A t A + I
Esercizi di GEOMETRIA I - Algebra Lineare. Tra le seguenti matrici, eseguire tutti i prodotti possibili: 2 ( ) A = 0 3 4 B = 2 0 0 2 D = ( 0 ) E = ( ) 4 4 2 C = 2 0 5 F = 4 2 6 2. Data la matrice A = 0
Geometria BAER I canale Foglio esercizi 2
Geometria BAER I canale Foglio esercizi 2 Esercizio 1. Calcolare il determinante e l inversa (quando esiste) della matrice ( ) cos θ sin θ R θ =, θ [0, 2π] sin θ cos θ Soluzione: Il determinante ( é cos
SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI
SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI Appunti presi dalle lezioni del prof. Nedo Checcaglini Liceo Scientifico di Castiglion Fiorentino (Classe 4B) January 17, 005 1 SISTEMI LINEARI Se a ik, b i R,
Non hanno lo stesso coefficiente angolare e dunque non sono parallele, ma non sono nemmeno perpendicolari in quanto il prodotto dei coeffiecienti
Università degli Studi Roma Tre Corso di Laurea in Ottica ed Optometria Tutorato di Istituzioni di Matematica - A.A.06/07 Docente: Prof.ssa E. Scoppola Tutore: Gianclaudio Pietrazzini Soluzioni del Tutorato
ESERCIZI PROPOSTI. det A = = per cui il sistema si può risolvere applicando le formule di Cramer, cioè: dove: = =
ESERCIZI PROPOSTI Risolvere i seguenti sistemi lineari )-0), utilizzando, dove possibile, sia il metodo di Cramer sia quello della matrice inversa, dopo aver analizzato gli esempi a)-d): 2x + + 4z 5 a)
Soluzioni del Foglio 2 I sistemi lineari
Soluzioni del Foglio 2 I sistemi lineari Soluzione dell esercizio 1 Il sistema assegnato è un sistema di 2 equazioni in 2 incognite non omogeneo Le matrici incompleta e completa associate al sistema sono
1.[25 punti] Risolvere il seguente sistema di equazioni lineari al variare del parametro reale λ: X +Y +Z = 2. X 2Y +λz = 2
Università di Modena e Reggio Emilia Facoltà di Scienze MM.FF.NN. PROVA SCRITTA DI GEOMETRIA A del 27 giugno 2011 ISTRUZIONI PER LO SVOLGIMENTO. Scrivere cognome, nome, numero di matricola in alto a destra
I sistemi lineari di n equazioni in n incognite
I sistemi lineari I sistemi lineari di n equazioni in n incognite I sistemi lineari di n equazioni in n incognite, sono formati da equazioni di primo grado, in cui le incognite hanno tutte esponente uguale
Esercizi di GEOMETRIA e ALGEBRA LINEARE (Ingegneria Ambientale e Civile - Curriculum Ambientale)
Esercizi di GEOMETRIA e ALGEBRA LINEARE (Ingegneria Ambientale e Civile - Curriculum Ambientale). Tra le seguenti matrici, eseguire tutti i prodotti possibili: 2 ( ) A = 0 3 4 B = C = 2 2 0 0 2 D = ( 0
SISTEMI LINEARI MATRICI E SISTEMI 1
MATRICI E SISTEMI SISTEMI LINEARI Sistemi lineari e forma matriciale (definizioni e risoluzione). Teorema di Rouché-Capelli. Sistemi lineari parametrici. Esercizio Risolvere il sistema omogeneo la cui
Note sui sistemi lineari per il Corso di Geometria per Chimica, Facoltà di Scienze MM.FF.NN., UNICAL (Dott.ssa Galati C.) Rende, 4 Maggio 2010
Note sui sistemi lineari per il Corso di Geometria per Chimica, Facoltà di Scienze MM.FF.NN., UNICAL (Dott.ssa Galati C.) Rende, 4 Maggio 21 Sistemi lineari. Un sistema lineare di n 1 equazioni in m incognite
Università di Modena e Reggio Emilia Facoltà di Scienze MM.FF.NN. PROVA DI ALGEBRA LINEARE (esercitazione del 18 gennaio 2011)
Università di Modena e Reggio Emilia Facoltà di Scienze MM.FF.NN. PROVA DI ALGEBRA LINEARE (esercitazione del 18 gennaio 2011) ISTRUZIONI PER LO SVOLGIMENTO. Scrivere cognome, nome, numero di matricola
Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite
3 Sistemi lineari 3 Generalità Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite ovvero, in forma matriciale, a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n x
Geometria Appello I Sessione Invernale Corso di laurea in fisica A.A 2018/2019 Canali A C, L Pa, Pb Z
Geometria Appello I Sessione Invernale Corso di laurea in fisica A.A 208/209 Canali A C, L Pa, Pb Z Durata: 2 ore e 30 minuti Alessandro D Andrea Simone Diverio Paolo Piccinni Riccardo Salvati Manni 2
CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA
CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA FOGLIO DI ESERCIZI GEOMETRIA 009/0 Esercizio. (7.9). Si consideri il sistema di equazioni lineari: x + y + z = x + y + z = x + y + 3z = a) Si dica per quali
La riduzione a gradini e i sistemi lineari (senza il concetto di rango)
CAPITOLO 4 La riduzione a gradini e i sistemi lineari (senza il concetto di rango) Esercizio 4.1. Risolvere il seguente sistema non omogeneo: 2x+4y +4z = 4 x z = 1 x+3y +4z = 3 Esercizio 4.2. Risolvere
Sistemi lineari. Un sistema lineare di m equazioni in n incognite è un sistema di m equazioni di primo grado nelle variabili x 1, x 2 x n.
I sistemi lineari Sistemi lineari Un sistema lineare di m equazioni in n incognite è un sistema di m equazioni di primo grado nelle variabili x 1, x 2 x n. a1,1 x1 a1,2 x2... a1, nxn b1 a2,1x1 a2,2x2...
Capitolo VI SISTEMI LINEARI
Capitolo VI SISTEMI LINEARI 1 Concetti fondamentali 11 Definizione Un equazione in n incognite x 1,, x n a coefficienti in R si dice lineare se è della forma: a 1 x 1 + + a n x n = b con a i R e b R Una
Esercizi 9 Rango di una matrice, sistemi lineari
Esercizi 9 Rango di una matrice, sistemi lineari Quesiti a risposta multipla 0 3 ) Sia A a. Il rango di A è uguale a se e solo se 0 3 a a b a 0 c a k 0 0 ) Sia A, con k numero reale. Allora il rango della
Istituzioni di Matematica I. Esercizi su sistemi lineari. & % x + y " #z = "1 & '#x " y+ z =1
Istituzioni di Matematica I Esercizi su sistemi lineari Esempio. Dire per quali valori di λ R il sistema x " y+ z = 2 % x + y " z = " x " y+ z = ha una sola soluzione, per quali nessuna, per quali infinite
Sistemi di equazioni lineari
Sistemi di equazioni lineari Siano X 1,, X n indeterminate Un equazione lineare (o di primo grado) nelle incognite X 1,, X n a coefficienti nel campo K è della forma a 1 X 1 + + a n X n = b, a i, b K,
Sistemi d equazioni lineari
Introduzione Introduzione Sia dato il seguente sistema d equazioni: S S S S Come si risolve un sistema... come si risolve? Lezione 25.wpd 08/01/2011 XXV - 1 Lezione 25.wpd 08/01/2011 XXV - 2 Introduzione
Sistemi lineari - Parte Seconda - Esercizi
Sistemi lineari - Parte Seconda - Esercizi Terminologia Operazioni elementari sulle righe. Equivalenza per righe. Riduzione a scala per righe. Rango di una matrice. Forma canonica per righe. Eliminazione
Esercizi di Algebra Lineare - Foglio 5
Esercizi di Algebra Lineare - Foglio 5 Soluzioni Esercizio alcolare i determinanti delle seguenti matrici: 3 (a) A = 3 A (b) = A (c) = i i A 3 i i Soluzione (a) alcoliamo il determinante con il metodo
Esercizi svolti sui sistemi lineari
Francesco Daddi - www.webalice.it/francesco.daddi Esercizi svolti sui sistemi lineari Esercizio 1. Risolvere il seguente sistema lineare al variare del parametro reale t: tx+(t 1)y + z =1 (t 1)y + tz =1
Universita degli Studi di Ancona Laurea in Ingegneria Meccanica ed Informatica a Distanza Anno Accademico 2005/2006. Matematica 2 (Analisi)
Universita degli Studi di Ancona Laurea in Ingegneria Meccanica ed Informatica a Distanza Anno Accademico 2005/2006 Matematica 2 (Analisi) Nome:................................. N. matr.:.................................
Sistemi II. Sistemi II. Elisabetta Colombo
Corso di Approfondimenti di Matematica per Biotecnologie, Anno Accademico 2011-2012, http://users.mat.unimi.it/users/colombo/programmabio.html 1 2 3 con R.C.+ o 1.10 Rango massimo e determinante con R.C.+
I Compito di Geometria - Ingegneria Edile - 25 ottobre 2000 Tra parentesi [ ] è indicato il punteggio di ogni esercizio.
I Compito di Geometria - Ingegneria Edile - 25 ottobre 2000 Tra parentesi [ ] è indicato il punteggio di ogni esercizio. A [8] Sono date le matrici A M 34 (IR) e b M 31 (IR) A = 1 0 2 2 0 k 1 k, b = 1
Istituzioni di Matematiche sesta parte
Istituzioni di Matematiche sesta parte anno acc. 2013/2014 Univ. Studi di Milano D.Bambusi, C.Turrini (Univ. Studi di Milano Istituzioni di Matematiche 1 / 27 index Matrici e operazioni tra matrici 1 Matrici
a.a MATEMATICA GENERALE: SISTEMI LINEARI E MATRICI
aa 2012-2013 MATEMATICA GENERALE: SISTEMI LINEARI E MATRICI 1 Sistemi di equazioni lineari Definizione 11 i Un equazione lineare nelle indeterminate (o incognite X 1,, X 1 m a coefficienti interi (o razionali,
MATEMATICA. a.a. 2014/ Sistemi di equazioni lineari
MATEMATICA a.a. 2014/15 8. Sistemi di equazioni lineari SISTEMI LINEARI Si definisce sistema lineare un sistema di p equazioni di primo grado in q incognite. a11x1 + a12 x2 +... + a1 qxq = k1 a21x1 + a22x2
CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA
CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA FOGLIO DI ESERCIZI 4 GEOMETRIA 2008/09 Esercizio 4.1 (5.10). Dati i vettori di R 3 : v 1 (1, 1, 2), v 2 (2, 4, 6), v 3 ( 1, 2, 5), v 4 (1, 1, 10) determinare
UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a Prova scritta del TESTO E SOLUZIONI
UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a. 2011-2012 Prova scritta del 28-1-2013 TESTO E SOLUZIONI 1. Per k R considerare il sistema lineare X 1 X 2 + kx 3 =
Esercizi di Geometria e Algebra Lineare
Esercizi di Geometria e Algebra Lineare 1) Dati i vettori a = (2, 4), b = (1, 2), c = ( 1, 1), d = (3, 6), stabilire se c e d appartengono a Span(a, b}) 2) Nello spazio vettoriale R 3 sul campo R, sia
Esame di Geometria - 9 CFU (Appello del 26 gennaio 2016)
Esame di Geometria - 9 CFU (Appello del 26 gennaio 206) Cognome: Nome: Nr.matricola: Corso di laurea: Esercizio. Al variare del parametro α R, si considerino la retta { x + y z = r : 2x + αy + z = 0 ed
Note per il corso di Geometria Corso di laurea in Ing. Edile/Architettura. 4 Sistemi lineari. Metodo di eliminazione di Gauss Jordan
Note per il corso di Geometria 2006-07 Corso di laurea in Ing. Edile/Architettura Sistemi lineari. Metodo di eliminazione di Gauss Jordan.1 Operazioni elementari Abbiamo visto che un sistema di m equazioni
Sistemi lineari. a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2 : : : a m1 x 1 + a m2 x 2 +..
Sistemi lineari: definizioni Sistemi lineari Un equazione nelle n incognite x,, x n della forma c x + + c n x n = b ove c,, c n sono numeri reali (detti coefficienti) e b è un numero reale (detto termine
Compito di Geometria e Algebra per Ing. Informatica ed Elettronica
Compito di Geometria e Algebra per Ing Informatica ed Elettronica 17-02-2015 1) Sia f : R 4 R 3 la funzione lineare definita da f((x, y, z, t)) = ( x + y 2z + kt, x + y + t, 2x + y + z) (x, y, z, t) R
Sistemi Lineari. Elisabetta Colombo. Corso di Approfondimenti di Matematica per Biotecnologie, Anno Accademico
Corso di Approfondimenti di Matematica per Biotecnologie, Anno Accademico 200-20 2 a di o.0 4 Capelli Rango o Caratterisca : definizioni a di o.0 Un equazione nelle n incognite x,..., x n della forma dove
Prima prova in itinere di Geometria (Corso di laurea in Fisica, Canali A-C e D-O) Prof. Barucci e Piccinni 29 novembre 2011
Prima prova in itinere di Geometria (Corso di laurea in Fisica, Canali A-C e D-O) Prof Barucci e Piccinni 29 novembre 2011 a Scrivere subito canale, cognome e nome b Utilizzare questi fogli per le risposte
1. [15 punti] Calcolare il rango della seguente matrice a coefficienti reali: ( 1/2) 1 (1/2)
Università di Modena e Reggio Emilia Facoltà di Scienze MM.FF.NN. PROVA DI ALGEBRA LINEARE del 17 febbraio 011 ISTRUZIONI PER LO SVOLGIMENTO. Scrivere cognome, nome, numero di matricola in alto a destra
Esercizi di Geometria e Algebra Lineare C.d.L. Ingegneria Meccanica
Esercizi di Geometria e Algebra Lineare C.d.L. Ingegneria Meccanica 1) Dati i vettori a = (2, 4), b = (1, 2), c = ( 1, 1), d = (3, 6), stabilire se c e d appartengono a Span(a, b}). 2) Nello spazio vettoriale
SISTEMI LINEARI, METODO DI GAUSS
SISTEMI LINEARI, METODO DI GAUSS Abbiamo visto che un sistema di m equazioni lineari in n incognite si può rappresentare in forma matriciale come A x = b dove: A è la matrice di tipo (m, n) dei coefficienti
APPLICAZIONI. Im f = {b B a A tale che f (a) = b}.
APPLICAZIONI Diremo applicazione (o funzione) da un insieme A ad un insieme B una legge f che associa ad ogni elemento a A uno ed un solo elemento b B. Scriviamo f : A B e il corrispondente o immagine
Esercizi di GEOMETRIA (Ing. Ambientale e Civile - Curriculum Civile) 1. Tra le seguenti matrici, eseguire tutti i prodotti possibili:
Esercizi di GEOMETRIA (Ing. Ambientale e Civile - Curriculum Civile). Tra le seguenti matrici, eseguire tutti i prodotti possibili: 2 ( ) A = 0 3 4 B = C = 2 2 0 0 2 D = ( 0 ) E = ( ) 4 4 2 0 5 F = 4 2
Algebra lineare. Laboratorio di programmazione e calcolo CdL in Chimica. Pierluigi Amodio
Algebra lineare Laboratorio di programmazione e calcolo CdL in Chimica Pierluigi Amodio Dipartimento di Matematica Università di Bari pierluigi.amodio@uniba.it http://dm.uniba.it/ amodio A.A. 2016/17 P.
1 Equazioni parametriche e cartesiane di sottospazi affini di R n
2 Trapani Dispensa di Geometria, Equazioni parametriche e cartesiane di sottospazi affini di R n Un sottospazio affine Σ di R n e il traslato di un sottospazio vettoriale. Cioe esiste un sottospazio vettoriale
Corso di Geometria BIAR, BSIR Esercizi 2: soluzioni
Corso di Geometria 2- BIAR, BSIR Esercizi 2: soluzioni Esercizio Calcolare il determinante della matrice 2 3 : 3 2 a) con lo sviluppo lungo la prima riga, b) con lo sviluppo lungo la terza colonna, c)
Corso di Matematica Generale M-Z Dipartimento di Economia Universitá degli Studi di Foggia ALGEBRA LINEARE. Giovanni Villani
Corso di Matematica Generale M-Z Dipartimento di Economia Universitá degli Studi di Foggia ALGEBRA LINEARE Giovanni Villani Matrici Definizione 1 Si definisce matrice di tipo m n una funzione che associa
SISTEMI LINEARI. x 2y 2z = 0. Svolgimento. Procediamo con operazioni elementari di riga sulla matrice del primo sistema: 1 1 1 3 1 2 R 2 R 2 3R 0 4 5.
SISTEMI LINEARI Esercizi Esercizio. Risolvere, se possibile, i seguenti sistemi: x y z = 0 x + y + z = 3x + y + z = 0 x y = 4x + z = 0, x y z = 0. Svolgimento. Procediamo con operazioni elementari di riga
Esercizi svolti. risolvere, se possibile, l equazione xa + B = O, essendo x un incognita reale
Esercizi svolti 1. Matrici e operazioni fra matrici 1.1 Date le matrici 1 2 1 6 A = B = 5 2 9 15 6 risolvere, se possibile, l equazione xa + B = O, essendo x un incognita reale Osservazione iniziale: qualunque
Elementi di Algebra Lineare Matrici e Sistemi di Equazioni Lineari
Elementi di Algebra Lineare Matrici e Sistemi di Equazioni Lineari Antonio Lanteri e Cristina Turrini UNIMI - 2016/2017 Antonio Lanteri e Cristina Turrini (UNIMI - 2016/2017 Elementi di Algebra Lineare
Nozioni e notazioni: concetti primitivi di insieme, elemento ed appartenenza.
Geometria I lezione del 30 settembre 2013 Presentazione del corso. Nozioni e notazioni: concetti primitivi di insieme, elemento ed appartenenza. Insiemi numerici: i numeri naturali, gli interi, i numeri
x + y = 1 3 y z = 2 x + y z = 4 3 Poichè il determinante della matrice incompleta è 5, applico Cramer e
Università degli Studi Roma Tre Corso di Laurea in Ottica ed Optometria Tutorato di Istituzioni di Matematica - A.A.06/07 Docente: Prof.ssa E. Scoppola Tutore: Gianclaudio Pietrazzini Esercizio Risolvere
8 novembre Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...
COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono stati consegnati tre fogli, stampati fronte e retro. Come prima cosa scrivi
ALGEBRA LINEARE PARTE III
DIEM sez Matematica Finanziaria Università degli studi di Genova Dicembre 200 Indice PREMESSA 2 GENERALITA 2 RAPPRESENTAZIONE DI UN SISTEMA LINEARE IN FORMA MATRI- CIALE 2 3 SOLUZIONE DI SISTEMI LINEARI
Algebra lineare. {ax 2 + bx + c R 2 [x] : 2a + 3b = 1} a b c d. M(2, 2) : a + c + d = 2. a b. c d
Algebra lineare 1. Riconoscere se il seguente insieme costituisce uno spazio vettoriale. In caso affermativo trovarne la dimensione e una base. (R n [x] denota lo spazio dei polinomi nell indeterminata
Istituzioni di Matematiche Modulo A (ST)
Istituzioni di Matematiche Modulo A (ST V II foglio di esercizi ESERCIZIO. Nei seguenti sistemi lineari, discutere l insieme delle soluzioni al variare del parametro t, o dei parametri t e τ, in R. 5 x
UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA
UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA II Parziale - Compito B 3/05/005 A. A. 004 005 ) Risolvere il seguente sistema
ESERCIZI MATEMATICA GENERALE - Canale III
ESERCIZI MATEMATICA GENERALE - Canale III Vettori Prof. A. Fabretti 1 A.A. 009/010 1 Dati in R i vettori v = (1,,, u = (,, 1 e w = (,, calcolare: a la combinazione lineare u + v + 4 w b il prodotto scalare
GEOMETRIA CORREZIONE DELLE PROVE D ESAME
GEOMETRIA CORREZIONE DELLE PROVE D ESAME 1. Prova del 27 settembre 2011 - A Esercizio 1.1. Si trovino i valori del parametro reale k per cui il sistema lineare (k + 1)x + (k 4)y + z = k (k + 2)x + (k 2)y
x = t y = t z = t 3 1 A = B = 1 2
11/1/05 Teoria: Enunciare e discutere il teorema di Lagrange. Esercizio 1. Determinare l equazione cartesiana del piano passante per P 0 = (1,, 1) e contenente i vettori u = (,, ) e v = (1, 5, 4). Risposta
Fondamenti di ALGEBRA LINEARE E GEOMETRIA
Fondamenti di ALGEBRA LINEARE E GEOMETRIA Corso di laurea in Ingegneria Gestionale 2011-2012 Michel Lavrauw Dipartimento di Tecnica e Gestione dei Sistemi Industriali Università di Padova Lezione 19 Capitolo
UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA
UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA BANCARIA FINANZIARIA ED ASSICURATIVA II Parziale - Compito C 3/5/25 A. A. 24 25 ) Risolvere il seguente sistema
1 Spazi vettoriali. Sottospazi.
CORSO DI ALGEBRA LINEARE. A.A. 004-005. Esercitazione del 10 Gennaio 005. (Prof. Mauro Saita, e-mail: maurosaita@tiscalinet.it) 1 Spazi vettoriali. Sottospazi. Esercizio 1.1 Siano v 1 = (, 5, 1, 3), v
FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA CHIMICA E DEI MATERIALI 8 LUGLIO 2015
FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA CHIMICA E DEI MATERIALI 8 LUGLIO 2015 MATTEO LONGO Svolgere entrambe le parti (Teoria ed Esercizi Si richiede la sufficienza su entrambe le parti 1
CORSI DI LAUREA IN MATEMATICA E FISICA
CORSI DI LAUREA IN MATEMATICA E FISICA FOGLIO DI ESERCIZI # 6 GEOMETRIA 1 Esercizio 6.1 (Esercizio 5.1). Scrivere un vettore w R 3 linearmente dipendente dal vettore v ( 1, 9, 0). Per esempio il vettore
Istituzioni di Matematiche prima parte
Istituzioni di Matematiche prima parte anno acc. 2014/2015 Univ. Studi di Milano E.Frigerio, C.Turrini (Univ. Studi di Milano Istituzioni di Matematiche 1 / 30 index Generalità sugli insiemi 1 Generalità
CORSO DI LAUREA IN INGEGNERIA. k R 1 2k 3 0. Il rango di una matrice A corrisponde al massimo ordine di una sottomatrice quadrata di A con deteminante
CORSO DI LAUREA IN INGEGNERIA. FOGLIO DI ESERCIZI 6 GEOMETRIA E ALGEBRA LINEARE 00/ Esercizio 6. (6.3). Calcolare il rango della seguente matrice A, utilizzando il calcolo del determinante. k + 0 A = k
INGEGNERIA EDILE ARCHITETTURA ELEMENTI DI ALGEBRA LINEARE E GEOMETRIA 17 SETTEMBRE 2012
INGEGNERIA EDILE ARCHITETTURA ELEMENTI DI ALGEBRA LINEARE E GEOMETRIA 7 SETTEMBRE 202 Esercizio. Sia V = R[X] 2 lo spazio vettoriale dei polinomi ax 2 + bx + c nella variabile X di grado al più 2 a coefficienti
Sistemi lineari. a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2 : : : a m1 x 1 + a m2 x 2 +..
Sistemi lineari: definizioni Sistemi lineari Un equazione nelle n incognite x,, x n della forma c x + + c n x n = b ove c,, c n sono numeri reali (detti coefficienti) e b è un numero reale (detto termine
0.1 Complemento diretto
1 0.1 Complemento diretto Dato U V, un complemento diretto di U é un sottospazio W V tale che U W = {0} U + W = V cioé la somma di U con il suo complemento diretto é diretta, e dá tutto lo spazio vettoriale
ESERCIZI DI ALGEBRA LINEARE E COMPLEMENTI DI GEOMETRIA
ESERCIZI DI ALGEBRA LINEARE E COMPLEMENTI DI GEOMETRIA Foglio Esempio. Determinare le soluzioni del sistema lineare Ax = B, in cui 4 A = 6 6, B = Sol. Consideriamo la matrice aumentata C = 4 6 6 6 5 e
Argomenti trattati nella settimana novembre Il libro cui faccio riferimento, se non specificato altrimenti, è Lang, Algebra lineare
Argomenti trattati nella settimana 23-27 novembre 2009 Il libro cui faccio riferimento, se non specificato altrimenti, è Lang, Algebra lineare 1 Sistemi lineari; 2 applicazioni lineari; Sistemi lineari;
Università degli Studi di Bergamo Modulo di Geometria e Algebra Lineare (nuovo programma) 2 settembre 2013 Tema A
Università degli Studi di Bergamo Modulo di Geometria e Algebra Lineare (nuovo programma) settembre 013 Tema A Tempo a disposizione: ore e mezza Calcolatrici, libri e appunti non sono ammessi Ogni esercizio
Istituzioni di Matematiche prima parte
Istituzioni di Matematiche prima parte anno acc. 2011/2012 Univ. degli Studi di Milano Cristina Turrini (Univ. degli Studi di Milano Istituzioni di Matematiche 1 / 33 index Generalità sugli insiemi 1 Generalità
1 Esercizi 13. 3x + λy + 2z = 0 (1 λ)x + 5y + 3z = 0 3x + 2y + z = 0
1 Esercizi 13 1. Discutere le soluzioni del sistema seguente al variare del parametro λ R. 3x + λy + 2z 0 (1 λ)x + 5y + 3z 0 3x + 2y + z 0 Soluzione. Si tratta di un SLO 3 3 e sappiamo che tale sistema
Esercizi di Matematica di Base Scienze biologiche e Scienze e Tecnologie dell Ambiente
Esercizi di Matematica di Base Scienze biologiche e Scienze e Tecnologie dell Ambiente Dati i vettori di R (i) Calcolare il prodotto scalare v w, (ii) Stabilire se v e w sono ortogonali, (ii) Stabilire
Istituzioni di Matematiche prima parte
Istituzioni di Matematiche prima parte anno acc. 2012/2013 Univ. degli Studi di Milano Cristina Turrini (Univ. degli Studi di Milano Istituzioni di Matematiche 1 / 33 index Generalità sugli insiemi 1 Generalità
Cognome Nome A. Scrivere le risposte agli esercizi 1,2,4,5 negli spazi sottostanti.
Cognome Nome A Scrivere le risposte agli esercizi 1,2,4,5 negli spazi sottostanti. 1) 2) 4) 5) Geometria e algebra lineare 7/2/2019 A 1) Si considerino i punti A = (1, 0, 2), B = (0, 1, 0), C = ( 1, 1,
2 Sistemi lineari. Metodo di riduzione a scala.
Sistemi lineari. Metodo di riduzione a scala. Esercizio.1 Utilizzando il metodo di eliminazione di Gauss, risolvere i seguenti sistemi lineari: 1. 3. x 1 x + 3x 3 = 1 x 1 x x 3 = x 1 + x + 3x 3 = 5 x 1
Pagine di Algebra lineare. di premessa al testo Pagine di Geometria di Sara Dragotti. Parte terza: SISTEMI LINEARI
Pagine di Algebra lineare di premessa al testo Pagine di Geometria di Sara Dragotti Parte terza: SISTEMI LINEARI 1. Definizioni Dato un campo K ed m 1 polinomi su K in n indeterminate di grado non superiore
UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a Prova scritta del TESTO E SOLUZIONI
UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a. 2015-2016 Prova scritta del 16-9-2016 TESTO E SOLUZIONI Svolgere tutti gli esercizi. 1. Per k R considerare il sistema
Corso di Analisi Numerica
con pivoting Corso di Laurea in Ingegneria Informatica Corso di Analisi Numerica 6 - METODI DIRETTI PER I SISTEMI LINEARI Lucio Demeio Dipartimento di Scienze Matematiche con pivoting 1 Introduzione algebrica