Elenco degli esercizi che saranno presi in considerazione per la I prova di esonero di fisica Generale per Edile Architettura.

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Elenco degli esercizi che saranno presi in considerazione per la I prova di esonero di fisica Generale per Edile Architettura."

Transcript

1 Elenco degli esercizi che saranno presi in considerazione per la I prova di esonero di fisica Generale per Edile Architettura. Dal libro di testo Mazzoli- Nigro Voci Fondamenti di Fisica II edizione Capitolo II N.: 2.9, 2.13, 2.15, 2.16, 2.18, 2.20, 2.23, 2.27 Capitolo III N.:3.4, 3.7, 3.8, 3.12, 3.20, 3.21, 3.23, 3.28, 3.34, 3.38, 3.39, 3.42 Capitolo IV N: 4.2, 4.5, 4.8, 4.11, 4.16, 4.17, 4.22, 4.24, 4.26, 4.30, 4.32, 4.33, 4.37, 4.39, 4.42 Altre tracce: Un uomo di peso P = 600 N, è in piedi su una piattaforma mobile di peso p = 200 N, connessa ad un sistema di corde e di carrucole ideali, come in figura. Si determinino: 1) con quale forza T verticale, l'uomo deve tirare la corda verso il basso perché la piattaforma rimanga in equilibrio; 2) quale forza R, verticale verso il basso, l'uomo imprime alla piattaforma in queste condizioni; 3) qual è il massimo peso della piattaforma che l'uomo è in grado di sorreggere. Un corpo di massa m= 0.5 kg è attaccato ad una molla di costante elastica k=50n/m e poggia su di un piano orizzontale liscio, come mostrato in figura. All'istante iniziale il corpo viene messo in moto dalla posizione in cui la molla non è deformata con una velocità di 4 m/s verso sinistra. Qual è la legge oraria del moto? Determinare l'ampiezza, la fase iniziale ed il periodo del moto. La figura mostra tre diverse traiettorie di un pallone calciato da uno stesso punto a terra. Trascurando l effetto dell aria, a) fate una graduatoria decrescente delle traiettorie in funzione della durata del volo.

2 b) fate una graduatoria decrescente delle traiettorie in funzione della componente verticale della velocità iniziale. c) fate una graduatoria decrescente delle traiettorie in funzione della componente orizzontale della velocità iniziale. Due blocchi, di massa m 1 =2.3 kg e m 2 =1.2 kg, sono poggiati su un piano orizzontale privo di attrito come mostrato in figura. Se al corpo di massa m 1 viene applicata una forza di intensità pari a F=3.2 N, determinare l'accelerazione dei due blocchi e la forza di contatto tra i due. Determinare le stesse quantità nel caso in cui la forza F viene applicata al blocco di massa m 2 e confrontarle con quelle determinate precedentemente. Spiegare le eventuali differenze. m 1 m 1 F m 2 m 2 F Un corpo di massa m = 0.5 kg è attaccato ad una corda ideale di lunghezza pari a 2 m che pende dal soffitto. Assestando un colpetto alla massa m, essa viene fatta partire dalla posizione di equilibrio con una velocità di 0.4 m/s verso destra. Assumendo che le oscillazioni siano piccole, determinare la loro ampiezza e il loro periodo. Stabilire inoltre la legge oraria e determinare la fase iniziale. Determinare infine la tensione nella corda quando la essa, durante il moto del pendolo, passa per la posizione verticale. Un corridore percorre una metà di una pista circolare in 20 s. Se il diametro della pista è 100 m. Qual è la sua velocità scalare media? Qual è l intensità della sua velocità vettoriale media? Assumendo costante la sua velocità, qual è la sua accelerazione in modulo direzione e verso nel punto di mezzo del suo percorso? Un corpo A, di massa m A =100 kg, poggia su un piano orizzontale scabro con coefficiente di attrito µ A =0,2. Un secondo corpo B, di massa m B =20 kg, è posato su A (vedi figura). Il coefficiente di attrito statico fra i due corpi è µ B =0,1. Si determini: 1. l'intensità F min della forza parallela al piano orizzontale da applicare al corpo A, superando la quale il corpo A si mette in movimento; 2. l'intensità massima F max della forza parallela al piano B orizzontale che può essere applicata al corpo A senza A che il corpo B sfugga da A ( si assuma che il coefficiente di attrito dinamico uguale a quello statico).

3 La curva sopraelevata di una autostrada è stata progettata per una velocità di 95 Km/h. Il raggio della curva è di 210 m. In condizioni di cattivo tempo meteorologico il traffico percorre l'autostrada ad una velocità di 52 km/h. a) Quale deve essere il minimo valore del coefficiente di attrito che consente di superare la curva senza scivolare? Usando tale valore per il coefficiente di attrito, con quale la velocità massima si può affrontare la curva senza scivolare? Un lampadario di massa 5kg pende dal soffitto di una grande sala. Esso è sorretto da una corda lunghezza L=2.5 m. Il lampadario viene abbandonato con velocità nulla quando la corda forma un angolo di 5 con la verticale. a) Qual è il periodo del moto (in s)? b) Cosa succede al periodo se la massa del corpo viene raddoppiata? c) Cosa succede al periodo se la lunghezza della corda viene raddoppiata? d) Qual è l ampiezza del moto armonico del pendolo? e) Qual è la legge oraria? f) Qual è la fase iniziale? g) Quando il lampadario passa per la verticale, la tensione nella corda è più grande, più piccola o uguale al peso del lampadario? Due corpi sono collegati da un filo come in figura; le masse valgono m 1 =14 kg ed m 2 =2 kg, l'angolo di inclinazione del piano inclinato è di 30. Il corpo m 2 è anche legato al suolo da una molla di costante elastica k=100 N/m e lunghezza a riposo nulla. Nella situazione della figura la lunghezza della molla è x o =0.2 m ed il sistema è in quiete perché m 1 è bloccato da un appoggio. Calcolare la tensione del filo e la componente parallela al piano inclinato della reazione vincolare esercitata dall'appoggio. Se ad un certo istante viene levato l'appoggio, calcolare l'accelerazione iniziale del sistema. Si supponga trascurabile ogni attrito. m1 m2 appoggio Una macchina percorre a velocità costante una strada dritta ma a saliscendi. Una sezione presenta un dosso ed un avvallamento entrambi di raggio pari a 250 m, mentre i tratti rettilinei di raccordo hanno una pendenza dell'8%. Quando la macchina passa sulla cima del dosso la forza normale agente sulla macchina è la metà del suo peso uguale a 19 kn. (a) Determinare la velocità dell'autovettura. (b) Determinare il valore della forza normale quando l'autovettura passa per l'avvallamento. (c) determinare per quali valori della velocità l'autovettura perde l'aderenza con la strada. Precisare inoltre in quale punto del precorso avviene la perdita di aderenza.

4 R La relazione tra l accelerazione di una particella e la sua posizione sull asse x, o la sua velocità lungo l asse x, v, è data, in casi diversi, dalle seguenti relazioni: a) a =0.5x, b) a = 400x 2 c) a = -20x d) a = -3x 2 e) a = 3v f) a = -9v g) a = -6v 2 h) a = 7 i) a = 0 k) a = 5t j) a = 5t 2 l) v= 5t Quali delle precedenti relazioni determinano un moto armonico semplice? Quali delle precedenti relazioni determinano un moto smorzato? Quali delle precedenti relazioni determinano un moto uniformemente accelerato? Quali delle precedenti relazioni determinano un moto uniforme? Due scatole, m1 = 1.0 kg con un coefficiente di attrito dinamico di 0.1 ed m2 = 2 kg con coefficiente di attrito dinamico 0.2, sono poste su un piano inclinato di 30 rispetto all orizzontale. Le due scatole sono connesse con una corda ideale. Si supponga che le due scatole partano da ferme e con la corda tesa. Determinare l accelerazione delle due scatole nei due casi: a) il corpo 1 è più in basso del 2; b) il corpo 2 è più in basso dell uno. 30 Se l angolo θ della forza F agente sul blocco fermo cresce (in valore assoluto), le seguenti grandezze aumentano, diminuiscono o rimangono le stesse? (a)la componente x della forza F x ; (b)la forza di attrito statico f s ; (c) la normale N; (d)la forza di attrito statico f smax. (e) Se invece il blocco non fosse fermo, il modulo della forza d attrito aumenterebbe, diminuirebbe o resterebbe uguale? Una bicicletta viene messa sotto sopra e la sua ruota anteriore fatta girare con una velocità di 180 giri al minuto. A,B, e C sono tre punti disposti lungo un raggio: A si trova a una distanza dal centro della ruota pari a 1/3 di R, B si trova ad una distanza di 2/3R e C si trova a distanza R, dove R è il raggio della ruota.

5 Fate una classifica decrescente dei tre punti in funzione del modulo della loro velocità Fate una classifica decrescente dei tre punti in funzione dell angolo percorso in 1s. Fate una classifica decrescente dei tre punti in funzione del modulo dell accelerazione centripeta. Se la velocità angolare della ruota viene portata a zero in 30 s, fate una classifica decrescente dei tre punti in funzione del modulo dell accelerazione tangenziale. Le due masse mostrate in figura inizialmente sono poste ciascuna a 1.80 m dal suolo e la carrucola, priva di massa e di attrito, è a 4.80 m dal suolo. Qual è l altezza massima raggiunta dal corpo più leggero una volta che il sistema viene lasciato libero di muoversi? 2,2 kg 3,2 kg 4,80 m 1,80 m k m M Due blocchi (m=1.0 kg e M = 10 kg) e una molla (k=200 N/m) sono sistemati come in figura su una superficie orizzontale priva di attrito. Il coefficiente di attrito statico tra i due blocchi è Qual è la massima ampiezza del moto armonico semplice per evitare lo slittamento dei due blocchi. Se l'ampiezza del moto è più piccola di quella massima quanto vale il periodo? Scrivere infine l'espressione (in funzione del tempo) della componente verticale e di quella orizzontale della reazione vincolare esercitata dal blocco di massa M su quello di massa m. A Una particella di massa m=1kg si muove a velocità di modulo costante, v=10 m/s. Dapprima percorre un tratto rettilineo e poi affronta una curva di raggio r=10 m. Stabilire, per ciascuno dei tratti della traiettoria, il modulo, la direzione ed il verso della risultante delle forze applicate al corpo. B r C I blocchi A e B della figura hanno rispettivamente massa di 4,4 e 2,6 kg, mentre la carrucola C può essere considerata ideale. I coefficienti di attrito statico e dinamico tra il blocco A e il tavolo sono rispettivamente 0,36 e 0,30. Si determini la minima

6 massa del corpo D che impedisce ad A di scivolare. Improvvisamente il corpo D viene tolto da A. Si determini l accelerazione di A e la tensione nella fune. D A C B Un treno di massa 5x10 5 Kg sta viaggiando orizzontalmente a 60 km/h e sta effettuando una curva il cui raggio di curvatura è 1 km. Allo stesso tempo sta decelerando ed il tasso di decrescita (accelerazione) del modulo della velocità è di 0.1 m/s 2. La lunghezza del treno è trascurabile confrontata con le dimensioni della curva ed il treno può essere trattato come un punto. Che forza totale esercitano i binari sul treno? (dare la risposta all'inizio della curva, quando cioè la velocità può essere considerata ancora uguale a 60 km/h). Nella figura è riportato il diagramma a(t) di una particella in moto armonico semplice di ampiezza x m. Quale dei punti indica che la particella si trova in -x m? Nel punto 4 la velocità della particella è positiva, negativa o nulla? Nel punto 5 la particella si trova in -x m, + x m, 0, tra - x m e 0, o tra 0 e + x m? Un corpo di massa m = 2 kg viene lanciato con una velocità di 3 m/s su di un piano inclinato di 20 scabro con coefficienti di attrito statico e dinamico rispettivamente di 0.4 e 0.3. Determinare: a) la distanza percorsa dal corpo lungo il piano inclinato prima di fermarsi. b) il tempo impiegato. Stabilire se il corpo resta nella posizione in cui si è fermato o se ridiscende lungo il piano inclinato. In questo ultimo caso determinare la velocità con cui arriva alla base del piano inclinato.

7 Un piccolo oggetto di massa m viene posto sul piatto orizzontale girevole di un giradischi, a distanza d = 12 cm dall asse di rotazione. Si osserva che: c) il corpo resta ferma sul piatto se questo ruota ad una velocità angolare ω a =33 giri/min d) scivola via se la velocità angolare è ω b =45 giri/min. Considerando l oggetto come puntiforme, utilizzare queste osservazioni per stabilire dei limiti sul coefficiente di attrito tra l oggetto ed il piano. Nella figura è riportata v(t) di una particella in moto armonico semplice di ampiezza x m? In corrispondenza del punto A la velocità della particella è nulla, è diretta verso -x m o verso + x m? In corrispondenza del punto B la velocità della particella è nulla, è diretta verso - x m o verso + x m? In corrispondenza del punto A la particella si trova in - x m, + x m, nell origine del sistema di riferimento, tra - x m e l origine O o tra l origine O e + x m? In corrispondenza del punto B la particella si trova in - x m,+ x m, nell origine del sistema di riferimento, tra - x m e l origine O o tra l origine O e + x m? In corrispondenza del punto A, il modulo della velocità della particella sta aumentando o diminuendo? In corrispondenza del punto B, il modulo della velocità della particella sta aumentando o diminuendo? Un blocco di massa M=100kg è trascinato a velocità costante di 5 m/s su di un pavimento orizzontale da una forza di 122 N diretta con un angolo di 37 al di sopra del piano orizzontale. Qual è il valore e) della forza di attrito tra il blocco ed il piano? f) e del coefficiente di attrito dinamico? Quale valore deve avere la forza da applicare per far muovere il blocco a velocità costante se esso viene spinto da una forza diretta a 37 verso il basso? Su di un corpo di massa m=0.8 kg è poggiato un secondo corpo di massa m 1 =0.20 Kg. Il coefficiente di attrito statico tra i due corpi sia pari a 0.3. Il corpo di massa m si muove su di un piano orizzontale liscio con velocità v=1.0 m/s verso sinistra. Il corpo di m 1

8 massa m 1 si muove insieme al corpo su cui è poggiato. Ad un certo punto il corpo di massa m colpisce una molla di costante elastica k=100 N/m inizialmente non deformata. Il corpo di massa m comprime la molla e ne viene rallentato. a) Elencare le forze agenti su ciascuno dei due corpi mentre il corpo di massa m è a contatto con la molla. b) Stabilire il valore della compressione della molla quando il corpo m 1 comincia a scivolare sul corpo di massa m. Una palla viene lanciata contro un muro con la velocità iniziale di 25.0 m/s a un angolo di 40 rispetto al suolo orizzontale come mostrato in figura. Il muro si trova a 44 m dal punto di lancio. Trascurando la resistenza dell aria determinare: g) quanto tempo la palla rimane in aria prima di colpire la parete. h) quali sono le componenti orizzontale e verticale della velocità all istante in cui la palla colpisce la parete i) se nel momento in cui tocca la parete ha già superato il vertice della traiettoria. j) Il raggio di curvatura della traiettoria nel suo punto più alto. A un manovale sfugge accidentalmente una cassa di massa 180 kg che stava trattenendo in cima ad una rampa di lunghezza 3.7 m avente una pendenza di 30 rispetto alla direzione orizzontale. Il coefficiente di attrito dinamico tra la cassa e la rampa ed il pavimento orizzontale del magazzino è di a) disegnare il digramma di corpo libero (il diagramma delle forze) della cassa e trovare la risultante di tutte le forze che agiscono su di essa. b) Determinare con che velocità la cassa arriva in fondo alla rampa. Un corpo di massa m = 0.5 kg è attaccato ad una corda ideale di lunghezza pari a 2 m che pende dal soffitto. Assestando un colpetto alla massa m, essa viene fatta partire dalla posizione di equilibrio con una velocità di 0.4 m/s verso destra. Assumendo che le oscillazioni siano piccole, determinare la loro ampiezza e il loro periodo. Stabilire inoltre la legge oraria e determinare la fase iniziale. Determinare infine la tensione nella corda quando la essa, durante il moto del pendolo, passa per la posizione verticale. La figura illustra l andamento della velocità angolare in funzione del

9 tempo per un disco rotante. Per una posizione sull orlo del disco ordinate i quattro istanti a, b, c e d secondo i valori decrescenti del modulo (a) dell accelerazione tangenziale e (b) dell accelerazione radiale. Ordinare i quattro istanti secondo i valori decrescenti del modulo dell accelerazione tangenziale. Ordinare i quattro istanti secondo i valori decrescenti del modulo dell accelerazione radiale. Una cassa di mele viene premuta contro il muro così forte da non farla cadere. a) Qual è la direzione ed il verso della normale N esercitata dalla parete sulla cassa? b) Il modulo della normale N è maggiore, minore o uguale al peso della cassa? c) Qual è la direzione ed il verso della forza di attrito esercitata dalla parete sulla cassa? d) L intensità della forza di attrito statico è maggiore, minore o uguale al peso della cassa? e) Se si aumenta la spinta della cassa contro il muro, cosa accade all intensità della normale N? f) Se si aumenta la spinta della cassa contro il muro, cosa accade all intensità della forza di attrito? g) Se si aumenta la spinta della cassa contro il muro, cosa accade all intensità della forza di attrito massimo? Un eschimese seduto sulla cima di un blocco di ghiaccio di forma emisferica, come mostrato in figura, di raggio R=3 m riceve una piccola spinta che lo va partire dalla sommità del blocco con una velocità di 1.9 m/s. Determinare l'angolo θ, rispetto alla verticale, a cui l'eschimese si stacca dal ghiaccio. Determinare infine la distanza dal centro del blocco del punto di impatto al suolo. Si assuma il blocco di ghiaccio privo di attrito. Un pattinatore di massa m = 52 kg sta ruotando su una circonferenza di raggio r=20 m ad una velocità di 3 m/s. Egli si mantiene su questa traiettoria reggendo una fune attaccata mediante un cuscinetto privo di attrito ad un palo posto al centro del cerchio. Calcolare la tensione T esercitata dalla fune. Il ghiaccio su cui egli pattina può essere considerato privo di attrito, ma per una parte del moto attraversa una pozza sabbiosa di lunghezza 48 cm dove il coefficiente di attrito è µ = Quanto vale la velocità subito dopo aver attraversato la pozza sabbiosa? Quanto deve valere la tensione nella fune affinché continui a percorrere la stessa traiettoria dopo aver attraversato la pozza sabbiosa?

10 Vista dall alto Vista laterale

m = 53, g L = 1,4 m r = 25 cm

m = 53, g L = 1,4 m r = 25 cm Un pendolo conico è formato da un sassolino di 53 g attaccato ad un filo lungo 1,4 m. Il sassolino gira lungo una circonferenza di raggio uguale 25 cm. Qual è: (a) la velocità del sassolino; (b) la sua

Dettagli

Problemi di dinamica del punto materiale

Problemi di dinamica del punto materiale Problemi di dinamica del punto materiale 1. Un corpo di massa M = 200 kg viene lanciato con velocità v 0 = 36 km/ora su un piano inclinato di un angolo θ = 30 o rispetto all orizzontale. Nel salire, il

Dettagli

Dinamica del punto materiale: problemi con gli oscillatori.

Dinamica del punto materiale: problemi con gli oscillatori. Dinamica del punto materiale: problemi con gli oscillatori. Problema: Una molla ideale di costante elastica k = 300 Nm 1 e lunghezza a riposo l 0 = 1 m pende verticalmente avendo un estremità fissata ad

Dettagli

Esercizi sulla Dinamica del punto materiale. I. Leggi di Newton, ovvero equazioni del moto

Esercizi sulla Dinamica del punto materiale. I. Leggi di Newton, ovvero equazioni del moto Esercizi sulla Dinamica del punto materiale. I. Leggi di Newton, ovvero equazioni del moto Principi della dinamica. Aspetti generali 1. Un aereo di massa 25. 10 3 kg viaggia orizzontalmente ad una velocità

Dettagli

Esercizio 1 L/3. mg CM Mg. La sommatoria delle forze e dei momenti deve essere uguale a 0 M A. ω è il verso di rotazione con cui studio il sistema

Esercizio 1 L/3. mg CM Mg. La sommatoria delle forze e dei momenti deve essere uguale a 0 M A. ω è il verso di rotazione con cui studio il sistema Esercizio 1 Una trave omogenea di lunghezza L e di massa M è appoggiata in posizione orizzontale su due fulcri lisci posti alle sue estremità. Una massa m è appoggiata sulla trave ad una distanza L/3 da

Dettagli

Capitolo 7 (10) N.: 7.7, 7.8, 7.10, 7.11, 7.16, 7.17, 7.19, 7.27, 7.31, 7.48

Capitolo 7 (10) N.: 7.7, 7.8, 7.10, 7.11, 7.16, 7.17, 7.19, 7.27, 7.31, 7.48 Elenco degli esercizi che saranno presi in considerazione per la II prova di esonero di Fisica Generale per Edile AL Anno Accademico 2010/11. Dal libro di testo Mazzoli- Nigro Voci Fondamenti di Fisica

Dettagli

CLASSE 3 D. CORSO DI FISICA prof. Calogero Contrino IL QUADERNO DELL ESTATE

CLASSE 3 D. CORSO DI FISICA prof. Calogero Contrino IL QUADERNO DELL ESTATE LICEO SCIENTIFICO GIUDICI SAETTA E LIVATINO RAVANUSA ANNO SCOLASTICO 2013-2014 CLASSE 3 D CORSO DI FISICA prof. Calogero Contrino IL QUADERNO DELL ESTATE 20 esercizi per restare in forma 1) Un corpo di

Dettagli

Corsi di Laurea per le Professioni Sanitarie. Cognome Nome Corso di Laurea Data

Corsi di Laurea per le Professioni Sanitarie. Cognome Nome Corso di Laurea Data CLPS12006 Corsi di Laurea per le Professioni Sanitarie Cognome Nome Corso di Laurea Data 1) Essendo la densità di un materiale 10.22 g cm -3, 40 mm 3 di quel materiale pesano a) 4*10-3 N b) 4 N c) 0.25

Dettagli

ESERCIZI PER L ATTIVITA DI RECUPERO CLASSE III FISICA

ESERCIZI PER L ATTIVITA DI RECUPERO CLASSE III FISICA ESERCIZI PER L ATTIVITA DI RECUPERO CLASSE III FISICA 1) Descrivi, per quanto possibile, il moto rappresentato in ciascuno dei seguenti grafici: s a v t t t S(m) 2) Il moto di un punto è rappresentato

Dettagli

sfera omogenea di massa M e raggio R il momento d inerzia rispetto ad un asse passante per il suo centro di massa vale I = 2 5 MR2 ).

sfera omogenea di massa M e raggio R il momento d inerzia rispetto ad un asse passante per il suo centro di massa vale I = 2 5 MR2 ). ESERCIZI 1) Un razzo viene lanciato verticalmente dalla Terra e sale con accelerazione a = 20 m/s 2. Dopo 100 s il combustibile si esaurisce e il razzo continua a salire fino ad un altezza massima h. a)

Dettagli

3. Si dica per quali valori di p e q la seguente legge e` dimensionalmente corretta:

3. Si dica per quali valori di p e q la seguente legge e` dimensionalmente corretta: Esercizi su analisi dimensionale: 1. La legge oraria del moto di una particella e` x(t)=a t 2 +b t 4, dove x e` la posizione della particella e t il tempo. Si determini le dimensioni delle costanti a e

Dettagli

4. Su di una piattaforma rotante a 75 giri/minuto è posta una pallina a una distanza dal centro di 40 cm.

4. Su di una piattaforma rotante a 75 giri/minuto è posta una pallina a una distanza dal centro di 40 cm. 1. Una slitta, che parte da ferma e si muove con accelerazione costante, percorre una discesa di 60,0 m in 4,97 s. Con che velocità arriva alla fine della discesa? 2. Un punto materiale si sta muovendo

Dettagli

Esercitazione 2. Soluzione

Esercitazione 2. Soluzione Esercitazione 2 Esercizio 1 - Resistenza dell aria Un blocchetto di massa m = 0.01 Kg (10 grammi) viene appoggiato delicatamente con velocità iniziale zero su un piano inclinato rispetto all orizziontale

Dettagli

Lavoro estivo per studenti con giudizio sospeso. Libro di Testo: Parodi Ostili, Fisica Cinematica e Dinamica, LINX

Lavoro estivo per studenti con giudizio sospeso. Libro di Testo: Parodi Ostili, Fisica Cinematica e Dinamica, LINX ISO 9001 CERTIFIED ORGANISATION ISTITUTO Di ISTRUZIONE SUPERIORE MINISTERO dell Istruzione, dell Università e della Ricerca ISTITUTO di ISTRUZIONE SUPERIORE Carlo Alberto Dalla Chiesa 21018 Sesto Calende

Dettagli

Esercitazioni di fisica

Esercitazioni di fisica Esercitazioni di fisica Alessandro Berra 4 marzo 2014 1 Cinematica 1 Un corpo puntiforme, partendo da fermo, si muove per un tempo t 1 = 10 s con accelerazione costante a 1 = g/3, prosegue per t 2 = 15

Dettagli

l'attrito dinamico di ciascuno dei tre blocchi sia pari a.

l'attrito dinamico di ciascuno dei tre blocchi sia pari a. Esercizio 1 Tre blocchi di massa rispettivamente Kg, Kg e Kg poggiano su un piano orizzontale e sono uniti da due funi (vedi figura). Sul blocco agisce una forza orizzontale pari a N. Si determini l'accelerazione

Dettagli

Moto del Punto - Cinematica del Punto

Moto del Punto - Cinematica del Punto Moto del Punto - Cinematica del Punto Quiz 1 Posizione, spostamento e traiettoria 1. Un ciclista si sposta di 10km in una direzione formante un angolo di 30 rispetto all asse x di un fissato riferimento.

Dettagli

Facoltà di Farmacia - Anno Accademico A 18 febbraio 2010 primo esonero

Facoltà di Farmacia - Anno Accademico A 18 febbraio 2010 primo esonero Facoltà di Farmacia - Anno Accademico 2009-2010 A 18 febbraio 2010 primo esonero Corso di Laurea: Laurea Specialistica in FARMACIA Nome: Cognome: Matricola Aula: Canale: Docente: Riportare sul presente

Dettagli

SIMULAZIONE PRIMO ESONERO (ES. SVOLTI) DEL

SIMULAZIONE PRIMO ESONERO (ES. SVOLTI) DEL SIMULAZIONE PRIMO ESONERO (ES. SVOLTI) DEL 27-03-2014 ESERCIZIO 1 Un ragazzo, in un parco divertimenti, entra in un rotor. Il rotor è una stanza cilindrica che può essere messa in rotazione attorno al

Dettagli

Compito di Fisica Generale (Meccanica) 13/01/2014

Compito di Fisica Generale (Meccanica) 13/01/2014 Compito di Fisica Generale (Meccanica) 13/01/2014 1) Un punto materiale inizialmente in moto rettilineo uniforme è soggetto alla sola forza di Coriolis. Supponendo che il punto si trovi inizialmente nella

Dettagli

Compito di Fisica Generale (Meccanica) 25/01/2011

Compito di Fisica Generale (Meccanica) 25/01/2011 Compito di Fisica Generale (Meccanica) 25/01/2011 1) Un punto materiale di massa m è vincolato a muoversi su di una guida orizzontale. Il punto è attaccato ad una molla di costante elastica k. La guida

Dettagli

una parete di altezza h = 2 m dopo un intervallo di

una parete di altezza h = 2 m dopo un intervallo di 17 settembre 2013 Prova scritta di Fisica Generale per Edile (esercizi 1, 2,3) Prova scritta di Fisica Generale per Edile-Architettura (esercizi 1,2,4) Come fare lo scritto: Giustificare partendo da leggi

Dettagli

Esercizi. Diagrammi delle forze (di corpo singolo) per sistemi in equilibrio

Esercizi. Diagrammi delle forze (di corpo singolo) per sistemi in equilibrio Esercizi Diagrammi delle forze (di corpo singolo) per sistemi in equilibrio Per ciascun esercizio disegnare su ciascun corpo del sistema il diagramma delle forze, individuando e nominando ciascuna forza.

Dettagli

I PROVA INTERCORSO FISICA INGEGNERIA MECCANICA (N-Z)

I PROVA INTERCORSO FISICA INGEGNERIA MECCANICA (N-Z) I PROVA INTERCORSO FISICA INGEGNERIA MECCANICA (N-Z) 05-11-2015 Una pallina da tennis viene lanciata con velocità V0 = 40 m/s ed angolo rispetto all orizzontale = /3. Il campo da tennis è lungo 30 m e

Dettagli

Anno Accademico Fisica I 12 CFU Esercitazione n.8: Dinamica dei corpi rigidi

Anno Accademico Fisica I 12 CFU Esercitazione n.8: Dinamica dei corpi rigidi Anno Accademico 2015-2016 Fisica I 12 CFU Esercitazione n.8: Dinamica dei corpi rigidi Esercizio n.1 Una carrucola, costituita da due dischi sovrapposti e solidali fra loro di massa M = 20 kg e m = 15

Dettagli

Compito di Fisica Generale (Meccanica) 16/01/2015

Compito di Fisica Generale (Meccanica) 16/01/2015 Compito di Fisica Generale (Meccanica) 16/01/2015 1) Un cannone spara un proiettile di massa m con un alzo pari a. Si calcoli in funzione dell angolo ed in presenza dell attrito dell aria ( schematizzato

Dettagli

[3] Un asta omogenea di sezione trascurabile, di massa M = 2.0 kg e lunghezza l = 50 cm, può ruotare senza attrito in un piano verticale x y attorno a

[3] Un asta omogenea di sezione trascurabile, di massa M = 2.0 kg e lunghezza l = 50 cm, può ruotare senza attrito in un piano verticale x y attorno a [1] Un asta rigida omogenea di lunghezza l = 1.20 m e massa m = 2.5 kg reca ai due estremi due corpi puntiformi di massa pari a 0.2 kg ciascuno. Tale sistema è in rotazione in un piano orizzontale attorno

Dettagli

Esame di Meccanica Razionale (Dinamica) Allievi Ing. Edile II Anno Prova intermedia del 23 novembre 2012 durata della prova: 2h

Esame di Meccanica Razionale (Dinamica) Allievi Ing. Edile II Anno Prova intermedia del 23 novembre 2012 durata della prova: 2h Prova intermedia del 23 novembre 2012 durata della prova: 2h CINEMTIC E CLCL DI QUNTITÀ MECCNICHE Nelsistemadifiguraildiscodicentro ruoy ta intorno al suo centro; il secondo disco rotola senza strisciare

Dettagli

Esempio prova di esonero Fisica Generale I C.d.L. ed.u. Informatica

Esempio prova di esonero Fisica Generale I C.d.L. ed.u. Informatica Esempio prova di esonero Fisica Generale I C.d.L. ed.u. Informatica Nome: N.M.: 1. Se il caffè costa 4000 /kg (lire al chilogrammo), quanto costa all incirca alla libbra? (a) 1800 ; (b) 8700 ; (c) 18000

Dettagli

Esercizi sul corpo rigido.

Esercizi sul corpo rigido. Esercizi sul corpo rigido. Precisazioni: tutte le figure geometriche si intendono omogenee, se non è specificato diversamente tutti i vincoli si intendono lisci salvo diversamente specificato. Abbreviazioni:

Dettagli

Esercizio 1 Meccanica del Punto

Esercizio 1 Meccanica del Punto Esercizio 1 Meccanica del Punto Una molla di costante elastica k e lunghezza a riposo L 0 è appesa al soffitto di una stanza di altezza H. All altra estremità della molla è attaccata una pallina di massa

Dettagli

Corso di Laurea in Farmacia Fisica Prova in itinere del 4 dicembre 2013

Corso di Laurea in Farmacia Fisica Prova in itinere del 4 dicembre 2013 Corso di Laurea in Farmacia Fisica Prova in itinere del 4 dicembre 2013 TURNO 1 COMPITO A Un'automobile di massa m=1500 kg viaggia ad una velocità costante v 1 di 35 Km/h. Ad un certo punto inizia ad accelerare

Dettagli

Soluzione: In direzione verticale non c è movimento, perciò F N mg = 0. Quindi, in ogni caso, la forza normale è pari a 24.5 N.

Soluzione: In direzione verticale non c è movimento, perciò F N mg = 0. Quindi, in ogni caso, la forza normale è pari a 24.5 N. Un oggetto con massa pari a 2500 g è appoggiato su un pavimento orizzontale. Il coefficiente d attrito statico è s = 0.80 e il coefficiente d attrito dinamico è k = 0.60. Determinare la forza d attrito

Dettagli

Alcuni esercizi di Dinamica

Alcuni esercizi di Dinamica Alcuni esercizi di Dinamica Questi esercizi saranno svolti in aula, pertanto è bene che lo studente provi a svolgerli preventivamente in maniera autonoma. Altri esercizi sono presenti alla fine del Cap.

Dettagli

1 di 5 12/02/ :23

1 di 5 12/02/ :23 Verifica: tibo5794_me08_test1 nome: classe: data: Esercizio 1. La traiettoria di un proiettile lanciato con velocità orizzontale da una certa altezza è: un segmento di retta obliqua percorso con accelerazione

Dettagli

m1. 75 gm m gm h. 28 cm Calcolo le velocità iniziali prima dell'urto prendendo positiva quella della massa 1: k 1

m1. 75 gm m gm h. 28 cm Calcolo le velocità iniziali prima dell'urto prendendo positiva quella della massa 1: k 1 7 Una molla ideale di costante elastica k 48 N/m, inizialmente compressa di una quantità d 5 cm rispetto alla sua posizione a riposo, spinge una massa m 75 g inizialmente ferma, su un piano orizzontale

Dettagli

Appunti sul moto circolare uniforme e sul moto armonico- Fabbri Mariagrazia

Appunti sul moto circolare uniforme e sul moto armonico- Fabbri Mariagrazia Moto circolare uniforme Il moto circolare uniforme è il moto di un corpo che si muove con velocità di modulo costante lungo una traiettoria circolare di raggio R. Il tempo impiegato dal corpo per compiere

Dettagli

Esercitazione VI - Leggi della dinamica III

Esercitazione VI - Leggi della dinamica III Esercitazione VI - Leggi della dinamica III Esercizio 1 I corpi 1, 2 e 3 rispettivamente di massa m 1 = 2kg, m 2 = 3kg ed m 3 = 4kg sono collegati come in figura tramite un filo inestensibile. Trascurando

Dettagli

Esercizio 1. Risoluzione :

Esercizio 1. Risoluzione : Esercizio 1 Tanto più veloce un grave viene lanciato verso l alto, tanto più si allontana prima di ricadere. Esiste una velocità limite, al di sopra della quale, il grave arriva tanto in alto da sfuggire

Dettagli

5) Due blocchi di massa m 1 = 3 kg e m 2 = 2 kg, sono posti su un piano inclinato scabro che forma un angolo con l orizzontale e sono collegati rigida

5) Due blocchi di massa m 1 = 3 kg e m 2 = 2 kg, sono posti su un piano inclinato scabro che forma un angolo con l orizzontale e sono collegati rigida 1) Due blocchi di massa m 1 = 2 kg e m 2 = 1 kg, sono posti su un piano orizzontale privo di attrito a contatto fra di loro,: una forza orizzontale F = 6 N è applicata al blocco di massa m 1 e spinge l

Dettagli

CINEMATICA. Ipotesi di base: si trascurano le cause del moto ogge0 in movimento pun3formi

CINEMATICA. Ipotesi di base: si trascurano le cause del moto ogge0 in movimento pun3formi CINEMATICA Ipotesi di base: si trascurano le cause del moto ogge0 in movimento pun3formi Definiamo: spostamento la velocità media la velocità istantanea MOTO RETTILINEO UNIFORME Nel moto re4lineo uniforme:

Dettagli

f s m s n f s =f s,max =m s n f d =m d n

f s m s n f s =f s,max =m s n f d =m d n Serway, Jewett Principi di Fisica IV Ed. Capitolo 5 Sperimentalmente: f s m s n Con m s costante di attrito statico; n=modulo della forza normale. L uguaglianza vale quando (in condizioni di moto imminente):

Dettagli

Anno Scolastico Classe 3BC prof. Patrizia Giordano. Testo: Walker Corso di Fisica vol A Linx. Compiti per le vacanze di FISICA

Anno Scolastico Classe 3BC prof. Patrizia Giordano. Testo: Walker Corso di Fisica vol A Linx. Compiti per le vacanze di FISICA ISTITUTO DI ISTRUZIONE SECONDARIA DANIELE CRESPI Liceo Internazionale Classico e Linguistico VAPC02701R Liceo delle Scienze Umane VAPM027011 Via G. Carducci 4 21052 BUSTO ARSIZIO (VA) www.liceocrespi.it-tel.

Dettagli

I prova intercorso di Fisica CL in Biotecnologie 7 Maggio 2014 Risolvere i seguenti esercizi su questo foglio. NON consegnare altri fogli.

I prova intercorso di Fisica CL in Biotecnologie 7 Maggio 2014 Risolvere i seguenti esercizi su questo foglio. NON consegnare altri fogli. I prova intercorso di Fisica CL in Biotecnologie 7 Maggio 2014 Risolvere i seguenti esercizi su questo foglio. NON consegnare altri fogli. Esercizio 1: Un corpo viene lanciato, con una velocità iniziale

Dettagli

ESERCIZIO 1. 5N 2Kg 1Kg

ESERCIZIO 1. 5N 2Kg 1Kg ESERCIZIO 1 Una mano spinge due corpi su una superficie orizzontale priva di attrito, come mostrato in figura. Le masse dei corpi sono Kg e 1 Kg. La mano esercita la forza di 5 N sul corpo di Kg. 5N Kg

Dettagli

Lezione 4 Energia potenziale e conservazione dell energia

Lezione 4 Energia potenziale e conservazione dell energia Lezione 4 Energia potenziale e conservazione dell energia 4. Energia potenziale e conservazione dell energia Energia potenziale di: Forza peso sulla superficie terrestre Serway, Cap 7 U = mgh di un corpo

Dettagli

ESERCIZI Lavoro Potenza - Energia cinetica - Teorema delle forze vive.

ESERCIZI Lavoro Potenza - Energia cinetica - Teorema delle forze vive. ESERCIZI Lavoro Potenza - Energia cinetica - Teorema delle forze vive. 1) Un uomo pulisce un pavimento con l aspirapolvere con una forza di intensità 50 N la cui direzione forma un angolo di 30 con l orizzontale.

Dettagli

CORPO RIGIDO - ROTAZIONI/DINAMICA

CORPO RIGIDO - ROTAZIONI/DINAMICA CORPO RIGIDO - ROTAZIONI/DINAMICA 1 Due corpi di massa m 1 e m 2 sono appesi agli estremi della corda di una carrucola cilindrica di massa M e raggio R. La corda non scivola rispetto alla carrucola. Determinare

Dettagli

Attrito statico e attrito dinamico

Attrito statico e attrito dinamico Forza di attrito La presenza delle forze di attrito fa parte dell esperienza quotidiana. Se si tenta di far scorrere un corpo su una superficie, si sviluppa una resistenza allo scorrimento detta forza

Dettagli

Lavoro di FISICA LICEO SCIENTIFICO italo-inglese classe IV N- Per studenti che hanno frequentato all estero

Lavoro di FISICA LICEO SCIENTIFICO italo-inglese classe IV N- Per studenti che hanno frequentato all estero LICEO CLASSICO L. GALVANI Sommario Lavoro di FISICA LICEO SCIENTIFICO italo-inglese classe IV N-... 1 Per studenti che hanno frequentato all estero... 1 Prova di Riferimento di Fisica per gli studenti

Dettagli

Esame di Meccanica Razionale. Allievi Ing. MAT Appello del 6 luglio 2007

Esame di Meccanica Razionale. Allievi Ing. MAT Appello del 6 luglio 2007 Esame di Meccanica Razionale. Allievi Ing. MAT Appello del 6 luglio 2007 y Nel sistema di figura posto in un piano verticale il carrello A scorre con vinco- q, R M lo liscio lungo l asse verticale. Il

Dettagli

direzione x. [x = 970,89 m ; θ = ]

direzione x. [x = 970,89 m ; θ = ] Prof. Roberto Capone Corso di Fisica e Geologia Mod. FISICA Esempi Prove scritte La velocità angolare di una ruota diminuisce uniformemente da 24000 giri al minuto a 18000 giri al minuto in 10 secondi.

Dettagli

ISTITUTO TECNICO INDUSTRIALE V.E.MARZOTTO

ISTITUTO TECNICO INDUSTRIALE V.E.MARZOTTO Revisione del 16/03/16 ISTITUTO TECNICO INDUSTRIALE V.E.MARZOTTO Valdagno (VI) Corso di Fisica prof. Nardon MOTI ACCELERATI Richiami di teoria Moto uniformemente vario (accelerato) a = equazioni del moto:

Dettagli

ESAMI DEL PRECORSO DI FISICA CORSI A e B. 17 Settembre 2007

ESAMI DEL PRECORSO DI FISICA CORSI A e B. 17 Settembre 2007 ESAMI DEL PRECORSO DI FISICA CORSI A e B 17 Settembre 2007 1) Due Forze F1( di modulo 20. 0N) ed F2( di modulo 30.0 N) agiscono con le direzioni e i versi mostrate in figura su un oggetto di 10 kg sulla

Dettagli

Secondo Appello Estivo del corso di Fisica del

Secondo Appello Estivo del corso di Fisica del Secondo Appello Estivo del corso di Fisica del 25.7.2012 Corso di laurea in Informatica A.A. 2011-2012 (Prof. Paolo Camarri) Cognome: Nome: Matricola: Anno di immatricolazione: Problema n.1 Una semisfera

Dettagli

Problema 1: SOLUZIONE: 1) La velocità iniziale v 0 si ricava dal principio di conservazione dell energia meccanica; trascurando

Problema 1: SOLUZIONE: 1) La velocità iniziale v 0 si ricava dal principio di conservazione dell energia meccanica; trascurando Problema : Un pallina di gomma, di massa m = 0g, è lanciata verticalmente con un cannoncino a molla, la cui costante elastica vale k = 4 N/cm, ed è compressa inizialmente di δ. Dopo il lancio, la pallina

Dettagli

Fisica. Esercizi. Mauro Saita Versione provvisoria, febbraio 2013.

Fisica. Esercizi. Mauro Saita   Versione provvisoria, febbraio 2013. Fisica. Esercizi Mauro Saita e-mail: maurosaita@tiscalinet.it Versione provvisoria, febbraio 2013. Indice 1 Principi di conservazione. 1 1.1 Il pendolo di Newton................................ 1 1.2 Prove

Dettagli

Fisica Generale per Ing. Gestionale e Civile (Prof. F. Forti) A.A. 2010/2011 Prova in itinere del 4/3/2011.

Fisica Generale per Ing. Gestionale e Civile (Prof. F. Forti) A.A. 2010/2011 Prova in itinere del 4/3/2011. Cognome Nome Numero di matricola Fisica Generale per Ing. Gestionale e Civile (Prof. F. Forti) A.A. 00/0 Prova in itinere del 4/3/0. Tempo a disposizione: h30 Modalità di risposta: scrivere la formula

Dettagli

Facoltà di Farmacia - Anno Accademico A 08 Aprile 2015 Esercitazione in itinere

Facoltà di Farmacia - Anno Accademico A 08 Aprile 2015 Esercitazione in itinere Facoltà di Farmacia - Anno Accademico 2014-2015 A 08 Aprile 2015 Esercitazione in itinere Corso di Laurea: Laurea Specialistica in FARMACIA Nome: Cognome: Matricola Aula: Riportare sul presente foglio

Dettagli

Corso di Chimica-Fisica A.A. 2008/09. Prof. Zanrè Roberto E-mail: roberto.zanre@gmail.com Oggetto: corso chimica-fisica. Esercizi: Dinamica

Corso di Chimica-Fisica A.A. 2008/09. Prof. Zanrè Roberto E-mail: roberto.zanre@gmail.com Oggetto: corso chimica-fisica. Esercizi: Dinamica Corso di Chimica-Fisica A.A. 2008/09 Prof. Zanrè Roberto E-mail: roberto.zanre@gmail.com Oggetto: corso chimica-fisica Esercizi: Dinamica Appunti di lezione Indice Dinamica 3 Le quattro forze 4 Le tre

Dettagli

Fondamenti di Meccanica Esame del

Fondamenti di Meccanica Esame del Politecnico di Milano Fondamenti di Meccanica Esame del 0.02.2009. In un piano verticale un asta omogenea AB, di lunghezza l e massa m, ha l estremo A vincolato a scorrere senza attrito su una guida verticale.

Dettagli

VELOCITÀ MOTO RETTILINEO UNIFORME MOTO UNIFORMEMENTE ACCELERATO

VELOCITÀ MOTO RETTILINEO UNIFORME MOTO UNIFORMEMENTE ACCELERATO 1 VELOCITÀ 1. (Da Veterinaria 2010) In auto percorriamo un primo tratto in leggera discesa di 100 km alla velocità costante di 100 km/h, e un secondo tratto in salita di 100 km alla velocità costante di

Dettagli

c) il tempo che la palla impiega per raggiungere il suolo; d) la velocità con cui giunge a terra.

c) il tempo che la palla impiega per raggiungere il suolo; d) la velocità con cui giunge a terra. Alle Olimpiadi di Torino 2006, la pista di slittino era lunga 1435 m. Nella prima discesa, il tedesco M. Hackl ha realizzato un tempo di 44,55 s. Calcola la sua velocità media in m/s e in km/h. Durante

Dettagli

Don Bosco 2014/15, Classe 3B - Primo compito in classe di Fisica

Don Bosco 2014/15, Classe 3B - Primo compito in classe di Fisica Don Bosco 014/15, Classe B - Primo compito in classe di Fisica 1. Enuncia il Teorema dell Energia Cinetica. Soluzione. Il lavoro della risultante delle forze agenti su un corpo che si sposta lungo una

Dettagli

UNIVERSITA DEL SANNIO CORSO DI FISICA 1 ESERCIZI DINAMICA I

UNIVERSITA DEL SANNIO CORSO DI FISICA 1 ESERCIZI DINAMICA I UNIVERSITA DEL SANNIO CORSO DI FISICA 1 ESERCIZI DINAMICA I 1. La tensione alla quale una lenza si spezza è comunemente detta resistenza della lenza. Si vuole calcolare la resistenza minima T min che deve

Dettagli

MOTO CIRCOLARE VARIO

MOTO CIRCOLARE VARIO MOTO ARMONICO E MOTO VARIO PROF. DANIELE COPPOLA Indice 1 IL MOTO ARMONICO ------------------------------------------------------------------------------------------------------ 3 1.1 LA LEGGE DEL MOTO

Dettagli

PER ESERCITARSI Parte 1. Esercizi su Concetti introduttivi, vettori, cinematica, forze, lavoro ed energia

PER ESERCITARSI Parte 1. Esercizi su Concetti introduttivi, vettori, cinematica, forze, lavoro ed energia PER ESERCITARSI Parte 1 Esercizi su Concetti introduttivi, vettori, cinematica, forze, lavoro ed energia ESERCIZIO n.1 La Terra è assimilabile a una sfera di raggio 6.37 10 6 m. (a) Qual è la sua circonferenza

Dettagli

Programma di fisica. Docente: Zenobi Antonella Anno scolastico 2014/2015 Classe 2ASA

Programma di fisica. Docente: Zenobi Antonella Anno scolastico 2014/2015 Classe 2ASA Programma di fisica Docente: Zenobi Antonella Anno scolastico 204/205 Classe 2ASA I vettori Definizione di vettore, componenti di un vettore, rappresentazione cartesiana. Definizione di seno, coseno e

Dettagli

Esercitazioni Fisica Corso di Laurea in Chimica A.A

Esercitazioni Fisica Corso di Laurea in Chimica A.A Esercitazioni Fisica Corso di Laurea in Chimica A.A. 2016-2017 Esercitatore: Marco Regis 1 I riferimenti a pagine e numeri degli esercizi sono relativi al libro Jewett and Serway Principi di Fisica, primo

Dettagli

Esercizi di dinamica del punto materiale

Esercizi di dinamica del punto materiale Esercizi di dinamica del punto materiale Esercitazioni di Fisica LA per ingegneri - A.A. 2007-2008 M F1, m v0 α F2, M α F3 Esercizio 1 Un blocco di massa M = 1.20 kg (figura F1) si trova in equilibrio

Dettagli

Modello di Prova Scritta Fisica I. Corso di Laurea in Ottica ed Optometria

Modello di Prova Scritta Fisica I. Corso di Laurea in Ottica ed Optometria Modello di 1) Dati i vettori aa = 3xx + 2yy + zz e bb = xx + zz determinare cc = 3aa + bb dd = aa 4bb aa bb aa xxbb. Determinare altresì il modulo del vettore cc. 2) Un blocco di 5.00 kg viene lanciato

Dettagli

Vettore forza. che si chiamano Newton. Oppure in gr cm /s. che si chiamano dine. Ovviamente 1 N = 10 5 dine. F i = m a F i j = F j i

Vettore forza. che si chiamano Newton. Oppure in gr cm /s. che si chiamano dine. Ovviamente 1 N = 10 5 dine. F i = m a F i j = F j i Dinamica Mi occupo delle cause del moto Ogni volta che un oggetto viene disturbato dico che agisce una forza La forza è caratterizzata da direzione e verso. Non basta per dire che è un vettore ma è una

Dettagli

Classe 2B FISICA prof. Elisa Zancanato Testo: Corso di fisica, vol. A, Linx. Pacchetto di lavoro (alunni con debito formativo o con consolidamento)

Classe 2B FISICA prof. Elisa Zancanato Testo: Corso di fisica, vol. A, Linx. Pacchetto di lavoro (alunni con debito formativo o con consolidamento) ISTITUTO DI ISTRUZIONE SECONDARIA DANIELE CRESPI Liceo Internazionale Classico e Linguistico VAPC02701R Liceo delle Scienze Umane VAPM027011 Via G. Carducci 4 21052 BUSTO ARSIZIO (VA) www.liceocrespi.it-tel.

Dettagli

Esercitazione 3. Soluzione. F y dy = 0 al 2 dy = 0.06 J

Esercitazione 3. Soluzione. F y dy = 0 al 2 dy = 0.06 J Esercitazione 3 Esercizio 1 - Lavoro Una particella è sottoposta ad una forza F = axy û x ax 2 û y, dove û x e û y sono i versori degli assi x e y e a = 6 N/m 2. Si calcoli il lavoro compiuto dalla forza

Dettagli

Esercizio 5. Risoluzione

Esercizio 5. Risoluzione Esercizio 1 Un sasso viene lasciato cadere da fermo in un pozzo; il rumore dell impatto con l acqua giunge all orecchio del lanciatore dopo un intervallo di tempo t* = 10s. Sapendo che il suono si propaga

Dettagli

2. Una molla è lunga 12 cm e ha la costante elastica di 7,5 N/m. Appendendo alla molla un peso di 0,45 N quale lunghezza raggiunge la molla?

2. Una molla è lunga 12 cm e ha la costante elastica di 7,5 N/m. Appendendo alla molla un peso di 0,45 N quale lunghezza raggiunge la molla? 1. Una molla, appesa a un sostegno e caricata con un peso di 0,96 N, si allunga di 12cm. a. Quanto vale la costante elastica? Appendendo alla molla un peso diverso essa si allunga di 18 cm b. Quanto vale

Dettagli

Esercizio (tratto dal Problema 3.35 del Mazzoldi 2)

Esercizio (tratto dal Problema 3.35 del Mazzoldi 2) 1 Esercizio (tratto dal Problema 3.35 del Mazzoldi 2) Un corpo sale lungo un piano inclinato (θ 18 o ) scabro (µ S 0.35, µ D 0.25), partendo dalla base con velocità v 0 10 m/s e diretta parallelamente

Dettagli

(trascurare la massa delle razze della ruota, e schematizzarla come un anello; momento d inerzia dell anello I A = MR 2 )

(trascurare la massa delle razze della ruota, e schematizzarla come un anello; momento d inerzia dell anello I A = MR 2 ) 1 Esercizio Una ruota di raggio R e di massa M può rotolare senza strisciare lungo un piano inclinato di un angolo θ 2, ed è collegato tramite un filo inestensibile ad un blocco di massa m, che a sua volta

Dettagli

Esercizi di Statica. Esercitazioni di Fisica per ingegneri - A.A

Esercizi di Statica. Esercitazioni di Fisica per ingegneri - A.A Esercizio 1 Esercizi di Statica Esercitazioni di Fisica per ingegneri - A.A. 2011-2012 Un punto materiale di massa m = 0.1 kg (vedi FIG.1) è situato all estremità di una sbarretta indeformabile di peso

Dettagli

Principio di inerzia

Principio di inerzia Dinamica abbiamo visto come si descrive il moto dei corpi (cinematica) ma oltre a capire come si muovono i corpi è anche necessario capire perchè essi si muovono Partiamo da una domanda fondamentale: qual

Dettagli

ESERCIZI PER IL RECUPERO DEL DEBITO di FISICA CLASSI PRIME Prof.ssa CAMOZZI FEDERICA

ESERCIZI PER IL RECUPERO DEL DEBITO di FISICA CLASSI PRIME Prof.ssa CAMOZZI FEDERICA ESERCIZI PER IL RECUPERO DEL DEBITO di FISICA CLASSI PRIME Prof.ssa CAMOZZI FEDERICA NOTAZIONE ESPONENZIALE 1. Scrivi i seguenti numeri usando la notazione scientifica esponenziale 147 25,42 0,0001 0,00326

Dettagli

Fisica per scienze ed ingegneria

Fisica per scienze ed ingegneria Serway, Jewett Fisica per scienze ed ingegneria Capitolo 15 Blocchetto legato ad una molla in moto su un piano orizzontale privo di attrito. Forza elastica di richiamo: F x =-Kx (Legge di Hooke). Per x>0,

Dettagli

b) DIAGRAMMA DELLE FORZE

b) DIAGRAMMA DELLE FORZE DELLO SCRITTO DELL SETTEMBRE 5 - ESERCIZIO - Un corpo di massa m = 9 g e dimensioni trascurabili è appeso ad uno dei capi di una molla di costante elastica k = 5 N/m e lunghezza a riposo L = cm. L'altro

Dettagli

Dati numerici: f = 200 V, R 1 = R 3 = 100 Ω, R 2 = 500 Ω, C = 1 µf.

Dati numerici: f = 200 V, R 1 = R 3 = 100 Ω, R 2 = 500 Ω, C = 1 µf. ESERCIZI 1) Due sfere conduttrici di raggio R 1 = 10 3 m e R 2 = 2 10 3 m sono distanti r >> R 1, R 2 e contengono rispettivamente cariche Q 1 = 10 8 C e Q 2 = 3 10 8 C. Le sfere vengono quindi poste in

Dettagli

Prova scritta del corso di Fisica e Fisica 1 con soluzioni

Prova scritta del corso di Fisica e Fisica 1 con soluzioni Prova scritta del corso di Fisica e Fisica 1 con soluzioni Prof. F. Ricci-Tersenghi 17/02/2014 Quesiti 1. Un frutto si stacca da un albero e cade dentro una piscina. Sapendo che il ramo da cui si è staccato

Dettagli

Esame di Scienze sperimentali - Fisica. Materiale ammesso

Esame di Scienze sperimentali - Fisica. Materiale ammesso 1. Materiale personale Ogni studente può portare: Materiale ammesso del materiale per scrivere e disegnare (penna, matita, gomma, riga, squadra, goniometro, compasso); una calcolatrice non grafica; il

Dettagli

ULTERIORI ESERCIZI DI APPROFONDIMENTO

ULTERIORI ESERCIZI DI APPROFONDIMENTO ULTERIORI ESERCIZI DI APPROFONDIMENTO ESERCIZIO N 1 (dalle olimpiadi della fisica 2004) Un'automobile si muove con velocità iniziale di 16m/s e viene fermata con accelerazione costante in 4 s. Qual è lo

Dettagli

Esercizi di Cinematica

Esercizi di Cinematica Esercizi di Cinematica Esercizio 1 3 La posizione di un punto materiale in moto è data dall equazione vettoriale r(t) = 6ti 3t 2 2 j + t k. Determinare la velocità e l accelerazione del punto. Esercizio

Dettagli

IIS Moro Dipartimento di matematica e fisica

IIS Moro Dipartimento di matematica e fisica IIS Moro Dipartimento di matematica e fisica Obiettivi minimi per le classi seconde - Fisica CONTENUTI SECONDO ANNO MODULO LE FORZE E IL MOTO Conoscenze Significato e unità di misura della velocità Legge

Dettagli

Corso di Laurea in Ingegneria Civile Questionario di Fisica Generale A

Corso di Laurea in Ingegneria Civile Questionario di Fisica Generale A Corso di Laurea in Ingegneria Civile Questionario di Fisica Generale A I vettori 1) Cosa si intende per grandezza scalare e per grandezza vettoriale? 2) Somma graficamente due vettori A, B. 3) Come è definito

Dettagli

21 gennaio 2015 Prova scritta di Fisica Generale per Edile anni precedenti all aa 1013/14 (esercizi 1, 2,3) Prova scritta di Fisica Generale per Edile

21 gennaio 2015 Prova scritta di Fisica Generale per Edile anni precedenti all aa 1013/14 (esercizi 1, 2,3) Prova scritta di Fisica Generale per Edile 20 febbraio 2015 Prova scritta di Fisica Generale per Edile anni precedenti all aa 1013/14 (esercizi 1, 2,3) Prova scritta di Fisica Generale per Edile aa 1013/14 ed Edile-rchitettura (esercizi 2,3,4)

Dettagli

Esercizi Quantità di moto ed Urti

Esercizi Quantità di moto ed Urti Esercizi Quantità di moto ed Urti 1. (Esame Luglio 2014) Due sfere metalliche, sospese a cavetti verticali, sono inizialmente a contatto. La sfera 1, con massa m 1 =30 g, viene lasciata libera dopo essere

Dettagli

Problema (tratto dal 7.42 del Mazzoldi 2)

Problema (tratto dal 7.42 del Mazzoldi 2) Problema (tratto dal 7.4 del azzoldi Un disco di massa m D e raggio R ruota attorno all asse verticale passante per il centro con velocità angolare costante ω. ll istante t 0 viene delicatamente appoggiata

Dettagli

FISICA GENERALE Ingegneria edile/architettura

FISICA GENERALE Ingegneria edile/architettura FISICA GENERALE Ingegneria edile/architettura Tutor: Enrico Arnone Dipartimento di Chimica Fisica e Inorganica arnone@fci.unibo.it http://www2.fci.unibo.it/~arnone/teaching/teaching.html Bologna 20 Maggio

Dettagli

Esercizio (tratto dal problema 7.36 del Mazzoldi 2)

Esercizio (tratto dal problema 7.36 del Mazzoldi 2) Esercizio (tratto dal problema 7.36 del Mazzoldi 2) Un disco di massa m D = 2.4 Kg e raggio R = 6 cm ruota attorno all asse verticale passante per il centro con velocità angolare costante ω = 0 s. ll istante

Dettagli

Anno Scolastico Classe 4^P prof.ssa Silvana Castiglioni. Compiti per le vacanze di FISICA

Anno Scolastico Classe 4^P prof.ssa Silvana Castiglioni. Compiti per le vacanze di FISICA ISTITUTO DI ISTRUZIONE SECONDARIA DANIELE CRESPI Liceo Internazionale Classico e Linguistico VAPC02701R Liceo delle Scienze Umane VAPM027011 Via G. Carducci 4 21052 BUSTO ARSIZIO (VA) www.liceocrespi.it-tel.

Dettagli

Errata Corrige. Quesiti di Fisica Generale

Errata Corrige. Quesiti di Fisica Generale 1 Errata Corrige a cura di Giovanni Romanelli Quesiti di Fisica Generale per i C.d.S. delle Facoltà di Scienze di Prof. Carla Andreani Dr. Giulia Festa Dr. Andrea Lapi Dr. Roberto Senesi 2 Copyright@2010

Dettagli

FORMULARIO DI FISICA 3 MOTO OSCILLATORIO

FORMULARIO DI FISICA 3 MOTO OSCILLATORIO FORMULARIO DI FISICA 3 MOTO OSCILLATORIO Corpo attaccato ad una molla che compie delle oscillazioni Calcolare la costante elastica della molla 2 2 1 2 2 ω: frequenza angolare (Pulsazione) ; T: Periodo

Dettagli

Premessa: Si continua a studiare il moto degli oggetti in approssimazione di PUNTO MATERIALE

Premessa: Si continua a studiare il moto degli oggetti in approssimazione di PUNTO MATERIALE Leggi della Dinamica Premessa: Si continua a studiare il moto degli oggetti in approssimazione di PUNTO MATERIALE Fisica con Elementi di Matematica 1 Leggi della Dinamica Perché i corpi cambiano il loro

Dettagli

Compiti per Settembre AS

Compiti per Settembre AS Compiti per Settembre 2016 2AS -CINEMATICA- 1. Il seguente grafico rappresenta la posizione in funzione del tempo di un moto rettilineo: a) Calcola lo spostamento del corpo fra gli istanti t = 0 s e t

Dettagli