Vedi: Probabilità e cenni di statistica

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Vedi: Probabilità e cenni di statistica"

Transcript

1 Vedi: Probabilità e cenni di statistica

2 Funzione di distribuzione discreta

3 Istogrammi e normalizzazione

4 Distribuzioni continue Nel caso continuo la probabilità può essere definita solo considerando un intervallo di valori della misura o dell evento evento Definisco f densità di probabilità fd : probabilità di trovare valore d p obab à d o a e a o e nell intervallo, +d

5 Definizioni 1/ 1/ f d 1/ f d f d 1 f d d

6 Definizione di valore di aspettazione d f g g Valore di aspettazione Definizione di valore di aspettazione per g d f g g d f g Il valor medio è il valore di aspettazione di per g La varianza è il valore di aspettazione di - Definizione di varianza σ d f g h Si Dimostrazione : ha : Si σ σ + cvd σ c.v.d.

7 Tschebyscheff

8 Conseguenze di Tschebyscheff Nelle misure di grandezze fisiche con errore casuale: media, varianza, etc, ricavate dal campione approssimano con la propria incertezza! le grandezze vere della misura, cioè queste grandezze sono buoni estimatori della parent distribution In soldoni: immagino che ogni variabile aleatoria casuale sia distribuita secondo una certa distribuzione ib i di probabilità o densità di probabilità nel caso continuo, che si chiama parent distribution per ricostruire la parent distribution avrei bisogno di infinite prove o misure sull evento casuale un numero finito it ma grande! di prove fornisce un campione che è rappresentativo della parent distribution postulo che valore medio, varianza, etc. della distribuzione del campione approssimino quelle della parent distribution tanto meglio quanto più grande è il campione

9 Distribuzione binomiale n k nk B n, k p q k n n! con : k n k! k!

10 sempio di binomiale La binomiale descrive bene lancio di dadi, testa o croce, successo/insuccesso, etc., quando le probabilità sono non trascurabili nellabinomialeil valoreattesomedia è np Bn,k k

11 Distribuzione di Poisson k p k e k! con npq np dato che q 1 p 1 per p << 1

12 Proprietà Poisson k p k e k! Probabilità che si verifichi l evento k su un totale di n p/ prove La Poissoniana deriva da binomiale per p<<1, n>>1, cioè ho molti eventi con successo molto basso distribuzione degli eventi rari La deviazione standard è pari alla radice della media aumenta in modo sublineare con l aumento del numero di misure, e quindi di np

13 Funzione Gaussiana G 1 σ σ e π

14 Distribuzione di Gauss Distribuzione di Gauss si ottiene formalmente: da binomiale, per n e p costante da Poisson, per molto grande In pratica: Gauss vale quando si fanno moltissime prove e la probabilità è molto bassa La distribuzione di Gauss è continua! Nota anche come distribuzione normale di variabili casuali Rappresenta la parent distribution nel caso di misure affette da errori di origine casuale

15 Integrale della Gaussiana standard Le tavole danno il valore dell integrale della funzione di Gauss standard con 0, σ 1 Servono per determinare la probabilità P0 a

16 Uso delle tavole

17 sempi sulla distribuzione Gaussiana

18 Distribuzione del chi-quadro Definizione χ a n gradi di χ n i 1 i con i libertà : variabili Gaussiane standard p n, C n n e C n 1 n / Γ n / Funzione Gamma nota numericamente pn, n1 n n3 n4 n5 n e σ n

19 stono delle tabelle che dicono l è il valore γ di S tale che la L'int egrale babilità sia p per un dato valore n γ : pn, S γ p C e d 0 n si trova calcolato numericamente in tabelle Tavola del chi-quadro Comunemente le tabelle del chi-quadro danno, per un certo valore di n gradi di libertà e per un certo valore del χ, la probabilità che si possano ottenere valori minori o maggiori, a seconda della tabella usata! di quello determinato sempio: Supponiamo n 9e supponiamo di calcolare, sulle nostre variabili aleatorie, χ 4. Sulle tabelle corrispondenti alla riga n 9 si vede che χ 4.17 simile al nostro valore corrisponde a un livello di probabilità o di confidenza di 0.90, cioè del 90%. Significa che, ripetendo la prova, cioè usando un altro set di variabili aleatorie, nel 90% dei casi avrei un valore di χ maggiore di Dunque possiamo concludere che il χ calcolato sulle nostre variabili aleatorie ha un livello di probabilità del 90%.

Probabilità classica. Distribuzioni e leggi di probabilità. Probabilità frequentista. Probabilità soggettiva

Probabilità classica. Distribuzioni e leggi di probabilità. Probabilità frequentista. Probabilità soggettiva Probabilità classica Distribuzioni e leggi di probabilità La probabilità di un evento casuale è il rapporto tra il numero dei casi favorevoli ed il numero dei casi possibili, purchè siano tutti equiprobabili.

Dettagli

Distribuzioni di probabilità

Distribuzioni di probabilità Distribuzioni di probabilità Si sono diverse distribuzioni di probabilità: quelle di cui parleremo sono la distribuzione binomiale, quella di Poisson, quella uniforme, quella normale, quella del χ² e la

Dettagli

Statistica ARGOMENTI. Calcolo combinatorio

Statistica ARGOMENTI. Calcolo combinatorio Statistica ARGOMENTI Calcolo combinatorio Probabilità Disposizioni semplici Disposizioni con ripetizione Permutazioni semplici Permutazioni con ripetizioni Combinazioni semplici Assiomi di probabilità

Dettagli

Ulteriori Conoscenze di Informatica e Statistica

Ulteriori Conoscenze di Informatica e Statistica ndici di forma Ulteriori Conoscenze di nformatica e Statistica Descrivono le asimmetrie della distribuzione Carlo Meneghini Dip. di fisica via della Vasca Navale 84, st. 83 ( piano) tel.: 06 55 17 72 17

Dettagli

Distribuzioni e inferenza statistica

Distribuzioni e inferenza statistica Distribuzioni e inferenza statistica Distribuzioni di probabilità L analisi statistica spesso studia i fenomeni collettivi confrontandoli con modelli teorici di riferimento. Tra di essi, vedremo: la distribuzione

Dettagli

Il Corso di Fisica per Scienze Biologiche

Il Corso di Fisica per Scienze Biologiche Il Corso di Fisica per Scienze Biologiche Ø Prof. Attilio Santocchia Ø Ufficio presso il Dipartimento di Fisica (Quinto Piano) Tel. 75-585 278 Ø E-mail: attilio.santocchia@pg.infn.it Ø Web: http://www.fisica.unipg.it/~attilio.santocchia/

Dettagli

Distribuzione Gaussiana - Facciamo un riassunto -

Distribuzione Gaussiana - Facciamo un riassunto - Distribuzione Gaussiana - Facciamo un riassunto - Nell ipotesi che i dati si distribuiscano seguendo una curva Gaussiana è possibile dare un carattere predittivo alla deviazione standard La prossima misura

Dettagli

Statistica Applicata all edilizia: alcune distribuzioni di probabilità

Statistica Applicata all edilizia: alcune distribuzioni di probabilità Statistica Applicata all edilizia: Alcune distribuzioni di probabilità E-mail: orietta.nicolis@unibg.it 23 marzo 2010 Indice Distribuzioni di probabilità discrete 1 Distribuzioni di probabilità discrete

Dettagli

Capitolo 5 Confidenza, significatività, test di Student e del χ 2

Capitolo 5 Confidenza, significatività, test di Student e del χ 2 Capitolo 5 Confidenza, significatività, test di Student e del χ 5.1 L inferenza Se conosciamo la legge di probabilità di un evento (a priori o a posteriori) possiamo fare delle previsioni su come l evento

Dettagli

LABORATORIO DI PROBABILITA E STATISTICA Docente: Bruno Gobbi

LABORATORIO DI PROBABILITA E STATISTICA Docente: Bruno Gobbi UNIVERSITA DEGLI STUDI DI VERONA LABORATORIO DI PROBABILITA E STATISTICA Docente: Bruno Gobbi 5 VARIABILI CASUALI DISCRETE LA VARIABILE BINOMIALE Sia n N e sia k n. La probabilità di osservare k successi

Dettagli

Statistica. Lezione 4

Statistica. Lezione 4 Università degli Studi del Piemonte Orientale Corso di Laurea in Infermieristica Corso integrato in Scienze della Prevenzione e dei Servizi sanitari Statistica Lezione 4 a.a 2011-2012 Dott.ssa Daniela

Dettagli

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2006/07

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2006/07 PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 006/07 Esercizio 1 Prova scritta del 16/1/006 In un ufficio postale lavorano due impiegati che svolgono lo stesso compito in maniera indipendente, sbrigando

Dettagli

Teoria della probabilità Variabili casuali

Teoria della probabilità Variabili casuali Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Teoria della probabilità Variabili casuali A.A. 2008-09 Alberto Perotti DELEN-DAUIN Variabile casuale Una variabile

Dettagli

Variabile casuale Normale

Variabile casuale Normale Variabile casuale Normale La var. casuale Normale (o Gaussiana) è considerata la più importante distribuzione Statistica per le innumerevoli Applicazioni e per le rilevanti proprietà di cui gode L'importanza

Dettagli

Note sulla probabilità

Note sulla probabilità Note sulla probabilità Maurizio Loreti Dipartimento di Fisica Università degli Studi di Padova Anno Accademico 2002 03 1 La distribuzione del χ 2 0.6 0.5 N=1 N=2 N=3 N=5 N=10 0.4 0.3 0.2 0.1 0 0 5 10 15

Dettagli

Due variabili aleatorie X ed Y si dicono indipendenti se comunque dati due numeri reali a e b si ha. P {X = a, Y = b} = P {X = a}p {Y = b}

Due variabili aleatorie X ed Y si dicono indipendenti se comunque dati due numeri reali a e b si ha. P {X = a, Y = b} = P {X = a}p {Y = b} Due variabili aleatorie X ed Y si dicono indipendenti se comunque dati due numeri reali a e b si ha P {X = a, Y = b} = P {X = a}p {Y = b} Una variabile aleatoria χ che assume i soli valori 1, 2,..., n

Dettagli

Probabilità e Statistica Esercizi

Probabilità e Statistica Esercizi Corso di PIANIFICAZIONE DEI TRASPORTI 1 ing. Antonio Comi Marzo 2006 Probabilità e Statistica Esercizi 1 Variabile aleatoria X(E): funzione che associa ad un evento E dello spazio delle prove un numero

Dettagli

UNIVERSITÀ DEGLI STUDI DI PERUGIA

UNIVERSITÀ DEGLI STUDI DI PERUGIA SIGI, Statistica II, esercitazione n. 3 1 UNIVERSITÀ DEGLI STUDI DI PERUGIA FACOLTÀ DI ECONOMIA CORSO DI LAUREA S.I.G.I. STATISTICA II Esercitazione n. 3 Esercizio 1 Una v.c. X si dice v.c. esponenziale

Dettagli

Teorema del limite centrale TCL

Teorema del limite centrale TCL Teorema del limite centrale TCL Questo importante teorema della statistica inferenziale si applica a qualsiasi variabile aleatoria che sia combinazione lineare di N variabili aleatorie le cui funzioni

Dettagli

Esercitazione 8 maggio 2014

Esercitazione 8 maggio 2014 Esercitazione 8 maggio 2014 Esercizio 2 dal tema d esame del 13.01.2014 (parte II). L età media di n gruppo di 10 studenti che hanno appena conseguito la laurea triennale è di 22 anni. a) Costruire un

Dettagli

Lezione 3 Calcolo delle probabilità

Lezione 3 Calcolo delle probabilità Lezione 3 Calcolo delle probabilità Definizione di probabilità La probabilità è lo studio degli esperimenti casuali e non deterministici Se lanciamo un dado sappiamo che cadrà ma non è certo che esca il

Dettagli

Lezione 12. Statistica. Alfonso Iodice D Enza Università degli studi di Cassino. Lezione 12. A. Iodice.

Lezione 12. Statistica. Alfonso Iodice D Enza Università degli studi di Cassino. Lezione 12. A. Iodice. discrete uniforme Bernoulli Poisson Statistica Alfonso Iodice D Enza iodicede@unicas.it Università degli studi di Cassino () Statistica 1 / 56 Outline discrete uniforme Bernoulli Poisson 1 2 discrete 3

Dettagli

Approssimazione normale alla distribuzione binomiale

Approssimazione normale alla distribuzione binomiale Approssimazione normale alla distribuzione binomiale P b (X r) costoso P b (X r) P(X r) per N grande Teorema: Se la variabile casuale X ha una distribuzione binomiale con parametri N e p, allora, per N

Dettagli

Statistica. Alfonso Iodice D Enza

Statistica. Alfonso Iodice D Enza Statistica Alfonso Iodice D Enza iodicede@unina.it Università degli studi di Cassino () Statistica 1 / 27 Outline 1 () Statistica 2 / 27 Outline 1 2 () Statistica 2 / 27 Outline 1 2 3 () Statistica 2 /

Dettagli

DISTRIBUZIONI DI PROBABILITA

DISTRIBUZIONI DI PROBABILITA DISTRIBUZIONI DI PROBABILITA La distribuzione di probabilità e un modello matematico, uno schema di riferimento, che ha caratteristiche note e che può essere utilizzato per rispondere a delle domande derivate

Dettagli

Distribuzioni di probabilità

Distribuzioni di probabilità Distribuzioni di probabilità Distribuzioni di probabilità L analisi statistica spesso studia i fenomeni collettivi confrontandoli con modelli teorici di riferimento. Tra di essi, vedremo: la distribuzione

Dettagli

DISTRIBUZIONI DI PROBABILITA

DISTRIBUZIONI DI PROBABILITA DISTRIBUZIONI DI PROBABILITA Nell associare ai risultati di un esperimento un valore numerico si costruisce una variabile casuale (o aleatoria, o stocastica). Ogni variabile casuale ha una corrispondente

Dettagli

Intervalli di confidenza

Intervalli di confidenza Probabilità e Statistica Esercitazioni a.a. 2006/2007 C.d.L.: Ingegneria per l Ambiente ed il Territorio, Ingegneria Civile, Ingegneria Gestionale, Ingegneria dell Informazione C.d.L.S.: Ingegneria Civile

Dettagli

ISTOGRAMMI E DISTRIBUZIONI:

ISTOGRAMMI E DISTRIBUZIONI: ISTOGRAMMI E DISTRIBUZIONI: i 3 4 5 6 7 8 9 0 i 0. 8.5 3 0 9.5 7 9.8 8.6 8. bin (=.) 5-7. 7.-9.4 n k 3 n k 6 5 n=0 =. 9.4-.6 5 4.6-3.8 3 Numero di misure nell intervallo 0 0 4 6 8 0 4 6 8 30 ISTOGRAMMI

Dettagli

Esercitazione 4 del corso di Statistica (parte 2)

Esercitazione 4 del corso di Statistica (parte 2) Esercitazione 4 del corso di Statistica (parte ) Dott.ssa Paola Costantini Febbraio Esercizio n. Il tempo di percorrenza del treno che collega la stazione di Roma Termini con l aeroporto di Fiumicino è

Dettagli

Analisi degli Errori di Misura. 08/04/2009 G.Sirri

Analisi degli Errori di Misura. 08/04/2009 G.Sirri Analisi degli Errori di Misura 08/04/2009 G.Sirri 1 Misure di grandezze fisiche La misura di una grandezza fisica è descrivibile tramite tre elementi: valore più probabile; incertezza (o errore ) ossia

Dettagli

Esercitazione: La distribuzione NORMALE

Esercitazione: La distribuzione NORMALE Esercitazione: La distribuzione NORMALE Uno dei più importanti esempi di distribuzione di probabilità continua è dato dalla distribuzione Normale (curva normale o distribuzione Gaussiana); è una delle

Dettagli

LE MISURE. attendibilità = x i - X

LE MISURE. attendibilità = x i - X LE MISURE COCETTI PRELIMIARI: MISURA, ATTEDIBILITÀ, PRECISIOE, ACCURATEZZA Il modo corretto di fornire il risultato di una qualunque misura è quello di dare la migliore stima della quantità in questione

Dettagli

CAPITOLO QUINTO DISTRIBUZIONE NORMALE

CAPITOLO QUINTO DISTRIBUZIONE NORMALE CAPITOLO QUINTO DISTRIBUZIONE NORMALE 1. Probabilità nel continuo Fino ad ora abbiamo considerato casi in cui l insieme degli eventi elementari è finito. Vediamo, mediante due semplici esempi, come si

Dettagli

Distribuzione di Probabilità

Distribuzione di Probabilità Distribuzione di Probabilità Sia X variabile con valori discreti X 1, X 2,..., X N aventi probabilità p 1, p 2,..., p N ( i p i = 1) (X variabile discreta aleatoria, o stocastica, o casuale, random) Funzione

Dettagli

N.B. Per la risoluzione dei seguenti esercizi, si fa riferimento alle Tabelle riportate alla fine del documento.

N.B. Per la risoluzione dei seguenti esercizi, si fa riferimento alle Tabelle riportate alla fine del documento. N.B. Per la risoluzione dei seguenti esercizi, si fa riferimento alle abelle riportate alla fine del documento. Esercizio 1 La concentrazione media di sostanze inquinanti osservata nelle acque di un fiume

Dettagli

Statistica Inferenziale

Statistica Inferenziale Statistica Inferenziale a) L Intervallo di Confidenza b) La distribuzione t di Student c) La differenza delle medie d) L intervallo di confidenza della differenza Prof Paolo Chiodini Dalla Popolazione

Dettagli

Laboratorio di Calcolo B 68

Laboratorio di Calcolo B 68 Generazione di numeri casuali Abbiamo già accennato all idea che le tecniche statistiche possano essere utili per risolvere problemi di simulazione di processi fisici e di calcoli numerici. Dobbiamo però

Dettagli

Distribuzione Normale

Distribuzione Normale Distribuzione Normale istogramma delle frequenze di un insieme di misure di una grandezza che può variare con continuità popolazione molto numerosa, costituita da una quantità praticamente illimitata di

Dettagli

Variabili casuali ad una dimensione Testi degli esercizi. Variabili casuali ad una dimensione a.a. 2012/2013 1

Variabili casuali ad una dimensione Testi degli esercizi. Variabili casuali ad una dimensione a.a. 2012/2013 1 Variabili casuali ad una dimensione Testi degli esercizi 1 Costruzione di variabile casuale discreta Esercizio 1. Sia data un urna contenente 3 biglie rosse, 2 biglie bianche ed una biglia nera. Ad ogni

Dettagli

Teoria e tecniche dei test

Teoria e tecniche dei test Teoria e tecniche dei test Lezione 9 LA STANDARDIZZAZIONE DEI TEST. IL PROCESSO DI TARATURA: IL CAMPIONAMENTO. Costruire delle norme di riferimento per un test comporta delle ipotesi di fondo che è necessario

Dettagli

FENOMENI CASUALI. fenomeni casuali

FENOMENI CASUALI. fenomeni casuali PROBABILITÀ 94 FENOMENI CASUALI La probabilità si occupa di fenomeni casuali fenomeni di cui, a priori, non si sa quale esito si verificherà. Esempio Lancio di una moneta Testa o Croce? 95 DEFINIZIONI

Dettagli

UNIVERSITÀ di ROMA TOR VERGATA

UNIVERSITÀ di ROMA TOR VERGATA UNIVERSITÀ di ROMA TOR VERGATA Corso di Laurea Magistrale in Scienze della Nutrizione Umana Corso di Statistica Medica, anno 2015-16 P.Baldi Lista di esercizi 4, 11 febbraio 2016. Esercizio 1 Una v.a.

Dettagli

un elemento scelto a caso dello spazio degli esiti di un fenomeno aleatorio;

un elemento scelto a caso dello spazio degli esiti di un fenomeno aleatorio; TEST DI AUTOVALUTAZIONE - SETTIMANA 3 I diritti d autore sono riservati. Ogni sfruttamento commerciale non autorizzato sarà perseguito. Metodi statistici per la biologia 1 Parte A 1.1 Una variabile casuale

Dettagli

esperimento casuale: è un esperimento condotto sotto l effetto del caso; evento elementare: ciascuno dei possibili esiti di un esperimento casuale;

esperimento casuale: è un esperimento condotto sotto l effetto del caso; evento elementare: ciascuno dei possibili esiti di un esperimento casuale; Capitolo 15 Suggerimenti agli esercizi a cura di Elena Siletti Esercizio 15.1: Suggerimento Si ricordi che: esperimento casuale: è un esperimento condotto sotto l effetto del caso; evento elementare: ciascuno

Dettagli

UNIVERSITÀ di ROMA TOR VERGATA

UNIVERSITÀ di ROMA TOR VERGATA UNIVERSITÀ di ROMA TOR VERGATA Corso di Statistica, anno 2010-11 P.Baldi Lista di esercizi 3. Corso di Laurea in Biotecnologie Esercizio 1 Una v.a. X segue una legge N(2, ). Calcolare a1) P(X 1) a2) P(2

Dettagli

1 4 Esempio 2. Si determini la distribuzione di probabilità della variabile casuale X = punteggio ottenuto lanciando un dado. Si ha immediatamente:

1 4 Esempio 2. Si determini la distribuzione di probabilità della variabile casuale X = punteggio ottenuto lanciando un dado. Si ha immediatamente: CAPITOLO TERZO VARIABILI CASUALI. Le variabili casuali e la loro distribuzione di probabilità In molte situazioni, dato uno spazio di probabilità S, si è interessati non tanto agli eventi elementari (o

Dettagli

CENNI SULLE VARIABILI ALEATORIE INTRODUZIONE ALLA TEORIA DELLE PROBABILITÀ APPROFONDIMENTO SULLA TEORIA DELLE PROBABILITÀ

CENNI SULLE VARIABILI ALEATORIE INTRODUZIONE ALLA TEORIA DELLE PROBABILITÀ APPROFONDIMENTO SULLA TEORIA DELLE PROBABILITÀ CENNI SULLE VARIABILI ALEATORIE... 1 INTRODUZIONE ALLA TEORIA DELLE PROBABILITÀ... APPROFONDIMENTO SULLA TEORIA DELLE PROBABILITÀ... 3.1 Teorema della probabilità dell evento complementare... 3. Teorema

Dettagli

Matematica Applicata L-A Definizioni e teoremi

Matematica Applicata L-A Definizioni e teoremi Definizioni e teoremi Settembre - Dicembre 2008 Definizioni e teoremi di statistica tratte dalle lezioni del corso di Matematica Applicata L- A alla facoltà di Ingegneria Elettronica e delle Telecomunicazioni

Dettagli

Capitolo 6. Variabili casuali continue. 6.1 La densità di probabilità

Capitolo 6. Variabili casuali continue. 6.1 La densità di probabilità Capitolo 6 Variabili casuali continue Le definizioni di probabilità che abbiamo finora usato sono adatte solo per una variabile casuale che possa assumere solo valori discreti; vediamo innanzi tutto come

Dettagli

Distribuzioni campionarie

Distribuzioni campionarie 1 Inferenza Statistica Descrittiva Distribuzioni campionarie Statistica Inferenziale: affronta problemi di decisione in condizioni di incertezza basandosi sia su informazioni a priori sia sui dati campionari

Dettagli

L indagine campionaria Lezione 3

L indagine campionaria Lezione 3 Anno accademico 2007/08 L indagine campionaria Lezione 3 Docente: prof. Maurizio Pisati Variabile casuale Una variabile casuale è una quantità discreta o continua il cui valore è determinato dal risultato

Dettagli

Esercizi di Calcolo delle Probabilità

Esercizi di Calcolo delle Probabilità Esercizi di Calcolo delle Probabilità Versione del 1/05/005 Corso di Statistica Anno Accademico 00/05 Antonio Giannitrapani, Simone Paoletti Calcolo delle probabilità Esercizio 1. Un dado viene lanciato

Dettagli

Variabile Casuale Normale

Variabile Casuale Normale Variabile Casuale Normale Variabile Casuale Normale o Gaussiana E una variabile casuale continua che assume tutti i numeri reali, è definita dalla seguente funzione di densità: 1 f( x) = e σ 2 π ( x µ

Dettagli

Esercitazione 4 Distribuzioni campionarie e introduzione ai metodi Monte Carlo

Esercitazione 4 Distribuzioni campionarie e introduzione ai metodi Monte Carlo Esercitazione 4 Distribuzioni campionarie e introduzione ai metodi Monte Carlo 1. Gli studi di simulazione possono permetterci di apprezzare alcune delle proprietà di distribuzioni campionarie ricavate

Dettagli

Il processo inferenziale consente di generalizzare, con un certo grado di sicurezza, i risultati ottenuti osservando uno o più campioni

Il processo inferenziale consente di generalizzare, con un certo grado di sicurezza, i risultati ottenuti osservando uno o più campioni La statistica inferenziale Il processo inferenziale consente di generalizzare, con un certo grado di sicurezza, i risultati ottenuti osservando uno o più campioni E necessario però anche aggiungere con

Dettagli

Metodi Matematici Probabilità e Statistica. Correzione Compitino del

Metodi Matematici Probabilità e Statistica. Correzione Compitino del Metodi Matematici Probabilità e Statistica Correzione Compitino del.4.04 nota: Una sola risposta è esatta. 4 punti per una risposta esatta, -2 per una sbagliata, 0 per una non data. Gli esercizi sono divisi

Dettagli

Esercitazione n. 3 - Corso di STATISTICA - Università della Basilicata - a.a. 2011/12 Prof. Roberta Siciliano

Esercitazione n. 3 - Corso di STATISTICA - Università della Basilicata - a.a. 2011/12 Prof. Roberta Siciliano Esercitazione n. 3 - Corso di STATISTICA - Università della Basilicata - a.a. 2011/12 Prof. Roberta Siciliano Esercizio 1 Una moneta viene lanciata 6 volte. Calcolare a) La probabilità che escano esattamente

Dettagli

Misure Meccaniche e Termiche. punti massa. Valore atteso: Varianza:

Misure Meccaniche e Termiche. punti massa. Valore atteso: Varianza: Fenomeni aleatori Misure Meccaniche e Termiche Sezione di Misure e Tecniche Sperimentali I fenomeni aleatori (o casuali) sono fenomeni empirici il cui risultato non è prevedibile a priori, caratterizzati

Dettagli

DESCRITTIVE, TEST T PER IL CONFRONTO DELLE MEDIE DI CAMPIONI INDIPENDENTI.

DESCRITTIVE, TEST T PER IL CONFRONTO DELLE MEDIE DI CAMPIONI INDIPENDENTI. Corso di Laurea Specialistica in Biologia Sanitaria, Universita' di Padova C.I. di Metodi statistici per la Biologia, Informatica e Laboratorio di Informatica (Mod. B) Docente: Dr. Stefania Bortoluzzi

Dettagli

Distribuzione Gaussiana o Normale. 1 Distribuzione Normale come limite della Binomiale

Distribuzione Gaussiana o Normale. 1 Distribuzione Normale come limite della Binomiale Statistica e analisi dei dati Data: 6 Maggio 26 Distribuzione Gaussiana o Normale Docente: Prof. Giuseppe Boccignone Scriba: Matteo Gandossi Distribuzione Normale come limite della Binomiale Data una distribuzione

Dettagli

p k q n k = p n (k) = n 12 = 1 = 12 1 12 11 10 9 1 0,1208. q = 1 2 e si ha: p 12 (8) = 12 8 4

p k q n k = p n (k) = n 12 = 1 = 12 1 12 11 10 9 1 0,1208. q = 1 2 e si ha: p 12 (8) = 12 8 4 CAPITOLO QUARTO DISTRIBUZIONE BINOMIALE (O DI BERNOULLI) Molti degli esempi che abbiamo presentato nei capitoli precedenti possono essere pensati come casi particolari di uno schema generale di prove ripetute,

Dettagli

Università del Piemonte Orientale. Corso di laurea in biotecnologie. Corso di Statistica Medica. Le distribuzioni teoriche di probabilità.

Università del Piemonte Orientale. Corso di laurea in biotecnologie. Corso di Statistica Medica. Le distribuzioni teoriche di probabilità. Università del Piemonte Orientale Corso di laurea in biotecnologie Corso di Statistica Medica Le distribuzioni teoriche di probabilità. La distribuzione di probabilità binomiale Corso di laurea in biotecnologie

Dettagli

Strumenti di indagine per la valutazione psicologica

Strumenti di indagine per la valutazione psicologica Strumenti di indagine per la valutazione psicologica.3 - La distribuzione normale Tempi di reazione Registrati i tempi di reazione (in millisecondi) a uno stimolo (n = 30). Classe Freq Freq relative Densità

Dettagli

Analisi statistica degli errori

Analisi statistica degli errori Analisi statistica degli errori I valori numerici di misure ripetute risultano ogni volta diversi l operazione di misura può essere considerata un evento casuale a cui è associata una variabile casuale

Dettagli

STATISTICA ESERCITAZIONE. 1) Specificare la distribuzione di probabilità della variabile e rappresentarla graficamente;

STATISTICA ESERCITAZIONE. 1) Specificare la distribuzione di probabilità della variabile e rappresentarla graficamente; 0.00 0.05 0.10 0.15 0.20 STATISTICA ESERCITAZIONE Dott. Giuseppe Pandolfo 4 Maggio 2015 Esercizio 1 (Uniforme discreta) Si consideri l esperimento lancio di un dado non truccato. Sia X la variabile casuale

Dettagli

PRINCIPALI DISTRIBUZIONI DI PROBABILITA. Psicometria 1 - Lezione 9 Lucidi presentati a lezione AA 2000/2001 dott. Corrado Caudek

PRINCIPALI DISTRIBUZIONI DI PROBABILITA. Psicometria 1 - Lezione 9 Lucidi presentati a lezione AA 2000/2001 dott. Corrado Caudek PRINCIPALI DISTRIBUZIONI DI PROBABILITA Psicometria 1 - Lezione 9 Lucidi presentati a lezione AA 000/001 dott. Corrado Caudek 1 DISTRIBUZIONE BINOMIALE Possiamo definire un processo bernoulliano come una

Dettagli

λ è detto intensità e rappresenta il numero di eventi che si

λ è detto intensità e rappresenta il numero di eventi che si ESERCITAZIONE N 1 STUDIO DI UN SISTEMA DI CODA M/M/1 1. Introduzione Per poter studiare un sistema di coda occorre necessariamente simulare gli arrivi, le partenze e i tempi di ingresso nel sistema e di

Dettagli

Università degli studi della Tuscia. Principi di Statistica dr. Luca Secondi A.A. 2014/2015. Esercitazione di riepilogo Variabili casuali

Università degli studi della Tuscia. Principi di Statistica dr. Luca Secondi A.A. 2014/2015. Esercitazione di riepilogo Variabili casuali Università degli studi della Tuscia Principi di Statistica dr. Luca Secondi A.A. 014/015 Esercitazione di riepilogo Variabili casuali ESERCIZIO 1 Il peso delle compresse di un determinato medicinale si

Dettagli

Statistica. Esercitazione 10. Alfonso Iodice D Enza iodicede@unicas.it. Università degli studi di Cassino. Statistica. A. Iodice. V.C.

Statistica. Esercitazione 10. Alfonso Iodice D Enza iodicede@unicas.it. Università degli studi di Cassino. Statistica. A. Iodice. V.C. uniforme Bernoulli binomiale di Esercitazione 10 Alfonso Iodice D Enza iodicede@unicas.it Università degli studi di Cassino () 1 / 55 Outline uniforme Bernoulli binomiale di 1 uniforme 2 Bernoulli 3 4

Dettagli

DISTRIBUZIONE NORMALE (1)

DISTRIBUZIONE NORMALE (1) DISTRIBUZIONE NORMALE (1) Nella popolazione generale molte variabili presentano una distribuzione a forma di campana, bene caratterizzata da un punto di vista matematico, chiamata distribuzione normale

Dettagli

Variabili aleatorie gaussiane

Variabili aleatorie gaussiane Variabili aleatorie gaussiane La distribuzione normale (riconoscibile dalla curva a forma di campana) è la più usata tra tutte le distribuzioni, perché molte distribuzioni che ricorrono naturalmente sono

Dettagli

STATISTICA AZIENDALE Modulo Controllo di Qualità

STATISTICA AZIENDALE Modulo Controllo di Qualità STATISTICA AZIENDALE Modulo Controllo di Qualità A.A. 009/10 - Sottoperiodo PROA DEL 14 MAGGIO 010 Cognome:.. Nome: Matricola:.. AERTENZE: Negli esercizi in cui sono richiesti calcoli riportare tutte la

Dettagli

Variabili aleatorie continue

Variabili aleatorie continue Variabili aleatorie continue Per descrivere la distribuzione di una variabile aleatoria continua, non si può più assegnare una probabilità positiva ad ogni valore possibile. Si assume allora di poter specificare

Dettagli

Modelli descrittivi, statistica e simulazione

Modelli descrittivi, statistica e simulazione Modelli descrittivi, statistica e simulazione Master per Smart Logistics specialist Roberto Cordone (roberto.cordone@unimi.it) Statistica inferenziale Cernusco S.N., giovedì 18 febbraio 2016 (9.00/13.00)

Dettagli

Schema lezione 5 Intervalli di confidenza

Schema lezione 5 Intervalli di confidenza Schema lezione 5 Intervalli di confidenza Non centrerò quella barca, ne sono convinto al 95% COMPRENDERE: Significato di intervallo di confidenza Uso degli stimatori come quantità di pivot per stime intervallari

Dettagli

Laboratorio di Didattica di elaborazione dati 5 STIMA PUNTUALE DEI PARAMETRI. x i. SE = n.

Laboratorio di Didattica di elaborazione dati 5 STIMA PUNTUALE DEI PARAMETRI. x i. SE = n. 5 STIMA PUNTUALE DEI PARAMETRI [Adattato dal libro Excel per la statistica di Enzo Belluco] Sia θ un parametro incognito della distribuzione di un carattere in una determinata popolazione. Il problema

Dettagli

Distribuzioni discrete di Probabilità

Distribuzioni discrete di Probabilità Ma la biologia di laboratorio che cosa ha a che fare con le distribuzioni discrete di probabilità? Consideriamo questo gedankenexperiment: in una fiasca per coltura cellulare abbiamo una popolazione eterogenea

Dettagli

Intervallo di confidenza

Intervallo di confidenza Intervallo di confidenza Prof. Giuseppe Verlato, Prof. Roberto de Marco Sezione di Epidemiologia e Statistica Medica, Università di Verona campione inferenza popolazione Media Riportare sempre anche Stima

Dettagli

Indirizzo Giuridico Economico Aziendale

Indirizzo Giuridico Economico Aziendale LE VARIABILI CASUALI In molti fenomeni aleatori il risultato di un esperimento è una grandezza che assume valori in modo casuale. Pensa ad esempio al numero di auto che si presentano ad un casello autostradale

Dettagli

DISTRIBUZIONI DI PROBABILITÀ

DISTRIBUZIONI DI PROBABILITÀ Metodi statistici e probabilistici per l ingegneria Corso di Laurea in Ingegneria Civile A.A. 2009-10 Facoltà di Ingegneria, Università di Padova Docente: Dott. L. Corain 1 LE PRINCIPALI DISTRIBUZIONI

Dettagli

Esame di Statistica (10 o 12 CFU) CLEF 11 febbraio 2016

Esame di Statistica (10 o 12 CFU) CLEF 11 febbraio 2016 Esame di Statistica 0 o CFU) CLEF febbraio 06 Esercizio Si considerino i seguenti dati, relativi a 00 clienti di una banca a cui è stato concesso un prestito, classificati per età e per esito dell operazione

Dettagli

LA DISTRIBUZIONE NORMALE o DI GAUSS

LA DISTRIBUZIONE NORMALE o DI GAUSS p. / LA DISTRIBUZIONE NORMALE o DI GAUSS È una delle più importanti distribuzioni di variabili casuali continue p. / LA DISTRIBUZIONE NORMALE o DI GAUSS È una delle più importanti distribuzioni di variabili

Dettagli

Calcolo della Concentrazione Rappresentativa della Sorgente (CRS)

Calcolo della Concentrazione Rappresentativa della Sorgente (CRS) Calcolo della Concentrazione Rappresentativa della Sorgente (CRS) Prof. Renato Baciocchi, Università di Roma Tor Vergata Emiliano Scozza Università di Roma Tor Vergata 1 Valutazione dei Dati Data Set di

Dettagli

Statistical Process Control

Statistical Process Control Statistical Process Control ESERCIZI II Esercizio 1. Una ditta che produce schermi a cristalli liquidi deve tenere in controllo il numero di pixel non funzionanti. Vengono ispezionati venti schermi alla

Dettagli

Probabilita' mediante l'analisi combinatoria D n,k =Disposizioni di n oggetti a k a k (o di classe k)

Probabilita' mediante l'analisi combinatoria D n,k =Disposizioni di n oggetti a k a k (o di classe k) Probabilita' mediante l'analisi combinatoria D n,k =Disposizioni di n oggetti a k a k (o di classe k) Nel calcolo del numero di modalita' con cui si presenta un evento e' utile talvolta utilizzare le definizioni

Dettagli

Esercizi Teoria della Probabilità

Esercizi Teoria della Probabilità Esercizi Teoria della Probabilità Esercizio 1 Durante un corso universitario, uno studente prova a svolgere una serie di esercizi. La risposta agli esercizi è di tipo binario (SI/NO). Supponendo la completa

Dettagli

STATISTICA ESERCITAZIONE

STATISTICA ESERCITAZIONE STATISTICA ESERCITAZIONE Dott. Giuseppe Pandolfo 1 Giugno 2015 Esercizio 1 Una fabbrica di scatole di cartone evade il 96% degli ordini entro un mese. Estraendo 300 campioni casuali di 300 consegne, in

Dettagli

Corso di Laurea in Ingegneria Informatica e Automatica (M-Z) Università di Roma La Sapienza

Corso di Laurea in Ingegneria Informatica e Automatica (M-Z) Università di Roma La Sapienza Corso di Laurea in Ingegneria Informatica e Automatica (M-Z) Università di Roma La Sapienza CALCOLO DELLE PROBABILITÀ E STATISTICA ESAME DEL 16/06/2016 NOME: COGNOME: MATRICOLA: Esercizio 1 Cinque lettere

Dettagli

LA DISTRIBUZIONE NORMALE (Vittorio Colagrande)

LA DISTRIBUZIONE NORMALE (Vittorio Colagrande) LA DISTRIBUZIONE NORMALE (Vittorio Colagrande) Allo scopo di interpolare un istogramma di un carattere statistico X con una funzione continua (di densità), si può far ricorso nell analisi statistica alla

Dettagli

LA LUNGHEZZA DEI GENI UMANI (Es4.1)

LA LUNGHEZZA DEI GENI UMANI (Es4.1) STATISTICA INFERENZIALE: le caratteristiche della popolazione complessiva sono indotte da quelle osservate su un campione estratto dalla popolazione stessa(esempio exit poll) PROBLEMA: dato un campione

Dettagli

Distribuzioni di Probabilità

Distribuzioni di Probabilità Distribuzioni di Probabilità Distribuzioni discrete Distribuzione uniforme discreta Distribuzione di Poisson Distribuzioni continue Distribuzione Uniforme Distribuzione Gamma Distribuzione Esponenziale

Dettagli

RETI DI TELECOMUNICAZIONE

RETI DI TELECOMUNICAZIONE RETI DI TELECOMUNICAZIONE Modelli delle Sorgenti di Traffico Generalità Per la realizzazione di un modello analitico di un sistema di telecomunicazione dobbiamo tenere in considerazione 3 distinte sezioni

Dettagli

Corso di Fondamenti di TLC Esercizi di Probabilitá

Corso di Fondamenti di TLC Esercizi di Probabilitá Corso di Fondamenti di TLC Esercizi di Probabilitá Exercise 0.1 Unurna contiene 2 biglie bianche e 5 nere. Estraiamo una prima biglia: se nera la rimettiamo dentro con altre due dello stesso colore, se

Dettagli

IL CRITERIO DELLA MASSIMA VEROSIMIGLIANZA

IL CRITERIO DELLA MASSIMA VEROSIMIGLIANZA Metodi per l Analisi dei Dati Sperimentali AA009/010 IL CRITERIO DELLA MASSIMA VEROSIMIGLIANZA Sommario Massima Verosimiglianza Introduzione La Massima Verosimiglianza Esempio 1: una sola misura sperimentale

Dettagli

Statistica - metodologie per le scienze economiche e sociali /2e S. Borra, A. Di Ciaccio - McGraw Hill

Statistica - metodologie per le scienze economiche e sociali /2e S. Borra, A. Di Ciaccio - McGraw Hill Statistica - metodologie per le scienze economiche e sociali /e S. Borra A. Di Ciaccio - McGraw Hill s. 9. Soluzione degli esercizi del capitolo 9 In base agli arrotondamenti effettuati nei calcoli si

Dettagli

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI VERIFICA DI IPOTESI PER IL CONFRONTO TRA DUE PROPORZIONI

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI VERIFICA DI IPOTESI PER IL CONFRONTO TRA DUE PROPORZIONI NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI VERIFICA DI IPOTESI PER IL CONFRONTO TRA DUE PROPORZIONI IL PROBLEMA Si vuole verificare se un nuovo trattamento per la cura dell otite è più efficace

Dettagli

standardizzazione dei punteggi di un test

standardizzazione dei punteggi di un test DIAGNOSTICA PSICOLOGICA lezione! Paola Magnano paola.magnano@unikore.it standardizzazione dei punteggi di un test serve a dare significato ai punteggi che una persona ottiene ad un test, confrontando la

Dettagli

PROBABILITÀ SCHEDA N. 7 LA VARIABILE ALEATORIA NORMALE

PROBABILITÀ SCHEDA N. 7 LA VARIABILE ALEATORIA NORMALE Matematica e statistica: dai dati ai modelli alle scelte wwwdimaunige/pls_statistica Responsabili scientifici MP Rogantin e E Sasso (Dipartimento di Matematica Università di Genova) PROBABILITÀ SCHEDA

Dettagli

Esempi di distribuzioni teoriche

Esempi di distribuzioni teoriche Capitolo 7 Esempi di distribuzioni teoriche In questo capitolo presentiamo alcune funzioni teoriche che rappresentano densità di probabilità di variabili casuali unidimensionali (continue e discrete) che

Dettagli