Teoremi di Stokes, della divergenza e di Gauss Green.

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Teoremi di Stokes, della divergenza e di Gauss Green."

Transcript

1 Matematica 3 Esercitazioni eoremi di tokes, della divergenza e di Gauss Green. Esercizio 1 : Calcolare l area del dominio avente per frontiera la linea chiusa γ di equazioni parametriche x (1 t) t γ :, t [, 1] y (1 t)t oluzione : Possiamo utilizzare indifferentemente una delle tre formule (giustificate dal teorema di Gauss Green) x Area( ) x dy y dx γ + γ + γ + dy y dx. Bisogna però stabilire se la parametrizzazione assegnata alla frontiera induce su di essa o- rientazione positiva o negativa. Un metodo per farlo è quello di determinare la direzione e il verso di un vettore tangente alla curva γ in un opportuno punto. Il vettore τ tangente a γ ha componenti τ(t) ((1 t)(1 3t), 1 t) dunque, per t 1 è τ ( 1 4, ), orizzontale ed orientato secondo le x decrescenti. Da ciò si deduce che l orientazione su γ è quella in senso antiorario e quindi positiva. Calcoliamo quindi l area secondo la prima delle tre formule precedenti: dx dy x dy γ x(t)y (t) dt (1 t) t(1 t) dt [ 1 t 4 3 t t4 ] 1 5 t Esercizio : Calcolare l area del dominio tratteggiato in figura di frontiera γ γ 1 γ γ 3 ove γ 1 (x, y) R, x + y x, y } e γ ha equazione in coordinate polari ρ e θ con θ [, π ]. oluzione : Determiniamo dapprima una parametrizzazione per la frontiera γ che induca su 1

2 di essa orientazione positiva. i ha x 1 γ 1 : + 1 cos(π θ) y 1, θ [, π], sin(π θ) e γ : γ 3 : x e θ cos θ y e θ sin θ, θ [, π ] x y e π t, t [, e π ]. Utilizziamo ora la formula x Area( ) γ + dy y dx. Considerando che il contributo all integrale del tratto γ 3 è nullo, si ha x γ + dy y dx x γ 1 dy y dx + x γ dy y dx 1 π [ ( ) 1 cos(π θ) cos(π θ) 1 ] sin(π θ)1 sin(π θ) dθ + 1 π [ ] e θ cos θ(sin θ + cos θ) e θ sin θ(cos θ sin θ) dθ 1 π ( ) cos(π θ) dθ + 1 π e θ dθ 4 [ 1 8 sin(π θ) 1 ] π [ ] π 1 8 θ + 4 eθ π eπ 1 4. Esercizio 3 : Usando il teorema di Gauss Green, calcolare l integrale doppio ove è il dominio in figura, di frontiera σ σ 1 σ con x t sin t σ :, y cos t 1 t [, π] x π cos 3 t σ 1 : y π sin 3 t, t [, π ] y dx dy oluzione : Per poter applicare il teorema di Gauss Green, dobbiamo determinare un campo F (f 1 (x, y), f (x, y)) tale che x f (x, y) y f 1 (x, y) y. Una scelta possibile è la seguente:

3 f 1 (x, y) y, f (x, y). Il teorema di G G afferma quindi y dx dy y + dx. Non abbiamo bisogno di calcolare una parametrizzazione del tratto σ poiché su di esso x è costante dunque x (t). Inoltre, le parametrizzazioni assegnate ai tratti σ e σ 1 inducono su di essi orientazione positiva. i ha quindi: y dx dy π π σ y σ1 dx + y dx (1 cos t) 3 dt + π 1π 3 sin 7 t cos t dt (1 4 cos t + sin t cos t + 3 cos(t) + 3 ) dt + π [ 5 t 4 sin t sin3 t sin(t) ] π 5 π + 1π3 [ 1 3 cos3 t cos9 t cos5 t 3 7 cos7 t 1π 3 sin 6 t cos t sin t dt π + 1π 3 (cos t cos 8 t 3 cos 4 t + 3 cos 6 t) sin t dt ] π 5 π + 1π3 ( ) Esercizio 4 : Dato il campo vettoriale F (x cos y sin x + cos y cos x)i (x sin x cos y)j, calcolare il flusso di F uscente dalla linea γ γ 1 γ γ 3 usando il teorema della divergenza. oluzione : Ricordiamo il teorema della divergenza nel piano: F, n ds divf dx dy γ ove n è il versore uscente normale al bordo γ del dominio. Poiché la retta OB ha equazione 3

4 y x e la retta BA ha equazione y x +, si ha divf dx dy (x cos y cos x + x sin x sin y) dx dy 3 x 1 x x cos(y x) dx dy 1 x sin x dx + x sin x dx + x 3 1 x 3 3 x x y x cos(y x) dy dx + (x sin( 3x + ) + x sin x) dx x sin( 3x + ) dx [ x cos x + sin x] 1 + [ 1 3 x cos( 3x + ) sin( 3x + ) ] x 3 x+ y x cos(y x) dy dx 8 9 sin 1 3 cos 1 9. Esercizio 5 : ia la porzione dell iperboloide ad una falda di equazioni parametriche x cosh u cos v u [ sinh 1 1, sinh 1 ] P : y cosh u sin v, v [ π z sinh u, π ]. i calcoli il flusso del vettore F xi + yj + zk che attraversa nel verso delle x crescenti. oluzione : In questo esercizio non si può usare il teorema della divergenza perché la superficie non è chiusa. Calcoliamo quindi il flusso in base alla definizione: Flusso F, n dσ ove n è il versore normale a orientato nel verso delle x crescenti e dσ è l elemento di superficie su. Ricordiamo che se P(u, v) è una parametrizzazione della superficie con (u, v) D, D R e g è una funzione definita in un intorno di, l integrale di superficie si calcola g dσ g(p(u, v)) P u P v du dv D ove P u P v è il prodotto vettoriale dei due vettori tangenti P u e P v (ed è quindi un vettore normale alla superficie). Calcoliamo nel nostro caso il versore n normale alla superficie. i ha P u (sinh u cos v, sinh u sin v, cosh u), P v ( cosh u sin v, cosh u cos v, ) 4

5 da cui n i j k sinh u cos v sinh u sin v cosh u cosh u sin v cosh u cos v ( ( cosh u cos v)i (cosh u sin v)j + (sinh u cosh u)k ) P u P v P u P v 1 P u P v 1 P u P v (Osservazione: Non abbiamo bisogno di calcolare la norma del vettore perchè si semplificherà nell integrale) Il versore così trovato è nel verso delle x crescenti? Poiché la componente lungo l asse x del vettore normale P u P v è cosh u cos v < se (u, v) D, il versore NON è nel verso delle x crescenti dunque dovremo prendere il versore opposto. Abbiamo quindi: F, n dσ π F(P(u, v)), D sinh 1 u sinh 1 1 sinh 1 u sinh 1 1 sinh 1 u sinh 1 1 sinh 1 u sinh 1 1 π v π π v π π v π P u P v P u P v P u P v du dv (cosh 3 u cos v + cosh 3 u sin v sinh u cosh u) du dv (cosh 3 u sinh u cosh u) du dv cosh u du dv cosh u du [π sinh u] sinh 1 sinh 1 1 3π. Esercizio 6 : Dato il campo F yi + zj + xk, calcolare il flusso del rotore di F attraverso la porzione di paraboloide (x, y, z) R 3, z 1 x y, z } sia in base alla definizione, sia usando il teorema di tokes. oluzione : Per il teorema di tokes, se F (f 1, f, f 3 ) è un campo definito in un intorno della superficie R 3, si ha rotf, n dσ f 1 dx + f dy + f 3 dz + ove l orientazione positiva di è scelta coerentemente con il verso del versore normale alla superficie n. Calcoliamo il flusso del rotore di F nel verso delle z crescenti. i ha i j k rotf x y z i j k. y z x Determiniamo quindi una parametrizzazione della porzione di paraboloide: x u P : y v, u + v 1. z 1 u v 5

6 Il vettore normale alla superficie nel verso delle z crescenti è quindi i j k P u P v 1 u ui + vj + k 1 v (si osservi che la componente lungo l asse z è positiva). Dunque, in base alla definizione: P u P v rotf, n dσ rotf, P u P v P u P v du dv ( u v 1) du dv π. u +v 1 Applichiamo ora il teorema di tokes e determiniamo dapprima una parametrizzazione di che induce orientazione positiva: x sin t r : y cos t, t [, π] z i ha quindi: + f 1 dx + f dy + f 3 dz π sin t( sin t) dt π cos(t) 1 dt [ 1 4 sin(t) 1 ] π t π. Esercizio 7 : Dato il campo F x 3 i + y 3 j + z 3 k definito nel dominio E (x, y, z) R 3, x + y 1, z [, 1]}, calcolare il flusso di F uscente dalla frontiera di E sia in base alla definzione, sia usando il teorema della divergenza. oluzione : Per il teorema della divergenza nello spazio: F, n dσ divf dx dy dz E E ove n è il versore uscente normale al bordo E del dominio E. Determiniamo una parametrizzazione del bordo E 1 3. Per 1 si ha: x cos θ P 1 : y sin θ, θ [, π], t [, 1]. z t Per si ha: x u P : y v, u + v 1. z Per 3 si ha: x u P 3 : y v, u + v 1. z 1 6

7 Calcoliamo ora il versore normale uscente relativo a 1, e 3. i ha facilmente n (,, 1), n 3 (,, 1) mentre un vettore normale a 1 è i j k P θ P t sin θ cos θ cos θi + sin θj. 1 i tratta del vettore uscente dal bordo 1 poiché per θ si ha i (si osservi che si tratta di un versore, poiché P θ P t 1). Calcoliamo il flusso uscente tramite la definizione: F, n dσ F, n dσ + F, n dσ + F, n dσ E 1 3 π 1 du dv + 1 du dv + (cos 4 θ + sin 4 θ) dθ dt π + 3 π 5 π. u +v 1 u +v 1 Utilizzando ora il teorema della divergenza, poiché divf 3x + 3y + 3z, si ha 1 divf dx dy dz (3x + 3y + 3z ) dx dy dz E Esercizio 8 : i calcoli x dx dy D π z x +y 1 1 ρ 3ρ 3 dρ + θ x +y 1 t 1 z 3z dz dx dy 3 π + π 5 π. dove D (x, y) R, 1 x + y }, utilizzando il teorema di Gauss Green. Risultato: 3 4 π Esercizio 9 : Applicando il teorema di tokes, calcolare l integrale y dx + xy dy + xz dz γ ove γ è l ellisse intersezione tra la superficie cilindrica di equazione x + y x e il piano z y. Il risultato dipende dall orientazione di γ? Risultato:, dunque in questo caso particolare non dipende dall orientazione. Esercizio 1 : Dato il campo vettoriale F xi + yj 3zk, calcolare a) la circuitazione lungo la linea intersezione delle superfici di equazione xy z, e x + y 1 b) il flusso uscente dal cubo di lato unitario, avente tre spigoli sugli assi, un vertice nell origine e il vertice opposto nel punto (1, 1, 1). 7

8 Risultato: sono entrambi nulli. Esercizio 11 : i calcoli il flusso del campo F zi + x yj + y zk uscente dalla superficie del solido (x, y, z) R 3, x + y z 1 + x + y }. Risultato: π 3. 8

Forme differenziali e campi vettoriali: esercizi svolti

Forme differenziali e campi vettoriali: esercizi svolti Forme differenziali e campi vettoriali: esercizi svolti 1 Esercizi sul Teorema di Green......................... 2 2 Esercizi sul Teorema di Stokes......................... 4 3 Esercizi sul Teorema di

Dettagli

ANALISI VETTORIALE ESERCIZI SULLE SUPERFICI

ANALISI VETTORIALE ESERCIZI SULLE SUPERFICI ANALII VETTORIALE EERCIZI ULLE UPERFICI Esercizio Calcolare l area della superficie dove Σ {(x, y, z) (x, y) E, z 2 + x 2 + y 2 } E {(x, y) x 2 + y 2 4}. Essendo la superficie Σ data come grafico di una

Dettagli

Le soluzioni del foglio 3

Le soluzioni del foglio 3 Le soluzioni del foglio 3 1. Esercizio Consideriamo la famiglia di elicoidi, vedi Figura 1, x = u cos(v), y = u sin(v), z = kv, u 1, v π Quella proposta nell esercizio corrisponde alla scelta k = 1 Matrice

Dettagli

Superfici e integrali di superficie. 1. Scrivere una parametrizzazione per le seguenti superfici

Superfici e integrali di superficie. 1. Scrivere una parametrizzazione per le seguenti superfici Superfici e integrali di superficie 1. Scrivere una parametrizzazione per le seguenti superfici (a) Il grafico della funzione f(x, y) = x 2 y 3 (b) La superficie laterale di un cilindro di raggio R e altezza

Dettagli

Integrali multipli - Esercizi svolti

Integrali multipli - Esercizi svolti Integrali multipli - Esercizi svolti Integrali di superficie. Si calcoli l integrale di superficie Σ z +y +4(x +y ) dσ, dove Σ è la parte di superficie di equazione z = x y che si proietta in = {(x,y)

Dettagli

Risposta La curva r è regolare a tratti per via di quanto succede della sua rappresentazione parametrica nel punto t = 1: pur riuscendo

Risposta La curva r è regolare a tratti per via di quanto succede della sua rappresentazione parametrica nel punto t = 1: pur riuscendo ANALISI VETTORIALE OMPITO PER LE VAANZE DI FINE D ANNO Esercizio Sia r(t) la curva regolare a tratti x = t, y = t, t [, ] e x = t, y = t, t [, ]. alcolare la lunghezza di r, calcolare, dove esistono, i

Dettagli

Calcolare l area di una superficie. 2. Calcolare l area della porzione del piano 3x + 2y + z = 7 all interno al cilindro x 2 + y 2 = 1.

Calcolare l area di una superficie. 2. Calcolare l area della porzione del piano 3x + 2y + z = 7 all interno al cilindro x 2 + y 2 = 1. Calcolare l area di una superficie. Calcolare l area della porzione del piano x + 2y + z = 5 sopra il cono z = 3(x 2 + y 2 ). 2. Calcolare l area della porzione del piano 3x + 2y + z = 7 all interno al

Dettagli

Analisi Matematica II Integrali curvilinei (svolgimenti) 1 t 9t dt (a) = dt t 1 t 2 = 1 2. x dx (b) log y 1. dy.

Analisi Matematica II Integrali curvilinei (svolgimenti) 1 t 9t dt (a) = dt t 1 t 2 = 1 2. x dx (b) log y 1. dy. Analisi Matematica II Integrali curvilinei svolgimenti Svolgimento esercizio Si ha, successivamente, t t, t, t 9t 4 + 4t t 9t + 4, l t dt t 9t + 4 dt a 8 dove in a si è usata la sostituzione 9t + 4 8t

Dettagli

POLITECNICO DI MILANO. FACOLTÀ DI INGEGNERIA INDUSTRIALE. Analisi e Geometria 2. Giugno Docenti: F. Lastaria, M. Citterio, M.

POLITECNICO DI MILANO. FACOLTÀ DI INGEGNERIA INDUSTRIALE. Analisi e Geometria 2. Giugno Docenti: F. Lastaria, M. Citterio, M. POLITECNICO I MILANO. FACOLTÀ I INGEGNERIA INUTRIALE. Analisi e Geometria 2. Giugno 2. ocenti: F. Lastaria, M. Citterio, M. aita Indice Integrali di superficie. Parte prima. Integrali di superficie. Parte

Dettagli

Università di Trieste Facoltà d Ingegneria. Esercizi sulle curve, le superfici, i campi vettoriali. Dott. Franco Obersnel

Università di Trieste Facoltà d Ingegneria. Esercizi sulle curve, le superfici, i campi vettoriali. Dott. Franco Obersnel Università di Trieste Facoltà d Ingegneria. Esercizi sulle curve, le superfici, i campi vettoriali. Dott. Franco Obersnel Esercizio 1 Sia f : [a, b] IR 2 una funzione di classe C 1 su [a, b]. consideri

Dettagli

Esercizi di Analisi Matematica 3. Prima parte

Esercizi di Analisi Matematica 3. Prima parte Esercizi di Analisi Matematica 3 per le Facoltà di Ingegneria Prima parte Corrado Lattanzio e Bruno Rubino Versione preliminare L Aquila, ottobre 5 Indice 1 Curve, superfici e campi vettoriali 3 1.1 Curve

Dettagli

TEOREMA DI GREEN ( ) D ; C è il contorno orientato del dominio D considerato

TEOREMA DI GREEN ( ) D ; C è il contorno orientato del dominio D considerato Le formule f d dy = f (, y ) dy TEOEMA I GEEN [] f d dy = f (, y ) d [] note come formule di Green sono due relazioni semplici ma molto importanti fra gli integrali estesi ad un dominio piano e gli integrali

Dettagli

Istituzioni di Matematiche Modulo B (SG)

Istituzioni di Matematiche Modulo B (SG) Istituzioni di Matematiche Modulo B (SG) II foglio di esercizi ESERCIZIO 1. Per ciascuna funzione f(, ) calcolare le derivate parziali f (, ) e f (, ) e determinare il relativo dominio di definizione.

Dettagli

Integrali di superficie: esercizi svolti

Integrali di superficie: esercizi svolti Integrali di superficie: esercizi svolti Gli esercizi contrassegnati con il simbolo * presentano un grado di difficoltà maggiore. Esercizio. Calcolare i seguenti integrali superficiali sulle superfici

Dettagli

Corso di Laurea in Ingegneria Civile ed Ambientale Prova Scritta di Analisi Matematica 2 del 19/06/2010 A

Corso di Laurea in Ingegneria Civile ed Ambientale Prova Scritta di Analisi Matematica 2 del 19/06/2010 A Corso di Laurea in Ingegneria Civile ed Ambientale Prova Scritta di Analisi Matematica del 9/6/ A ) ata la funzione f(x, y) x y log( + x + y ), a) stabilire dove risulta derivabile parzialmente nel suo

Dettagli

Sia ϕ una funzione continua definita su un rettangolo R = [a, b] [c, d] di R 2 e a valori in R 3 : ϕ : R R 2 R 3

Sia ϕ una funzione continua definita su un rettangolo R = [a, b] [c, d] di R 2 e a valori in R 3 : ϕ : R R 2 R 3 1 uperfici ia ϕ una funzione continua definita su un rettangolo R = [a, b] [c, d] di R 2 e a valori in R 3 : ϕ : R R 2 R 3 (u, v) R ϕ(u, v) = (x(u, v), y(u, v), z(u, v)), cioè tale che le componenti x(u,

Dettagli

Analisi Matematica 2 per Matematica Esempi di compito, secondo semestre 2012/2013

Analisi Matematica 2 per Matematica Esempi di compito, secondo semestre 2012/2013 Analisi Matematica 2 per Matematica Esempi di compito, secondo semestre 2012/2013 Primo compito. Si consideri la regione stokiana E di R 3 definita dalle disuguaglianze: { + y 2 a 2 0 z tan α)x b) dove

Dettagli

UNIVERSITÀ DI ROMA TOR VERGATA. Analisi Matematica II per Ingegneria Prof. C. Sinestrari

UNIVERSITÀ DI ROMA TOR VERGATA. Analisi Matematica II per Ingegneria Prof. C. Sinestrari UNIVERSITÀ DI ROMA TOR VERGATA Analisi Matematica II per Ingegneria Prof. C. Sinestrari Esercizi 17.XI.2017 1. Verificare che le curve definite dalle seguenti parametrizzazioni sono regolari, o regolari

Dettagli

Integrali multipli e di superficie

Integrali multipli e di superficie Integrali multipli e di superficie Integrali doppi Enunciamo e dimostriamo un paio di risultati concernenti gli integrali doppi. Proposizione 1 Sia A R 2 di misura nulla e f : A R limitata. Allora f R(A)

Dettagli

Analisi Matematica 3 (Fisica) Prova scritta del 27 gennaio 2012 Uno svolgimento

Analisi Matematica 3 (Fisica) Prova scritta del 27 gennaio 2012 Uno svolgimento Analisi Matematica 3 (Fisica) Prova scritta del 27 gennaio 22 Uno svolgimento Prima di tutto, eccovi alcuni commenti che potrebbero aiutarvi a svolgere meglio le prove scritte. Ad ogni domanda del testo

Dettagli

Soluzioni degli esercizi proposti nella sessione estiva Terni Perugia. F NdS. div F = 2 div F dxdydz = 2volume (V ) = 36π.

Soluzioni degli esercizi proposti nella sessione estiva Terni Perugia. F NdS. div F = 2 div F dxdydz = 2volume (V ) = 36π. Soluzioni degli esercizi proposti nella sessione estiva 2-2 Terni Perugia ) Sia F = (2x, y, z) e V il volume delimitato dalle superfici: la semisfera S := z = 9 x 2 y 2 ed il disco S 2 di equazione z =,

Dettagli

Corsi di laurea in ingegneria aerospaziale e ingegneria meccanica Prova scritta di Fondamenti di Analisi Matematica II. Padova, 19.9.

Corsi di laurea in ingegneria aerospaziale e ingegneria meccanica Prova scritta di Fondamenti di Analisi Matematica II. Padova, 19.9. Corsi di laurea in ingegneria aerospaziale e ingegneria meccanica Prova scritta di Fondamenti di Analisi Matematica II Padova, 19.9.2016 Si svolgano i seguenti esercizi facendo attenzione a giustificare

Dettagli

Esercizi di Analisi Matematica L-B

Esercizi di Analisi Matematica L-B Esercii di Analisi Matematica L-B Marco Alessandrini Gennaio-Maro 7 Indice Funioni di più variabili reali. Calcolo differeniale........................................... Ricerca di massimi e minimi.......................................

Dettagli

Corso di Laurea in Ingegneria Gestionale - Sede di Fermo Anno Accademico 2009/2010 Matematica 2 Esercizi d esame

Corso di Laurea in Ingegneria Gestionale - Sede di Fermo Anno Accademico 2009/2010 Matematica 2 Esercizi d esame Corso di Laurea in Ingegneria Gestionale - ede di Fermo Anno Accademico 2009/2010 Matematica 2 Esercizi d esame Nome... N. Matricola... Fermo, gg/mm/aaaa 1. tabilire l ordine di ciascuna delle seguenti

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = tan(2x 2 + 3y 2 )

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = tan(2x 2 + 3y 2 ) Analisi Matematica II Corso di Ingegneria Gestionale Compito del 7-9- - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo - Le risposte senza giustificazione sono considerate nulle Esercizio

Dettagli

Ingegneria Tessile, Biella Analisi II

Ingegneria Tessile, Biella Analisi II Ingegneria Tessile, Biella Analisi II Esercizi svolti In questo file sono contenute le soluzioni degli esercizi sui campi vettoriali (cf foglio 5 di esercizi) Attenzione: in alcuni esercizi il calcolo

Dettagli

Derivate parziali, derivate direzionali, differenziabilità. a) Calcolare le derivate direzionali e le derivate parziali in (0, 1) di f(x, y) =

Derivate parziali, derivate direzionali, differenziabilità. a) Calcolare le derivate direzionali e le derivate parziali in (0, 1) di f(x, y) = Derivate parziali, derivate direzionali, differenziabilità 1. a) Calcolare le derivate direzionali e le derivate parziali in (0, 1) di f(x, y) = 3 x (y 1) + 1. b) Calcolare D v f(0, 1), dove v è il versore

Dettagli

Prima prova di verifica in itinere di ANALISI MATEMATICA II. 12 Marzo 2008 Compito A. 1 (punti 3)

Prima prova di verifica in itinere di ANALISI MATEMATICA II. 12 Marzo 2008 Compito A. 1 (punti 3) anno accademico 007-008 Prima prova di verifica in itinere di ANALISI MATEMATICA II Marzo 008 Compito A (punti ) y = x + xy + y x. (punti 4) y + y x = ln x x y. (punti ) y = y + y ln y. 4 (punti 6) Determinare

Dettagli

Corso di laurea in Ingegneria civile - ambientale - edile Prova scritta del 3 febbraio Regole per lo svolgimento

Corso di laurea in Ingegneria civile - ambientale - edile Prova scritta del 3 febbraio Regole per lo svolgimento Corso di laurea in Ingegneria civile - ambientale - edile Prova scritta del febbraio 6 Regole per lo svolgimento (a) Gli studenti di ingegneria civile e edile -5 faranno gli esercizi,,. (b) Gli studenti

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = e (x3 +x) y

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = e (x3 +x) y Analisi Matematica II Corso di Ingegneria Gestionale Compito del 8--7 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo. - Le risposte senza giustificazione sono considerate nulle.

Dettagli

Analisi Matematica II (Prof. Paolo Marcellini)

Analisi Matematica II (Prof. Paolo Marcellini) Analisi Matematica II Prof. Paolo Marcellini) Università degli Studi di Firenze Corso di laurea in Matematica Esercitazione del 5//14 Michela Eleuteri 1 eleuteri@math.unifi.it web.math.unifi.it/users/eleuteri

Dettagli

Prof. R. Capone Esercitazioni di Matematica IV Corso di studi in Matematica

Prof. R. Capone Esercitazioni di Matematica IV Corso di studi in Matematica Forme differenziali lineari Sia Ω R un insieme aperto e siano A, B, C: Ω R funzioni continue in Ω. Si definisce forma differenziale ω in Ω l espressione ω = A(, y, z)d + B(, y, z)dy + C(, y, z)dz Data

Dettagli

Raccolta di esercizi di ANALISI MATEMATICA III per il Corso di Laurea in Matematica a.a. 2013/2014. Silvano Delladio

Raccolta di esercizi di ANALISI MATEMATICA III per il Corso di Laurea in Matematica a.a. 2013/2014. Silvano Delladio Raccolta di esercizi di ANALISI MATEMATICA III per il Corso di Laurea in Matematica a.a. 2013/2014 Silvano Delladio September 8, 2014 Chapter 1 Integrali multipli 1.1 Sia B R 3 la palla di raggio 2 centrata

Dettagli

1 Formula di Gauss-Green

1 Formula di Gauss-Green Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. (ocente: Federico Lastaria. Giugno 2011 1 Formula di Gauss-Green Teorema 1.1 (Formula di Gauss-Green nel piano.

Dettagli

Esercizi. f(x, y, z) = exp(xz) + zy sin(xyz) + cos(xy 3 )

Esercizi. f(x, y, z) = exp(xz) + zy sin(xyz) + cos(xy 3 ) Esercizi 1. Determinare le derivate parziali di f(x, y, z) = exp(xz) + zy sin(xyz) + cos(xy 3 ) 2. Scrivere l equazione del piano tangente e della retta normale al grafico ln(xy) + cos(x + y) nel punto

Dettagli

{ x 2 + y 2 = 1 x 2 + z 2 = 1. dxdydz T. x 2 +4y

{ x 2 + y 2 = 1 x 2 + z 2 = 1. dxdydz T. x 2 +4y Analisi Matematica II, Anno Accademico 14-15 Ingegneria Edile, Civile, Ambientale Paolo Acquistapace, Laura Cremaschi, Vincenzo M. Tortorelli 11 settembre 15 - quarto appello - prima parte (un ora) N.

Dettagli

Versione preliminare si prega di segnalare eventuali errori

Versione preliminare si prega di segnalare eventuali errori Analisi matematica (I mod) Ing. Elettronica PROFF. GIACOMELLI e VERGARA CAFFARELLI ESEMPI DI ESERCIZI D ESAME A.A.8/9 Versione preliminare si prega di segnalare eventuali errori *) Determinare (purché

Dettagli

Esercizi svolti e assegnati su integrali doppi e tripli

Esercizi svolti e assegnati su integrali doppi e tripli Esercizi svolti e assegnati su integrali doppi e tripli Esercizio. ove Calcolare R = R xy x + y + x + y dxdy } x, y R : x, y, x x + y x Svolgimento. Passo : per disegnare R, studiamo C : x + y x =, C :

Dettagli

Prove scritte dell esame di Analisi Matematica II a.a. 2011/2012

Prove scritte dell esame di Analisi Matematica II a.a. 2011/2012 Prove scritte dell esame di Analisi Matematica II a.a. / C.d.L. in Ingegneria Informatica ed Elettronica - Università degli Studi di Perugia Prova scritta del 7 giugno. ( punti) Disegnare l insieme E (x,

Dettagli

Universita degli Studi di Ancona Laurea in Ingegneria Meccanica ed Informatica a Distanza Anno Accademico 2005/2006. Matematica 2 (Analisi)

Universita degli Studi di Ancona Laurea in Ingegneria Meccanica ed Informatica a Distanza Anno Accademico 2005/2006. Matematica 2 (Analisi) Universita degli Studi di Ancona Laurea in Ingegneria Meccanica ed Informatica a Distanza Anno Accademico 2005/2006 Matematica 2 (Analisi) Nome:................................. N. matr.:.................................

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = log(1 + x 2 y) lim x 2 x

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = log(1 + x 2 y) lim x 2 x Analisi Matematica II Corso di Ingegneria Gestionale Compito del -7-14 Esercizio 1. (14 punti) Data la funzione = log(1 + x y) i) determinare il dominio e studiare l esistenza del ite (x,y) (,) x x ii)

Dettagli

1 Integrali curvilinei

1 Integrali curvilinei Integrali curvilinei Richiamo: + x dx x + x + x log ) + + x. Exercise Verificare la formula precedente. Exercise Calcolare a + b x dx, con a, b qualsiasi. Exercise 3 Calcolare la lunghezza dell arco di

Dettagli

Analisi Matematica 3 (Fisica e Astronomia) Esercizi di autoverifica sull integrazione multipla

Analisi Matematica 3 (Fisica e Astronomia) Esercizi di autoverifica sull integrazione multipla Analisi Matematica (Fisica e Astronomia) Esercizi di autoverifica sull integrazione multipla Università di Padova - Lauree in Fisica ed Astronomia - A.A. 7/8 venerdì novembre 7 Istruzioni generali. Risolvere

Dettagli

Meccanica. 3. Elementi di Analisi Vettoriale. Domenico Galli. Dipartimento di Fisica e Astronomia.

Meccanica. 3. Elementi di Analisi Vettoriale.  Domenico Galli. Dipartimento di Fisica e Astronomia. Meccanica 3. Elementi di Analisi Vettoriale http://campus.cib.unibo.it/246981/ Domenico Galli Dipartimento di Fisica e Astronomia 5 maggio 2017 Traccia 1. Vettori Variabili 2. Derivate e Integrali 3. Derivate

Dettagli

0.1 Arco di curva regolare

0.1 Arco di curva regolare .1. ARCO DI CURVA REGOLARE 1.1 Arco di curva regolare Se RC(O, i, j, k ) è un riferimento cartesiano fissato per lo spazio euclideo E, e se v (t) = x(t) i + y(t) j + z(t) k è una funzione a valori vettoriali

Dettagli

ANALISI B alcuni esercizi proposti

ANALISI B alcuni esercizi proposti ANALISI B alcuni esercizi proposti G.P. Leonardi Parte II 1 Limiti e continuità per funzioni di 2 variabili Esercizio 1.1 Calcolare xy log(1 + x ) lim (x,y) (0,0) 2x 2 + 5y 2 Esercizio 1.2 Studiare la

Dettagli

1. Disegnare nel piano di Gauss i seguenti insiemi di numeri complessi:

1. Disegnare nel piano di Gauss i seguenti insiemi di numeri complessi: Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Test di autovalutazione 1. Disegnare nel piano di Gauss i seguenti insiemi di numeri complessi: (a) A = {z C : z, 0 arg z /} (b) B = {w

Dettagli

Osservazioni sul baricentro

Osservazioni sul baricentro Osservazioni sul baricentro ( 1 dicembre 1 La prima volta che si introduce una definizione di baricentro è di norma nella geometria del triangolo dove il baricentro è definito come punto di intersezione

Dettagli

Analisi Matematica II (Prof. Paolo Marcellini) 1 Esercizi tratti da temi d esame di anni precedenti

Analisi Matematica II (Prof. Paolo Marcellini) 1 Esercizi tratti da temi d esame di anni precedenti Analisi Matematica II (Prof. Paolo Marcellini) Università degli Studi di Firenze Corso di laurea in Matematica Esercitazione del 8// Michela Eleuteri eleuteri@math.unifi.it web.math.unifi.it/users/eleuteri

Dettagli

Estremi. 5. Determinare le dimensioni di una scatola rettangolare di volume v assegnato, che abbia la superficie minima.

Estremi. 5. Determinare le dimensioni di una scatola rettangolare di volume v assegnato, che abbia la superficie minima. Estremi 1. Determinare gli estremi relativi di f(x, y) = e x (x 1)(y 1) + (y 1).. Determinare gli estremi relativi di f(x, y) = y (y + 1) cos x. 3. Determinare gli estremi relativi di f(x, y) = xye x +y..

Dettagli

Cap 3- Legge di Gauss. 3.1-Concetto di flusso Flusso del campo elettrico. Cap 3- Legge di Gauss

Cap 3- Legge di Gauss. 3.1-Concetto di flusso Flusso del campo elettrico. Cap 3- Legge di Gauss Cap 3- Legge di Gauss Cap 3- Legge di Gauss Una formulazione equivalente alla legge di Coulomb è quella stabilita dal teorema di Gauss, che trae vantaggio dalle situazioni nelle quali vi è una simmetria

Dettagli

Università degli Studi di Bergamo Matematica II (5 e 7,5 crediti) 18 febbraio 2010 Tema A

Università degli Studi di Bergamo Matematica II (5 e 7,5 crediti) 18 febbraio 2010 Tema A Università degli Studi di Bergamo Matematica II (5 e 7,5 crediti) 18 febbraio 21 Tema A Tempo a disposizione: 2 ore. Calcolatrici, libri e appunti non sono ammessi. Ogni esercizio va iniziato all inizio

Dettagli

Esercitazione di Analisi Matematica II

Esercitazione di Analisi Matematica II Esercitazione di Analisi Matematica II Barbara Balossi 06/04/2017 Esercizi di ripasso Esercizio 1 Sia data l applicazione lineare f : R 3 R 3 definita come f(x, y, z) = ( 2x + y z, x 2y + z, x y). a) Calcolare

Dettagli

Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016

Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016 Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016 Prodotti scalari e forme bilineari simmetriche (1) Sia F : R 2 R 2 R un applicazione definita da F (x, y) = x 1 y 1 + 3x 1 y 2 5x 2 y 1 + 2x 2

Dettagli

INTEGRALI INDEFINITI e DEFINITI Esercizi risolti

INTEGRALI INDEFINITI e DEFINITI Esercizi risolti INTEGRALI INDEFINITI e DEFINITI Esercizi risolti E data la funzione f( = (a Provare che la funzione F ( = + arcsin è una primitiva di f( sull intervallo (, (b Provare che la funzione G( = + arcsin π è

Dettagli

2.9 Esercizi e prove d esame

2.9 Esercizi e prove d esame 65 R. Tauraso - Analisi Matematica II.9 Esercizi e prove d esame Esercizio.. Calcolare la lunghezza dell arco di catenaria data dal grafico della funzione f e + e, con, ]. L arco si parametrizza ponendo

Dettagli

GEOMETRIA B Esercizi

GEOMETRIA B Esercizi GEOMETRIA B 2016-17 BARBARA NELLI A.A. 2016-17 Alcuni degli esercizi sono presi dal libro DC [1]. 1. Esercizi Esercizio 1.1. Sia α : I R 3 una curva parametrizzata e sia v R 3 un vettore fissato. Assumiamo

Dettagli

ANALISI MATEMATICA 3

ANALISI MATEMATICA 3 ANALISI MATEMATICA 3 Corso di laurea triennale in Fisica, F480 Prova scritta del 8//003 prof. Marco Vignati ] Sia dato il problema di Cauchy xy + y = 0 i) Determinarne la soluzione locale. y () = 3 ii)

Dettagli

C(sotto) Figura 1. Il solido G.

C(sotto) Figura 1. Il solido G. sercizi di calcolo vettoriale integrale sercizio 1. Sia G = {(x, y, z) R 3 : x 2 + y 2 1, z 2 x 2 + y 2 }. (1) isegnare G e verificare che la frontiera di G si compone di tre porzioni, superiore A, laterale

Dettagli

Curve e integrali curvilinei: esercizi svolti

Curve e integrali curvilinei: esercizi svolti Curve e integrali curvilinei: esercizi svolti 1 Esercizi sulle curve parametriche....................... 1.1 Esercizi sulla parametrizzazione delle curve............. 1. Esercizi sulla lunghezza di una

Dettagli

Forme differenziali lineari

Forme differenziali lineari Forme differenziali lineari Sia Ω R un insieme aperto e siano A, B, C: Ω R funzioni continue in Ω. Si definisce forma differenziale ω in Ω l espressione ω = A(x, y, z)dx + B(x, y, z)dy + C(x, y, z)dz Data

Dettagli

Raccolta di esercizi di ANALISI MATEMATICA III per il Corso di Laurea in Fisica a.a. 09/10. Silvano Delladio

Raccolta di esercizi di ANALISI MATEMATICA III per il Corso di Laurea in Fisica a.a. 09/10. Silvano Delladio Raccolta di esercizi di ANALISI MATEMATICA III per il Corso di Laurea in Fisica a.a. 09/10 Silvano Delladio September 13, 2010 Chapter 1 Integrali multipli 1.1 Sia B R 3 la palla di raggio 2 centrata nell

Dettagli

SIMULAZIONE - 29 APRILE QUESITI

SIMULAZIONE - 29 APRILE QUESITI www.matefilia.it SIMULAZIONE - 29 APRILE 206 - QUESITI Q Determinare il volume del solido generato dalla rotazione attorno alla retta di equazione y= della regione di piano delimitata dalla curva di equazione

Dettagli

Capitolo 1. Superfici e integrali di superficie. 1.1 Superfici regolari. Siano. x = f 1 (u, v), y = f 2 (u, v), z = f 3 (u, v) (1.

Capitolo 1. Superfici e integrali di superficie. 1.1 Superfici regolari. Siano. x = f 1 (u, v), y = f 2 (u, v), z = f 3 (u, v) (1. Contenuti 1 uperfici e integrali di superficie 2 1.1 uperficiregolari... 2 1.2 Piano tangente e retta normale ad una superficie regolare... 6 1.3 Area di una superficie... 9 1.4 uperficie di rotazione

Dettagli

ESERCIZI DI ANALISI II Ingegneria Civile e dei Trasporti (M-Z) a.a. 2006/2007

ESERCIZI DI ANALISI II Ingegneria Civile e dei Trasporti (M-Z) a.a. 2006/2007 ESERCIZI I ANALISI II Ingegneria Civile e dei Trasporti (M-Z) a.a. 006/007 1 FUNZIONI IN UE VARIABILI (I parte) Insiemi di definizione eterminare gli insiemi di definizione delle seguenti funzioni in due

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni Corso di Geometria 2010-11 BIAR, BSIR Esercizi 10: soluzioni 1 Geometria dello spazio Esercizio 1. Dato il punto P 0 = ( 1, 0, 1) e il piano π : x + y + z 2 = 0, determinare: a) Le equazioni parametriche

Dettagli

Prima prova in itinere di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano. A.A. 2017/2018. Prof. M. Bramanti.

Prima prova in itinere di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano. A.A. 2017/2018. Prof. M. Bramanti. Prima prova in itinere di Analisi Matematica Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 07/08. Prof. M. Bramanti Tema n 4 5 6 Tot. Cognome e nome (in stampatello) codice persona (o n

Dettagli

ALCUNE SOLUZIONI DI ESERCIZI SU CAMPI VETTORIALI

ALCUNE SOLUZIONI DI ESERCIZI SU CAMPI VETTORIALI ALCUNE SOLUZIONI DI ESERCIZI SU CAMPI VETTORIALI Appello Febbraio 995 ( F (( + y i y (( + y j. ( Stabilire se F è conservativo e in caso affermativo trovarne un ( Calcolare il lavoro compiuto dal campo

Dettagli

x(y + z)dx dy dz y(x 2 + y 2 + z 2 )dx dy dz y 2 zdx dy dz Esempio di insieme non misurabile secondo Lebesgue.

x(y + z)dx dy dz y(x 2 + y 2 + z 2 )dx dy dz y 2 zdx dy dz Esempio di insieme non misurabile secondo Lebesgue. /3/23 Calcolare dove x(y + z)dx dy dz = {(x, y, z) R 3 : x, y, z, x + y + z }. Calcolare y(x 2 + y 2 + z 2 )dx dy dz dove = {(x, y, z) R 3 : x 2 + y 2 + z 2 z, x 2 + y 2 + z 2 3zx y }. Calcolare dove y

Dettagli

Soluzione. Il dominio E consiste nella parte di spazio contenuta nella sfera ma esterna al cono rappresentata in Figura 1. Infatti

Soluzione. Il dominio E consiste nella parte di spazio contenuta nella sfera ma esterna al cono rappresentata in Figura 1. Infatti Esercizio 1 (G. Ziglio). (6 punti) Calcolare il volume della porzione di spazio E interna alla sfera di equazione x 2 + y 2 + z 2 = 1 ed esterna al cono di equazione z 2 = x 2 + y 2 E = (x, y, z) R x 2

Dettagli

Analisi Matematica II (Prof. Paolo Marcellini)

Analisi Matematica II (Prof. Paolo Marcellini) Analisi Matematica II (Prof. Paolo Marcellini) Università degli Studi di Firenze Corso di laurea in Matematica Esercitazione del /3/4 Michela Eleuteri eleuteri@math.unifi.it web.math.unifi.it/users/eleuteri

Dettagli

Esercitazioni del 11 marzo Ricerca della parametrizzazione di una curva γ in R 3

Esercitazioni del 11 marzo Ricerca della parametrizzazione di una curva γ in R 3 Esercizio 1 Esercitazioni del 11 marzo 213 Ricerca della parametrizzazione di una curva γ in R 3 Fornire una parametrizzazione per l arco di curva γ appartenente alla superficie di equazione z = 2y 2 x

Dettagli

a) Il denominatore dev essere diverso da zero. Studiamo il trinomio x 2 5x + 6. Si ha: x 1,2 = 5 ± se x ], 2[ ]3, + [;

a) Il denominatore dev essere diverso da zero. Studiamo il trinomio x 2 5x + 6. Si ha: x 1,2 = 5 ± se x ], 2[ ]3, + [; ESERCIZIO - Data la funzione f (x) + x2 2x x 2 5x + 6, si chiede di: a) calcolare il dominio di f ; (2 punti) b) studiare la positività e le intersezioni con gli assi; (3 punti) c) stabilire se f ha asintoti

Dettagli

e n n xn ( 1) n ( 1) n n + 1 2e n x n 3n [ln x]n 1 n + 1 2e n 1

e n n xn ( 1) n ( 1) n n + 1 2e n x n 3n [ln x]n 1 n + 1 2e n 1 1) Studiare la seguente serie di funzioni en ( 1) n n x n 2) Studiare la seguente serie di funzioni ( 1) n n + 1 2e n xn 3) Studiare la seguente serie di funzioni 3n [ln x]n 1 2n 4) Studiare la seguente

Dettagli

ESERCIZI DI ANALISI II Ingegneria per l Ambiente e il Territorio a.a. 2006/2007

ESERCIZI DI ANALISI II Ingegneria per l Ambiente e il Territorio a.a. 2006/2007 ESERCIZI I ANALISI II Ingegneria per l Ambiente e il Territorio a.a. 006/007 FUNZIONI IN UE VARIABILI Insiemi di definizione eterminare gli insiemi di definizione delle seguenti funzioni in due variabili

Dettagli

Formulario di Matematica. Salvatore di Maggio

Formulario di Matematica. Salvatore di Maggio Formulario di Matematica Salvatore di Maggio Indice 1 Disequazioni 5 Calcolo Combinatorio 7 3 Logaritmi 9 4 Trigonometria 11 5 Geometria Analitica 1 5.1 Punti e rette..........................................

Dettagli

Esercitazioni di Meccanica Razionale

Esercitazioni di Meccanica Razionale Esercitazioni di Meccanica Razionale a.a. 2002/2003 Cinematica Maria Grazia Naso naso@ing.unibs.it Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica Razionale - a.a.

Dettagli

Omeomorfismi. Definizione

Omeomorfismi. Definizione Curve Definizione Si definisce curva di classe C k in R n l applicazione continua γ: I R R n, dove I è un intervallo della retta reale. Le curve possono essere classificate in curve chiuse e curve aperte.

Dettagli

Esercizi di riepilogo Matematica II Corso di Laurea in Ottica ed Optometria

Esercizi di riepilogo Matematica II Corso di Laurea in Ottica ed Optometria Esercizi di riepilogo Matematica II Corso di Laurea in Ottica ed Optometria Esercizio 1 Testo Sia F F 1 x,y),f x,y)) ) x 1 x y + 1 x, y 1 x y + 1 y un campo vettoriale. 1. Si determini il dominio in cui

Dettagli

INTEGRALI Test di autovalutazione

INTEGRALI Test di autovalutazione INTEGRALI Test di autovalutazione. Sia f una funzione continua su IR, e F una primitiva di f tale che F () = 5. Allora: (a) esiste k IR tale che F (x) f(x) =k, x IR (b) F (x) = x f(t) dt (c) F non è derivabile

Dettagli

UNIVERSITÀ DEGLI STUDI DELLA CALABRIA. - Prova scritta di ANALISI MATEMATICA 2 - Appello del 16 settembre 2013

UNIVERSITÀ DEGLI STUDI DELLA CALABRIA. - Prova scritta di ANALISI MATEMATICA 2 - Appello del 16 settembre 2013 UNIVERSITÀ DEGLI STUDI DELLA CALABRIA - Prova scritta di ANALISI MATEMATICA - Aello del 6 settembre COGNOME:... NOME:... MATRICOLA:... CORSO DI LAUREA IN INGEGNERIA:... IMPORTANTE Al termine della rova

Dettagli

Esercizi sulle superfici - aprile 2009

Esercizi sulle superfici - aprile 2009 Esercizi sulle superfici - aprile 009 Ingegneria meccanica 008/009 Esercizio 1. Scrivere l equazione della superficie ottenuta ruotando la retta s : x = y, y =z attorno alla retta r : x = y, x =3z. Soluzione:

Dettagli

Soluzioni dei problemi della maturità scientifica A.S. 2007/2008

Soluzioni dei problemi della maturità scientifica A.S. 2007/2008 Soluzioni dei problemi della maturità scientifica A.S. 007/008 Nicola Gigli Sunra J.N. Mosconi 19 giugno 008 Problema 1 (a) Determiniamo in funzione di a i lati del triangolo. Essendo l angolo BĈA retto

Dettagli

Prodotto scalare e prodotto vettoriale. Elisabetta Colombo

Prodotto scalare e prodotto vettoriale. Elisabetta Colombo Corso di Approfondimenti di Matematica Biotecnologie, Anno Accademico 2010-2011, http://users.mat.unimi.it/users/colombo/programmabio.html Vettori Vettori 1 2 3 4 di di Ricordiamo il in R n Dati a = (a

Dettagli

Prof. R. Capone Esercitazioni di Matematica IV Corso di studi in Matematica

Prof. R. Capone Esercitazioni di Matematica IV Corso di studi in Matematica Forme differeniali lineari in tre variabili Sia Ω R 3 un insieme aperto e siano, B, C: Ω R funioni continue in Ω. Consideriamo la forma differeniale ω in Ω ω = (, y, )d + B(, y, )dy + C(, y, )d Si dice

Dettagli

Esercizi sulle funzioni f : R 2 R. Soluzioni

Esercizi sulle funzioni f : R 2 R. Soluzioni Esercizi sulle funzioni f : R R Soluzioni. Disegnare il grafico della funzione f : R R, nei casi: (a) f(, ) =. La funzione dipende solo dalla coordinata. In questo caso il grafico rappresenta un piano

Dettagli

t [ 1,2]. gds = g(γ(t)) γ (t) dt (9t+16t 3 ) 8t 4 +9t 2 +2dt = 1 3 (8t4 +9t 2 +2) 3/2 2 1 = t 1+t 2

t [ 1,2]. gds = g(γ(t)) γ (t) dt (9t+16t 3 ) 8t 4 +9t 2 +2dt = 1 3 (8t4 +9t 2 +2) 3/2 2 1 = t 1+t 2 Soluzioni appello scritto del ebbraio 207 Esercizio Si consideri la curva γ R intersezione ra la supericie di equazione x y 2 ed il graico della unzione (x,y) x 2 +y 2 Siorniscaunaparametrizzazionedell

Dettagli

CALENDARIO BOREALE 1 EUROPA 2015 QUESITO 1

CALENDARIO BOREALE 1 EUROPA 2015 QUESITO 1 www.matefilia.it Indirizzi: LI0, EA0 SCIENTIFICO; LI0 - SCIENTIFICO - OPZIONE SCIENZE APPLICATE CALENDARIO BOREALE EUROPA 05 QUESITO La funzione f(x) è continua per x [ 4; 4] il suo grafico è la spezzata

Dettagli

INTEGRALI TRIPLI Esercizi svolti

INTEGRALI TRIPLI Esercizi svolti INTEGRLI TRIPLI Esercizi svolti. Calcolare i seguenti integrali tripli: (a xye xz dx dy dz, [, ] [, ] [, ]; (b x dx dy dz, {(x, y, z : x, y, z, x + y + z }; (c (x + y + z dx dy dz, {(x, y, z : x, x y x

Dettagli

6 2 k ricaviamo det(a) = 7(k + 8). Per k 8, il Teorema di Cramer fornisce anche le soluzioni del sistema, cioè: 8 2 k

6 2 k ricaviamo det(a) = 7(k + 8). Per k 8, il Teorema di Cramer fornisce anche le soluzioni del sistema, cioè: 8 2 k ) Discutere e risolvere il sistema 6x + y + kz 8 x + y z x y z al variare del parametro k R Per k 8, determinare gli autovalori ed autovettori della matrice incompleta oluzione Il sistema in esame ha tre

Dettagli

1 Cambiamenti di riferimento nel piano

1 Cambiamenti di riferimento nel piano 1 Cambiamenti di riferimento nel piano Siano date due basi ortonormali ordinate di V : B = ( i, j) e B = ( i, j ) e supponiamo che i = a i + b j j = c i + d j allora per un generico vettore v V abbiamo

Dettagli

5.1. Esercizio. Sia D il cerchio di centro l origine e raggio R, calcolare, servendosi delle coordinate polari l integrale doppio x + y D

5.1. Esercizio. Sia D il cerchio di centro l origine e raggio R, calcolare, servendosi delle coordinate polari l integrale doppio x + y D ANALISI VTTORIAL Soluzione esercizi 26 novembre 2 5.. sercizio. Sia D il cerchio di centro l origine e raggio R, calcolare, servendosi delle coordinate polari l integrale doppio x + y dx dy D + x 2 + y2

Dettagli

CURVE E SUPERFICI / RICHIAMI

CURVE E SUPERFICI / RICHIAMI M.GUIDA, S.ROLANDO, 2016 1 CURVE E SUPERFICI / RICHIAMI Di seguito ricordiamo brevemente come curve e superfici in R 2 o R 3 vengano rappresentate classicamente come insiemi di livello di campi scalari

Dettagli

RISOLUZIONE DI PROBLEMI DI FISICA

RISOLUZIONE DI PROBLEMI DI FISICA RISOUZIONE DI PROBEMI DI FISICA Problema 1 Una massa puntiforme m = 2 kg è soggetta ad una forza centrale con associata energia potenziale radiale U( r) 6 A =, dove A = 2 J m 6. Il momento angolare della

Dettagli

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Seconda prova in itinere 31 gennaio 2011

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Seconda prova in itinere 31 gennaio 2011 Politecnico di Milano Ingegneria Industriale Analisi e Geometria Seconda prova in itinere 3 gennaio Cognome: Nome: Matricola: Compito A Es. : 8 punti Es. : 8 punti Es. 3: 8 punti Es. 4: 8 punti Es. 5:

Dettagli

ORDINAMENTO SESSIONE SUPPLETIVA QUESTIONARIO QUESITO 1

ORDINAMENTO SESSIONE SUPPLETIVA QUESTIONARIO QUESITO 1 www.matefilia.it ORDINAMENTO 2003 - SESSIONE SUPPLETIVA QUESTIONARIO QUESITO Tra i rettangoli aventi la stessa area di 6 m 2 trovare quello di perimetro minimo. Indicate con x ed y le misure della base

Dettagli

quando il limite delle somme di Riemann esiste. In tal caso diciamo che la funzione è integrabile sul rettangolo.

quando il limite delle somme di Riemann esiste. In tal caso diciamo che la funzione è integrabile sul rettangolo. Integrali multipli Consideriamo, inizialmente il caso degli integrali doppi. Il concetto di integrale doppio è l estensione della definizione di integrale per una funzione reale di una variabile reale

Dettagli

Soluzioni dei problemi della maturità scientifica A.S. 2012/2013

Soluzioni dei problemi della maturità scientifica A.S. 2012/2013 Soluzioni dei problemi della maturità scientifica A.S. / Nicola Gigli Sun-Ra Mosconi June, Problema. Il teorema fondamentale del calcolo integrale garantisce che Quindi f (x) = cos x +. f (π) = cos π +

Dettagli

Geometria analitica: curve e superfici

Geometria analitica: curve e superfici Geometria analitica: curve e superfici Quadriche Quadriche in forma canonica Quadriche in generale Coni e cilindri Curve nello spazio Coniche nello spazio Coni e cilindri in forma canonica e parametrica

Dettagli

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Secondo compito in itinere 3 Febbraio 2014

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Secondo compito in itinere 3 Febbraio 2014 Politecnico di Milano Ingegneria Industriale Analisi e Geometria Secondo compito in itinere Febbraio 04 Cognome: Nome: Matricola: Compito A Es: 8 punti Es: 8 punti Es: 8 punti Es4: 8 punti Totale a) Determinare

Dettagli