La Trasformata di Laplace. Pierre-Simon Laplace

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "La Trasformata di Laplace. Pierre-Simon Laplace"

Transcript

1 a Traformaa di aplac Pirr-Simon aplac

2 a Traformaa di Eulro onhard Eulr Eulro

3 Dfinizion Si dfinic raformaa di aplac dlla funzion f la funzion F coì dfinia: Dov σjωσj2πf. 0 F { f } f d

4 Dfinizion S i F in 0 σ 0 jω 0 allora i pr u l ali ch {}>{ 0 }σ 0. Si dfinic α da acia di convrgnza il più piccolo valor di σ 0. ω α σ

5 Dfinizion Paar dal dominio dl mpo al dominio dlla frqunza. {}

6 Aniraformaa S F è la raformaa di aplac di una funzion f i dfinic: f { F } c j F d c j Dov c è un qualiai numro ral al ch ia c>α.

7 Tmpo-Frqunza {} - {}

8 Proprià dlla Traformaa di aplac UNICITÀ {f}{g} fg q.o. INEAITÀ {λ f λ 2 f 2 }λ {f } λ 2 {f 2 } DEIVAZIONE {f } {f}-f0 {f } 2 {f} f0 f 0 {f n } n {f} n- f0 f n- 0 {f}-f

9 Proprià dlla Traformaa di aplac INTEGAE { fτdτ} {f} / TASAZIONE COMPESSA { a f}f-a - {F-a} a f TASAZIONE NE TEMPO {f-au-a} -a F - { -a F} f-au-a

10 Proprià dlla Traformaa di aplac INTEGAE DI CONVOUZIONE τ τ τ τ τ τ d g f d g f g f {f g} F G

11 Proprià dlla Traformaa di aplac TEOEMA DE VAOE INIZIAE f 0 lim F TEOEMA DE VAOE FINAE f lim0 F

12 Traforma novoli a a } { } { } {co b b b n b b n n n u! } { } co { b a b b n b a a b b a a

13 Aniraforma novoli! a a n a a a n n co co Φ Φ Φ n n b n b a c b b a c a b b a a b a ω ω ω

14 Traformazioni Sfruando l raforma novoli l proprià dlla raformaa di aplac i poono ricavar u l alr raforma.

15 Empio Calcolar la raformaa di aplac di: f - {f}-f { - }/a F -/a 2 { - }/a 2

16 Applicazioni Impdnza ni circuii lrici di v V I Z d dv i C IC V Z/C d

17 Applicazioni Soluzioni di Eq. diffrnziali. di d i0 i 0 i u

18 Applicazioni Soluzioni di Eq. diffrnziali. 0 0 i i Vu i d di i I V I V I I I 0 0 i V I V i 0

19 u Simi TI Nl dominio dl mpo h y y u h u τ h τ dτ

20 Simi TI Nl dominio dlla frqunza U H Y Y U H

21 Funzion di rafrimno a ripoa impuliva dfinic complamn un ima TI d è una ua rapprnazion nl dominio dl mpo. a funzion di rafrimno è una rapprnazion mamaica dlla rlazion ra l'ingro di un ima TI la ripoa dl ima o nl dominio dlla frqunza. {} h H - {}

22 Funzion di rafrimno Tra l vari poibili rlazioni ingro-ucia ch poono r inrodo pr lo udio di imi linari, la più imporan è, nza dubbio, qulla ch fa capo alla nozion di funzion di rafrimno fd. H Y U

23 Funzion di rafrimno a funzion di rafrimno è un rapporo ra polinomi in, in cui il grado dl dnominaor è maggior o ugual al grado dl numraor. Nl cao in cui il numraor il dnominaor abbiano lo o grado il ima i dirà improprio. I valori di pr cui i annulla il dnominaor dlla fd i dicono poli; I valori di pr cui i annulla il numraor vngono dfinii zri dlla fd; Il numro di poli coiuic l ordin dl ima.

24 Forma di Sao Un ima TI può r rapprnao oo forma di ao: x& Ax Bu y Cx Du Dov x è il vor dll variabili di ao A,B,C,D dll marici di ordin opporuno.

25 Empio 0 0 i u i d di i V u i d di

26 Empio i V u i d di x y u x x& 0 D C B A

27 Formula di agrang 0 d Bu x x A A τ τ τ Dao un ima TI rapprnao in forma di ao. Pr > 0 x 0 x 0 varrà: Du d Bu C x C y A A τ τ τ... 3! 2! A A A I A

28 Formula di agrang Il primo rmin rapprna l voluzion libra dipnd olamn dall condizioni iniziali. Il dcondo rapprna l voluzion forzaa dipnd olamn dagli ingri o forzani. τ τ τ d Bu x x A A V I i 0

29 Forma di Sao 2 Du Cx y Bu Ax x& 0 DU CX Y BU AX x X

30 Forma di Sao 3 X I Y C I A A BU I A x0 B D U C I A x0 a maric HCI-A - BD vin da maric dll funzioni di rafrimno. Nl cao di un ima SISO H coincidrà con la fd.

Prof. Capuzzimati Mario - ITIS "Magistri Cumacini" - Como TRASFORMAZIONI

Prof. Capuzzimati Mario - ITIS Magistri Cumacini - Como TRASFORMAZIONI Traformaa di Laplac Prof. Capuzzimai Mario - ITIS "Magiri Cumacini" - Como TASFOMAZIONI L raformazioni in mamaica ono po uilizza pr aggirar l rilvani difficolà ch i prnano nllo volgr diramn i calcoli richii.

Dettagli

Sistemi dinamici lineari del 1 ordine

Sistemi dinamici lineari del 1 ordine Appuni di onrolli Auomaici Simi dinamici linari dl ordin Inroduzion... ipoa al gradino uniario... ipoa alla rampa... Empio...3 Empio...4 INTODUZIONE Si dfinic ima (lmnar) dl primo ordin un ima (linar mpo-invarian)

Dettagli

Autovalori complessi e coniugati

Autovalori complessi e coniugati Auovalori complssi coniugai Noazioni A A α ω ω α λ λ λ α + jω, λ α jω, maric ad lmni rali α + jω, maric diagonal ad lmni complssi α jω L du marici A A hanno gli sssi auovalori λ, λ. aa una gnrica maric

Dettagli

Introduzione ai Circuiti Elettronici

Introduzione ai Circuiti Elettronici Inroduzion ai Circuii Elronici Sommario Naura di Sgnali Analogici Digiali Bipoli Bipoli Elmnari Connion di Bipoli Analii di Circuii Linari Tmpo-Invariani Equazioni diffrnziali Faori Funzion di Trafrimno

Dettagli

Analisi dei Sistemi. Soluzione del compito del 26 Giugno ÿ(t) + (t 2 1)y(t) = 6u(t T ). 2 x1 (t) 0 1

Analisi dei Sistemi. Soluzione del compito del 26 Giugno ÿ(t) + (t 2 1)y(t) = 6u(t T ). 2 x1 (t) 0 1 Analisi di Sistmi Soluzion dl compito dl 26 Giugno 23 Esrcizio. Pr i du sistmi dscritti dai modlli sgunti, individuar l proprità strutturali ch li carattrizzano: linar o non linar, stazionario o tmpovariant,

Dettagli

Corsi di Laurea in Fisica, Fisica ed Astrofisica

Corsi di Laurea in Fisica, Fisica ed Astrofisica Corsi di Laura in Fisica, Fisica d Asrofisica Analisi A.A. 007-008 - Foglio 1 1.1. Esrcizio. Sudiar la coninuià in R dlla funzion sn(x y) x + y s y > 0, y ln(1 + x ) s y 0. La funzion è chiaramn coninua

Dettagli

Lezione 6. Stabilità e matrice A nei sistemi LTI. F.Previdi - Fondamenti di Automatica - Lez. 6

Lezione 6. Stabilità e matrice A nei sistemi LTI. F.Previdi - Fondamenti di Automatica - Lez. 6 Lzion 6. Sabilià maric A ni imi LTI F.Prvidi - Fondamni di Auomaica - Lz. 6 Schma dlla lzion A. Sudio dlla maric pr. Tormi ulla abilià di imi LTI. Rgion di ainoica abilià. Criri di abilià baai ulla maric

Dettagli

Teoria dei Sistemi - A.A. 2003/2004

Teoria dei Sistemi - A.A. 2003/2004 ANAISI ODAE DEI SISTEI INEARI A TEPO CONTINUO Dr. Crisian Scchi ARSconrol ab Univrsià di odna Rggio Emilia Il movimno di un sisma TI & ( A( + Bu( y( C( + Du( Formula di agrang ( A A( τ + Bu( τ dτ A I +

Dettagli

LA TRASFORMATA DI LAPLACE

LA TRASFORMATA DI LAPLACE LA RASFORMAA DI LAPLACE Pr dcrivr l voluzion di un itma in rgim tranitorio, oia durant il paaggio dll ucit da un rgim tazionario ad un altro, è ncario ricorrr ad un modllo più gnral riptto al modllo tatico,

Dettagli

Serie di Fourier a tempo continuo. La rappresentazione dei segnali nel dominio della frequenza. Jean Baptiste Joseph Fourier (1768 1830 )

Serie di Fourier a tempo continuo. La rappresentazione dei segnali nel dominio della frequenza. Jean Baptiste Joseph Fourier (1768 1830 ) Sri di Fourir a mpo coninuo La rapprsnazion di sgnali nl dominio dlla frqunza Jan Bapis Josph Fourir (768 83 ) Fourir sviluppò la oria mamaica dl calor uilizzando funzioni rigonomrich (sni cosni), ch noi

Dettagli

Esercizi per il corso Matematica clea

Esercizi per il corso Matematica clea Esrcizi pr il corso Mamaica cla Danil Rilli anno accadmico 8/9 Lzion : Ingrali Esrcizi svoli. Provar, usando il cambio di variabil ch:. Dimosrar ch. Ingrando pr pari dimosrar ch + = + = 6 sin(π) = π Svolgimno.

Dettagli

Determinare il dominio di una funzione

Determinare il dominio di una funzione Drminar il dominio di una funzion CHE COSA SONO LE FUNZON. Una funzion = f( è una rlazion ch lga du grandzz (variabili: la variabil vin chiamaa variabil indipndn, mnr la variabil dipndn. Pr smpio la rlazion

Dettagli

Corso di Laurea in Ingegneria Elettronica ANALISI E TRASMISSIONE DEI SEGNALI

Corso di Laurea in Ingegneria Elettronica ANALISI E TRASMISSIONE DEI SEGNALI Corso di Laura in Inggnria Elttronica NLISI E TRSMISSIONE DEI SEGNLI Soluzioni prova scritta dl /6/ Esrcizio Si considrino i du sgnali x ( t) = sinc( t / T) x( t) = sinc( t / T ) i) Si trovi l sprssion

Dettagli

Esercizio 1 Approssimare il seguente integrale con la formula di Gauss a tre nodi (n=2)

Esercizio 1 Approssimare il seguente integrale con la formula di Gauss a tre nodi (n=2) Esrcizi su intgrazion numrica sistmi linari Approssimar il sgunt intgral con la formula di Gauss a tr nodi (n) x cos xdx Si considri il sistma Applicando il mtodo di Eulro implicito con h π /( ω), quanto

Dettagli

Compito di Analisi Matematica 1 per Ingegneria dell Energia Prima parte, Tema A COGNOME: NOME: MATR.:

Compito di Analisi Matematica 1 per Ingegneria dell Energia Prima parte, Tema A COGNOME: NOME: MATR.: Prima part, Tma A ) L quazion diffrnzial y y = sin(x), con condizion inizial y(0) =, A: ha infinit soluzioni; B: non ha soluzion; C: ha un unica soluzion; D: ha sattamnt du soluzioni; E: N.A. 2) La funzion

Dettagli

Facoltà di Economia. Equazioni differenziali Lineari ed Applicazioni Economiche

Facoltà di Economia. Equazioni differenziali Lineari ed Applicazioni Economiche Facolà di Economia Equazioni diffrnziali Linari d Applicazioni Economich prof. EQUAZIONI DIFFERENZIALI LINEARI APPLICAZIONI ECONOMICHE EQUAZIONI DIFFERENZIALI DEL PRIMO ORDINE LINEARI Quso ipo di quazioni

Dettagli

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2004/ gennaio 2005 TESTO E SOLUZIONE

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2004/ gennaio 2005 TESTO E SOLUZIONE PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 24/25 2 gnnaio 25 TESTO E SOLUZIONE Esrcizio In rifrimnto allo schma a blocchi in figura. s3 r y 2 s2 s y K Domanda.. Dtrminar una ralizzazion in quazioni

Dettagli

3. MODELLI MATEMATICI

3. MODELLI MATEMATICI 3. MODE MAEMA ASSFAZONE DE MODE iemi ono decrii da opporuni modelli maemaici. Poiamo claificarli in re caegorie: Modelli maemaici nel dominio del empo o in campo reale Decrivono il comporameno del iema

Dettagli

Antenne e Telerilevamento. Esonero I ESONERO ( )

Antenne e Telerilevamento. Esonero I ESONERO ( ) I ESONERO (28.6.21) ESERCIZIO 1 (15 punti) Si considri un sistma ricvnt oprant alla frqunza di 13 GHz, composto da un antnna a parabola a polarizzazion linar con un rapporto fuoco-diamtro f/d=.3, illuminata

Dettagli

SISTEMI A DATI CAMPIONATI

SISTEMI A DATI CAMPIONATI CONROLLI DIGIALI Laura Magiral in Inggnria Mccaronica SISEMI A DAI CAMPIONAI Ing. Criian Scchi l. 05 535 -mail: criian.cchi@unimor.i hp://www.dimi.unimo.i/mmbr/ccchi Simi a dai campionai Analogamn a quano

Dettagli

Cristian Secchi Pag. 1

Cristian Secchi Pag. 1 CONROLLI DIGIALI Laura Magiral in Inggnria Mccaronica SISEMI A DAI CAMPIONAI Ing. l. 05 535 -mail: criian.cchi@unimor.i hp://www.dimi.unimo.i/mmbr/ccchi Simi a dai campionai Analogamn a quano fao nl coro

Dettagli

TEMA 1 : Nella rete in figura calcolare la corrente i 3

TEMA 1 : Nella rete in figura calcolare la corrente i 3 Esam di Elttrotcnica dl 09/02/2011. Tutti i tmi hanno lo stsso pso. Link: http://prsonal.dln.polito.it/vito.danil/ Gli studnti immatricolati nll A.A 2007-08 o succssivi dvono obbligatoriamnt sostnr l sam

Dettagli

Esercizi Analisi Matematica II Anno accademico

Esercizi Analisi Matematica II Anno accademico Esrcizi Analisi Matmatica II Anno accadmico 06-07 Foglio. P Calcolar la matric Jacobiana dlla funzion composta g f dov l funzioni g f sono dat da: (a) f : R R g : R R dov f(x, y) = (xy, x + y, sin(y))

Dettagli

Equazioni differenziali ordinarie

Equazioni differenziali ordinarie 4/11/015 Equazioni diffrnziali ordinari Equazioni diffrnziali ordinari Equazioni diffrnziali dl 1 ordin a variabili sparabili, Equazioni diffrnziali linari dl 1 ordin Equazioni diffrnziali dl 1 ordin non

Dettagli

ELEMENTI DI ELETTRONICA APPLICATA E DI CONTROLLI AUTOMATICI Ing. Meccanica Consorzio Nettuno Torino Compito del

ELEMENTI DI ELETTRONICA APPLICATA E DI CONTROLLI AUTOMATICI Ing. Meccanica Consorzio Nettuno Torino Compito del Soluzion rcizio L quazioni dinamich dl itma ono: art lttrica: di v Ri + L + ω dt dov ω è la forza controlttromotric. art mccanica: dω J ϑ βω + i dt dϑ ω dt dov Jl M è il momnto d inrzia dl itma a du ma.

Dettagli

lim β α e detto infinitesimo una qualsiasi quantita tendente a zero quando una dati due infinitesimi α e β non esiste

lim β α e detto infinitesimo una qualsiasi quantita tendente a zero quando una dati due infinitesimi α e β non esiste Infinitsimi dtto infinitsimo una qualsiasi quantita tndnt a zro quando una opportuna variabil tnd ad assumr un dtrminato valor dati du infinitsimi α β α β non sono paragonabili tra loro s il lim β α non

Dettagli

Aspettative. In questa lezione: Discutiamo di previsioni sulle variabili future, e di aspettative. Definiamo tassi di interesse nominale e reale.

Aspettative. In questa lezione: Discutiamo di previsioni sulle variabili future, e di aspettative. Definiamo tassi di interesse nominale e reale. Aspaiv In qusa lzion: Discuiamo di prvisioni sull variabili fuur, di aspaiv. Dfiniamo assi di inrss nominal ral. Ridfiniamo lo schma IS-LM con inflazion. 198 Imporanza dll Aspaiv L dcisioni rlaiv a consumo

Dettagli

Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2017/2018 FUNZIONI INTEGRALI

Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2017/2018 FUNZIONI INTEGRALI Univrsià Carlo Caano Inggnria gsional Analisi mamaica aa 7/8 FUNZIONI INTEGRALI ESERCIZI CON SOLUZIONE 6 ) Daa la funzion F d a) calcolar F, F ', '' F ; b) scrivr l quazion dlla ra angn nl puno ; c) scrivr

Dettagli

Introduzione. (versione del ) Segnali

Introduzione.   (versione del ) Segnali nroduzion www.di.g.unibo.iprmarididaica.hm vrion dl 7-- gnali Pr gnal i nd una grandzza fiica variabil nl mpo uilizzaa pr rapprnar formazioni la variazion nl mpo è fondamnal: il connuo formaivo è rapprnao

Dettagli

Lezione 5. Analisi a tempo discreto di sistemi ibridi. F. Previdi - Controlli Automatici - Lez. 5 1

Lezione 5. Analisi a tempo discreto di sistemi ibridi. F. Previdi - Controlli Automatici - Lez. 5 1 Lzion 5. nalisi a tmpo discrto di sistmi ibridi F. Prvidi - Controlli utomatici - Lz. 5 Schma dlla lzion. Introduzion 2. nalisi a tmpo discrto di sistmi ibridi 3. utovalori di un sistma a sgnali campionati

Dettagli

Richiami su numeri complessi

Richiami su numeri complessi Richiami su numri complssi Insim C di numri complssi E' l'insim dll coppi ordina di numri rali = Z R j Z I ; Z R, Z I R Z = Z R, Z I j Δ = (0,1) unià immaginaria Si noi ch C conin R; in paricolar linsim

Dettagli

[ ] [ ] [ ] [ ] lim. x 1 3 R. lim. lim. lim. lim. lim. lim 5 R. lim. Calcola i seguenti limiti risolvendo le eventuali forme di indeterminazione

[ ] [ ] [ ] [ ] lim. x 1 3 R. lim. lim. lim. lim. lim. lim 5 R. lim. Calcola i seguenti limiti risolvendo le eventuali forme di indeterminazione Educnica.i Calcolo di ii Calcola i sguni ii risolvndo l vnuali form di indrminazion Esrcizio no. Esrcizio no. Soluzion a pag.8 Soluzion a pag.8 [ ] Esrcizio no. Esrcizio no. Esrcizio no. lg Esrcizio no.6

Dettagli

I APPELLO (& II ESONERO) DI SEGNALI E SISTEMI 05 giugno 2017

I APPELLO (& II ESONERO) DI SEGNALI E SISTEMI 05 giugno 2017 I PPELLO (& II ESONERO) DI SEGNLI E SISTEMI 05 giugno 017 Esrcizio 1. [+ punti] SOLO PER CHI SOSTIENE L PROV COMPLET Si considri il modllo ingrsso/uscita LTI causal dscritto dalla sgunt quazion diffrnzial:

Dettagli

Modi dominanti. L evoluzione libera del sistema lineare. x(k + 1) = Ax(k) a partire dalla condizione iniziale x(0) = x 0 è:

Modi dominanti. L evoluzione libera del sistema lineare. x(k + 1) = Ax(k) a partire dalla condizione iniziale x(0) = x 0 è: Capitolo. INTRODUZIONE. L voluzion libra dl sistma linar Modi dominanti ẋ(t) = Ax(t), x(k + ) = Ax(k) a partir dalla condizion inizial x() = x è: x(t) = At x, x(k) = A k x Al tndr di t [di k all infinito,

Dettagli

MATEMATICA GENERALE (A-K) -Base 13/2/2004

MATEMATICA GENERALE (A-K) -Base 13/2/2004 MATEMATICA GENERALE (A-K) -Bas //004 PRIMA PARTE ) Individuar la rimitiva dlla funzion f(x) = x log x assant r il unto (4,) ) Calcolar, usando la d nizion, la drivata dlla funzion f(x) = x + nl unto x

Dettagli

del segno, sono punti di sella. Per il teorema di Weierstrass e dallo studio del segno, ovviamente E è un punto di massimo relativo.

del segno, sono punti di sella. Per il teorema di Weierstrass e dallo studio del segno, ovviamente E è un punto di massimo relativo. Politcnico di Bari Laur in Inggnria dll Automazion, Elttronica Informatica corso B Esam di Analisi matmatica II A.A. 2006/2007-8 sttmbr 2007 - TRACCIA A. Studiar gli vntuali punti critici dlla funzion

Dettagli

Campionamento e ricostruzione

Campionamento e ricostruzione Allora, com gia do i imi in rroazion ono cararizzai da una par coninua (il proco) da una par dicra (il conrollor digial). dipoiivi fiici di inrfaccia ra la par dicra la par coninua dll anllo di conrollo

Dettagli

Istituzioni di Matematica I (Chimica) canale A-L 14 febbraio 2014 Soluzioni

Istituzioni di Matematica I (Chimica) canale A-L 14 febbraio 2014 Soluzioni Esrcizio. Isiuzioni di Mamaica I (Chimica) canal A-L 4 fbbraio 204 i) Si sudi la funzion Soluzioni f(x) = arcan ( log x x ) s n disgni il grafico, solo pr por rispondr all sguni domand: ii) pr quali α

Dettagli

MATEMATICA CORSO A I COMPITINO (Tema 1) 18 Gennaio 2010

MATEMATICA CORSO A I COMPITINO (Tema 1) 18 Gennaio 2010 MATEMATICA CORSO A I COMPITINO (Tma 1) 18 Gnnaio 010 TESTO E SOLUZIONI 1. Una oluzion è un itma omogno prodotto dallo cioglimnto di una otanza olida, liquida o gaoa (oluto) in un opportuno liquido (olvnt).

Dettagli

MATEMATICA CORSO A I COMPITINO (Tema 2) 18 Gennaio 2010

MATEMATICA CORSO A I COMPITINO (Tema 2) 18 Gennaio 2010 MATEMATICA CORSO A I COMPITINO (Tma ) 18 Gnnaio 010 TESTO E SOLUZIONI 1. Una oluzion è un itma omogno prodotto dallo cioglimnto di una otanza olida, liquida o gaoa (oluto) in un opportuno liquido (olvnt).

Dettagli

Esercitazione di AM120

Esercitazione di AM120 Univrsità dgli Studi Roma Tr - Corso di Laura in Matmatica Esrcitazion di AM0 A.A. 07 08 - Esrcitator: Luca Battaglia Soluzioni dll srcitazion dl 6 7 Marzo 08 Argomnto: Drivat. Dimostrar, utilizzando la

Dettagli

Il ruolo delle aspettative in economia

Il ruolo delle aspettative in economia Capiolo XV. Il ruolo dll aspaiv in conomia . Tassi di inrss nominali rali Il asso di inrss in rmini di mona è chiamao asso di inrss nominal. Il asso di inrss sprsso in rmini di bni è chiamao asso di inrss

Dettagli

Elettrotecnica II. 9205F Temi d'esame

Elettrotecnica II. 9205F Temi d'esame Paina di 5 95F-E99 Cono No Maricola Marzo 999 Voo ES.Calcolar la raforaa di aplac F dl nal f orao in fira. 4 f Sfrando l proprià: x x i oin F 4 Cono No Maricola 95F-E99 Voo Marzo 999 ES. Dao il circio

Dettagli

PRIMI ESERCIZI SULLE FUNZIONI DERIVABILI. (1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni:

PRIMI ESERCIZI SULLE FUNZIONI DERIVABILI. (1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: PRIMI ESERCIZI SULLE FUNZIONI DERIVABILI VALENTINA CASARINO Esrcizi pr il corso di Analisi Matmatica (Inggnria Gstional, dll Innovazion dl Prodotto, Mccanica Mccatronica, Univrsità dgli studi di Padova)

Dettagli

Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2016/2017 FUNZIONI INTEGRALI

Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2016/2017 FUNZIONI INTEGRALI Univrsià Carlo Caano Inggnria gsional Analisi mamaica aa 6/7 FUNZIONI INTEGRALI ESERCIZI CON SOLUZIONE 6 ) Daa la funzion F d a) calcolar F, F ', '' F ; b) scrivr l quazion dlla ra angn nl puno ; c) scrivr

Dettagli

Laurea triennale in BIOLOGIA A. A

Laurea triennale in BIOLOGIA A. A Laura rinnal in BIOLOGIA A. A. 3-4 4 CHIMICA Vn 8 novmbr 3 Lzioni di Chimica Fisica Cinica chimica: razioni paralll razioni conscuiv Effo dlla mpraura sulla cosan di vlocià Prof. Anonio Toffoli Chimica

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = 2x 3 y 2xy 3 + 2xy

Analisi Matematica II Corso di Ingegneria Gestionale Compito del f(x, y) = 2x 3 y 2xy 3 + 2xy Analisi Matmatica II Corso di Inggnria Gstional Compito dl 8-1-19 - È obbligatorio consgnar tutti i fogli, anch la brutta il tsto. - L rispost snza giustificazion sono considrat null. Esrcizio 1. 14 punti)

Dettagli

Corso di Macroeconomia

Corso di Macroeconomia Corso di Macroconomia LE ASPETTATIVE: NOZIONI DI BASE. Tassi di inrss nominali rali Il asso di inrss in rmini di mona è chiamao asso di inrss nominal. Il asso di inrss sprsso in rmini di bni è chiamao

Dettagli

INGEGNERIA CIVILE E AMBIENTALE ESERCITAZIONI DI ANALISI C SETTIMANA 7 DEFINIZIONE: FUNZIONE DIFFERENZIABILE IN UN PUNTO.

INGEGNERIA CIVILE E AMBIENTALE ESERCITAZIONI DI ANALISI C SETTIMANA 7 DEFINIZIONE: FUNZIONE DIFFERENZIABILE IN UN PUNTO. DEFINIZIONE: FUNZIONE DIFFERENZIABILE IN UN PUNTO Sia A un apro di : sis un vor ab, al ch,, f A Prso, A si dic ch f è diffrnziabil in,, 0, 0 0 0 f f a b 0 si pon df, a, b f Si dimosra ch a, b,, quindi

Dettagli

INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Progetto di filtri digitali

INGEGNERIA E TECNOLOGIE DEI SISTEMI DI CONTROLLO Progetto di filtri digitali INGEGNERIA E ECNOLOGIE DEI SISEI DI CONROLLO Progo di filri digiali Prof. Carlo Roi DEIS - Univrià di Bologna l: 5 93 mail: croi@di.unio.i Inroduion Du ipi di filri digiali Filri IIR imili ai filri analogici

Dettagli

Introduzione ai segnali (causali, regolari, di ordine esponenziale)... 2 Il segnale di Heavyside... 3 Definizione di trasformata di Laplace...

Introduzione ai segnali (causali, regolari, di ordine esponenziale)... 2 Il segnale di Heavyside... 3 Definizione di trasformata di Laplace... Appunti di Controlli Automatici Capitolo - part I Traformata di aplac Introduzion ai gnali (cauali, rgolari, di ordin ponnzial)... Il gnal di Havyid... 3 Dfinizion di traformata di aplac... 3 PROPRIETÀ

Dettagli

Esercitazione 2. Francesca Apollonio Dipartimento Ingegneria Elettronica

Esercitazione 2. Francesca Apollonio Dipartimento Ingegneria Elettronica srcitaion Francsca pollonio Dipartimnto Inggnria lttronica -mail: () t cos( ω t ϕ) ampia pulsaion Vttori complssi Data una granda scalar (t) variabil cosinusoidalmnt nl tmpo fas i può sprimr (t) com sgu:

Dettagli

SISTEMI A TEMPO DISCRETO. x t + = f x( t ),u( t ) = Ax( t ) + Bu( t ), x( t ) = x R y(t) = η x(t),u(t) = Cx(t) + Du(t)

SISTEMI A TEMPO DISCRETO. x t + = f x( t ),u( t ) = Ax( t ) + Bu( t ), x( t ) = x R y(t) = η x(t),u(t) = Cx(t) + Du(t) Assumiamo la variabile emporale discrea; sia f lineare. Si consideri la seguene rappresenazione implicia: 1 x f x,u Ax Bu, x x R y η x,u Cx Du n 1 1 Rappresenazioni equivaleni Si consideri la rasformazione:

Dettagli

TAVOLA DEI DEI NUCLIDI. Numero di protoni Z. Numero di neutroni N.

TAVOLA DEI DEI NUCLIDI. Numero di protoni Z. Numero di neutroni N. TVOL DEI DEI UCLIDI umro di protoni Z www.nndc.bnl.gov umro di nutroni TVOL DEI DEI UCLIDI www.nndc.bnl.gov TVOL DEI DEI UCLIDI Con il trmin nuclid si indicano tutti gli isotopi conosciuti di lmnti chimici

Dettagli

Trasformate e sistemi lineari

Trasformate e sistemi lineari Traformae e em lnear Traformaa d Laplace Funzone d Trafermeno Mod poa Impulva Calcolo dell uca noo l ngreo (ved Marro par.. a.3,.5, C., C.3) (ved Vell-Peernella par. II. a II.4, III. a III.3) Auomaca OMA

Dettagli

Lezione 21 (BAG cap. 19) Regimi di cambio. Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia

Lezione 21 (BAG cap. 19) Regimi di cambio. Corso di Macroeconomia Prof. Guido Ascari, Università di Pavia Lzion 21 (BAG cap. 19) Rgimi di cambio Corso di Macroconomia Prof. Guido Ascari, Univrsià di Pavia Il capiolo si occupa Aggiusamno nl mdio priodo d ffi di una svaluazion Crisi dl asso di cambio Tasso di

Dettagli

Test di Autovalutazione

Test di Autovalutazione Univrsità dgli Studi di Padova Facoltà di Inggnria, ara dll Informazion - Brssanon 7 Analisi Matmatica. agosto 7 Tst di Autovalutazion () Si considri la funzion 5 + log x s x, f(x) = + log x s x =. (a)

Dettagli

METODI MATEMATICI PER LA FISICA

METODI MATEMATICI PER LA FISICA METODI MATEMATICI PER LA FISICA PROVA SCRITTA - 9 APRILE 6 Si risolvano cortsmnt i sgunti problmi PRIMO PROBLEMA (PUNTEGGIO: 6/3) Si calcoli l intgral in valor principal P = Pr Q sn( z) + z dz dov Q è

Dettagli

Lezione 10. Prestazioni statiche dei sistemi di controllo

Lezione 10. Prestazioni statiche dei sistemi di controllo zion Prtazioni tatich di itmi di controllo Error a tranitorio aurito prtazioni tatich di un itma di controllo fanno rifrimnto al uo comportamnto a tranitorio aurito oia alla ituazion in cui il itma dopo

Dettagli

STABILITÀ DELLE SOLUZIONI DI EQUILIBRIO DI UN EQUAZIONE DIFFERENZIALE

STABILITÀ DELLE SOLUZIONI DI EQUILIBRIO DI UN EQUAZIONE DIFFERENZIALE STABILITÀ DELLE SOLUZIONI DI EQUILIBRIO DI UN EQUAZIONE DIFFERENZIALE Ni paragrafi prcdnti abbiamo dtrminato, pr l vari quazioni diffrnziali saminat, l soluzioni di quilibrio dl modllo. In qusto paragrafo,

Dettagli

Segnali e sistemi nel dominio della frequenza

Segnali e sistemi nel dominio della frequenza oria di sgnali Sgnali sismi nl dominio dlla rqunza EORIA DEI SEGNALI LAUREA IN INGEGNERIA DELL INORMAZIONE Sommario Sgnali mpo coninuo priodici Sri di ourir Sgnali mpo coninuo apriodici rasormaa di ourir

Dettagli

Compito di Matematica sul problema di Cauchy e sulle equazioni differenziali ordinarie del 2º ordine. [1]

Compito di Matematica sul problema di Cauchy e sulle equazioni differenziali ordinarie del 2º ordine. [1] Compio di Mamaica sul problma di Cauch sull quazioni diffrnziali ordinari dl º ordin [] Esrcizio Spigar la formulazion, il significao com si procd alla risoluzion dl problma di Cauch pr EDO dl º ordin

Dettagli

Sistemi lineari a coefficienti costanti

Sistemi lineari a coefficienti costanti Sistmi linari a cofficinti costanti Stsura provvisoria Considriamo il sistma x ax + by y cx + dy nll funzioni incognit xt, yt, ssndo a, b, c, d quattro costanti assgnat. Indicato con X x, y} con A la matric

Dettagli

2n + 1 = + [Verif.] n + 2 n + 2

2n + 1 = + [Verif.] n + 2 n + 2 Esrcizi.. Matmatica dl discrto Dir s i sgunti limiti sono vrificati: n. lim n [Vrif.]. lim n n [Vrif.] n. lim [Vrif.]. lim n ( ) n n [Non vrif.]. lim ( ) n n [Vrif.]. lim n n n [Non vrif.] n n. lim [Vrif.]

Dettagli

Potenziale ed energia potenziale y

Potenziale ed energia potenziale y Potnzial d nrgia potnzial ) Siano dat du carich puntiformi positiv Q =Q Q =9Q, dispost sullo stsso ass rispttivamnt ad una distanza 3 dal punto (vdi figura). a) il lavoro ncssario pr portar una carica

Dettagli

Esercitazione di Controlli Automatici 1 n 5

Esercitazione di Controlli Automatici 1 n 5 Eciazion di onolli Auomaici n 5 a.a. 006/07 Si conidi un baccio oboico uilizzao p la movimnazion di oggi condo lo chma in figua l mb mc Il baccio, di lunghzza l m maa m b g, è azionao da un moo in con

Dettagli

Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2017/2018 PRIMITIVE E INTEGRALI DEFINITI

Università Carlo Cattaneo Ingegneria gestionale Analisi matematica a.a. 2017/2018 PRIMITIVE E INTEGRALI DEFINITI Univrsià Carlo Caano Inggnria gsional nalisi mamaia aa 7/8 PRIMITIVE E INTEGRLI DEFINITI ESERCIZI CON SOLUZIONE Calolar i sguni ingrali indfinii: ) d ; ) d ; ) d ; ) os sin d ; 6 ) d SOLUZIONI ) La funzion

Dettagli

La valutazione finanziaria

La valutazione finanziaria STUDIO BERETTA DOTTTARELLI TTARELLI DOTTORI COMMERCIALISTI ASSOCIATI Srgio Bra La valuazion finanziaria Prmssa Il valor dl capial conomico vin simao considrando i flussi di cassa prodoi in fuuro dall imprsa

Dettagli

Matematica e Statistica - Scienze Ambientali Esame 24 Febbraio 2014

Matematica e Statistica - Scienze Ambientali Esame 24 Febbraio 2014 Matmatica Statistica - Scinz Ambintali Esam 4 Fbbraio 014 Esrcizio 1 - Part A Supponiamo di conoscr l misur a, b c di tr grandzz con la sgunt incrtzza: 1.15 < a < 1.19 10.03 < b < 10.0 7.13 < c < 7.1 Quali

Dettagli

Esercizi & Domande per il Compito di Elettrotecnica del 24 giugno 2002

Esercizi & Domande per il Compito di Elettrotecnica del 24 giugno 2002 Eercizi & Domande per il ompio di Eleroecnica del 4 iuno 00 ESEZO - Traniorio nel dominio di aplace Svolimeno Eercizio - Traniorio nel dominio di aplace coninua i a v v () i a Ω Ω F v (0 - ) v (0 - ) alcolare

Dettagli

NOME:... MATRICOLA:... Corso di Laurea in Fisica, A.A. 2010/2011 Calcolo 1, Esame scritto del

NOME:... MATRICOLA:... Corso di Laurea in Fisica, A.A. 2010/2011 Calcolo 1, Esame scritto del NOME:... MATRICOLA:.... Corso di Laura in Fisica, A.A. 00/0 Calcolo, Esam scritto dl 3.0.0 Data la funzion f(x = x +x, a dtrminar il dominio (massimal di f ; b trovar tutti gli asintoti di f ; c trovar

Dettagli

Esercitazione 5 del corso di Statistica 2

Esercitazione 5 del corso di Statistica 2 Esrcitazion 5 dl corso di Statistica 2 Prof. Domnico Vistocco Dott.ssa Paola Costantini 9 Maggio 2008 Esrcizio n Il diamtro in millimtri di bulloni prodotti da un azinda ha una distribuzion normal con

Dettagli

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE

UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE UNIVERSITÀ DEGLI STUDI DI TERAMO FACOLTÀ DI SCIENZE POLITICHE CORSO DI LAUREA IN ECONOMIA AZIENDALE CORSO DI LAUREA IN STATISTICA Prof. Franco EUGENI Prof.ssa Danila TONDINI Parzial n. - Compito I A. A.

Dettagli

Lezione 15 (BAG cap. 14) Le aspettative: nozioni di base

Lezione 15 (BAG cap. 14) Le aspettative: nozioni di base Lzion 5 (BAG cap. 4) L aspaiv: nozioni di bas Corso di Macroconomia Prof. Guido Ascari, Univrsià di Pavia Il asso di inrss in rmini di mona è do asso di inrss nominal Il asso di inrss in rmini di bni è

Dettagli

MATEMATICA CORSO A III APPELLO 19 Settembre 2011

MATEMATICA CORSO A III APPELLO 19 Settembre 2011 MATEMATICA CORSO A III APPELLO 9 Sttmbr 0 Soluzioni. Calcola (Suggrimnto: x lnx = (/x) lnx ) x lnx dx x lnx dx = /x dx = [ln lnx ] = ln ln ln ln = ln ln = ln lnx. Dtrmina l sprssion analitica di una funzion

Dettagli

Integrale di sin t/t e varianti

Integrale di sin t/t e varianti Ingral di sin / variani Annalisa Massaccsi dicmbr Ingral di sin / In rifrimno all s. 7 dl VII gruppo di srcizi, com già viso ad srciazion, vogliamo dimosrar ch sin / d R. Ossrvazion. Ossrviamo innanziuo

Dettagli

Controlli Automatici I

Controlli Automatici I Ingegneria Elettrica Politecnico di Torino Luca Carlone Controlli Automatici I LEZIONE II Sommario LEZIONE II Trasformata di Laplace Proprietà e trasformate notevoli Funzioni di trasferimento Scomposizione

Dettagli

Proprietà strutturali e leggi di controllo. Stima dello stato e regolatore dinamico

Proprietà strutturali e leggi di controllo. Stima dello stato e regolatore dinamico Proprietà strutturali e leggi di controllo Stima dello stato e regolatore dinamico Stima dello stato e regolatore dinamico Stimatore asintotico dello stato Esempi di progetto di stimatori asintotici dello

Dettagli

Matematica e Statistica - Scienze Ambientali Esame 24 Febbraio 2014

Matematica e Statistica - Scienze Ambientali Esame 24 Febbraio 2014 Matmatica Statistica - Scinz Ambintali Esam 4 Fbbraio 014 Esrcizio 1 - Part A Supponiamo di conoscr l misur a, b c di tr grandzz con la sgunt incrtzza: 3.17 < a < 3.4 7.05 < b < 7.9 11.89 < c < 1.11 Quali

Dettagli

Analisi dei Sistemi Lineari e Tempo Invarianti nel Dominio del Tempo

Analisi dei Sistemi Lineari e Tempo Invarianti nel Dominio del Tempo 1 Corso di Fondamenti di Automatica A.A. 2017/18 Analisi dei Sistemi Lineari e Tempo Invarianti nel Dominio del Tempo Prof. Carlo Cosentino Dipartimento di Medicina Sperimentale e Clinica Università degli

Dettagli

Unità Didattica N 14 : le funzioni circolari. 3) Relazioni tra i lati e gli angoli di un triangolo rettangolo

Unità Didattica N 14 : le funzioni circolari. 3) Relazioni tra i lati e gli angoli di un triangolo rettangolo Unità Didattica N 14 : L funzioni circolari 1 Unità Didattica N 14 : l funzioni circolari 1) L funzioni circolari ) Alcun rlazioni fra l vari funzioni circolari 3) Rlazioni tra i lati gli angoli di un

Dettagli

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec.

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec. Teoria dei Siemi e del Conrollo Compio A del 5 Febbraio 5 Domande ed eercizi Nome: Nr. Ma. Firma: C.L.: Info. Ele. Telec.. Scrivere la oluzione in forma chiua dell equazione differenziale ẋ() = Ax()+Bu()

Dettagli

Università di Pisa - Corso di Laurea in Informatica Analisi Matematica A. Pisa, 12 febbraio 2018

Università di Pisa - Corso di Laurea in Informatica Analisi Matematica A. Pisa, 12 febbraio 2018 Univrsità di Pisa - Corso di Laura in Informatica Analisi Matmatica A Pisa, fbbraio 08 omanda A C log + 0 + = C omanda La funzion f : 0, + R dfinita da f = + A ha minimo ma non ha massimo è itata ma non

Dettagli

METODI MATEMATICI PER LA FISICA

METODI MATEMATICI PER LA FISICA METODI MATEMATICI PER LA FISICA PROVA SCRITTA - 8 SETTEMBRE 25 Si svolgano cortsmnt i sgunti srcizi ESERCIZIO (PUNTEGGIO: 6/3) Dopo avr stabilito pr quali valori rali di a convrg si calcoli l intgral Suggrimnto

Dettagli

Esempi Calcolo Antitrasformate

Esempi Calcolo Antitrasformate Eempi Calcolo Antitraformate Note per il Coro di FdA - Info April, 05 Il punto focale del coiddetto metodo di Heaviide per l antitraformazione di un egnale regolare a traformata razionale conite nel riconocere

Dettagli

Funzioni lineari e affini. Funzioni lineari e affini /2

Funzioni lineari e affini. Funzioni lineari e affini /2 Funzioni linari aini In du variabili l unzioni linari sono dl tipo a b l unzioni aini sono dl tipo a b c Il graico di una unzion linar è un piano passant pr l origin il graico di una unzion ain è un piano.

Dettagli

MODELLI A TEMPO CONTINUO IN EQUAZIONI DI STATO. Sistema lineare stazionario a tempo continuo in equazioni di stato. = Cx(t) + Du(t) x(0) = x 0

MODELLI A TEMPO CONTINUO IN EQUAZIONI DI STATO. Sistema lineare stazionario a tempo continuo in equazioni di stato. = Cx(t) + Du(t) x(0) = x 0 MODELLI A TEMPO CONTINUO IN EQUAZIONI DI STATO Sistema lineare stazionario a tempo continuo in equazioni di stato ẋ(t) y(t) = Ax(t) + Bu(t) = Cx(t) + Du(t) x() = x Risposta completa (risposta libera e

Dettagli

PRIMA PROVA PARZIALE DI COMPLEMENTI DI ANALISI MATEMATICA

PRIMA PROVA PARZIALE DI COMPLEMENTI DI ANALISI MATEMATICA PRIMA PROVA PARZIALE DI COMPLEMENTI DI ANALISI MATEMATICA Prof F Frrari Corso di Laura Spcialistica in Inggnria Chimica di procsso Corso di Laura Spcialistica in Inggnria pr l Ambint dll Risors CognomNomMatCdL

Dettagli

interazione forte il π ha una massa inferione al π violazione del numero lepto nico interazione debole conservazione dell'energia SI NO :

interazione forte il π ha una massa inferione al π violazione del numero lepto nico interazione debole conservazione dell'energia SI NO : Dir quali razioni sono possibili quali no. Nl caso siano possibili indicar l intrazion rsponsabil nl caso non lo siano, spigar prché. a) π π ν il π ha una massa infrion al π b) Λ p π ν violazion dl numro

Dettagli

Lezione 9. Calcolo dell antitrasformata di Laplace. F. Previdi - Fondamenti di Automatica - Lez. 9 1

Lezione 9. Calcolo dell antitrasformata di Laplace. F. Previdi - Fondamenti di Automatica - Lez. 9 1 ezione 9. Calcolo dell aniraormaa di aplace. Previdi - ondameni di Auomaica - ez. 9 Schema della lezione. Inroduzione. Aniraormazione di aplace. Srumeni per l aniraormazione 4. Teorema del valore iniziale

Dettagli

Corso di Tecniche elettromagnetiche per la localizzazione e il controllo ambientale. Test scritto del 30 / 06 / 2006

Corso di Tecniche elettromagnetiche per la localizzazione e il controllo ambientale. Test scritto del 30 / 06 / 2006 Corso di Tcnich lttromagntich pr la localizzazion il controllo ambintal Tst scritto dl / 6 / 6 Si risponda all sgunti domand marcando con un sgno l rispost ch si rputano corrtt. Si risolva inoltr il problma

Dettagli

R k = I k +Q k. Q k = D k-1 - D k

R k = I k +Q k. Q k = D k-1 - D k 1 AMMORTAMENTO AMMORTAMENTO Dbito inizial D 0 si volv (al tasso fisso t) D k = D k-1 (1+t) R k [D k dbito (rsiduo) al tmpo k, R k pagamnto al tmpo k ] Condizioni [D n =0 : stinzion dl dbito in n priodi

Dettagli

ANALISI MATEMATICA II Sapienza Università di Roma - Laurea in Ingegneria Informatica Esame del 15 settembre Soluzioni compito 1

ANALISI MATEMATICA II Sapienza Università di Roma - Laurea in Ingegneria Informatica Esame del 15 settembre Soluzioni compito 1 ANALISI MATEMATICA II Sapinza Univrsità di Roma - Laura in Inggnria Informatica Esam dl 15 sttmbr 016 - Soluzioni compito 1 E 1 Calcolar il sgunt intgral di funzion di variabil ral con i mtodi dlla variabil

Dettagli

Esercizio 1. ECINETICA = 1 m v. 22/04/2008 Fisica Applicata ai Beni Culturali, A. Lo Giudice (Esercizi) 1. Esercizio 2 (equivalenza massa-energia)

Esercizio 1. ECINETICA = 1 m v. 22/04/2008 Fisica Applicata ai Beni Culturali, A. Lo Giudice (Esercizi) 1. Esercizio 2 (equivalenza massa-energia) Ercizio 1 In un icrocopio lttronico gli lttroni vngono acclrati fino a raggiungr un nrgia cintica pari a 30 kv. Calcolar la vlocià dgli lttroni apndo ch la aa è di 9,11-31 kg. Da cui i può ricavar la vlocità:

Dettagli

TEMA 1: Nella rete in figura tracciare l andamento della corrente it (). Dati e 1

TEMA 1: Nella rete in figura tracciare l andamento della corrente it (). Dati e 1 Esm di Elttrotcnic dl 04/07/0. Tutti i tmi hnno lo stsso pso. Link: http://prsonl.dln.polito.it/vito.dnil/ Gli studnti immtricolti nll A.A 007-08 o succssivi dvono obbligtorimnt sostnr l sm complto Esm

Dettagli

Macroeconomia. Laura Vici. laura.vici@unibo.it. www.lauravici.com/macroeconomia LEZIONE 22. Rimini, 19 novembre 2014

Macroeconomia. Laura Vici. laura.vici@unibo.it. www.lauravici.com/macroeconomia LEZIONE 22. Rimini, 19 novembre 2014 Macroconomia Laura Vici laura.vici@unibo.i www.lauravici.com/macroconomia LEZIONE 22 Rimini, 19 novmbr 2014 Macroconomia 362 I mrcai finanziari in conomia apra Dao ch l acquiso o la vndia di aivià finanziari

Dettagli

Modello di Einstein. Stato eccitato. Stato fondamentale

Modello di Einstein. Stato eccitato. Stato fondamentale Modllo di Einsin Il modllo di Einsin dscriv in manira fnomnoloica d a livllo microscopico i procssi di l inrazion ra la r..m. maria ch porano ai fnomni di assorbimno d mission radiaiva. Il sisma modllo

Dettagli

1 = (parabola unitaria) si determini l errore di regolazione a regime:

1 = (parabola unitaria) si determini l errore di regolazione a regime: A - Tet d ingreo alla Prova Scritta di Controlli Automatici A del Ottobre 00 ( + ) ( ) + ) Dato un itema dinamico Σ con funzione di traferimento T() crivere i modi di Σ : ( + ) + 9 t { modi di Σ } {, tt,,

Dettagli

Cognome e Nome: Numero di Matricola: Spazio riservato alla correzione Totale /18 /15 /20 / /100

Cognome e Nome: Numero di Matricola: Spazio riservato alla correzione Totale /18 /15 /20 / /100 Cognom Nom: Numro i Mariola: Spazio rirao alla orrzion 1 2 3 4 5 6 Toal /18 /15 /20 /20 13 14 /100 1. a) Iniar quali ll guni affrmazioni ono r quali ono fal. log n+n 3 -n 2 = O(n 3 ) n = Ω(log 2 n ) n

Dettagli