Per determinare il dominio di f, occorre imporre x 6= 2,x>0elogx>0 di

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Per determinare il dominio di f, occorre imporre x 6= 2,x>0elogx>0 di"

Transcript

1 Analisi Matematica I a.a. -4. Prove scritte e risoluzioni. Pro. Paola Loreti e Daniela Sforza - Determinare il dominio di denizione e calcolare la derivata della funzione f() = e ; + log(log ) Per determinare il dominio di f, occorre imorre 6=,>elog> di conseguenza il dominio di f e ] [[] +[. Per calcolare la derivata di f, si devono utilizzare i teoremi sulla derivata del quoziente e sulla derivata di funzioni comoste, e quindi si ottiene f () = e ( ; ) ( ; ) + ] [[] +[ log - Studiare la funzione g() = ( +) In rimo luogo si osservi che g e denita er ogni R, 6= ;. I iti agli estremi del dominio sono dati da g() = g() =!;!+ g() =;!(;); g() =+!(;) + ne segue che l'asse y =eunasintoto orizzontale e la retta = ; e un asintoto verticale. Si noti ora che la derivata rima di g e data da g () =; er ogni 6= ; ( +) 4 e di conseguenza la funzione g e monotona strettamente decrescente. La derivata seconda di g e g () = er ogni 6= ; ( +) 5 da cui segue che g e concava er<;, mentre g e convessa er >;. E oortuno notare che si oteva anche giungere a queste conclusioni osservando semlicemente che il graco della funzione g si ottiene er traslazione da quello della funzione elementare!.

2 -Vericare mediante il rinciio di induzione che D n (log ) = (;)n; (n ; )! n Per n = l'uguaglianza e vera, in quanto D log = Si suonga che l'uguaglianza sia vera er un certo n N e si assi a riconoscere la stessa er n +. Infatti, er l'iotesi induttiva siha D n+ (log ) =DD n (log ) =(;) n; (n ; )! D( ;n )= (;)n n! n+ In conclusione, er il rinciio di induzione l'uguaglianza e vera er ogni n N. 4 - Calcolare log! + Per calcolare il ite richiesto, e conveniente determinare searatamente i iti Darima si osservi che! + log! +! + =! + e log = Per quanto riguarda il secondo ite, si noti che log = e log log(=) () Posto y ==, si assa a calcolare y!+ log log y.poiche tale ite si resenta nella forma indeterminata,siuo alicare il teorema di de l'h^oital il ite del raorto delle derivate e dato da Pertanto, grazie alla () si ha y!+ y y log y = log =! +

3 e di conseguenza log = log! +! + = 5 - Calcolare l'integrale Z ; ;j ; +j Z ; E suciente osservare che Z ;j ;+j d = ;(;) ; d = Z d ; ; i ; + d = h; + = ;6 ; 6 - Stabilire il carattere della serie X n= cos n n + Si consiglia di scrivere il termine n;esimo tramite la funzione seno in modo oortuno. In rimo luogo si osservi che la successione che denisce la serie assegnata e a termini ositivi e innitesima. Seguendo il suggerimento del testo, si scriva il termine n;esimo nel modo seguente n cos = sen n + ; n = =sen n + n + Tenendo resente il ite notevole sen! = er il criterio del confronto asintotico la serie assegnata ha lo stesso carattere della serie X n + n= e di conseguenza risulta convergente. - Calcolare l'integrale ; j ; j d

4 ; Si osservi che j ; j d = Z ; ( ; ) d + ( ; ) d = i h ; 4 h 4 i + 4 ; 4 ; =4 - Studiare la funzione f() = j log j; In rimo luogo si osservi che f e denita er > e log 6=, cioe 6= e ; e 6= e. Al ne di studiare la funzione e oortuno osservare che f() = 8 >< > ; log + se > 6= e log ; I iti agli estremi del dominio sono dati da se < 6= =e f() = f() =+! +!(=e); f() =;!(=e) + f() =;!e; f() =+!e + f() =!+ ne segue che la funzione f uo essere estesa er continuita in da destra, le rette ==e e = e sono asintoti verticali e l'asse y =eunasintoto orizzontale. Si noti ora che la derivata rima di f e data da f () = 8 >< > (log +) se << 6= =e ; (log ; ) se > 6= e Pertanto, la funzione f e monotona strettamente crescente negli intervalli ] =e[ e]=e [, mentre f risulta monotona strettamente decrescente negli intervalli ] e[ e]e +[. Inoltre, si osservi che f non derivabile nel unto, in quanto La derivata seconda di f e data da f () = 8 >< > f () =; 6= =! +!; f () log + ; (log +) se << 6= =e log + (log ; ) se > 6= e Pertanto, = e ; e un unto di esso, f e concava negli intervalli ] e ; [, ]e ; [ e] e[, mentre f e convessa in ]e ; e ; [e]e +[.

5 -Vericare mediante il rinciio di induzione che er ogni n N il numero 4 n ; n + e divisibile er Per n = si ha 4 ; + =, che e ovviamente divisibile er. Si suonga ora che er un certo n N il numero 4 n ;n+ sia divisibile er e si assi a riconoscere la stessa aermazione er n +. A tal ne, si osservi che 4 n+ ;(n+)+ = 4 n ;n++4 n (4;); = 4 n ;n++(4 n ;) quindi er l'iotesi induttiva 4 n+ ; (n + ) + e divisibile er. In conclusione, grazie al rinciio di induzione er ogni n N il numero 4 n+ ; (n + ) + e divisibile er. 4 - Calcolare n!+ nx n k= k Per calcolare il ite richiesto, e conveniente tenere resente che nx k= k = n(n +) er ogni n N di conseguenza, Comito A n!+ n nx k= k = n(n +) n!+ n = - Calcolare l'integrale Z log j ; 9jd In rimo luogo si osservi che Z log j ; 9jd = Z log(9 ; )d Posto t =9;,integrando er sostituzione si ottiene Z log(9 ; )d = Z 9 5 log tdt

6 Inne, integrando er arti si ha Z log j ; 9jd = Z 9 5 log tdt = [t log t ; t]9 5 = (9 log 9 ; 5 log 5 ; 4) = 9 log ; 5 log 5 ; - Determinare il massimo assoluto della funzione nell'intervallo. f() = sen L'esistenza del massimo assoluto e assicurata dal teorema di Weierstrass, essendo f continua nell'intervallo assegnato. Poiche f () = sen ; cos < er ogni ne segue che la funzione f e decrescente in tale intervallo. Pertanto il massimo e assunto in evale. Si oteva giungere alla stessa conclusione, osservando semlicemente che f() =f er ogni - Calcolare!; ; sen Posto y = =, il ite assegnato diventa y!; y ; sen y y = y!; y ; sen y y Tenendo resente che sen y = y ; y! + o(y4 ) er y! si ha y! y ; sen y y = 6

7 Si noti che si giunge allo stesso risultato alicando il teorema di de l'h^oital e ricordando il ite notevole y! ; cos y y = In conclusione,!; ; sen = y!; y ; sen y y = 4 - Stabilire er quali valori del arametro > la serie +X k= e convergente e calcolarne la somma. ( log ) k Fissato >, la serie data e una serie geometrica di ragione log. Pertanto tale serie converge se j log j <, cioe e ;= <<e =,mentre non converge se jlogj. Per ogni e ;= <<e = la somma della serie e +X k= ( log ) k = log ; = ; log ; log Comito B - Calcolare l'integrale Z log j5 ; jd ; In rimo luogo si osservi che Z log j5 ; jd = Z ; ; log(5 ; )d Posto t =5;,integrando er sostituzione si ottiene Z ; log(5 ; )d = ; Z 5 log tdt

8 Inne, integrando er arti si ha Z ; ; log j5 ; jd = ; Z 5 log tdt = [t log t ; t]5 = ; (5 log(5) ; log() ; 4) = ;5 log 5 + log() + - Determinare il minimo assoluto della funzione nell'intervallo. f() = cos 4 L'esistenza del minimo assoluto e assicurata dal teorema di Weierstrass, essendo f continua nell'intervallo assegnato. Poiche f () = cos +sen > er ogni 4 ne segue che la funzione f e crescente in tale intervallo. Pertanto il minimo e assunto in evale. Si oteva giungere alla stessa conclusione, osservando semlicemente che f() =f er ogni 4 - Calcolare!+ ; sen Posto y = =, il ite assegnato diventa Tenendo resente che y ; sen y y! + y = y! + y ; sen y y sen y = y ; y! + o(y4 ) er y! si ha y! y ; sen y y = 6

9 Si noti che si giunge allo stesso risultato alicando il teorema di de l'h^oital e ricordando il ite notevole y! ; cos y y = In conclusione,!+ ; sen = y! + y ; sen y y = 4 - Stabilire er quali valori del arametro > la serie +X k= e convergente e calcolarne la somma. (4 log ) k Fissato >, la serie data e una serie geometrica di ragione 4 log. Pertanto tale serie converge se j4 log j <, cioe e ;=4 <<e =4,mentre non converge se j4logj. Per ogni e ;=4 <<e =4 la somma della serie e +X k= (4 log ) k = 4log ; = ; 4log ; 4log - Calcolare l'integrale Z ; ; e = ; e d In rimo luogo si osservi che Z ; e = d =[e = ] ; =(e = ; e ;= ) Posto t =,integrando er sostituzione si ottiene Z Z e d = t e t dt ; ; Inoltre, integrando er arti due volte si ha ; t e t dt = e t (t ; t +) ; = e ( 4 ; +); 5e ;

10 In conclusione Z ; e = ; e d =(e = ; e ;= ) ; e ( 4 ; + ) + 5e ; ; - Studiare la funzione f() = j log jjj In rimo luogo si osservi che f e denita er ogni R, 6 f ; g. Al ne di studiare la funzione e oortuno osservare che f e ari, e quindi basta studiarla er >. f() = 8 >< > se << ; log se > log I iti agli estremi del dominio sono dati da f() = f() =+! +!; f() =+ f() =! +!+ ne segue che la retta =e un asintoto verticale e l'asse y =e un asintoto orizzontale. Inoltre, si osservi che rolungando f er continuita in (onendo f() = ), la funzione cosi ottenuta ha nel unto un minimo assoluto. Si noti ora che la derivata rima di f e data da f () = 8 >< > (log ) se << ; se > (log ) Pertanto, la funzione f e monotona strettamente crescente in ] [, mentre f risulta monotona strettamente decrescente in ] +[. La derivata seconda di f e data da f () = 8 >< > log (log +) ; (log ) 4 se << log (log +) (log ) 4 se > Pertanto, = e ; e un unto di esso, f e concava negli intervalli ] e ; ], mentre f e convessa in ]e ; [ e ] +[.

11 - Stabilire il carattere della serie X +=n n= La serie assegnata e a termini ositivi, di conseguenza uo solo convergere o divergere ositivamente oiche n!+ +=n = la serie e divergente, in quanto non e vericata la condizione necessaria alla convergenza. 4 - Calcolare n!+ n 4n (n 4 ; ) n Utilizzando la disuguaglianza di Bernoulli, er ogni n si ha ; n ; n 4 n < e quindi n!+ n 4n (n 4 ; ) n = n!+ ; n 4 n = - Calcolare l'integrale log ( + )( ; 4) d In rimo luogo si osservi che log j( + )( ; 4)jd = Integrando er arti si ha log( +)d = log( +)d + log j +jd + log( +) ; log(4 ; )d log j ; 4jd = + d = ; log 4

12 Inoltre, con rocedimento analogo al recedente si ha In conclusione, log(4 ; )d = ; log 4 log j( +)( ; 4)jd = ;9+log4 - Studiare la funzione f() = ; tg Periodicita La funzione e eriodica di eriodo, e quindi basta studiarla nell'intervallo (;= =). Dominio. La funzione e denita er ; tg > cio er ;= <=4. Eventuali zeri. La funzione si annulla in =4. Comortamento ai iti. Si osservi che!(;=)+ ; tg =+ in quanto la funzione e ositiva. Derivata rima. Massimi, minimi relativi. f () =; cos ( ; tg ) = Si annulla in = e f() = e un minimo relativo. Nell'intervallo considerato la derivata rima esiste semre, ertanto non vi sono altri unti da esaminare. Derivata seconda. Concavita, convessita. Flessi. f () =; cos + cos ; 4( ; cos ) 5= = cos + 4( ; cos ) = La derivata seconda e semre ositiva, e quindi la funzione e convessa in ( ). Inoltre f() = e un minimo assoluto, e il codominio della funzione e [= +).

13 - Stabilire il carattere della serie al variare del arametro R. X k= e (; )k La serie assegnata e una serie geometrica di ragione e ; di conseguenza converge solo er e ; <, cioe ; <. In conclusione, la serie assegnata converge er ; << oure >. - Determinare tutti i valori del arametro [; ] in modo che si abbia ; j ; j d = 7 ; Si osservi che j;j d = Z ; (;) d+ (;) d = i h; h i + ; ; = ;+ Pertanto i valori richiesti del arametro devono vericare l'equazione cioe = ; e =. - Studiare la funzione ; + = 7 f() = ; tg Periodicita La funzione e eriodica di eriodo, e quindi basta studiarla nell'intervallo (;= =). Dominio. La funzione e denita er cioe er;= < =4. Eventuali zeri. La funzione si annulla in =4. ; tg >

14 Comortamento ai iti. Si osservi che!(;=)+ ; tg =+ in quanto la funzione e ositiva. Derivata rima. Massimi, minimi relativi. f () =; cos ( ; tg ) = ; +tg = ( ; tg ) = Nell'intervallo considerato la derivata rima esiste semre. La funzionee monotona decrescente. Derivata seconda. Concavita, convessita. Flessi. f () = ( + tg ) tg ; 4tg ; 4( ; tg ) = La derivata seconda si annulla er tg ; 4tg ; =, cioe tg = 7.Si osservi che (+ 7)= >, e quindi e da scartare. Pertanto f ha un unto di esso in = arctg(( ; 7)=) e la funzione e convessa in (;= arctg(( ; 7)=)) e concava (arctg(( ; 7)=) =4). Un graco arossimativo dif e il seguente - Stabilire i valori del arametro R er i quali la serie converge e calcolare la somma. X k= () k La serie assegnata e una serie geometrica di ragione di conseguenza converge solo er jj <, cioe jj < =. Inoltre, er ogni jj < = si ha X k= () k = ; = ; ; - Calcolare l'integrale Z 4 ; e j;j d

15 Si osservi che Z 4 ; e j;j d = ; e ; d + Z 4 e ; d ; Z 4 e ; d = e ; ; e ; d = ;e ; ( +)j ; = ;4 e ; d = e ; e d = e ; ( ; )j 4 =e ; In conclusione, Z 4 ; e j;j d =(e ; ) - Studiare la funzione f() = log j +6j In rimo luogo si osservi che f e denita er ogni R, 6=. Al ne di studiare la funzione e oortuno osservare che f e ari, e quindi basta studiarla er >. I iti agli estremi del dominio sono dati da f() =; f() =+! +!+ ne segue che la retta =e un asintoto verticale. Si noti ora che la derivata rima di f e data da f () = > Pertanto, la funzione f e monotona strettamente crescente in ] +[. La derivata seconda di f e data da f () = 6( +6) ; ( + 6) = ; ( +6) ( +6) > di conseguenza, f e concava in] +[.

16 - Dire er quali R si ha n! ( ; +) n = Si deve imorre Essendo ( ; +), si ha e quindi <<. - Calcolare l'integrale Z ; ; j( ; +) j < j ; +j < log(j +j;) d Si osservi che Z ; ; log(j +j;) d = Integrando er arti, si ha Z ; ; Z ; ; log( +) d = log( +) ; ; ; Z ; Z ; log( + ) d + log(; ; ) d ; ; log ; + + d = log + log ; Z ; ; h; i d = + Z ; ; log(; ;) d = log(; ;) ; ; ; Z ; In conclusione, Z ; ; 4 log ; ; + + d = log ; Z ; log(j +j;) d = log + 4 log ; 4 ; h; i d = + - Studiare la funzione f() =log sen

17 L' insieme di denizione e l'insieme dei numeri reali tali che sen >, ossia f R k<<(k +) k Zg Per la eriodicita, si uo studiare la funzione in ( ). Si osservi che, essendo sen er ogni reale, la funzione e negativa enulla nei unti in cui sen = ossia (nell'intervallo ( )) nel unto =,unto di massimo assoluto. Per i iti si ha! + log sen = ; La derivata rima!; log sen = ; f () = cos sen si annulla er =, unto di massimo assoluto in cui si annulla anche la funzione. La derivata seconda f () =; sen e semre negativa, e dunque la funzione e concava. - Calcolare, se esiste, n! n( ; arctg( n +5n)) In rimo luogo si osservi che il ite assegnato e una forma indeterminata del tio. E conveniente alicare il teorema di de l'h^oital al raorto di funzioni reali ; arctg( +5) = Il ite del raorto delle derivate e dato da!+ +( +5) +5 = 5 e quindi er il teorema di de l'h^oital si ottiene ; arctg( +5)!+ = = 5

18 In conclusione, il valore del ite assegnato e 5 Si u anche calcolare il ite assegnato senza alicare il teorema di de l'h^oital, ma utilizzando l'uguaglianza arctg + arctg = er ogni > e il ite notevole - Calcolare l'integrale n! n arctg n = =5 j log( ; 4)j d Si osservi che j log( ; 4)j d = ; Z 5 =5 =5 log( ; 4) d + 5 log( ; 4) d Poiche =5 >, si u scrivere Z Z log( ; 4) d = log( ; ) d + Z log( +) d Integrando er arti, si ha Z Z log( ; ) d =( ; ) log( ; ) ; + c log( +) d =( + ) log( +); + c e quindi Z log( ; 4) d = log( ; 4) + log + ; ; + c c R In conclusione, =5 j log( ; 4)j d = ;8 log( 5+) log() + 5 log 5 ; Studiare la funzione f() =e j ;9j+

19 La funzione assegnata f() e denita er ogni R. Per i iti si ha Si osservi ora che f() = 8 < e ;9+ La derivata rima e data da f () = 8 < f() =+! se ; oure e ; +9+ se ; << e ;9+ ( +) se <; oure > e ; +9+ (; +) se ; << e f non e derivabile nei unti ; e. Pertanto f e decrescente in ] ; ;[ mentre e crescente in ] +[. Inoltre, f e crescente in ] ; =[, e decrescente in ]= [, e quindi il unto == edi massimo relativo erf. La derivata seconda e datada f () = 8 < e ;9+ [( +) +] se <; oure > e ; +9+ (4 ; +7) se ; << e di conseguenza f e convessa negli intervalli ] ; ;[ e ] +[, mentre f e convessa negli intervalli ] ; ( ; )=[ e ]( + )= [, ed e concava in ]( ; )= ( + )=[. Pertanto i unti ( )= sono di esso er f. - Calcolare, se esiste, = ; cos! + In rimo luogo si osservi che il ite assegnato e una forma indeterminata del tio. E oortuno tener resente il ite notevole ; cos t = t! t Infatti, osto t = =, si ha ; cos! + = = 9 ; cos t = t! t 8

Istituzioni di matematica

Istituzioni di matematica Istituzioni di matematica TUTORATO 2 - Soluzioni Mercoledì 28 novembre 2018 Esercizio 1. Studiare la seguente funzione e tracciarne il graco f(x) = x 3 3x 2 - Il dominio di denizione è l'insieme D = R

Dettagli

ANALISI MATEMATICA 1 - Parte B Commissione F. Albertini, L. Caravenna e M. Motta Ingegneria Gestionale, Meccanica, Meccatronica, Vicenza

ANALISI MATEMATICA 1 - Parte B Commissione F. Albertini, L. Caravenna e M. Motta Ingegneria Gestionale, Meccanica, Meccatronica, Vicenza ANALISI MATEMATICA 1 - Parte B Commissione F Albertini, L Caravenna e M Motta Ingegneria Gestionale, Meccanica, Meccatronica, Vicenza Vicenza, 4 luglio 017 TEMA1 Esercizio 1 [1 unti] Si consideri la funzione

Dettagli

2. determinare i limiti agli estremi del dominio, eventuali asintoti, eventuali punti in cui è possibile prolungare la funzione per continuità;

2. determinare i limiti agli estremi del dominio, eventuali asintoti, eventuali punti in cui è possibile prolungare la funzione per continuità; ANALISI MATEMATICA Commissione L. Caravenna, V. Casarino, S. occante Ingegneria Gestionale, Meccanica e Meccatronica, Vicenza Vicenza, 27 Gennaio 25 TEMA - arte B Esercizio ( unti). Si consideri la funzione

Dettagli

SOLUZIONE DEGLI ESERCIZI DEL FOGLIO N. 7

SOLUZIONE DEGLI ESERCIZI DEL FOGLIO N. 7 SOLUZIONE DEGLI ESERCIZI DEL FOGLIO N. 7 Esercizio. Funzione da studiare: log( 3).. Dominio: dobbiamo richiedere che il denominatore non si annulli e che il logaritmo sia ben definito. Quindi le condizioni

Dettagli

Istituzioni di Matematica I

Istituzioni di Matematica I Istituzioni di Matematica I Le soluzioni proposte costituiscono solo una traccia di possibili soluzioni (lo studente deve giustificare i vari risultati), possono esserci altri modi, altrettanto corretti,

Dettagli

Analisi Matematica 1 - a.a. 2017/ Quarto appello

Analisi Matematica 1 - a.a. 2017/ Quarto appello Analisi Matematica - a.a. 07/08 - Quarto appello Soluzione del test Test A E C B B C A D C C D Test B C B C E B A E E D B Test C A A D B E C A C D D Test D D B A A B E A E B D Soluzione della parte di

Dettagli

ISTITUZIONI DI ANALISI MATEMATICA Commissione P. Mannucci, A. Sommariva, a.a Corsi di laurea in Scienze Statistiche

ISTITUZIONI DI ANALISI MATEMATICA Commissione P. Mannucci, A. Sommariva, a.a Corsi di laurea in Scienze Statistiche ISTITUZIONI DI ANALISI MATEMATICA Commissione P. Mannucci, A. Sommariva, a.a. 4- Corsi di laurea in Scienze Statistiche 4 febbraio TEMA Esercizio 8 punti) Si consideri la funzione ) e f) = arctan e a)

Dettagli

Istituzioni di matematica

Istituzioni di matematica Istituzioni di matematica TUTORATO 1 - Soluzioni Mercoledì 1 novembre 018 Esercizio 1. Studiare la seguente funzione e tracciarne il graco f(x) = x + 1 + 5 x D = {x R : x 0} = R \ {0} - La funzione non

Dettagli

e 2x2 1 (x 2 + 2x 2) ln x

e 2x2 1 (x 2 + 2x 2) ln x Corso di laurea in Ingegneria delle Costruzioni A.A. 2016-17 Analisi Matematica - Esercitazione del 04-01-2017 Ripasso di alcuni argomenti in programma Gli esercizi sono divisi in più pagine, per separare

Dettagli

I appello - 11 Gennaio 2016

I appello - 11 Gennaio 2016 Analisi Matematica - A.A. 5-6 Prove scritte di Analisi Matematica - A.A. 5/6 Corso di Laurea in Ingegneria Civile Corso di Laura in Ingegneria Informatica ed Elettronica I appello - Gennaio 6 Svolgere

Dettagli

Esonero di Analisi Matematica I (A)

Esonero di Analisi Matematica I (A) Esonero di Analisi Matematica I A) Ingegneria Edile, 7 novembre 00 Michele Campiti) 1. Studiare il seguente ite: x π/ cos x 1 sin x) tan 3 x π ).. Calcolare le seguenti radici quarte: 3i 4 1 + i). Esonero

Dettagli

Facoltà di Scienze MFN, Università di Cagliari Analisi Matematica 1 (Informatica), a.a. 2007/08. Insiemi numerici: sup A, inf A

Facoltà di Scienze MFN, Università di Cagliari Analisi Matematica 1 (Informatica), a.a. 2007/08. Insiemi numerici: sup A, inf A Facoltà di Scienze MFN, Università di Cagliari Analisi Matematica 1 (Informatica, a.a. 2007/08 Esercizi: Parte 1 Insiemi numerici: sup A, inf A 1. Verificare se A, nel caso sia non vuoto, è limitato superiormente,

Dettagli

Analisi Matematica 1

Analisi Matematica 1 Michele Campiti Prove scritte di Analisi Matematica 1 Ingegneria Industriale a.a. 2011 2012 y f 1 g 0 x La funzione seno e la funzione esponenziale Raccolta delle tracce di Analisi Matematica 1 per Ingegneria

Dettagli

Corso di Laurea in Informatica Sede di Brindisi Esame di Analisi Matematica 25 giugno ex+1 x 2 2x. f (x) =

Corso di Laurea in Informatica Sede di Brindisi Esame di Analisi Matematica 25 giugno ex+1 x 2 2x. f (x) = 25 giugno 215 f (x) = ex+1 x 2 2x 2. Si calcoli il seguente integrale: 4 2 x log(x 2 1) dx. 3. Si enunci la definizione di funzione continua. 4. Si enunci il teorema di Fermat e, facoltativamente, lo si

Dettagli

STUDIO DI UNA FUNZIONE INTEGRALE. Z x. ln t ln t 2 2 dt. f(x) =

STUDIO DI UNA FUNZIONE INTEGRALE. Z x. ln t ln t 2 2 dt. f(x) = STUDIO DI UNA FUNZIONE INTEGRALE Studiamo la funzione f di una variabile reale, a valori in R, definitada. Il dominio di f. f() = Z Denotiamo con g la funzione integranda. Allora g(t) = numeri reali tali

Dettagli

Corso di Laurea in Ingegneria Edile Prova scritta dell esame di Analisi Matematica I (M-Z).C

Corso di Laurea in Ingegneria Edile Prova scritta dell esame di Analisi Matematica I (M-Z).C Analisi Matematica I (M-Z).C1 08-0-1997 1) Data la funzione h(x) = x log(x + 1 + x + x + ) + log(1 + ) determinarne il dominio D. Provare poi che h(x) > 0 x D ]0, + [, h(x) = 0 x = 0. ) Utilizzando i risultati

Dettagli

Università degli Studi della Calabria Facoltà di Ingegneria. 17 luglio 2012

Università degli Studi della Calabria Facoltà di Ingegneria. 17 luglio 2012 Università degli Studi della Calabria Facoltà di Ingegneria Correzione della Seconda Prova Scritta di nalisi Matematica 7 luglio cura dei Prof. B. Sciunzi e L. Montoro. Seconda Prova Scritta di nalisi

Dettagli

Matematica A Corso di Laurea in Chimica. Prova scritta del Tema A

Matematica A Corso di Laurea in Chimica. Prova scritta del Tema A Matematica A Corso di Laurea in Chimica Prova scritta del 7..6 Tema A P) Data la funzione f(x) = ex+ x determinarne (a) campo di esistenza; (b) zeri e segno; (c) iti agli estremi del campo di esistenza

Dettagli

Prove scritte di Analisi I - Informatica

Prove scritte di Analisi I - Informatica Prove scritte di Analisi I - Informatica Prova scritta del 3 gennaio Esercizio Stabilire il comportamento delle seguenti serie: n= n + 3 sin n, n= ( ) n n + 3 sin n, n= (n)! (n!), n= n + n 9 n + n. Esercizio

Dettagli

ANALISI MATEMATICA 1 Commissione L. Caravenna, V. Casarino, S. Zoccante Ingegneria Gestionale, Meccanica e Meccatronica, Vicenza

ANALISI MATEMATICA 1 Commissione L. Caravenna, V. Casarino, S. Zoccante Ingegneria Gestionale, Meccanica e Meccatronica, Vicenza ANALISI MATEMATICA Commissione L Caravenna, V Casarino, S Zoccante Ingegneria Gestionale, Meccanica e Meccatronica, Vicenza Nome, Cognome, numero di matricola: Vicenza, 7 Luglio 205 TEMA - parte B Esercizio

Dettagli

CALCOLO DIFFERENZIALE per Informatica Programma aa 2011/12, canale A-L.

CALCOLO DIFFERENZIALE per Informatica Programma aa 2011/12, canale A-L. CALCOLO DIFFERENZIALE per Informatica Programma aa 2011/12, canale A-L. I numeri dei capitoli e dei paragra si riferiscono al testo consigliato: R.A. Adams: Calcolo dierenziale 1. Funzioni di una variabile,

Dettagli

Prove d esame a.a , ,

Prove d esame a.a , , Prove d esame aa 4 5, 5 6, 6 7 Andrea Corli 6 gennaio 8 Sono qui raccolti i testi delle prove d esame assegnati negli aa 4 5, 5 6, 6 7, relativi al Corso di Analisi Matematica I (semestrale, crediti),

Dettagli

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno.

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno. 1 ESERCIZI CON SOLUZIONE DETTAGLIATA Esercizio 1. Si consideri la funzione f(x) = e x 3e x +. a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre

Dettagli

ANALISI MATEMATICA II-A. Prova scritta del 29/1/2010 TUTTE LE RISPOSTE DEVONO ESSERE MOTIVATE

ANALISI MATEMATICA II-A. Prova scritta del 29/1/2010 TUTTE LE RISPOSTE DEVONO ESSERE MOTIVATE ANALISI MATEMATICA II-A CORSO DI LAUREA IN FISICA Prova scritta del 9//00 TUTTE LE RISPOSTE DEVONO ESSERE MOTIVATE Esercizio.(Punti 6) Calcolare il valore del seguente ite 0+ e cos. Esercizio.(Punti 6)

Dettagli

Analisi Matematica 1 - a.a. 2017/ Primo appello

Analisi Matematica 1 - a.a. 2017/ Primo appello Analisi Matematica - a.a. 7/8 - Primo appello Soluzione del test Test A 3 4 5 6 7 8 9 C E E C D E A B B D Test B 3 4 5 6 7 8 9 A A B E B B C D E A Test C 3 4 5 6 7 8 9 B D C A E D E C D C Test D 3 4 5

Dettagli

Numeri DISPARI Prova scritta di Matematica per l Economia e Matematica Generale - 11 aprile 2007 Corsi A-D, E-N, O-Z. 1 x 3 sen

Numeri DISPARI Prova scritta di Matematica per l Economia e Matematica Generale - 11 aprile 2007 Corsi A-D, E-N, O-Z. 1 x 3 sen Prova scritta di Matematica per l Economia e Matematica Generale - 11 aprile 2007 Corsi A-D, E-N, O-Z (1) Calcolare il seguente integrale definito 3/π 1/π 1 3 sen ( 1 ) d integrando dapprima per sostituzione

Dettagli

Analisi Matematica 1

Analisi Matematica 1 Michele Campiti Prove scritte di Analisi Matematica Ingegneria Industriale aa 28 29 y f g x La funzione seno e la funzione esponenziale Raccolta delle tracce di Analisi Matematica per Ingegneria Industriale,

Dettagli

Seconda prova in itinere di Analisi Matematica 1 Ingegneria Elettronica. Politecnico di Milano. A.A. 2015/2016. Prof. M. Bramanti.

Seconda prova in itinere di Analisi Matematica 1 Ingegneria Elettronica. Politecnico di Milano. A.A. 2015/2016. Prof. M. Bramanti. Seconda prova in itinere di Analisi Matematica Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 5/6. Prof. M. Bramanti Tema n 3 5 6 Tot. Cognome e nome (in stampatello) codice persona (o n

Dettagli

Esercizi di Analisi Matematica

Esercizi di Analisi Matematica Università degli Studi di Udine Anno Accademico 00/ Facoltà di Scienze Matematiche Fisiche e Naturali Corso di Laurea in Informatica e TWM Esercizi di Analisi Matematica Esercizi sul primo semestre del

Dettagli

Soluzioni degli Esercizi per il Corso di Istituzioni di Matematica. x2 1 x x + 7 ; d) f (x) =

Soluzioni degli Esercizi per il Corso di Istituzioni di Matematica. x2 1 x x + 7 ; d) f (x) = Soluzioni degli Esercizi per il Corso di Istituzioni di Matematica 1 La retta tangente al grafico di f nel punto ( 0, f( 0 ha equazione y = f( 0 + f ( 0 ( 0. a y = 2; b y = log 2 (e( 1; c y = 1 2 + 1 4

Dettagli

Analisi Matematica 1 Soluzioni prova scritta n. 1

Analisi Matematica 1 Soluzioni prova scritta n. 1 Analisi Matematica Soluzioni prova scritta n Corso di laurea in Matematica, aa 008-009 5 giugno 009 Sia a n la successione definita per ricorrenza: a n+ 3 a n a 3 n, a 3 a n+ 3 a n a 3 n, a 3 a n+ 3 a

Dettagli

Corso di Laurea in Informatica e Comunicazione digitale Esame di Analisi Matematica

Corso di Laurea in Informatica e Comunicazione digitale Esame di Analisi Matematica Corso di Laurea in Informatica e Comunicazione digitale Esame di Analisi Matematica 8 giugno 2016 1. Determinare (a) a quale proprietà si riferisce la seguente scrittura inerente ad una successione {a

Dettagli

Esame di Matematica Generale 7 Febbraio Soluzione Traccia E

Esame di Matematica Generale 7 Febbraio Soluzione Traccia E Esame di Matematica Generale 7 Febbraio 013 - Soluzione Traccia E ESERCIZIO 1. Si consideri la funzione f : R R f(x) = x + 1 x. (a) Determinare il dominio di f ed eventuali simmetrie (3 punti). Dominio.

Dettagli

COGNOME... NOME... Matricola... Corso Prof... Esame di ANALISI MATEMATICA I - 28 Febbraio 2011, ore x e2x e 2x 1. f(x) = e 2x log(e 2x + 1) dx.

COGNOME... NOME... Matricola... Corso Prof... Esame di ANALISI MATEMATICA I - 28 Febbraio 2011, ore x e2x e 2x 1. f(x) = e 2x log(e 2x + 1) dx. Esame di ANALISI MATEMATICA I - 28 Febbraio 211, ore 8.3 A ESERCIZIO 1. (1 punti) Sia data la funzione f(x) = x e2x e 2x 1. (a) Determinarne il dominio e dimostrare che f si prolunga ad una funzione continua

Dettagli

Calcolo 1 (L. Fanelli - F. Pacella)

Calcolo 1 (L. Fanelli - F. Pacella) Matricola Corso di laurea in Matematica, aa 7/8 Calcolo (L Fanelli - F Pacella) Seconda prova in itinere 9 gennaio 8 I Cognome NORRIS Nome CHUCK Risolvere TRE E NON PIÙ DI TRE esercizi, motivando le risposte

Dettagli

Esercitazioni di Matematica

Esercitazioni di Matematica Università degli Studi di Udine Anno Accademico 009/00 Facoltà di Agraria Corsi di Laurea in VIT e STAL Esercitazioni di Matematica novembre 009 Trovare le soluzioni della seguente disequazione: x + +

Dettagli

Continuità e derivabilità. Calcola la derivata delle seguenti funzioni

Continuità e derivabilità. Calcola la derivata delle seguenti funzioni ESERCIZI SUL CALCOLO DIFFERENZIALE Continuità e derivabilità Si studi la continuità e la derivabilità delle seguenti funzioni nel punto indicato a fianco { Si trovi, se possibile, a e b in modo che le

Dettagli

REGISTRO DELLE LEZIONI 2004/2005. Lezione Insiemistica. Tipologia. Insiemistica. Addì Tipologia. Addì

REGISTRO DELLE LEZIONI 2004/2005. Lezione Insiemistica. Tipologia. Insiemistica. Addì Tipologia. Addì Insiemistica. Insiemistica. Gli insiemi e le operazioni tra insiemi. Le formule di De Morgan. Gli insiemi N, Q, R. L unione, l intersezion, la differenza tra insiemi, il complementare di un insieme. Addì

Dettagli

ANALISI MATEMATICA I A.A. 02/03 PROVE SCRITTE E RISOLUZIONI

ANALISI MATEMATICA I A.A. 02/03 PROVE SCRITTE E RISOLUZIONI ANALISI MATEMATICA I A.A. /3 PROVE SCRITTE E RISOLUZIONI L. GIACOMELLI, P. LORETI Contents I prova intermedia 5.. compito A 3 Risoluzioni 3 I prova intermedia 5.. compito B 5 Risoluzioni 6 I prova intermedia

Dettagli

Analisi Matematica 1 - a.a. 2017/ Secondo appello

Analisi Matematica 1 - a.a. 2017/ Secondo appello Analisi Matematica - a.a. 27/28 - Secondo appello Soluzione del test Test A 2 3 4 5 6 7 8 9 D D A B C B A E D D Test B 2 3 4 5 6 7 8 9 B A C C B E D E A A Test C 2 3 4 5 6 7 8 9 A C B E E D C B B C Test

Dettagli

Analisi Matematica per Informatici Esercitazione 10 a.a

Analisi Matematica per Informatici Esercitazione 10 a.a Analisi Matematica per Informatici Esercitazione a.a. 6-7 Dott. Simone Zuccher 7 Febbraio 7 Nota. Queste pagine potrebbero contenere degli errori: chi li trova è pregato di segnalarli all autore (zuccher@sci.univr.it).

Dettagli

STUDIO DEL GRAFICO DI UNA FUNZIONE

STUDIO DEL GRAFICO DI UNA FUNZIONE STUDIO DEL GRAFICO DI UNA FUNZIONE 1 Richiami Teorema 1 (Test di monotonia). Sia f : (a, b) R una funzione derivabile. Allora f è monotona crescente (risp. decrescente) in (a, b) se e solo se f () 0 (risp.

Dettagli

Modulo di Matematica

Modulo di Matematica Università degli Studi di Udine Anno Accademico / Corso di Laurea in Biotecnologie Modulo di Matematica Esame del 9// N.B.: scrivere nome, cognome e numero di matricola su ogni foglio consegnato. Tempo

Dettagli

Modulo di Matematica

Modulo di Matematica Università degli Studi di Udine Anno Accademico 205/206 Corso di Laurea in Biotecnologie Modulo di Matematica Esame del 20/07/206 N.B.: scrivere nome, cognome e numero di matricola su ogni foglio consegnato.

Dettagli

Matematica A Corso di Laurea in Chimica. Prova scritta del Numero di matricola VOTO...

Matematica A Corso di Laurea in Chimica. Prova scritta del Numero di matricola VOTO... Matematica A Corso di Laurea in Chimica Prova scritta del 04.12.07 Tema A Nome Cognome Numero di matricola VOTO... Svolgere gli esercizi utilizzando ESCLUSIVAMENTE lo spazio predisposto P1) Data la funzione

Dettagli

UNIVERSIT A DEGLI STUDI DI ROMA LA SAPIENZA" SEDE DISTACCATA DI LATINA CORSO DI DIPLOMA-LAUREA IN INGEGNERIA (SETTORE dell'informazione) a.a. 999/2000

UNIVERSIT A DEGLI STUDI DI ROMA LA SAPIENZA SEDE DISTACCATA DI LATINA CORSO DI DIPLOMA-LAUREA IN INGEGNERIA (SETTORE dell'informazione) a.a. 999/2000 UNIVERSIT A DEGLI STUDI DI ROMA LA SAPIENZA" SEDE DISTACCATA DI LATINA CORSO DI DIPLOMA-LAUREA IN INGEGNERIA (SETTORE dell'informazione) a.a. 999/2000 - I PROVA SCRITTA DI ESONERO DI ANALISI I 20/2/999

Dettagli

UNIVERSITÁ DEGLI STUDI DI PERUGIA Facoltá di Ingegneria Edile-Architettura Prova scritta di ANALISI MATEMATICA I Soluzione della prova del

UNIVERSITÁ DEGLI STUDI DI PERUGIA Facoltá di Ingegneria Edile-Architettura Prova scritta di ANALISI MATEMATICA I Soluzione della prova del UNIVERSITÁ DEGLI STUDI DI PERUGIA Facoltá di Ingegneria Edile-Architettura Prova scritta di ANALISI MATEMATICA I Soluzione della prova del 05.0.008. Stabilire, al variare di x IR, il comportamento della

Dettagli

Es. 1: 6 punti Es. 2: 12 punti Es. 3: 6 punti Es. 4: 6 punti Es. 5: 3 punti Totale. sin x arctan x lim. 4 x 2. f(x) = x 2

Es. 1: 6 punti Es. 2: 12 punti Es. 3: 6 punti Es. 4: 6 punti Es. 5: 3 punti Totale. sin x arctan x lim. 4 x 2. f(x) = x 2 Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Terzo appello, 1 Luglio 010 Cognome: Nome: Matricola: Compito A Es. 1: 6 punti Es. : 1 punti Es. 3: 6 punti Es. 4: 6 punti Es. 5: 3 punti

Dettagli

Facoltà di Scienze MM.FF.NN. Corso di Laurea in Matematica - A.A Prova scritta di Analisi Matematica I del c.

Facoltà di Scienze MM.FF.NN. Corso di Laurea in Matematica - A.A Prova scritta di Analisi Matematica I del c. Prova scritta di Analisi Matematica I del 22-5-2 - c. ) Provare che 3 3è irrazionale. 2) Provare che il grafico di f(x) =(x ) + 2 sin[(x ) ]:R \{} R ammette la retta di equazione x = come asintoto verticale.

Dettagli

Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile

Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 41 1 Derivata

Dettagli

Esercizi di Analisi Matematica I. Andrea Corli e Alessia Ascanelli

Esercizi di Analisi Matematica I. Andrea Corli e Alessia Ascanelli Esercizi di Analisi Matematica I Andrea Corli e Alessia Ascanelli 6 settembre 5 ii Indice Introduzione v Nozioni preinari. Fattoriali e binomiali..................................... Progressioni..........................................

Dettagli

Funzioni derivabili (V. Casarino)

Funzioni derivabili (V. Casarino) Funzioni derivabili (V. Casarino) Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in = 0 delle funzioni: a) 5 b) 3 4 c) + 1 d) sin. ) Scrivere l equazione della retta tangente

Dettagli

Soluzioni del Foglio 7

Soluzioni del Foglio 7 7.1. Esercizio. Assegnate le funzioni ANALISI Soluzioni del Foglio 7 18 novembre 2009 e e sin(), dire quali possono essere prolungate per continuitá in = 0, studiare, per le funzioni che risultino prolungabili

Dettagli

Analisi Matematica 1

Analisi Matematica 1 Michele Campiti Prove scritte di Analisi Matematica 1 Ingegneria Industriale aa 2012 2013 y f 1 g 0 x La funzione seno e la funzione esponenziale Raccolta delle tracce di Analisi Matematica 1 per Ingegneria

Dettagli

b x 2 + c se x > 1 determinare a, b e c in modo che f sia continua in R, determinare a, b e c in modo che f sia anche derivabile in R

b x 2 + c se x > 1 determinare a, b e c in modo che f sia continua in R, determinare a, b e c in modo che f sia anche derivabile in R 9.. Esercizio. Data la funzione x tg( π x) se x < 4 f(x) = a se x = b x 2 + c se x > ANALISI Soluzione esercizi 9 dicembre 20 determinare a, b e c in modo che f sia continua in R, determinare a, b e c

Dettagli

Università di Milano Bicocca - Facoltà di Economia Esame di Matematica Generale I 7 luglio 2010

Università di Milano Bicocca - Facoltà di Economia Esame di Matematica Generale I 7 luglio 2010 Università di Milano Bicocca - Facoltà di Economia Esame di Matematica Generale I 7 luglio 1 Esercizio 1 Doo avere raresentato gra camente la seguente funzione, trovare gli intervalli del dominio in cui

Dettagli

Matematica per le Applicazioni Economiche I A.A. 2017/2018 Esercizi con soluzioni Limiti e funzioni continue

Matematica per le Applicazioni Economiche I A.A. 2017/2018 Esercizi con soluzioni Limiti e funzioni continue Matematica per le Applicazioni Economiche I AA 07/08 Esercizi con soluzioni Limiti e funzioni continue ottobre 07 Limiti Esercizio Usando l'opportuna denizione di ite, si verichi che + 5 Soluzione Osserviamo

Dettagli

LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA

LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA PROGRAMMA DI MATEMATICA Classe VB Anno Scolastico 014-015 Insegnante: Prof.ssa La Salandra Incoronata 1 Nozioni di topologia su Intervalli; Estremo superiore

Dettagli

Analisi Matematica 1 (prof. G. Cupini) (CdS Astronomia - Univ. Bologna) REGISTRO DELLE LEZIONI A.A

Analisi Matematica 1 (prof. G. Cupini) (CdS Astronomia - Univ. Bologna) REGISTRO DELLE LEZIONI A.A Analisi Matematica 1 (prof. G. Cupini) (CdS Astronomia - Univ. Bologna) REGISTRO DELLE LEZIONI A.A.2015-2016 22 SETTEMBRE 2015 3 ore 14-17 Insiemi e operazioni tra insiemi. Numeri reali. Assiomi dei numeri

Dettagli

ANNO ACCADEMICO 2015/2016 CORSO di LAUREA in BIOTECNOLOGIE MATEMATICA - I appello, 6/6/2016

ANNO ACCADEMICO 2015/2016 CORSO di LAUREA in BIOTECNOLOGIE MATEMATICA - I appello, 6/6/2016 ANNO ACCADEMICO 05/0 CORSO di LAUREA in BIOTECNOLOGIE MATEMATICA - I appello, //0 Esercizio. Le carte di un mazzo da 0, composto solo delle carte da a 5, vengono distribuite (5 a testa) ai quattro giocatori

Dettagli

Esercizi di prove scritte di Analisi Matematica I con schema di soluzione Paola Loreti. April 5, 2006

Esercizi di prove scritte di Analisi Matematica I con schema di soluzione Paola Loreti. April 5, 2006 Esercizi di prove scritte di Analisi Matematica I con schema di soluzione Paola Loreti April 5, 6 ESERCIZI. Studiare la convergenza della serie numerica al variare di γ IR.. Calcolare l integrale π n=

Dettagli

Esonero di Analisi Matematica I (A)

Esonero di Analisi Matematica I (A) Esonero di Analisi Matematica I (A) Ingegneria Edile, 19 dicembre 2000 () 1. Studiare il seguente ite: x 0 log 2 (cos x) ( 3 1 x 1 ) e (x3 ) 1. 2. Dire per quali numeri complessi entrambe le radici quadrate

Dettagli

ANALISI MATEMATICA 1 Commissione F. Albertini, P. Mannucci e M. Motta Ingegneria Gestionale, Meccanica, Meccatronica, Vicenza

ANALISI MATEMATICA 1 Commissione F. Albertini, P. Mannucci e M. Motta Ingegneria Gestionale, Meccanica, Meccatronica, Vicenza + Svolgimento (cenno) a) Dominio={ R,6= }. Non ci sono simmetrie. b)! f() = 4,! + f() = 4. La funzione non può essere prolungata per continuità in =, dove c è un salto.!+1 f() =!+1 arctan + = 1, f()!+1

Dettagli

Modulo di Matematica

Modulo di Matematica Università degli Studi di Udine Anno Accademico 205/206 Corso di Laurea in Biotecnologie Modulo di Matematica Esame del 4/09/206 N.B.: scrivere nome, cognome e numero di matricola su ogni foglio consegnato.

Dettagli

SOLUZIONI 3. f (x) = (x 2 1) 2/3 e x. (x 2 1) 2/3 e x 0 x R. x 4/3 e x = e 4/3 log x e x

SOLUZIONI 3. f (x) = (x 2 1) 2/3 e x. (x 2 1) 2/3 e x 0 x R. x 4/3 e x = e 4/3 log x e x Domanda Si consideri la funzione SOLUZIONI f x = x 2 2/ e x. Determinare il campo di esistenza, il segno, i iti alla frontiera e gli eventuali asintoti. Classificare gli eventuali punti di discontinuità

Dettagli

Matematica per l Economia (A-K) e Matematica Generale 09 febbraio 2018 (prof. Bisceglia) Traccia F

Matematica per l Economia (A-K) e Matematica Generale 09 febbraio 2018 (prof. Bisceglia) Traccia F Matematica per l Economia (A-K) e Matematica Generale 9 ebbraio 8 (pro Bisceglia) Traccia F Determinare se possibile un punto di approssimazione con un errore 8 dell equazione 5 arcsen nell intervallo

Dettagli

PROGRAMMA. Capitolo 1 : Concetti di base: numeri reali, funzioni, funzioni reali di variabile reale.

PROGRAMMA. Capitolo 1 : Concetti di base: numeri reali, funzioni, funzioni reali di variabile reale. PROGRAMMA Capitolo 1 : Concetti di base: numeri reali, funzioni, funzioni reali di variabile reale. Gli insiemi numerici oggetto del corso: numeri naturali, interi relativi, razionali. Operazioni sui numeri

Dettagli

x log(x) + 3. f(x) =

x log(x) + 3. f(x) = Università di Bari, Corso di Laurea in Economia e Commercio Esame di Matematica per l Economia L/Z Dr. G. Taglialatela 03 giugno 05 Traccia dispari Esercizio. Calcolare Esercizio. Calcolare e cos log d

Dettagli

MATEMATICA A Commissione Albertini, Mannucci, Motta, Zanella Ingegneria Gestionale, Meccanica, Meccatronica, Vicenza

MATEMATICA A Commissione Albertini, Mannucci, Motta, Zanella Ingegneria Gestionale, Meccanica, Meccatronica, Vicenza TEMA ( ) f() = log (determinare il dominio D; calcolare i limiti per che tende agli estremi finiti o infiniti z 4 + (3 + 6i)z + 5 + i = 0. ( + 3 ) α α (log + log + ) d. y = e y, y() = α. TEMA ( ) f() =

Dettagli

a j n + convergente divergente irregolare.

a j n + convergente divergente irregolare. Serie numeriche Definizione Data una successione reale {a j } + successione delle somme parziali n esime come: n s n a j, jj il cui limite, per n + : jj R, si definisce la s lim s n n + jj a j è detto

Dettagli

Diario del Corso Analisi Matematica I

Diario del Corso Analisi Matematica I Diario del Corso Analisi Matematica I 1. Martedì 1 ottobre 2013 Presentazione del corso. Nozioni di Teoria degli Insiemi. Numeri Naturali, loro proprietà, rappresentazione geometrica, sommatoria, principio

Dettagli

Corso di Analisi Matematica 1 - professore Alberto Valli

Corso di Analisi Matematica 1 - professore Alberto Valli Università di Trento - Corso di Laurea in Ingegneria Civile e Ingegneria per l Ambiente e il Territorio - 07/8 Corso di Analisi Matematica - professore Alberto Valli 6 foglio di esercizi - 5 ottobre 07

Dettagli

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del ANALISI MATEMATICA Area dell Ingegneria dell Informazione Appello del 9.7.8 Esercizio Si consideri la funzione TEMA f log e. i Si determini il dominio D e si studi il segno di f; ii si determininio i iti

Dettagli

NOME:... MATRICOLA:... Corso di Laurea in Fisica, A.A. 2008/2009 Calcolo 1, Esame scritto del f(x) = cos

NOME:... MATRICOLA:... Corso di Laurea in Fisica, A.A. 2008/2009 Calcolo 1, Esame scritto del f(x) = cos NOME:... MATRICOLA:.... Corso di Laurea in Fisica, A.A. 008/009 Calcolo, Esame scritto del 06.0.009 Consideriamo la funzione fx cos + x. a Determinare il dominio massimale di f. b Trovare tutti gli asintoti

Dettagli

1) Calcolare, se esiste, il limite seguente. 1 cos x + log(1 + x) lim 1) 2) Dire per quali numeri reali x converge la serie. ( 1) n ( e 1 n 1.

1) Calcolare, se esiste, il limite seguente. 1 cos x + log(1 + x) lim 1) 2) Dire per quali numeri reali x converge la serie. ( 1) n ( e 1 n 1. Prova scritta di Analisi Matematica I del giorno 05-1-009 Appello riservato a studenti fuori corso o ripetenti 1) Calcolare, se esiste, il ite seguente 1 cos x + log(1 + x) x 0+ x(e x 1) ) Dire per quali

Dettagli

Laurea in Informatica Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile

Laurea in Informatica Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile Laurea in Informatica Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile Docente: Anna Valeria Germinario Università di Bari A.V.Germinario (Università di Bari) Analisi Matematica

Dettagli

Temi d esame di Analisi Matematica 1

Temi d esame di Analisi Matematica 1 Temi d esame di Analisi Matematica 1 Area di Ingegneria dell Informazione - a cura di M. Bardi 31.1.95 f(x) = xe arctan 1 x (insieme di definizione, segno, iti ed asintoti, continuità e derivabilità, crescenza

Dettagli

Soluzione Traccia A. 14 febbraio 2013

Soluzione Traccia A. 14 febbraio 2013 Soluzione Traccia A 1 febbraio 21 ESERCIZIO 1. Dopo aver disegnato il grafico della circonferenza di equazione x 2 + y 2 2x = trovare le eventuali intersezioni con la retta di equazione 2x y + 2 =. Per

Dettagli

Università degli Studi di Verona

Università degli Studi di Verona Università degli Studi di Verona Dipartimento di Informatica Ca' Vignal 2 Strada le Grazie 5 3734 Verona - Italia Tel. +39 045 802 7069 Fax +39 045 802 7068 Corso di Laurea in Matematica Applicata PROVETTA

Dettagli

Diario del Corso Analisi Matematica I e Analisi Matematica

Diario del Corso Analisi Matematica I e Analisi Matematica Diario del Corso Analisi Matematica I e Analisi Matematica 1. Martedì 2 ottobre 2012 Nozioni di Teoria degli Insiemi. Numeri Naturali, loro proprietà, modello geometrico, sommatoria. 2. Mercoledì 3 ottobre

Dettagli

TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea in Fisica a.a.2001/02

TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea in Fisica a.a.2001/02 I seguenti quesiti ed il relativo svolgimento sono coperti dal diritto d autore, pertanto essi non possono essere sfruttati a fini commerciali o di pubblicazione editoriale senza autorizzazione esplicita

Dettagli

3. (Punti 8) Si consideri l integrale improprio. x n dx, n N.

3. (Punti 8) Si consideri l integrale improprio. x n dx, n N. Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA Prova scritta del 4 febbraio 27 Fila. Esporre il procedimento di risoluzione degli esercizi in maniera completa e leggibile.. (Punti 9) Data l

Dettagli

Esempi di QUESITI sulle derivate con risoluzione

Esempi di QUESITI sulle derivate con risoluzione Esempi di QUESITI sulle derivate con risoluzione 1 Sia data una funzione f(x) continua nel punto x 0 : allora essa è anche derivabile in x 0? Se invece l'ipotesi prevede che f(x) è derivabile in x 0, si

Dettagli

Politecnico di Milano Ingegneria Industriale Analisi Matematica 1 e Geometria

Politecnico di Milano Ingegneria Industriale Analisi Matematica 1 e Geometria Politecnico di Milano Ingegneria Industriale Analisi Matematica e Geometria Preparazione al primo compito in itinere Cognome: Nome: Matricola: Prima Parte. Determinare, se esistono, il minimo, il massimo,

Dettagli

Consorzio Nettuno - Corso di Matematica 1 Schede di lavoro guidato per le esercitazioni

Consorzio Nettuno - Corso di Matematica 1 Schede di lavoro guidato per le esercitazioni Consorzio Nettuno - Corso di Matematica 1 Schede di lavoro guidato per le esercitazioni A cura di Sebastiano Cappuccio SCHEDA N 20 ARGOMENTO: Grafici di funzioni numeriche reali Asintoti orizzontali, verticali,

Dettagli

Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 19 Dicembre Studio di Funzione.

Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 19 Dicembre Studio di Funzione. Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 19 icembre 2016 Studio di Funzione 1. Si consideri la funzione f : R R così definita f(x) 1 2 log x x 2. (a) eterminare il

Dettagli

PROVE SCRITTE DI ANALISI MATEMATICA I, ANNO 2015/16

PROVE SCRITTE DI ANALISI MATEMATICA I, ANNO 2015/16 PROVE SCRITTE DI ANALISI MATEMATICA I, ANNO 5/6 Prova scritta del //6 Si studi, al variare di x, il comportamento della serie n= n Ax n Ax, dove A denota il numero delle lettere del nome. Si studi la funzione

Dettagli

1) D0MINIO FUNZIONE. Determinare il dominio della funzione f (x) = 4 x 2 4x + 3 x 2 6x + 8 Deve essere. x 2 6x + 5 (x 1) (x 5)

1) D0MINIO FUNZIONE. Determinare il dominio della funzione f (x) = 4 x 2 4x + 3 x 2 6x + 8 Deve essere. x 2 6x + 5 (x 1) (x 5) ) DMINIO FUNZIONE Determinare il dominio della funzione f (x) = x x + x x + 8 x x + (x ) (x ) Deve essere = quindi x (, ] (, ] (, + ). x x + 8 (x ) (x ) Determinare il dominio della funzione f (x) = x

Dettagli

Esercizi di Analisi Matematica

Esercizi di Analisi Matematica Università degli Studi di Udine Anno Accademico 005/06 Facoltà di Scienze Matematiche Fisiche e Naturali Corso di Laurea in Informatica Esercizi di Analisi Matematica Esercizi del 9 settembre 005 Dimostrare

Dettagli

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione ANALISI MATEMATICA Area dell Ingegneria dell Informazione Appello del.. TEMA Esercizio. Sia f) = + 3) log + 3), D =] 3, + [. i) Determinare i iti di f agli estremi di D e gli eventuali asintoti; studiarne

Dettagli

Analisi Matematica 1 Secondo appello

Analisi Matematica 1 Secondo appello Analisi Matematica 1 Secondo appello 11 febbraio 219 Testo A1 Consegnare solo questo foglio Prima parte: 2 punti per risposta corretta, 1 per ogni errore. Soglia minima 12/2. Seconda parte: Domande A e

Dettagli

Laurea triennale in Informatica Corso di Analisi matematica (A) a.a. 2007/08 9 giugno 2008

Laurea triennale in Informatica Corso di Analisi matematica (A) a.a. 2007/08 9 giugno 2008 9 giugno 2008 1. Data la funzione f(x) = x e 1/(x2 4), (c) stabilire se f ammette punti singolari e in caso affermativo classificarli; calcolare la derivata prima di f e utilizzarla per studiare la monotonia

Dettagli

A.A. 2011/12 CORSO DI ANALISI MATEMATICA 10 crediti, I semestre

A.A. 2011/12 CORSO DI ANALISI MATEMATICA 10 crediti, I semestre A.A. 2011/12 CORSO DI ANALISI MATEMATICA 10 crediti, I semestre REGISTRO ELETTRONICO DELLE LEZIONI IMPORTANTE: Le definizioni ed i risultati fondamentali per poter studiare con profitto sono scritti in

Dettagli

ESERCITAZIONE 6: STUDIO DI FUNZIONI

ESERCITAZIONE 6: STUDIO DI FUNZIONI ESERCITAZIONE 6: STUDIO DI FUNZIONI Tiziana Raparelli 31/03/009 1 ESERCIZI ESERCIZIO 1 Studiare le seguenti funzioni, discuterne l uniforme continuità e tracciarne un grafico qualitativo. (a) f() = log(

Dettagli

Esame di Analisi Matematica Prova scritta del 9 giugno 2009

Esame di Analisi Matematica Prova scritta del 9 giugno 2009 Prova scritta del 9 giugno 2009 A1 Data la funzione f(x) = x2 3 e x, (f) determinare in base al grafico di f il numero delle soluzioni dell equazione f(x) = λ al variare di Calcolare un valore approssimato

Dettagli

Analisi Matematica I

Analisi Matematica I Università di Pisa - orso di Laurea in Ingegneria Edile-Architettura Analisi Matematica I Pisa, settembre omanda La funzione f : R R definita da f(x) = x + e x A) non è né iniettiva né surgettiva ) è iniettiva

Dettagli

ANALISI MATEMATICA 1 - Parte B Commissione F. Albertini, L. Caravenna e M. Motta Ingegneria Meccanica, Meccatronica, Innovazione del Prodotto

ANALISI MATEMATICA 1 - Parte B Commissione F. Albertini, L. Caravenna e M. Motta Ingegneria Meccanica, Meccatronica, Innovazione del Prodotto ANALISI MATEMATICA - Parte B Commissione F. Albertini, L. Caravenna e M. Motta Ingegneria Meccanica, Meccatronica, Innovazione del Prodotto Vicenza, Settembre 8 TEMA Esercizio Si consideri la funzione

Dettagli

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del ANALISI MATEMATICA Area dell Ingegneria dell Informazione Appello del 3..7 TEMA Esercizio Calcolare l integrale log(3) 4 dx Svolgimento. Si ha log(3) 4 dx = (ponendo ex = t, per cui dx = dt/t) e = 4 3

Dettagli

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione, Canali 1 e 4 Appello del

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione, Canali 1 e 4 Appello del ANALISI MATEMATICA Area dell Ingegneria dell Informazione, Canali e 4 Appello del 7.. NB: in fondo allo svolgimento del tema 4 si trovano alcuni brevi commenti agli errori più comuni trovati nella correzione.

Dettagli

Analisi - 10 settembre 2008 Corso di Laurea in Fisica - Fisica ed Astrofisica

Analisi - 10 settembre 2008 Corso di Laurea in Fisica - Fisica ed Astrofisica Analisi - 1 settembre 28 Corso di Laurea in Fisica - Fisica ed Astrofisica Chi deve fare lo scritto di Derivate e Integrali (vecchio ordinamento) deve svolgere gli esercizi: 1, 2, 3, 4, 5 Esercizio 1 Data

Dettagli