ESERCIZIO n.1. rispetto alle rette r e t indicate in Figura. h t. d b GA#1 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "ESERCIZIO n.1. rispetto alle rette r e t indicate in Figura. h t. d b GA#1 1"

Transcript

1 Esecizi svolti di geometia delle aee Aliandi U., Fusci P., Pisano A., Sofi A. ESERCZO n.1 Data la sezione ettangolae ipotata in Figua, deteminae: a) gli assi pincipali centali di inezia; ) l ellisse pincipale centale di inezia; c) il nocciolo centale di inezia; d) i momenti di inezia e t ispetto alle ette e t indicate in Figua. = = cm d = 5cm s = 6cm t d s A#1 1

2 Esecizi svolti di geometia delle aee Aliandi U., Fusci P., Pisano A., Sofi A. 1. Deteminazione del aicento della sezione l aicento di una sezione ettangolae può essee immediatamente individuato come punto di intesezione di due assi di simmetia della sezione. Assunto il sistema di ifeimento (, ) indicato in Figua, isulta quindi: 15 = = = 7.5 cm, = = = 15 cm. = = cm Più in geneale, se non si sfutta la simmetia, le coodinate del aicento possono essee calcolate attaveso le fomule: S S =, = ; A A A#1

3 Esecizi svolti di geometia delle aee Aliandi U., Fusci P., Pisano A., Sofi A. nelle quali A è l aea della sezione, mente S e agli assi e del sistema di ifeimento indicato in Figua. Si a dunque: S sono i momenti statici della sezione ispetto Aea A: A= = 15 = 45 cm Momento statico S ispetto all asse : da = d d = = cm d S = da = ( d) = d = = A 15 = = = 675 cm Momento statico S ispetto all asse : S = da = ( d) = d = = A 15 = = = 75 cm da = d Si può infine deteminae la posizione del aicento della sezione nel ifeimento (, ) consideato applicando le fomule pima ipotate ed esplicitate numeicamente pe il caso in esame; isulta: S 75 S 675 = = = 7.5 cm, = = = 15 cm. A 45 A 45 A#1

4 Esecizi svolti di geometia delle aee Aliandi U., Fusci P., Pisano A., Sofi A.. Deteminazione degli assi pincipali centali di inezia Nota la posizione del aicento della sezione in esame nel ifeimento (, ), gli assi aicentici e indicati in Figua sono ance assi pincipali centali di inezia pe la sezione in esame. Rispetto a tali assi infatti il momento di inezia centifugo isulta essee nullo, cioè =. Si icoda a tal poposito ce se una sezione possiede due assi di simmetia etta questi coincidono con gli assi pincipali centali di inezia. Di seguito gli assi pincipali centali di inezia saanno indicati con le lettee gece ξ ed η, come specificato in Figua. η = = cm = 7.5cm = ξ A#1 4

5 Esecizi svolti di geometia delle aee Aliandi U., Fusci P., Pisano A., Sofi A.. Deteminazione dell ellisse centale di inezia L ellisse centale di inezia, ifeita agli assi pincipali centali di inezia ξ e η, a equazione: ξ ρ η + = 1 η ρξ nella quale ρ ξ e ρ η sono i semiassi dell ellisse ce coincidono, com è noto, con i aggi giatoi di inezia della sezione espessi da: ξ η ρξ =, ρη =. A A Nelle elazioni pecedenti: A è l aea totale della sezione in esame; ξ e η sono i momenti pincipali centali di inezia della sezione ce, nel caso in esame, coincidono con i momenti del secondo odine e ispetto agli assi e. A#1 5

6 Esecizi svolti di geometia delle aee Aliandi U., Fusci P., Pisano A., Sofi A..1 Calcolo del momento pincipale centale di inezia della sezione ispetto all asse ξ l momento di inezia della sezione ispetto all asse ξ si calcola, pe definizione, attaveso il seguente integale: 15 4 ( ) = da = d = d = = + = = = 75 cm. ξ A da = d η d = = cm = 7.5cm = ξ Si vuole qui sottolineae il isultato notevole pe cui il momento di inezia di una sezione ettangolae ispetto all asse aicentico (paallelo alla ase ) è pai a =. 1 Tale elazione veà di seguito assunta come nota pe sezioni ettangolai e petanto pe valutae non si icoeà più al calcolo dell integale sopa ipotato. A#1 6

7 Esecizi svolti di geometia delle aee Aliandi U., Fusci P., Pisano A., Sofi A.. Calcolo del momento pincipale centale di inezia della sezione ispetto all asse η l momento di inezia della sezione ispetto all asse η si calcola, pe definizione, attaveso il seguente integale: 15 4 ( ) = da = d = d = = + = = = cm. η A η = = cm = 7.5cm = ξ da = d d Si vuole qui sottolineae il isultato notevole pe cui il momento di inezia di una sezione ettangolae ispetto all asse aicentico (paallelo all altezza ) è pai a =. 1 Tale elazione veà di seguito assunta come nota pe sezioni ettangolai e petanto pe valutae non si icoeà più al calcolo dell integale sopa ipotato. A#1 7

8 Esecizi svolti di geometia delle aee Aliandi U., Fusci P., Pisano A., Sofi A.. Ellisse centale di inezia Noti ξ e η, si possono in definitiva calcolae i aggi giatoi di inezia, si a: ξ 75 η ρξ = = = 8.66 cm, ρη = = = 4. cm. A 45 A 45 Questi ultimi definiscono l equazione dell ellisse centale di inezia nel ifeimento pincipale ( ξ, η ) pemettendone così la sua individuazione (effettuaile pe punti ad esempio) così come indicato in Figua. η = = cm = 7.5cm = ρ ξ ρ η ξ A#1 8

9 Esecizi svolti di geometia delle aee Aliandi U., Fusci P., Pisano A., Sofi A. L individuazione dell ellisse, noti i semiassi ρξ ρ e ρη ρ, può condusi ance sfuttando una semplice costuzione gafica di seguito illustata e ipotata scematicamente nella Figua seguente. Costuzione gafica di un ellisse noti ce siano i suoi semiassi 1. Tacciae i semiassi e le ciconfeenze di cento aventi pe aggi i semiassi stessi;. Tacciata pe la geneica semietta, condue dalla sua intesezione A con la ciconfeenza intena la etta i paallela al semiasse maggioe, e dall intesezione B con la ciconfeenza estena la etta e paallela al semiasse minoe;. l punto E intesezione di i e e è punto dell ellisse; 4. Ripetee la costuzione pe un numeo di punti sufficiente alla costuzione dell ellisse. e E A B ρ ρ i A#1 9

10 Esecizi svolti di geometia delle aee Aliandi U., Fusci P., Pisano A., Sofi A. 4. Deteminazione del nocciolo centale di inezia l nocciolo centale di inezia di una figua piana è il luogo dei centi elativi delle ette del piano ce non tagliano la figua o, nella polaità d inezia di cento il aicento della figua (polaità esistente ta le ette del piano e i simmetici ispetto a dei loo centi elativi), il nocciolo centale di inezia è il luogo degli antipoli delle ette del piano ce non tagliano la figua. l nocciolo è qui di seguito individuato attaveso la costuzione del suo contono e ciò, in paticolae, attaveso la deteminazione della posizione dei vetici dello stesso, deteminati come antipoli delle ette tangenti alla fontiea (o contono) della figua esa convessa. l contono del nocciolo centale di inezia della sezione ettangolae in esame è quindi una figua a 4 vetici ciascuno dei quali appesenta l antipolo di una delle tangenti al contono della sezione stessa. 4.1 Metodo analitico Le coodinate dei vetici R i ( i = 1,,,4) del nocciolo centale di inezia possono essee calcolate nel ifeimento otogonale (, ) pima consideato pevia deteminazione, nello stesso ifeimento, delle equazioni delle ette i ( i = 1,,, 4 ) tangenti al contono della figua. Nota infatti l equazione di una etta nel ifeimento (, ) intendesi valutate nel ifeimento (, ), nella foma a+ + 1 =, dove e sono da nello stesso ifeimento, a coodinate P (, ) ( ) ; ( ) = a + A = a + A P P e il pedice è omesso pe comodità, il suo antipolo, fonite da: P P nelle quali compaiono, olte ai coefficienti a e dell equazione della etta consideata, l aea A della sezione e i momenti del secondo odine della stessa sezione ispetto al ifeimento (, ) valutati in pecedenza. n paticolae: pe ette di equazione = 1, cioè paallele all asse, ponendo pe semplicità q = 1, dalle pecedenti isulta: P = ; P = qa qa pe ette di equazione = 1 a, quindi paallele all asse, ponendo q * = 1 a si a invece: P = ; * P = * qa qa A#1 1

11 Esecizi svolti di geometia delle aee Aliandi U., Fusci P., Pisano A., Sofi A. Con ifeimento alla Figua, le ette tangenti al contono della sezione anno nel ifeimento (, ), le seguenti equazioni: etta 1 (paallela all asse ): = = = 15; etta (paallela all asse ): = = 15 = 7.5; etta (paallela all asse ): = = = 15; etta 4 (paallela all asse ): = = 15 = 7.5; Riepilogando, nel ifeimento (, ), le ette tangenti alla figua anno equazioni: 1 : = 15 : = 7.5 : = 15 4 : = = = cm = 7.5cm = A#1 11

12 Esecizi svolti di geometia delle aee Aliandi U., Fusci P., Pisano A., Sofi A. Applicando le fomule pima iciamate, icodando ce nel caso in esame ξ ed η, si possono quindi calcolae le coodinate dei vetici R 1, R, R, e R 4, antipoli ispettivamente delle ette 1,,, e 4. Si calcola: coodinate punto R 1 (antipolo della etta 1 di equazione = 15, paallela all asse ): R = = cm; 5 ; 1 R = = = = cm 1 qa qa 6 6 coodinate punto R (antipolo della etta di equazione = 7.5, paallela all asse ): 15 R = = = =.5 cm; ; * R = = cm * qa 6 6 qa coodinate punto R (antipolo della etta di equazione = 15, paallela all asse ): R = = cm; 5 ; R = = = = cm qa qa 6 6 coodinate punto R 4 (antipolo della etta 4 di equazione = 7.5, paallela all asse ): 15 = R.5 cm;. * R cm * qa = 6 = 6 = = qa = Unendo i punti R i così individuati si ottiene il contono, e quindi il nocciolo centale di inezia della sezione, come illustato in Figua. Si icoda ce i lati del nocciolo sono le antipolai dei vetici 1 / 4 = = cm = 7.5cm = della sezione. Si osseva inolte ce, data la simmetia della sezione, ai fini della R individuazione del contono del nocciolo, è sufficiente deteminae le coodinate di due vetici, antipolai di due ette tangenti alla Figua / R 4 R e otogonali ta loo, ad esempio R 1 ed R o altenativamente R ed R 4. Nel caso in esame / R 1 infine, il nocciolo è un omo di diagonali pai a / e / (egola del tezo medio). / / / A#1 1

13 Esecizi svolti di geometia delle aee Aliandi U., Fusci P., Pisano A., Sofi A. 4. Metodo gafico n altenativa alla pocedua analitica pima esposta, di seguito si popone un metodo gafico pe l individuazione dei vetici del nocciolo centale d inezia. l metodo è ipotato in sintesi, pe passi opeativi sequenziali e elativamente alla deteminazione di un solo vetice del nocciolo della sezione in esame, essendo la costuzione gafica facilmente ipetiile pe i estanti vetici. La costuzione è quella ce consente, data una figua piana della quale si sia deteminata l ellisse centale d inezia, di individuae l antipolo R di una qualsiasi etta del piano. Essa si asa su una elazione notevole della polaità d inezia di cento, nota come elazione di coniugio, espessa da: nella quale: ρ = R R ' è la etta paallela ad e passante pe il aicento della figua; ρ è il aggio giatoe d inezia ispetto a, definito dal semidiameto dell ellisse appatenente * alla diezione coniugata ad ; R è l antipolo della etta ; R è il coniugato di R ; R e R ' individuano i segmenti ispetto ai quali ρ è medio popozionale, come stailito dalla elazione di coniugio. Si imanda ai lii di testo consigliati pe i fondamenti teoici sui quali si asa la costuzione poposta. A#1 1

14 Esecizi svolti di geometia delle aee Aliandi U., Fusci P., Pisano A., Sofi A. Con ifeimento alla Figua, i passi opeativi della costuzione poposta sono: #1 Nota l ellisse centale di inezia e fissata la tangente, della quale si vuole individuae l antipolo R, si tacciano le tangenti all ellisse paallele a, individuando così i punti di tangenza A e B ; # La etta passante pe i punti di tangenza A e B è la diezione * coniugata ad, la sua intesezione con è il punto R, coniugato di R ; il aggio giatoe ρ coincide con il semidiameto B (o A ); # Si uota B di 9 sì da dispolo sull otogonale pe alla diezione coniugata *, sia B ' il segmento così ottenuto; #4 Si unisce R con B e si conduce pe B l otogonale a R ' B ' sino ad intesecae la diezione coniugata * in R, antipolo della etta consideata e vetice del nocciolo centale di inezia della sezione. * A tg R B ρ B R tg Ripetendo la costuzione pe le alte tangenti alla Figua si individua in modo completo il nocciolo centale di inezia della sezione. A#1 14

15 Esecizi svolti di geometia delle aee Aliandi U., Fusci P., Pisano A., Sofi A. 5. Calcolo dei momenti di inezia ispetto alle ette e t Si calcolano infine i momenti di inezia ispetto alle ette e t mostate in Figua. Tali momenti possono essee calcolati utilizzando il teoema del taspoto; nel seguito e indicano i momenti di inezia della sezione ispetto agli assi aicentici e, ispettivamente paalleli alle ette e t. Momento di inezia della sezione ispetto alla etta = + A d ( 15 5) 175 cm + = + + = 4 Momento di inezia della sezione ispetto alla etta t t = + A + s = = 4 ( ) 945cm = = cm d = 5cm s = 6cm t d s A#1 15

Esercizi svolti di geometria delle aree Alibrandi U., Fuschi P., Pisano A., Sofi A. ESERCIZIO n.5

Esercizi svolti di geometria delle aree Alibrandi U., Fuschi P., Pisano A., Sofi A. ESERCIZIO n.5 Esercizi svolti di geometria delle aree Alibrandi U., Fusci P., Pisano A., Sofi A. ESERCZO n.5 Data la sezione riportata in Figura, determinare: a) gli assi principali centrali di inerzia; b) l ellisse

Dettagli

ESERCIZIO n.3. y t. rispetto alle rette r e s indicate in Figura. GA#3 1

ESERCIZIO n.3. y t. rispetto alle rette r e s indicate in Figura. GA#3 1 Esecizi svoli di geomeia delle aee Alibandi U., Fuschi P., Pisano A., Sofi A. ESERCZO n.3 Daa la sezione a doppio T ipoaa in Figua, deeminae: a) gli assi pincipali cenali di inezia; b) l ellisse pincipale

Dettagli

Massimi e minimi con le linee di livello

Massimi e minimi con le linee di livello Massimi e minimi con le linee di livello Pe affontae questo agomento è necessaio sape appesentae i fasci di cuve ed in paticolae: Fasci di paabole. Pe affontae questo agomento si consiglia di ivedee l

Dettagli

Geometria analitica in sintesi

Geometria analitica in sintesi punti distanza ta due punti coodinate del punto medio coodinate del baicento ta due punti di un tiangolo di vetici etta e foma implicita foma esplicita foma segmentaia equazione della etta m è il coefficiente

Dettagli

Geometria analitica in sintesi

Geometria analitica in sintesi geometia analitica Geometia analitica in sintesi punti istanza ta ue punti punto meio baicento ta ue punti i un tiangolo i vetici aea i un tiangolo i vetici C B A etta e foma implicita foma esplicita foma

Dettagli

Lo schema seguente spiega come passare da una equazione all altra e al grafico della circonferenza. Svolgere i calcoli.

Lo schema seguente spiega come passare da una equazione all altra e al grafico della circonferenza. Svolgere i calcoli. D4. Ciconfeenza D4.1 Definizione di ciconfeenza come luogo di punti Definizione: una ciconfeenza è fomata dai punti equidistanti da un punto detto cento. La distanza (costante) è detta aggio. Ci sono due

Dettagli

GEOMETRIA ELEMENTARE. h = 2 2 S. h =

GEOMETRIA ELEMENTARE. h = 2 2 S. h = QUESITI 1 GEOMETRI ELEMENTRE 1. (Da Veteinaia 015) Le diagonali (ossia le linee che uniscono i vetici opposti) di un ombo misuano ispettivamente 4 cm e 8 cm. Qual è il peimeto del ombo in cm? a) 8 3 b)

Dettagli

Momenti d'inerzia di figure geometriche semplici

Momenti d'inerzia di figure geometriche semplici Appofondimento Momenti d'inezia di figue geometice semplici Pidatella, Feai Aggadi, Pidatella, Coso di meccanica, maccine ed enegia Zanicelli 1 Rettangolo Pe un ettangolo di ase e altezza (FGURA 1.a),

Dettagli

1 Definizioni e proprietà

1 Definizioni e proprietà Definizioni e popietà Retta e ciconfeenza ngoli al cento ed angoli alla ciconfeenza Equazione della ciconfeenza nel piano catesiano 5 Posizioni elative ed asse adicale di due ciconffeenze Definizioni e

Dettagli

LEZIONE 10. d(a, B) = AB = AB = (x A x B ) 2 + (y A y B ) 2 + (z A z B ) 2.

LEZIONE 10. d(a, B) = AB = AB = (x A x B ) 2 + (y A y B ) 2 + (z A z B ) 2. LEZIONE 10 10.1. Distanze. Definizione 10.1.1. In S n sia fissata un unità di misua u. Se A, B S n, definiamo distanza fa A e B, e sciviamo d(a, B), la lunghezza del segmento AB ispetto ad u. Abbiamo già

Dettagli

Unità Didattica N 27 Circonferenza e cerchio

Unità Didattica N 27 Circonferenza e cerchio 56 La ciconfeenza ed il cechio Ciconfeenza e cechio 01) Definizioni e popietà 02) Popietà delle code 03) Ciconfeenza passante pe te punti 04) Code e loo distanza dal cento 05) Angoli, achi e code 06) Mutua

Dettagli

Costruzioni di base. Enti geometrici fondamentali. unità 2. Definizioni. Costruzioni geometriche

Costruzioni di base. Enti geometrici fondamentali. unità 2. Definizioni. Costruzioni geometriche unità ostuzioni geometiche ostuzioni di ase nti geometici fondamentali efinizioni Punto nte geometico pivo di dimensioni; è definiile come isultato dell intesezione di due elementi lineai ettilinei o cuvilinei

Dettagli

IL VOLUME DEI SOLIDI Conoscenze

IL VOLUME DEI SOLIDI Conoscenze IL VOLUME DEI SOLIDI Conoscenze 1. Completa. a. Il peso di un copo dipende dal volume e dalla sostanza di cui è costituito b. Ogni sostanza ha il suo peso specifico, che è il peso dell unità di volume

Dettagli

ELEMENTI DI GEOMETRIA SOLIDA

ELEMENTI DI GEOMETRIA SOLIDA POF. IN CEESO.S. EINSEIN EEMENI DI GEOMEI SOID Postulati: ) pe punti dello spazio, non allineati, passa uno e un solo piano; ) una etta passante pe due punti di un piano giace inteamente in quel piano;

Dettagli

Nome..Cognome. classe 5D 29 Novembre VERIFICA di FISICA: Elettrostatica Domande

Nome..Cognome. classe 5D 29 Novembre VERIFICA di FISICA: Elettrostatica Domande Nome..ognome. classe 5 9 Novembe 8 RIFI di FISI: lettostatica omande ) ai la definizione di flusso di un campo vettoiale attaveso una supeficie. nuncia il teoema di Gauss pe il campo elettico (senza dimostalo)

Dettagli

IL VOLUME DEI SOLIDI Conoscenze

IL VOLUME DEI SOLIDI Conoscenze IL VOLUME DEI SOLIDI Conoscenze 1. Completa. a. Il peso di un copo dipende dal...e dalla...di cui è costituito b. Ogni sostanza ha il suo peso specifico, che è... di quella sostanza c. Il peso specifico

Dettagli

AI VERTICI DI UN QUADRATO DI LATO 2L SONO POSTE 4 CARICHE UGUALI Q. DETERMINARE: A) IL CAMPO ELETTRICO IN UN PUNTO P DELL ASSE.

AI VERTICI DI UN QUADRATO DI LATO 2L SONO POSTE 4 CARICHE UGUALI Q. DETERMINARE: A) IL CAMPO ELETTRICO IN UN PUNTO P DELL ASSE. ESERCIZIO 1 AI VERTICI DI UN UADRATO DI LATO SONO POSTE 4 CARICHE UGUALI. DETERMINARE: A) IL CAMPO ELETTRICO IN UN PUNTO P DELL ASSE. 4 caiche uguali sono poste ai vetiti di un quadato. L asse di un quadato

Dettagli

Note del corso di Geometria

Note del corso di Geometria Giuseppe ccascina Valeio Monti Note del coso di Geometia ppendice nno ccademico 2008-2009 ii apitolo 1 Richiami di geometia del piano 1.1 Intoduzione Richiamiamo alcuni agomenti di geometia euclidea del

Dettagli

Lezione 27 - Torsione nelle sezioni circolari ed ellittiche

Lezione 27 - Torsione nelle sezioni circolari ed ellittiche Lezione 7 - Tosione nelle sezioni cicolai ed ellittiche ü [A.a. 11-1 : ultima evisione 7 agosto 11] In questa lezione si applicano i isultati della lezione pecedente allo studio di alcune sezione di foma

Dettagli

SIMULAZIONE DELLA PROVA D ESAME DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I.

SIMULAZIONE DELLA PROVA D ESAME DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. SIMULAZINE DELLA PRVA D ESAME DI LICE SCIENTIFIC CRS SPERIMENTALE P.N.I. Risolvi uno dei due poblemi e 5 dei quesiti del questionaio. PRBLEMA In un piano è data la ciconfeenza di cento e aggio A ; conduci

Dettagli

Curve meccaniche EVOLVENTE SCHEDA DI APPROFONDIMENTO. Costruzione geometrica. Caratteristiche. glossario

Curve meccaniche EVOLVENTE SCHEDA DI APPROFONDIMENTO. Costruzione geometrica. Caratteristiche. glossario SHEDA DI AFNDIMENT uve meccaniche Le cuve meccaniche o cuve cicliche sono oiginate da un punto collegato a una etta o cechio che otola senza stisciae lungo una taiettoia cicolae o ettilinea. Il nome di

Dettagli

Appunti su argomenti monografici per il corso di FM1 Prof. Pierluigi Contucci. Gravità e Teorema di Gauss

Appunti su argomenti monografici per il corso di FM1 Prof. Pierluigi Contucci. Gravità e Teorema di Gauss 1 Appunti su agomenti monogafici pe il coso di FM1 Pof. Pieluigi Contucci Gavità e Teoema di Gauss Vogliamo dimostae, a patie dalla legge di gavitazione univesale che il campo gavitazionale geneato da

Dettagli

GONIOMETRIA. MISURA DEGLI ANGOLI La misura di un angolo si può esprimere in diversi modi, a seconda dell unità di misura che si sceglie.

GONIOMETRIA. MISURA DEGLI ANGOLI La misura di un angolo si può esprimere in diversi modi, a seconda dell unità di misura che si sceglie. of. Luigi Cai Anno scolastico 4-5 GONIOMETRIA MISURA DEGLI ANGOLI La misua di un angolo si può espimee in divesi modi, a seconda dell unità di misua che si sceglie. Sistema sessagesimale Si assume come

Dettagli

Geometria analitica: assi e punti

Geometria analitica: assi e punti Geometia analitica: ai e punti itema di ai cateiani monometico otogonale è l oigine degli ai cateiani è l ae delle acie : è l ae delle odinate ditanza ta due punti O(0,0): oigine degli ai cateiani : punto

Dettagli

AUTOVALORI ED AUTOVETTORI DI UNA MATRICE

AUTOVALORI ED AUTOVETTORI DI UNA MATRICE AUTOVALORI ED AUTOVETTORI DI UNA MATRICE TEOREMA: Un elemento di K è un autovaloe pe una matice A, di odine n, se e solo se, indicata con I la matice identità di odine n, isulta: det( A I) Il deteminante

Dettagli

ELEMENTI DI GEOMETRIA DELLO SPAZIO

ELEMENTI DI GEOMETRIA DELLO SPAZIO ELEMENTI DI GEOMETRIA DELLO SPAZIO ASSIOMI Lo spazio euclideo è un insieme infinito di elementi (i punti), contiene sottoinsiemi popi ed infiniti (i piani). In ogni piano valgono gli assiomi del piano

Dettagli

ESERCIZI DI CALCOLO STRUTTURALE

ESERCIZI DI CALCOLO STRUTTURALE ESERCIZIO A1 ESERCIZI DI CACOO SRUURAE Pate A: ave incastata Calcolo delle eazioni vincolai con caichi concentati o distibuiti P 1 P 1 = 10000 N = 1.2 m Sia la stuttua in figua soggetta al caico P 1 applicato

Dettagli

Equilibrio dei corpi rigidi- Statica

Equilibrio dei corpi rigidi- Statica Equilibio dei copi igidi- Statica Ci ifeiamo solo a situazioni paticolai in cui i copi igidi non si muovono in nessun modo: ne taslano ( a 0 ), ne uotano ( 0 ), ossia sono femi in un oppotuno sistema di

Dettagli

C8. Teoremi di Euclide e di Pitagora

C8. Teoremi di Euclide e di Pitagora 8. Teoemi di uclide e di Pitagoa 8.1 igue equiscomponibili ue poligoni sono equiscomponibili se è possibile suddivideli nello stesso numeo di poligoni a due a due conguenti. Il ettangolo e il tiangolo

Dettagli

Corso di Progetto di Strutture. POTENZA, a.a Le piastre anulari

Corso di Progetto di Strutture. POTENZA, a.a Le piastre anulari Coso di Pogetto di Stuttue POTENZA, a.a. 3 Le piaste anulai Dott. aco VONA Scuola di Ingegneia, Univesità di Basilicata maco.vona@unibas.it http://www.unibas.it/utenti/vona/ LE PIASTE CICOLAI CAICATE ASSIALENTE

Dettagli

Campi scalari e vettoriali (1)

Campi scalari e vettoriali (1) ampi scalai e vettoiali (1) 3 e ad ogni punto P = (x, y, z) di una egione di spazio Ω R è associato uno ed uno solo scalae φ diemo che un campo scalae è stato definito in Ω. In alti temini: φ 3 : P R φ(p)

Dettagli

PROBLEMI SULLE FIGURE CIRCOSCRITTE A UN CERCHIO O A UNA SFERA. di Ezio Fornero

PROBLEMI SULLE FIGURE CIRCOSCRITTE A UN CERCHIO O A UNA SFERA. di Ezio Fornero PROBLEMI SULLE FIGURE CIRCOSCRITTE A UN CERCHIO O A UNA SFERA di Ezio Foneo Indice dei poblemi Tiangolo ettangolo cicoscitto a un cechio di aggio assegnato Deteminae le misue dei cateti del tiangolo sapendo

Dettagli

Politecnico di Milano Fondamenti di Fisica Sperimentale a.a Facoltà di Ingegneria Industriale - Ind. Aero-Energ-Mecc

Politecnico di Milano Fondamenti di Fisica Sperimentale a.a Facoltà di Ingegneria Industriale - Ind. Aero-Energ-Mecc Politecnico di Milano Fondamenti di Fisica Speimentale a.a. 9-1 - Facoltà di Ingegneia Industiale - Ind. Aeo-Eneg-Mecc II pova in itinee - 5/7/1 Giustificae le isposte e scivee in modo chiao e leggibile.

Dettagli

Gravitazione. Dati due corpi di massa m 1 e m 2, posti ad una distanza r, tra di essi si esercita una forza attrattiva data in modulo da

Gravitazione. Dati due corpi di massa m 1 e m 2, posti ad una distanza r, tra di essi si esercita una forza attrattiva data in modulo da Gavitazione Dati due copi di massa m 1 e m 2, posti ad una distanza, ta di essi si esecita una foza attattiva data in modulo da F = G m 1m 2 dove G è una costante univesale, avente lo stesso valoe pe tutte

Dettagli

Esame di stato di istruzione secondaria superiore Indirizzi: Scientifico e Scientifico opzione scienze applicate Tema di matematica

Esame di stato di istruzione secondaria superiore Indirizzi: Scientifico e Scientifico opzione scienze applicate Tema di matematica wwwmatematicamenteit Nicola De osa matuità Esame di stato di istuzione secondaia supeioe Indiizzi: Scientifico e Scientifico opzione scienze applicate Tema di matematica Il candidato isolva uno dei due

Dettagli

Moto su traiettorie curve: il moto circolare

Moto su traiettorie curve: il moto circolare Moto su taiettoie cuve: il moto cicolae Così come il moto ettilineo è un moto che avviene lungo una linea etta, il moto cicolae è un moto la cui taiettoia è cicolae, cioè un moto che avviene lungo una

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2009

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2009 ESME DI STT DI LICE SCIENTIFIC CRS DI RDINMENT 009 Il candidato isolva uno dei due poblemi e 5 dei 0 quesiti in cui si aticola il questionaio. PRLEM È assegnato il settoe cicolae di aggio e ampiezza (

Dettagli

Cinematica III. 11) Cinematica Rotazionale

Cinematica III. 11) Cinematica Rotazionale Cinematica III 11) Cinematica Rotazionale Abbiamo già tattato il moto cicolae unifome come moto piano (pa. 8) intoducendo la velocità lineae v e l acceleazione lineae a, ma se siamo inteessati solo al

Dettagli

Equazioni e disequazioni irrazionali

Equazioni e disequazioni irrazionali Equazioni e disequazioni iazionali 8 81 Equazioni iazionali con un solo adicale Definizione 81 Un equazione si dice iazionale quando l incognita compae sotto il segno di adice Analizziamo le seguenti equazioni:

Dettagli

Insiemistica. che si leggono, rispettivamente: l elemento a appartiene all insieme A e l elemento b non appartiene all insieme A.

Insiemistica. che si leggono, rispettivamente: l elemento a appartiene all insieme A e l elemento b non appartiene all insieme A. Insiemistica Se consideiamo un ceto numeo di pesone, cose, animali, piante, mineali, ecc., noi possiamo attibuie loo alcune caatteistiche, che definiamo con il temine di popietà. Le singole entità che

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2009

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2009 PRV RDINMENT 009 ESME DI STT DI LICE SCIENTIFIC CRS DI RDINMENT 009 Il candidato isolva uno dei due poblemi e 5 dei 0 quesiti in cui si aticola il questionaio. PRLEM È assegnato il settoe cicolae di aggio

Dettagli

LIBRO DI TESTO S.Melone, F.Rustichelli Introduzione alla Fisica Biomedica Libreria Scientifica Ragni Ancona, 1998

LIBRO DI TESTO S.Melone, F.Rustichelli Introduzione alla Fisica Biomedica Libreria Scientifica Ragni Ancona, 1998 LIBRO DI TESTO S.Melone, F.Rustichelli Intoduzione alla Fisica Biomedica Libeia Scientifica Ragni Ancona, 1998 TESTO DI CONSULTAZIONE E WEB F.Bosa, D.Scannicchio Fisica con Applicazioni in Biologia e Medicina

Dettagli

ESERCITAZIONE N.2 MODELLO IS/LM IN ECONOMIA CHIUSA

ESERCITAZIONE N.2 MODELLO IS/LM IN ECONOMIA CHIUSA ESERCITAZIONE N.2 MODELLO IS/LM IN ECONOMIA CHIUSA LEGENDA: H = BM = base monetaia mm = moltiplicatoe monetaio = 1 + c c + (o i) = tasso d inteesse = iseve/depositi c = cicolante /depositi id (D) = tasso

Dettagli

Applicazioni della similitudine Unità 2

Applicazioni della similitudine Unità 2 OBIETTIVI INTERMEDI DI APPRENDIMENTO (I numei e le lettee indicate a fianco contassegnano le conoscenze, le abilità finali specifiche e quelle tasvesali coelate) Una volta completata l unità, gli allievi

Dettagli

ψ β F ESERCIZIO PIEGAMENTI SULLE BRACCIA

ψ β F ESERCIZIO PIEGAMENTI SULLE BRACCIA S ϕ α E h W ψ β ESERCIZIO PIEGMENTI SULLE BRCCI W Un atleta compie una seie di piegamenti sulle baccia, mantenendo il movimento dei segmenti del baccio (omeo ed avambaccio) paalleli al piano sagittale.

Dettagli

SETTIMA-OTTAVA LEZIONE: sorgenti del campo magnetico, legge di Ampere, legge di Biot-Sawart

SETTIMA-OTTAVA LEZIONE: sorgenti del campo magnetico, legge di Ampere, legge di Biot-Sawart . Chiodoni esecizi di Fisica II SETTIM-OTTV LEZIONE: sogenti del campo magnetico, legge di mpee, legge di Biot-Sawat Esecizio 1 Due spie cicolai di aggio 3cm, aventi lo stesso asse, sono poste in piani

Dettagli

Il magnetismo. Il Teorema di Ampere: la circuitazione del campo magnetico.

Il magnetismo. Il Teorema di Ampere: la circuitazione del campo magnetico. Il magnetismo Il Teoema di Ampee: la cicuitazione del campo magnetico. Richiamiamo la definizione geneale di cicuitazione pe un campo vettoiale Definizione: si definisce cicuitazione di un campo vettoiale

Dettagli

Energia potenziale elettrica

Energia potenziale elettrica Enegia potenziale elettica L ultima ossevazione del capitolo pecedente iguadava le analogie e le diffeenze ta il campo elettico e il campo gavitazionale pendendo in esame la foza di Coulomb e la legge

Dettagli

Magnetostatica: forze magnetiche e campo magnetico

Magnetostatica: forze magnetiche e campo magnetico Magnetostatica: foze magnetiche e campo magnetico Lezione 6 Campo di induzione magnetica () (nomenclatua stoica ; in ealtà si dovebbe chiamae, e spesso lo è, campo magnetico) è un campo di foze vettoiale

Dettagli

Potenza volumica. Legge di Joule in forma locale

Potenza volumica. Legge di Joule in forma locale Potenza volumica. Legge di Joule in foma locale Si considei un tubo di flusso elementae all inteno di un copo conduttoe nel quale ha sede un campo di coente. n da La potenza elettica che fluisce nel bipolo

Dettagli

SELEZIONE DI ESERCIZI DI ELETTROSTATICA.

SELEZIONE DI ESERCIZI DI ELETTROSTATICA. Fisica geneale II, a.a. 13/14 SELEZIONE DI ESEIZI DI ELETTOSTATIA..1. Un pocesso elettolitico divide 1.3 mg di Nal (massa di una mole = 59 g) in Na + e l. Le caiche positive vengono allontanate da quelle

Dettagli

Per migliorare la trasmissione tra satellite e Terra, emerge la necessità di portare il satellite ad un orbita circolare diversa.

Per migliorare la trasmissione tra satellite e Terra, emerge la necessità di portare il satellite ad un orbita circolare diversa. 1 Esecizio (tatto dagli esempi 5.3 e 5.4 del cap. V del Mazzoldi-Nigo-Voci) Un satellite atificiale di massa m 10 3 Kg uota attono alla Tea descivendo un obita cicolae di aggio 1 6.6 10 3 Km. 1. Calcolae

Dettagli

Il candidato risolva uno dei due problemi e 4 degli 8 quesiti scelti nel questionario.

Il candidato risolva uno dei due problemi e 4 degli 8 quesiti scelti nel questionario. LICEO SCIENTIFICO SCUOLE ITALIANE ALL ESTERO (AMERICHE) SESSIONE ORDINARIA Il candidato isolva uno dei due poblemi e degli 8 quesiti scelti nel questionaio. N. De Rosa, La pova di matematica pe il liceo

Dettagli

SIMULAZIONE - 22 APRILE 2015 - QUESITI

SIMULAZIONE - 22 APRILE 2015 - QUESITI www.matefilia.it Assegnata la funzione y = f(x) = e x 8 SIMULAZIONE - APRILE 5 - QUESITI ) veificae che è invetibile; ) stabilie se la funzione invesa f è deivabile in ogni punto del suo dominio di definizione,

Dettagli

E1.2 Velocità della luce in un cavo coassiale

E1.2 Velocità della luce in un cavo coassiale E1.2 Velocità della luce in un cavo coassiale Obiettivo Misuae la velocità di popagazione di un segnale elettomagnetico (velocità della luce) in un cavo coassiale. Mateiali e stumenti Un cavo coassiale

Dettagli

Classificazione delle linee di trasmissione

Classificazione delle linee di trasmissione Classificazione delle linee di tasmissione Linee TEM (Tansvese Electic Magnetic) Coassiale Stipline Linee non-tem Guida d onda ettangolae Linee quasi_tem Micostip Suspended Stipline Inveted Stipline Linee

Dettagli

Esercizi Svolti su MECCANISMI COMBINATI DI SCAMBIO TERMICO

Esercizi Svolti su MECCANISMI COMBINATI DI SCAMBIO TERMICO Esecizi Svolti su MECCANISMI COMBINATI DI SCAMBIO TERMICO Nel dettaglio, ecco cosa sta accadendo. Con una pocedua analoga a quella utilizzata pe la paete costituita da più stati disposti in seie, è possibile

Dettagli

La geometria di Schwarzschild

La geometria di Schwarzschild La geometia spaziotempoale dei buchi nei La geometia di Schwazschild In elatività non si pala di campo gavitazionale ma di geometia dello spaziotempo. L attazione ta due copi viene spiegata come effetto

Dettagli

f = coefficiente di attrito

f = coefficiente di attrito La tasmissione di potenza ta albei con uote di fizione non è utilizzata peché ichiedeebbe enomi foze di contatto a fonte di modeste coppie tasmesse M = F t = N f f = coefficiente di attito Angolo d attito

Dettagli

B raggio. Centro. circonferenza

B raggio. Centro. circonferenza La cicnfeenza è una linea chiusa fmata da tutti i punti del pian che hann la stessa distanza da un punt inten. Quest punt si chiama cent della cicnfeenza e la distanza fa i punti della cicnfeenza e il

Dettagli

4. DINAMICA. I tre principi della dinamica per un corpo puntiforme (detto anche punto materiale o particella) sono:

4. DINAMICA. I tre principi della dinamica per un corpo puntiforme (detto anche punto materiale o particella) sono: 4.1 Pincipi della dinamica 4. DINAMICA I te pincipi della dinamica pe un copo puntifome (detto anche punto mateiale o paticella) sono: 1) pincipio di intezia di Galilei; 2) legge dinamica di Newton; 3)

Dettagli

Indice CIRCONFERENZA E CERCHIO. verso le competenze fondamentali. 2 Unità di apprendimento 1. 3 Attività per iniziare

Indice CIRCONFERENZA E CERCHIO. verso le competenze fondamentali. 2 Unità di apprendimento 1. 3 Attività per iniziare Indice 2 Unità di appendimento 1 IRNFERENZ E ERHI 3 ttività pe iniziae veso le competenze fondamentali 4 1 La ciconfeenza e il cechio Posizioni di un punto ispetto a una ciconfeenza, 5 Posizioni di una

Dettagli

Origami: Geometria con la carta (I)

Origami: Geometria con la carta (I) Oigami: Geometia con la cata (I) La valenza atistica, ceativa ed estetica dell'oigami, è omai nota a tutti. Il pof. enedetto Scimemi in [ 1] ipota ta l'alto:...l'appoto educativo di giochi e passatempi

Dettagli

Esercizio 1. Date le rette

Esercizio 1. Date le rette Date le ette Eseciio y : : y a) Scivee le equaioni paametiche delle ette e. b) Dopo ave veificato che le ette ed sono sghembe, tovae l equaione di un piano σ contenente e paallelo a. c) Deteminae le equaioni

Dettagli

Appendice 7. Geometria piana

Appendice 7. Geometria piana Luciano De Menna Coso i Elettotecnica A7 Appenice 7 In geneale la soluzione i un poblema i Lapace in foma chiusa non è cosa molto semplice La ifficoltà pincipale è nel fatto che non esiste una teoia che

Dettagli

Magnetostatica: forze magnetiche e campo magnetico

Magnetostatica: forze magnetiche e campo magnetico Magnetostatica: foze magnetiche e campo magnetico Lezione 6 Campo di induzione magnetica B() (nomenclatua stoica ; in ealtà si dovebbe chiamae, e spesso lo è, campo magnetico) è un campo di foze vettoiale

Dettagli

C3. Rette parallele e perpendicolari

C3. Rette parallele e perpendicolari C. Rette paallele e pependicolai C.1 Rette pependicolai Due ette ed ono dette pependicolai e incociandoi fomano quatto angoli conguenti. Si cive. C. Teoema: ette pependicolai fomano angoli etti Due ette

Dettagli

IL POTENZIALE. = d quindi: LAB

IL POTENZIALE. = d quindi: LAB 1 IL POTENZIALE Sappiamo che il campo gavitazionale è un campo consevativo cioè nello spostamento di un copo ta due punti del campo gavitazionale teeste, le foze del campo compiono un lavoo che dipende

Dettagli

Università La Sapienza - Ingegneria Informatica e Automatica. Corso di Fisica Generale: MOTI RELATIVI. A. Bosco, F. Pettazzi ed E.

Università La Sapienza - Ingegneria Informatica e Automatica. Corso di Fisica Generale: MOTI RELATIVI. A. Bosco, F. Pettazzi ed E. Univesità La Sapienza - Ingegneia Infomatica e Automatica Coso i Fisica Geneale: MOTI RELATIVI A. Bosco, F. Pettazzi e E. Fazio Consieiamo un punto mateiale P che si muove i moto abitaio all inteno i un

Dettagli

Corso di Elettrotecnica 1 - Cod N Diploma Universitario Teledidattico in Ingegneria Informatica ed Automatica Polo Tecnologico di Alessandria

Corso di Elettrotecnica 1 - Cod N Diploma Universitario Teledidattico in Ingegneria Informatica ed Automatica Polo Tecnologico di Alessandria Schede di Elettotecnica oso di Elettotecnica 1 - od. 9200 N Diploma Univesitaio Teledidattico in Ingegneia Infomatica ed Automatica Polo Tecnologico di Alessandia A cua di uca FEAIS Scheda N 8 icuiti in

Dettagli

Capitolo 7. Costi e minimizzazione dei costi. Soluzioni dei Problemi

Capitolo 7. Costi e minimizzazione dei costi. Soluzioni dei Problemi Capitolo 7 Costi e minimizzazione dei costi Soluzioni dei Poblemi 7.1 a) 500 b) 30% di 500, ossia 150 c) Senza idue il pezzo e posto che l impesa non possa vendee alte stampanti, il meglio che essa può

Dettagli

Progetto SP1a. Programma di ricerca

Progetto SP1a. Programma di ricerca Pogetto SP1a Nuove tecnologie pe l analisi non intusiva dei manufatti Pogamma di iceca Ingegneizzazione di pototipi e stumentazione pe la diagnostica su manufatti monumentali in mateiale lapideo Misua

Dettagli

dove per i simboli si sono adottate le seguenti notazioni: 2 Corpo girevole attorno ad un asse fisso

dove per i simboli si sono adottate le seguenti notazioni: 2 Corpo girevole attorno ad un asse fisso Il volano 1 Dinamica del copo igido Il poblema dello studio del moto di un copo igido libeo è il seguente: data una ceta sollecitazione F e del copo, cioè cete foze estene F i applicate nei punti del copo

Dettagli

LO SPAZIO DEI VETTORI ORDINARI 1 1. L INSIEME DEI VETTORI ORDINARI

LO SPAZIO DEI VETTORI ORDINARI 1 1. L INSIEME DEI VETTORI ORDINARI LO SPAZIO DEI VETTORI ORDINARI 1 1. L INSIEME DEI VETTORI ORDINARI Iniziamo il paagafo con il fissae la nosta attenzione sul ben noto concetto di segmento oientato. Un segmento oientato, di pimo estemo

Dettagli

BOOK IN PROGRESS GEOMETRIA STATISTICA DESCRITTIVA CALCOLO DELLE PROBABILITA INDICE GEOMETRIA

BOOK IN PROGRESS GEOMETRIA STATISTICA DESCRITTIVA CALCOLO DELLE PROBABILITA INDICE GEOMETRIA ITE Enico Tosi OOK IN PROGRESS GEOMETRI STTISTI DESRITTIV LOLO DELLE PROILIT INDIE GEOMETRI PITOLO 1: L GEOMETRI DEL PINO 11 Genealità pag 1 12 ngoli paticolai pag 11 PITOLO 2: POLIGONI E TRINGOLI 21 I

Dettagli

216 Luciano De Menna Corso di Elettrotecnica

216 Luciano De Menna Corso di Elettrotecnica 216 Luciano De Menna Coso di Elettotecnica Sulla base delle nozioni intodotte possiamo a questo punto mostae un alto motivo di convenienza dell'uso di sistemi tifasi. Confontiamo due sistemi di alimentazione,

Dettagli

Circuiti RLC RIASSUNTO: L(r)C serie: impedenza Z(ω) Q valore risposta in frequenza L(r)C parallelo Circuiti risonanti Circuiti anti-risonanti

Circuiti RLC RIASSUNTO: L(r)C serie: impedenza Z(ω) Q valore risposta in frequenza L(r)C parallelo Circuiti risonanti Circuiti anti-risonanti icuiti R RIASSUNTO: () seie: impedenza () valoe isposta in fequenza () paallelo icuiti isonanti icuiti anti-isonanti icuito in seie I cicuiti pesentano caatteistiche inteessanti. Ad esempio, ponendo un

Dettagli

Gilda Flaccavento Romano. Geometria e misura. R ealtà e RCS LIBRI EDUCATION SPA. modelli. corso di matematica per la scuola secondaria di primo grado

Gilda Flaccavento Romano. Geometria e misura. R ealtà e RCS LIBRI EDUCATION SPA. modelli. corso di matematica per la scuola secondaria di primo grado Gilda Flaccavento Romano 3b Geometia e misua R ealtà e modelli coso di matematica pe la scuola secondaia di pimo gado RS LIRI EUTIN SP oodinamento editoiale: Giancalo Quadi oodinamento edazionale: Maia

Dettagli

IL CAMPO ELETTROMAGNETICO DIPENDENTE DAL TEMPO

IL CAMPO ELETTROMAGNETICO DIPENDENTE DAL TEMPO IL CAMPO ELETTROMAGNETICO DIPENDENTE DAL TEMPO Legge di Faaday-Heny (o dell induzione elettomagnetica); Applicazioni della legge dell induzione e.m., caso della spia otante; Il fenomeno dell autoinduzione

Dettagli

Concetto di capacità

Concetto di capacità oncetto di capacità Il teoema di Gauss stabilisce che, posta una caica su un conduttoe isolato, il campo elettico E da essa podotto nello spazio cicostante è diettamente popozionale alla caica stessa:

Dettagli

Elettrostatica. P. Maestro Elettrostatica pag. 1

Elettrostatica. P. Maestro Elettrostatica pag. 1 Elettostatica Composizione dell atomo Caica elettica Legge di Coulomb Campo elettico Pincipio di sovapposizione Enegia potenziale del campo elettico Moto di una caica in un campo elettico statico Teoema

Dettagli

1 Le funzioni reali di variabile reale

1 Le funzioni reali di variabile reale 1.1 Le funzioni Definizione 1 Le funzioni eali di vaiabile eale Una funzione f: A B è una elazione che associa a ciascuno degli elementi di un insieme A (il dominio) uno ed uno solo degli elementi di un

Dettagli

ed è pari a: 683 lumen/watt, pertanto:

ed è pari a: 683 lumen/watt, pertanto: RICIAI GRADEZZE FOTOMETRICHE Fattoe di visibilità (o di sensibilità visiva) K ( λ) : funzione che appesenta la sensibilità media dell occhio umano a adiazioni di diffeente lunghezza d onda ma di eguale

Dettagli

LABORATORIO di Fisica Misura di e/m dell elettrone. Esperienza congiunta dei corsi di Fisica Generale e Principi di Elettromagnetismo.

LABORATORIO di Fisica Misura di e/m dell elettrone. Esperienza congiunta dei corsi di Fisica Generale e Principi di Elettromagnetismo. LABOATOIO di Fisica Misua di e/m dell elettone Espeienza congiunta dei cosi di Fisica Geneale e Pincipi di Elettomagnetismo 1 Indice Intoduzione; scopeta dell elettone Cannone elettonico : (½)mv = ev Bobine

Dettagli

Moto di puro rotolamento

Moto di puro rotolamento oto-taslaione di un copo igido di seione cicolae (disco,cilindo,sfea) su di un piano, pe il quale il punto (o i punti) di contatto ta il copo ed il piano è femo ispetto a questo ( non vi è stisciamento

Dettagli

Nicola De Rosa maturità 2015

Nicola De Rosa maturità 2015 www.matematicamente.it Nicola De Rosa matuità 5 Esame di stato di istuzione secondaia supeioe Indiizzi: LI SCIENTIFICO LI - SCIENTIFICO - OPZIONE SCIENZE APPLICATE Tema di matematica (Testo valevole anche

Dettagli

Legge di Ohm. La corrente elettrica dal punto di vista microscopico: modello di Drude

Legge di Ohm. La corrente elettrica dal punto di vista microscopico: modello di Drude Legge di Ohm. Obiettivi didattici: Veifica della elazione ta coente e d.d.p. pe un conduttoe metallico. Veifica della elazione ta la esistenza di un conduttoe e le sue dimensioni (lunghezza, sezione) Misua

Dettagli

Facoltà di Ingegneria

Facoltà di Ingegneria Facoltà di Ingegneia Poa in Itinee di Fisica I (a. a. 004-005) 6 Noebe 004 COPITO C Esecizio n. 1 Un copo di assa è appoggiato su di un piano oizzontale scabo, con coefficiente di attito dinaico µ d. Coe

Dettagli

Reattori chimici. media uscente. media entrante. può essere espresso in funzione del numero n di moli e della

Reattori chimici. media uscente. media entrante. può essere espresso in funzione del numero n di moli e della Reattoi chimici Pe eattoe si intende il contenitoe nel quale viene fatta avvenie una eazione o una seie di eazioni chimiche. Di noma i eattoi possono essee suddivisi in due categoie: 1. eattoi discontinui

Dettagli

I.15. Il teorema di conservazione dell'energia nella meccanica classica

I.15. Il teorema di conservazione dell'energia nella meccanica classica L enegia meccanica: consevazione e non consevazione Consevazione dell enegia nel caso di foze costanti Consevazione dell enegia nel caso di sistemi obitanti I diagammi della enegia potenziale Quesiti di

Dettagli

CASO 2 CASO 1. δ Lo. e N. δ Lo. e L. PROBLEMA A Corso di Fisica 1- Prima provetta- 22 maggio 2004 Facoltà di Ingegneria dell Università di Trento

CASO 2 CASO 1. δ Lo. e N. δ Lo. e L. PROBLEMA A Corso di Fisica 1- Prima provetta- 22 maggio 2004 Facoltà di Ingegneria dell Università di Trento PROBEMA A Coso di Fisica 1- Pima povetta- maggio 004 Facoltà di Ingegneia dell Univesità di Tento Un anello di massa m= 70 g, assimilabile ad un copo puntifome, è infilato in una asta igida liscia di lunghezza

Dettagli

Algoritmo ricorsivo per il calcolo di π partendo da poligoni regolari

Algoritmo ricorsivo per il calcolo di π partendo da poligoni regolari CISTIANO TEODOO teodoocistiano@tiscali.it Algoitmo icosivo e il calcolo di π atendo da oligoni egolai Sommaio: viene illustato un algoitmo e il calcolo aossimato di π, con il quale, atendo da un oligono

Dettagli

9 GRAVITAZIONE UNIVERSALE

9 GRAVITAZIONE UNIVERSALE 9 GRAVIAZIONE UNIVERSAE e conoscenze elative alla foza di gavitazione si sono sviluppate a patie dalle ossevazioni astonomiche del moto dei pianeti del sistema solae Attaveso tali ossevazioni yco Bahe

Dettagli

La legge di Lenz - Faraday Neumann

La legge di Lenz - Faraday Neumann 1 La legge di Lenz - Faaday Neumann Il flusso del campo magnetico B Pe dae una veste matematica alle conclusioni delle espeienze viste nella lezione pecedente, abbiamo bisogno di definie una nuova gandezza

Dettagli

ESAME DI STATO 2009 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO

ESAME DI STATO 2009 SECONDA PROVA SCRITTA PER IL LICEO SCIENTIFICO DI ORDINAMENTO 4 9 chimede ESME DI STTO 9 SECOND PROV SCRITT PER IL LICEO SCIENTIFICO DI ORDINMENTO RTICOLO Il candidato isolva uno dei due poblemi e isponda a 5 dei quesiti del questionaio. È assegnato il settoe cicolae

Dettagli

Microeconomia. 1. Si calcolino le produttività marginali del lavoro e del capitale e il saggio marginale di sostituzione tecnica.

Microeconomia. 1. Si calcolino le produttività marginali del lavoro e del capitale e il saggio marginale di sostituzione tecnica. Micoeconomia Esecizio 1 Sia data la funzione di poduzione Q =K 1/ L 1/,conw =e =8. 1. Si calcolino le poduttività maginali del lavoo e del capitale e il saggio maginale di sostituzione tecnica.. Si deteminino

Dettagli

Energia cinetica di un corpo rigido in rotazione. ogni elemento del corpo ha la stessa velocità angolare m 2

Energia cinetica di un corpo rigido in rotazione. ogni elemento del corpo ha la stessa velocità angolare m 2 Enegia cinetica di un copo igido in otazione z Copo igido con asse di otazione fisso (Z) 1 1 ogni eleento del copo ha la stessa velocità angolae K un eleento a distanza K dall asse di otazione ha velocità

Dettagli

Misura della componente orizzontale del campo magnetico terrestre

Misura della componente orizzontale del campo magnetico terrestre Misua della componente oizzontale del campo magnetico teeste Pemessa teoica In tale pemessa vengono sintetizzati i peequisiti che si itengono indispensabili pe l'esecuzione e la compensione dell'espeienza

Dettagli

3 Geometria delle masse e momento di 2 ordine 3.3 Ellisse centrale d inerzia e nocciolo centrale d inerzia

3 Geometria delle masse e momento di 2 ordine 3.3 Ellisse centrale d inerzia e nocciolo centrale d inerzia 3 Geometria delle masse e momento di ordine ESERCIZI SVOLTI Considerata la sezione rappresentata in figura, calcolare i raggi d inerzia massimo e minimo, tracciare l ellisse d inerzia e il nocciolo centrale

Dettagli

MAPPA 8 FIGURE. Area dei poligoni e figure equivalenti. Misura dell estensione superficiale. Il metro quadrato. Figure equivalenti

MAPPA 8 FIGURE. Area dei poligoni e figure equivalenti. Misura dell estensione superficiale. Il metro quadrato. Figure equivalenti Misua de estensione supeficiae L aea è a misua de estensione supeficiae di una figua ispetto a unità di misua fissata. Indiciamo aea con a ettea. Esempio: R MPP 8 u 1 è aea de ettangoo R secondo unità

Dettagli