Momenti. Momento di una forza, momento di inerzia, momento angolare

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Momenti. Momento di una forza, momento di inerzia, momento angolare"

Transcript

1 Momenti Momento di una foza, momento di inezia, momento angolae

2 Momento di una foza Supponiamo di avee una pota vista dall alto e supponiamo che sia incadinata su un lato, diciamo in A. A Se applicassimo la stessa foza F in pun: divesi, come nei pun:,, 3, 4, 5 e 6 osseveemmo che il moto della pota saebbe diveso a secondo della diezione della foza e del suo punto di applicazione. In qualche caso non si muoveebbe affaeo, in alti si muoveebbe in senso oaio e in qualche caso in senso an:oaio In conclusione l effeeo di una foza che agisca (su un oggeeo basculante o comunque incenieato) in un punto lontano dall asse di otazione dipende fotemente dal suo punto di applicazione e dalla diezione della foza 6

3 I momen: nelle leve Se la diezione delle foze (potenza P applicata o esistenza ) e il veeoe distanza dall asse di otazione sono pependicolai, come nel caso delle leve, il calcolo dei momen: è pa:colamente semplice; infak in ques: casi θ 90 e senθ. Il momento della foza τ è semplicemente il podoeo del baccio pe il modulo della foza τ F o τ F P P b F b F Pe l equilibio di una leva τ 0 e quindi deve valee la elazione: P b b ovveo b /b /P Se ne conclude che pe b > b alloa > P oppue se b > b alloa P > P b b F

4 Le Leve nel copo umano Le leve si dividono in te categoie. Leve di pimo genee, indiffeen: (a:colazione della testa). Leve di secondo genee, sempe vantaggiose (sollevamento del calcagno) 3. Leve di tezo genee, sempe svantaggiose (sollevamento dell avambaccio)

5 Momento di Inezia

6 Enegia cinetica otazionale E k ½ m v è l enegia cine:ca ifeita al moto di un punto che si muove con velocità il cui modulo sia v. Nel caso di un copo in otazione dovemo fae la somma delle E k di tuk i pun: del copo in otazione: E k Σ i ½ m i v i Volendo u:lizzae la velocità angolae ω, anch essa costante, avemo pe ciascun punto saebbe v i ω i. Quindi: E k Σ i ½ m i ω i ovveo E k ½ω Σ i m i i La gandezza I Σ i m i i si chiama momento di inezia ed agisce come l equivalente otazionale della massa nei mo: lineai. Il momento di inezia si oppone alla vaiazione della velocità angolae come la massa si oppone alla vaiazione della velocità lineae

7 Momento di Inezia Come la massa si oppone alla vaiazione della velocità, così il Momento di Inezia si oppone alla vaiazione della velocità angolae, ma l efficacia della sua opposizione dipende anche da come la massa è distibuita aeono all asse di otazione Se l oggeeo di cui vogliamo conoscee il momento di inezia I è un sistema disceto di n pun: basteà applicae pe ogni punto la definizione di I m e poi sommae i vai contibu: pe oeenee in momento di inezia totale. n i I m i Se invece l oggeeo è una gandezza con:nua alloa saà più semplice calcolae: I max min dm

8 Casi pa:colai: cilindo cavo ) ( ) ( ) ( 4 ) ( M L L d L dl dm dl dm L d dv dv dm + + I I I ρπ ρ π ρ π ρ π ρ π π ρ L V M ) ( ρπ ρ

9 Momento di inezia di una sfea Si voglia calcolae il Momento di Inezia di una sfea di massa M e aggio Sia M ρ la sua densità 4 3π 3 dz Se poniamo l oigine degli assi al cento della sfea, avemo z che il dischetto di spessoe dz a distanza z dal cento avà una massa pai a dm ρ π dz dove - z ed è il aggio del dischetto. di dm I ρπ dz I ρπ 0 I ρπ dz 4 ( z ) 4 4 ( z + z ) z 3 ρπ z 3 4 dz ρπ 5 z + 5 ρπ 0 I M 5 ( z ) ρπ dz dz 0 8 ρπ 5 5 z dz z dz M ρ 4 3π 3

10 Momen: di Inezia Si ipotano alcuni copi igidi modello di cui sono no: i momen: di inezia

11 Teoema degli assi paalleli I Momen: di Inezia dei copi modello sono molto u:li, ma sono tuk calcola: pe un asse di otazione passante pe il cento di massa. Se invece volessimo calcolae il momento di inezia di un copo ispeeo ad un asse paallelo all asse di otazione passante pe il baicento alloa dovemmo fae il seguente calcolo: I I ( x I dm + cm + y Mh ) dm + [( x a) ( a + ( y + b b) ] dm ) dm a xdm b ydm ques: integali valgono zeo

12 Momento Angolae

13 Momento della quan:tà di moto Supponiamo di avee un punto di massa m che si muove con velocità v, quindi la sua quan:tà di moto è p mv. Il momento di questa quan:tà di moto ispeeo ad un asse di otazione passante pe un punto q saà L x p i x m v j mv k e in coodinate otazionali saà : L m (v/) m ω Se invece di un solo punto ne dovessimo consideae un numeo infinitamente gande alloa: q dl vdm ω L dl ω dm dm ω dm L I ω p mv

14 Momento angolae Come l enegia meccanica e la quan:tà di moto, il momento della quan:tà di moto (o momento angolae) è una gandezza fisica che si conseva. Il momento angolae è una gandezza veeoiale definita dal podoeo veeoiale fa la distanza da un punto fisso e dal veeoe quan:tà di moto p. L x p m ( x v) Come calcolae il modulo, la diezione ed il veso è già stato deeo nel calcolo del momento di una foza τ

15 Consevazione del momento!!! l m( v)!! dl (! dv m& + dt ' dt! dl!!! m dt! dl!! F! tot τ dt! ( a + v v)! d!% v # dt $ angolae Conosciamo la a legge della dinamica nella foma F ext dp/dt e quindi possiamo dedue che τ ext dl/dt!! ma La descizione fin qui faea ha iguadato il moto di un punto mateiale aeono ad un punto fisso, ma anche pe un copo esteso si aiva alle stesse conclusioni. τ tot dl/dt L l +l + l n Se una deivata vale zeo vuol die che la sua funzione pimi:va è costante. Se il momento delle foze applicato ad un copo è nullo τ 0, alloa il momento angolae L di quel copo si conseva

16 PodoEo veeoiale Pe compendee come agisce una azione applicata ad un punto qualsiasi (diveso dal cento di massa) di un copo igido è necessaio intodue una nuova opeazione che si può fae con i veeoi. L algoitmo che descivee l effeeo di un azione applicata in un punto abitaio di un copo igido è il podoeo veeoiale che si indica con τ x F (- τ F x ). il modulo di tale podoeo vale, τ F senθ ; dove θ è l angolo individuato dai veeoi ed F, quando sono tasla: nello stesso punto d oigine. la diezione di τ è pependicolae al piano individuato dai veeoi ed F 3. il veso segue la egola della mano desta τ F

CENTRO DI MASSA. Il centro di massa C divide il segmento AB in parti inversamente proporzionali alle masse: AC. x C = m A x A + m B x B.

CENTRO DI MASSA. Il centro di massa C divide il segmento AB in parti inversamente proporzionali alle masse: AC. x C = m A x A + m B x B. Due paticelle: CENTRO DI MASSA 0 A m A A C m B B B C Il cento di massa C divide il segmento AB in pati invesamente popozionali alle masse: AC CB = m B m A C A B C = m B m A m A C m A A = m B B m B C (

Dettagli

Energia cinetica di un corpo rigido in rotazione. ogni elemento del corpo ha la stessa velocità angolare m 2

Energia cinetica di un corpo rigido in rotazione. ogni elemento del corpo ha la stessa velocità angolare m 2 Enegia cinetica di un copo igido in otazione z Copo igido con asse di otazione fisso (Z) 1 1 ogni eleento del copo ha la stessa velocità angolae K un eleento a distanza K dall asse di otazione ha velocità

Dettagli

Equilibrio dei corpi rigidi- Statica

Equilibrio dei corpi rigidi- Statica Equilibio dei copi igidi- Statica Ci ifeiamo solo a situazioni paticolai in cui i copi igidi non si muovono in nessun modo: ne taslano ( a 0 ), ne uotano ( 0 ), ossia sono femi in un oppotuno sistema di

Dettagli

Nome..Cognome. classe 5D 29 Novembre VERIFICA di FISICA: Elettrostatica Domande

Nome..Cognome. classe 5D 29 Novembre VERIFICA di FISICA: Elettrostatica Domande Nome..ognome. classe 5 9 Novembe 8 RIFI di FISI: lettostatica omande ) ai la definizione di flusso di un campo vettoiale attaveso una supeficie. nuncia il teoema di Gauss pe il campo elettico (senza dimostalo)

Dettagli

I principi della dinamica ed il concetto di massa e di forza. Le forze nascono da interazioni tra corpi Questo però non è sempre vero!

I principi della dinamica ed il concetto di massa e di forza. Le forze nascono da interazioni tra corpi Questo però non è sempre vero! Lezione III 1 I pincipi della dinamica ed il concetto di massa e di foza Le foze sono la causa del cambiamento nel moto dei copi. In geneale noi associamo all azione di una foza la pesenza di un alto copo

Dettagli

4. DINAMICA. I tre principi della dinamica per un corpo puntiforme (detto anche punto materiale o particella) sono:

4. DINAMICA. I tre principi della dinamica per un corpo puntiforme (detto anche punto materiale o particella) sono: 4.1 Pincipi della dinamica 4. DINAMICA I te pincipi della dinamica pe un copo puntifome (detto anche punto mateiale o paticella) sono: 1) pincipio di intezia di Galilei; 2) legge dinamica di Newton; 3)

Dettagli

IL POTENZIALE. = d quindi: LAB

IL POTENZIALE. = d quindi: LAB 1 IL POTENZIALE Sappiamo che il campo gavitazionale è un campo consevativo cioè nello spostamento di un copo ta due punti del campo gavitazionale teeste, le foze del campo compiono un lavoo che dipende

Dettagli

Gravitazione. Dati due corpi di massa m 1 e m 2, posti ad una distanza r, tra di essi si esercita una forza attrattiva data in modulo da

Gravitazione. Dati due corpi di massa m 1 e m 2, posti ad una distanza r, tra di essi si esercita una forza attrattiva data in modulo da Gavitazione Dati due copi di massa m 1 e m 2, posti ad una distanza, ta di essi si esecita una foza attattiva data in modulo da F = G m 1m 2 dove G è una costante univesale, avente lo stesso valoe pe tutte

Dettagli

Per migliorare la trasmissione tra satellite e Terra, emerge la necessità di portare il satellite ad un orbita circolare diversa.

Per migliorare la trasmissione tra satellite e Terra, emerge la necessità di portare il satellite ad un orbita circolare diversa. 1 Esecizio (tatto dagli esempi 5.3 e 5.4 del cap. V del Mazzoldi-Nigo-Voci) Un satellite atificiale di massa m 10 3 Kg uota attono alla Tea descivendo un obita cicolae di aggio 1 6.6 10 3 Km. 1. Calcolae

Dettagli

AZIONE A DISTANZA E TEORIA DI CAMPO (1)

AZIONE A DISTANZA E TEORIA DI CAMPO (1) Il campo elettico AZION A DITANZA TOIA DI CAMPO () Come fanno due caiche elettiche ad inteagie fa di loo? All inizio del 9 si sono confontate due ipotesi:.le caiche si scambiano dei messaggei e uindi si

Dettagli

Moto di puro rotolamento

Moto di puro rotolamento oto-taslaione di un copo igido di seione cicolae (disco,cilindo,sfea) su di un piano, pe il quale il punto (o i punti) di contatto ta il copo ed il piano è femo ispetto a questo ( non vi è stisciamento

Dettagli

7. LA DINAMICA Primo principio della dinamica Secondo principio della dinamica.

7. LA DINAMICA Primo principio della dinamica Secondo principio della dinamica. 7. LA DINAMICA Ta la foza applicata ad un copo e il moto che essa povoca esistono dei appoti molto stetti che sono studiati da una banca della fisica: la dinamica. Lo studio della dinamica si è ilevato

Dettagli

Potenza volumica. Legge di Joule in forma locale

Potenza volumica. Legge di Joule in forma locale Potenza volumica. Legge di Joule in foma locale Si considei un tubo di flusso elementae all inteno di un copo conduttoe nel quale ha sede un campo di coente. n da La potenza elettica che fluisce nel bipolo

Dettagli

Lezione 3. Applicazioni della Legge di Gauss

Lezione 3. Applicazioni della Legge di Gauss Applicazioni della Legge di Gauss Lezione 3 Guscio sfeico di aggio con caica totale distibuita unifomemente sulla supeficie. immetia sfeica, dipende solo da supeficie sfeica di aggio

Dettagli

L = F s cosα = r F r s

L = F s cosα = r F r s LVORO Se su un copo agisce una foza F, il lavoo compiuto dalla foza pe uno spostamento s è (podotto scalae di due vettoi): L = F s cosα = F s F α s LVORO L unità di misua del lavoo nel S.I. si chiama Joule:

Dettagli

Potenziale elettrostatico e lavoro. Potenziale elettrostatico Energia potenziale elettrostatica Esempi Moto di una carica in un potenziale e.s.

Potenziale elettrostatico e lavoro. Potenziale elettrostatico Energia potenziale elettrostatica Esempi Moto di una carica in un potenziale e.s. Potenziale elettostatico e lavoo Potenziale elettostatico Enegia potenziale elettostatica Esempi Moto di una caica in un potenziale e.s. Potenziale elettostatico Campo e.s. geneato da una caica puntifome

Dettagli

Appunti su argomenti monografici per il corso di FM1 Prof. Pierluigi Contucci. Gravità e Teorema di Gauss

Appunti su argomenti monografici per il corso di FM1 Prof. Pierluigi Contucci. Gravità e Teorema di Gauss 1 Appunti su agomenti monogafici pe il coso di FM1 Pof. Pieluigi Contucci Gavità e Teoema di Gauss Vogliamo dimostae, a patie dalla legge di gavitazione univesale che il campo gavitazionale geneato da

Dettagli

LIBRO DI TESTO S.Melone, F.Rustichelli Introduzione alla Fisica Biomedica Libreria Scientifica Ragni Ancona, 1998

LIBRO DI TESTO S.Melone, F.Rustichelli Introduzione alla Fisica Biomedica Libreria Scientifica Ragni Ancona, 1998 LIBRO DI TESTO S.Melone, F.Rustichelli Intoduzione alla Fisica Biomedica Libeia Scientifica Ragni Ancona, 1998 TESTO DI CONSULTAZIONE E WEB F.Bosa, D.Scannicchio Fisica con Applicazioni in Biologia e Medicina

Dettagli

Capacità ele+rica. Condensatori

Capacità ele+rica. Condensatori Capacità ele+ica Condensatoi Condensatoi Il sistema più semplice pe immagazzinae enegia elettostatica è caicae un condensatoe. Genealmente il condensatoe è costituito da due piani metallici sepaati da

Dettagli

CASO 2 CASO 1. δ Lo. e N. δ Lo. e L. PROBLEMA A Corso di Fisica 1- Prima provetta- 22 maggio 2004 Facoltà di Ingegneria dell Università di Trento

CASO 2 CASO 1. δ Lo. e N. δ Lo. e L. PROBLEMA A Corso di Fisica 1- Prima provetta- 22 maggio 2004 Facoltà di Ingegneria dell Università di Trento PROBEMA A Coso di Fisica 1- Pima povetta- maggio 004 Facoltà di Ingegneia dell Univesità di Tento Un anello di massa m= 70 g, assimilabile ad un copo puntifome, è infilato in una asta igida liscia di lunghezza

Dettagli

AI VERTICI DI UN QUADRATO DI LATO 2L SONO POSTE 4 CARICHE UGUALI Q. DETERMINARE: A) IL CAMPO ELETTRICO IN UN PUNTO P DELL ASSE.

AI VERTICI DI UN QUADRATO DI LATO 2L SONO POSTE 4 CARICHE UGUALI Q. DETERMINARE: A) IL CAMPO ELETTRICO IN UN PUNTO P DELL ASSE. ESERCIZIO 1 AI VERTICI DI UN UADRATO DI LATO SONO POSTE 4 CARICHE UGUALI. DETERMINARE: A) IL CAMPO ELETTRICO IN UN PUNTO P DELL ASSE. 4 caiche uguali sono poste ai vetiti di un quadato. L asse di un quadato

Dettagli

dove per i simboli si sono adottate le seguenti notazioni: 2 Corpo girevole attorno ad un asse fisso

dove per i simboli si sono adottate le seguenti notazioni: 2 Corpo girevole attorno ad un asse fisso Il volano 1 Dinamica del copo igido Il poblema dello studio del moto di un copo igido libeo è il seguente: data una ceta sollecitazione F e del copo, cioè cete foze estene F i applicate nei punti del copo

Dettagli

Moto di rotazione di un corpo rigido intorno ad un asse fisso : asse di rotazione

Moto di rotazione di un corpo rigido intorno ad un asse fisso : asse di rotazione Moto di otaione di un copo igido intono ad un asse fisso : asse di otaione x ϑ(t) ϕ d m v y dϑ ds dϑ Vettoe velocità angolae : vettoe tale che pe un qualsiasi punto P del copo individuato dal vettoe posiione

Dettagli

MACCHINA ELEMENTARE A RILUTTANZA

MACCHINA ELEMENTARE A RILUTTANZA Sistemi magnetici con moto meccanico MACCHINA ELEMENTARE A RILUTTANZA Consiste in un nucleo magnetico con un avvolgimento a N spie e una pate mobile che uota con spostamento angolae θ e velocità angolae

Dettagli

1 Potenziale elettrostatico e seconda equazione di Maxwell per E

1 Potenziale elettrostatico e seconda equazione di Maxwell per E 1 Potenziale elettostatico e seconda equazione di Maxwell pe E Consideiamo il campo elettico oiginato da una caica puntifome q che ipotizziamo fissa nell oigine degli assi: E( ) = q ˆ 2 = q 3 (1) Pe definizione,

Dettagli

Effetto Hall. flusso reale dei portatori se positivi. flusso reale dei portatori se negativi

Effetto Hall. flusso reale dei portatori se positivi. flusso reale dei portatori se negativi Appunti di Fisica II Effetto Hall L'effetto Hall è un fenomeno legato al passaggio di una coente I, attaveso ovviamente un conduttoe, in una zona in cui è pesente un campo magnetico dietto otogonalmente

Dettagli

DISTRIBUZIONE DELLA CARICA NEI CONDUTTORI

DISTRIBUZIONE DELLA CARICA NEI CONDUTTORI 1 DISTRIBUZIONE DELLA CARICA NEI CONDUTTORI I copi conduttoi sono caatteizzati dal fatto di avee moltissimi elettoni libei di muovesi (elettoni di conduzione). Cosa accade se un copo conduttoe viene caicato

Dettagli

SELEZIONE DI ESERCIZI DI ELETTROSTATICA.

SELEZIONE DI ESERCIZI DI ELETTROSTATICA. Fisica geneale II, a.a. 13/14 SELEZIONE DI ESEIZI DI ELETTOSTATIA..1. Un pocesso elettolitico divide 1.3 mg di Nal (massa di una mole = 59 g) in Na + e l. Le caiche positive vengono allontanate da quelle

Dettagli

Energia potenziale elettrica

Energia potenziale elettrica Enegia potenziale elettica L ultima ossevazione del capitolo pecedente iguadava le analogie e le diffeenze ta il campo elettico e il campo gavitazionale pendendo in esame la foza di Coulomb e la legge

Dettagli

Cinematica III. 11) Cinematica Rotazionale

Cinematica III. 11) Cinematica Rotazionale Cinematica III 11) Cinematica Rotazionale Abbiamo già tattato il moto cicolae unifome come moto piano (pa. 8) intoducendo la velocità lineae v e l acceleazione lineae a, ma se siamo inteessati solo al

Dettagli

Un punto di vista euristico relativo alla evoluzione del Sistema Solare Convegno Mathesis

Un punto di vista euristico relativo alla evoluzione del Sistema Solare Convegno Mathesis 1 Un punto di vista euistico elativo alla evoluzione del Sistema Solae Paolo Allievi Albeto Totta Convegno Mathesis Tento,3,4 Novembe 006 Ipotesi di base: ogni copo emette natualmente e continuamente enegia

Dettagli

ESERCIZI DI CALCOLO STRUTTURALE

ESERCIZI DI CALCOLO STRUTTURALE ESERCIZIO A1 ESERCIZI DI CACOO SRUURAE Pate A: ave incastata Calcolo delle eazioni vincolai con caichi concentati o distibuiti P 1 P 1 = 10000 N = 1.2 m Sia la stuttua in figua soggetta al caico P 1 applicato

Dettagli

IL CAMPO ELETTROMAGNETICO DIPENDENTE DAL TEMPO

IL CAMPO ELETTROMAGNETICO DIPENDENTE DAL TEMPO IL CAMPO ELETTROMAGNETICO DIPENDENTE DAL TEMPO Legge di Faaday-Heny (o dell induzione elettomagnetica); Applicazioni della legge dell induzione e.m., caso della spia otante; Il fenomeno dell autoinduzione

Dettagli

IL MOMENTO ANGOLARE E IL MOMENTO D INERZIA

IL MOMENTO ANGOLARE E IL MOMENTO D INERZIA . L'IMPULS 0 DI MT IL MMENT NGLRE E IL MMENT D INERZI Il momento angolae nalizziamo alcuni moti di otazione. Se gli attiti sono tascuabili, una uota di bicicletta messa in otazione può continuae a giae

Dettagli

effettuato una rotazione di 60 ; c) la velocità angolare quando il sistema ha effettuato una rotazione di 180.

effettuato una rotazione di 60 ; c) la velocità angolare quando il sistema ha effettuato una rotazione di 180. CORPO RIGIDO EX Un pofilo igido è costituito da un tatto ettileo AB e da una semiciconfeenza di aggio R=0cm come figua. Dal punto A viene lanciata una moneta di aggio =cm. Calcolae la mima velocità che

Dettagli

LICEO PEDAGOGICO-ARTISTICO G. Pascoli di BOLZANO TEST DI FISICA IN SOSTITUZIONE DELL ORALE- FILA A CLASSE V B-27/05/2010

LICEO PEDAGOGICO-ARTISTICO G. Pascoli di BOLZANO TEST DI FISICA IN SOSTITUZIONE DELL ORALE- FILA A CLASSE V B-27/05/2010 LICEO PEDAGOGICO-ARTISTICO G. Pascoli di BOLZANO TEST DI FISICA IN SOSTITUZIONE DELL ORALE- FILA A CLASSE V B-7/05/010 Ogni quesito va oppotunamente motivato, pena la sua esclusione dalla valutazione.

Dettagli

ψ β F ESERCIZIO PIEGAMENTI SULLE BRACCIA

ψ β F ESERCIZIO PIEGAMENTI SULLE BRACCIA S ϕ α E h W ψ β ESERCIZIO PIEGMENTI SULLE BRCCI W Un atleta compie una seie di piegamenti sulle baccia, mantenendo il movimento dei segmenti del baccio (omeo ed avambaccio) paalleli al piano sagittale.

Dettagli

ed è pari a: 683 lumen/watt, pertanto:

ed è pari a: 683 lumen/watt, pertanto: RICIAI GRADEZZE FOTOMETRICHE Fattoe di visibilità (o di sensibilità visiva) K ( λ) : funzione che appesenta la sensibilità media dell occhio umano a adiazioni di diffeente lunghezza d onda ma di eguale

Dettagli

12 L energia e la quantità di moto - 12. L impulso

12 L energia e la quantità di moto - 12. L impulso L enegia e la quantità di moto -. L impulso Il momento angolae e il momento d inezia Il momento angolae nalizziamo alcuni moti di otazione. Se gli attiti sono tascuabili, una uota di bicicletta messa in

Dettagli

I 0 Principio o legge d inerzia: un corpo non soggetto ad alcuna sollecitazione esterna mantiene il suo stato di quiete o di moto rettilineo uniforme

I 0 Principio o legge d inerzia: un corpo non soggetto ad alcuna sollecitazione esterna mantiene il suo stato di quiete o di moto rettilineo uniforme Le leggi Newtoniane del moto Le foze sono vettoi I 0 Pincipio o legge d inezia: un copo non soggetto ad alcuna sollecitazione estena mantiene il suo stato di quiete o di moto ettilineo unifome Moto acceleato:

Dettagli

Fisica. Architettura

Fisica. Architettura Fisica Facoltà di Ingegneia, Achitettua e delle Scienze Motoie Lezione 15 apile 013 Achitettua (coso magistale a ciclo unico quinquennale) Pof. Lanzalone Gaetano Sommaio Quantità di moto e Momento Angolae

Dettagli

Massimi e minimi con le linee di livello

Massimi e minimi con le linee di livello Massimi e minimi con le linee di livello Pe affontae questo agomento è necessaio sape appesentae i fasci di cuve ed in paticolae: Fasci di paabole. Pe affontae questo agomento si consiglia di ivedee l

Dettagli

IL VOLUME DEI SOLIDI Conoscenze

IL VOLUME DEI SOLIDI Conoscenze IL VOLUME DEI SOLIDI Conoscenze 1. Completa. a. Il peso di un copo dipende dal volume e dalla sostanza di cui è costituito b. Ogni sostanza ha il suo peso specifico, che è il peso dell unità di volume

Dettagli

Fisica Generale A. 9. Forze Inerziali. Cambiamento di Sistema di Riferimento. SdR in Moto Traslatorio Rettilineo Uniforme (II)

Fisica Generale A. 9. Forze Inerziali. Cambiamento di Sistema di Riferimento. SdR in Moto Traslatorio Rettilineo Uniforme (II) isica Geneale A 9. oze Ineziali http://campus.cib.unibo.it/2429/ ctobe 21, 2010 ambiamento di istema di ifeimento ome cambia la descizione del moto passando da un d a un alto? In paticolae, come cambia

Dettagli

Elettrostatica. P. Maestro Elettrostatica pag. 1

Elettrostatica. P. Maestro Elettrostatica pag. 1 Elettostatica Composizione dell atomo Caica elettica Legge di Coulomb Campo elettico Pincipio di sovapposizione Enegia potenziale del campo elettico Moto di una caica in un campo elettico statico Teoema

Dettagli

Regola di Ruffini - Wikipedia

Regola di Ruffini - Wikipedia Pagina 1 di 7 Regola di Ruffini Da Wikipedia, l'enciclopedia libea. In matematica, la egola di Ruffini pemette la divisione veloce di un qualunque polinomio pe un binomio della foma x a. È stata descitta

Dettagli

Dinamica Rotazionale

Dinamica Rotazionale Dinamica Rotazionale Richiamo: cinematica rotazionale, velocità e accelerazione angolare Energia cinetica rotazionale: momento d inerzia Equazione del moto rotatorio: momento delle forze Leggi di conservazione

Dettagli

Magnetostatica: forze magnetiche e campo magnetico

Magnetostatica: forze magnetiche e campo magnetico Magnetostatica: foze magnetiche e campo magnetico Lezione 6 Campo di induzione magnetica B() (nomenclatua stoica ; in ealtà si dovebbe chiamae, e spesso lo è, campo magnetico) è un campo di foze vettoiale

Dettagli

! Un asta di peso p =! + 1 (vedi figura) è appoggiata su due. supporti A e B, distanti, dal baricentro G dell asta,

! Un asta di peso p =! + 1 (vedi figura) è appoggiata su due. supporti A e B, distanti, dal baricentro G dell asta, isica eneale 5. Esecizi di Statica Esecizio Un asta di eso = + (vedi figua) è aoggiata su due 0 N suoti e, distanti, dal baicento dell asta, isettivamente a =. m e b = + 0. 000 m Calcolae la foza d aoggio

Dettagli

SECONDA LEZIONE (4 ore): CONDUTTORI e DIELETTRICI

SECONDA LEZIONE (4 ore): CONDUTTORI e DIELETTRICI SECONDA LEZIONE (4 oe): CONDUTTORI e DIELETTRICI Conduttoi in campo elettico Polaizzazione della mateia Vettoe polaizzazione Vettoe spostamento elettico Suscettività elettica Capacità Condensatoi Enegia

Dettagli

Lo schema seguente spiega come passare da una equazione all altra e al grafico della circonferenza. Svolgere i calcoli.

Lo schema seguente spiega come passare da una equazione all altra e al grafico della circonferenza. Svolgere i calcoli. D4. Ciconfeenza D4.1 Definizione di ciconfeenza come luogo di punti Definizione: una ciconfeenza è fomata dai punti equidistanti da un punto detto cento. La distanza (costante) è detta aggio. Ci sono due

Dettagli

Fisica II Secondo Appello - 7/2/2008

Fisica II Secondo Appello - 7/2/2008 Fisica II Secondo Appello - 7/2/2008 Chi ecupea il pimo compitino fa il pimo esecizio in due oe Chi ecupea il secondo compitino fa gli ultimi due esecizi in due oe Chi non ecupea fa le pime 4 domande del

Dettagli

SETTIMA-OTTAVA LEZIONE: sorgenti del campo magnetico, legge di Ampere, legge di Biot-Sawart

SETTIMA-OTTAVA LEZIONE: sorgenti del campo magnetico, legge di Ampere, legge di Biot-Sawart . Chiodoni esecizi di Fisica II SETTIM-OTTV LEZIONE: sogenti del campo magnetico, legge di mpee, legge di Biot-Sawat Esecizio 1 Due spie cicolai di aggio 3cm, aventi lo stesso asse, sono poste in piani

Dettagli

CINEMATICA DEL MOTO ROTATORIO DI UNA PARTICELLA

CINEMATICA DEL MOTO ROTATORIO DI UNA PARTICELLA CINEMAICA DEL MOO OAOIO DI UNA PAICELLA MOO CICOLAE: VELOCIA ANGOLAE ED ACCELEAZIONE ANGOLAE Si considei un pticell P in moto cicole che descive un co di ciconfeenz s. L ngolo di otzione ispetto d un sse

Dettagli

Momento magnetico di un atomo.

Momento magnetico di un atomo. L Espeienza di Sten e Gelach. L espeienza di Sten e Gelach fu compiuta nel 1922 pe iuscie a misuae il momento magnetico di un atomo. Momento magnetico di un atomo. Un atomo possiede un momento magnetico:

Dettagli

Meccanica Gravitazione

Meccanica Gravitazione Meccanica 016-017 Gavitazione 3 oza Mediatoe Gavitazione Intensità elativa Andaento asintotico Raggio d'azione Inteazione fote gluone 10 38 0 10-15 Inteazione elettoagnetica Inteazione debole fotone 10

Dettagli

Geometria analitica in sintesi

Geometria analitica in sintesi punti distanza ta due punti coodinate del punto medio coodinate del baicento ta due punti di un tiangolo di vetici etta e foma implicita foma esplicita foma segmentaia equazione della etta m è il coefficiente

Dettagli

Esercizio n. 1 ELEMENTI DI MECCANICA RAZIONALE. 1 Esercizi. 1) Dati i vettori

Esercizio n. 1 ELEMENTI DI MECCANICA RAZIONALE. 1 Esercizi. 1) Dati i vettori Politecnico di Toino CeTeM Esecizi Esecizio n. ) Dati i vettoi u 3i + 4 j + k v i + 3j k w i + j applicato in P (,,) applicato in P applicato P 3 (,,) (,,) a: deteminae la loo isultante. b: calcolae il

Dettagli

I.15. Il teorema di conservazione dell'energia nella meccanica classica

I.15. Il teorema di conservazione dell'energia nella meccanica classica L enegia meccanica: consevazione e non consevazione Consevazione dell enegia nel caso di foze costanti Consevazione dell enegia nel caso di sistemi obitanti I diagammi della enegia potenziale Quesiti di

Dettagli

Legge di Ohm. La corrente elettrica dal punto di vista microscopico: modello di Drude

Legge di Ohm. La corrente elettrica dal punto di vista microscopico: modello di Drude Legge di Ohm. Obiettivi didattici: Veifica della elazione ta coente e d.d.p. pe un conduttoe metallico. Veifica della elazione ta la esistenza di un conduttoe e le sue dimensioni (lunghezza, sezione) Misua

Dettagli

Magnetostatica: forze magnetiche e campo magnetico

Magnetostatica: forze magnetiche e campo magnetico Magnetostatica: foze magnetiche e campo magnetico Lezione 6 Campo di induzione magnetica () (nomenclatua stoica ; in ealtà si dovebbe chiamae, e spesso lo è, campo magnetico) è un campo di foze vettoiale

Dettagli

M.T., M.T.T. Appunti di Fisica per Scienze Biologiche Vers /09/2005

M.T., M.T.T. Appunti di Fisica per Scienze Biologiche Vers /09/2005 MT, MTT Appunti di Fisica pe Scienze iologiche Ves 4 /9/5 L Elettostatica costituenti elementai della mateia possiedono, olte alla massa, la caica elettica La caica elettica si misua in oulomb () ed il

Dettagli

IL VOLUME DEI SOLIDI Conoscenze

IL VOLUME DEI SOLIDI Conoscenze IL VOLUME DEI SOLIDI Conoscenze 1. Completa. a. Il peso di un copo dipende dal...e dalla...di cui è costituito b. Ogni sostanza ha il suo peso specifico, che è... di quella sostanza c. Il peso specifico

Dettagli

5 DINAMICA DEL PUNTO MATERIALE: Lavoro ed energia.

5 DINAMICA DEL PUNTO MATERIALE: Lavoro ed energia. 5 DINAMICA DEL PUNTO MATERIALE: Lavoo ed enegia. 5.1 Intoduzione Il poblema fondamentale della dinamica del punto mateiale consiste nel deteminae la legge oaia del moto di un copo, una volta note le foze

Dettagli

Campi scalari e vettoriali (1)

Campi scalari e vettoriali (1) ampi scalai e vettoiali (1) 3 e ad ogni punto P = (x, y, z) di una egione di spazio Ω R è associato uno ed uno solo scalae φ diemo che un campo scalae è stato definito in Ω. In alti temini: φ 3 : P R φ(p)

Dettagli

Moto su traiettorie curve: il moto circolare

Moto su traiettorie curve: il moto circolare Moto su taiettoie cuve: il moto cicolae Così come il moto ettilineo è un moto che avviene lungo una linea etta, il moto cicolae è un moto la cui taiettoia è cicolae, cioè un moto che avviene lungo una

Dettagli

Cambiamento del Sistema di Riferimento

Cambiamento del Sistema di Riferimento Cambiamento del Sistema di Rifeimento Il moto dipende dal sistema di ifeimento dal quale viene ossevato: Un viaggiatoe seduto sul sedile di una caozza feoviaia non si muove ispetto al vagone Se ossevato

Dettagli

RESISTENZE DI ATTRITO (Distillazione verticale)

RESISTENZE DI ATTRITO (Distillazione verticale) 1 ESISTEZE DI ATTITO (Distillazione veticale) OBIETTIVI: Saee calcolae le esistenze d attito nelle iù comuni alicazioni meccaniche. Saee calcolae lavoo dissiato e otenza dissiata dalle foze d attito. esistenza

Dettagli

Sorgenti del campo magnetico. Forze tra correnti

Sorgenti del campo magnetico. Forze tra correnti Campo magnetico pag 31 A. Scimone Sogenti el campo magnetico. Foze ta coenti Un campo magnetico può essee pootto a una coente elettica. Espeienze i questo tipo fuono effettuate nella pima ventina i anni

Dettagli

Forza gravitazionale

Forza gravitazionale Foza gavitazionale Tea Mecuio Venee Mate Pianeti inteni ano Nettuno Plutone Satuno iove Sistea solae Il oto dei pianeti descitto dalle 3 leggi di Kepleo Di qui Newton icavò la legge di gavitazione univesale:

Dettagli

Politecnico di Milano Fondamenti di Fisica Sperimentale a.a Facoltà di Ingegneria Industriale - Ind. Aero-Energ-Mecc

Politecnico di Milano Fondamenti di Fisica Sperimentale a.a Facoltà di Ingegneria Industriale - Ind. Aero-Energ-Mecc Politecnico di Milano Fondamenti di Fisica Speimentale a.a. 9-1 - Facoltà di Ingegneia Industiale - Ind. Aeo-Eneg-Mecc II pova in itinee - 5/7/1 Giustificae le isposte e scivee in modo chiao e leggibile.

Dettagli

GEOMETRIA ELEMENTARE. h = 2 2 S. h =

GEOMETRIA ELEMENTARE. h = 2 2 S. h = QUESITI 1 GEOMETRI ELEMENTRE 1. (Da Veteinaia 015) Le diagonali (ossia le linee che uniscono i vetici opposti) di un ombo misuano ispettivamente 4 cm e 8 cm. Qual è il peimeto del ombo in cm? a) 8 3 b)

Dettagli

Sistemi di riferimento inerziali:

Sistemi di riferimento inerziali: La pima legge di Newton sul moto è anche chiamata pincipio di inezia. In fisica inezia significa esistenza ai cambiamenti di velocità. Es.: - la foza d attito ta la moneta e la tessea è molto piccola e

Dettagli

FENOMENI DI TRASPORTO: NATURA E RUOLO

FENOMENI DI TRASPORTO: NATURA E RUOLO FENOMENI DI TRSPORTO: NTUR E RUOLO tasfeimento di quantità di moto, di caloe e di mateia (momentum, heat, mass tansfe) pocessi comuni in campo industiale, biologico/medico, ambientale/geologico esempi

Dettagli

Moti relativi. dt dt dt. r r

Moti relativi. dt dt dt. r r P Moi elaivi Se i due sisemi aslano solo fa di loo, i vesoi non vaiano nel empo. = + ' d d d' v = = + = v + d d d Leggi di asfomazione di velocià e acceleazione P P pe due sisemi che aslano l uno ispeo

Dettagli

Dinamica. [studio delle cause del moto: forze] La forza è una grandezza vettoriale: una trazione o spinta ha sempre

Dinamica. [studio delle cause del moto: forze] La forza è una grandezza vettoriale: una trazione o spinta ha sempre Dinamica [studio delle cause del moto: foze] Il temine foza nel senso comune indica una tazione o una spinta La foza è una gandezza vettoiale: una tazione o spinta ha sempe una intensità (il modulo) una

Dettagli

Rotazioni in Astrofisica

Rotazioni in Astrofisica Rotazioni in Astofisica Paolo de Benadis Dipatimento di Fisica, La Sapienza 25/11/2011 Le leggi che avete visto in azione in laboatoio Funzionano anche nello spazio, ed in galassie lontanissime, nello

Dettagli

per Scienze Geologiche prof. Maurizio Spurio

per Scienze Geologiche prof. Maurizio Spurio pe Scienze Geologiche pof. Mauizio Spuio mauizio.spuio@unibo.it 1 Il Metodo Scientifico La stoia della Scienza modena inizia in Gecia: nascita della logica, della filosofia, della matematica e pimi tentativi

Dettagli

Potenziale Elettrico. r A. Superfici Equipotenziali. independenza dal cammino. V Q 4pe 0 r. Fisica II CdL Chimica

Potenziale Elettrico. r A. Superfici Equipotenziali. independenza dal cammino. V Q 4pe 0 r. Fisica II CdL Chimica Potenziale Elettico Q V 4pe 0 R Q 4pe 0 C R R R q independenza dal cammino Supefici Equipotenziali Due modi pe analizzae i poblemi Con le foze o i campi (vettoi) pe deteminae posizione e velocità di un

Dettagli

Problema (tratto dal 7.42 del Mazzoldi 2)

Problema (tratto dal 7.42 del Mazzoldi 2) Problema (tratto dal 7.4 del azzoldi Un disco di massa m D e raggio R ruota attorno all asse verticale passante per il centro con velocità angolare costante ω. ll istante t 0 viene delicatamente appoggiata

Dettagli

ESERCIZIO n.1. rispetto alle rette r e t indicate in Figura. h t. d b GA#1 1

ESERCIZIO n.1. rispetto alle rette r e t indicate in Figura. h t. d b GA#1 1 Esecizi svolti di geometia delle aee Aliandi U., Fusci P., Pisano A., Sofi A. ESERCZO n.1 Data la sezione ettangolae ipotata in Figua, deteminae: a) gli assi pincipali centali di inezia; ) l ellisse pincipale

Dettagli

LEZIONE 10. d(a, B) = AB = AB = (x A x B ) 2 + (y A y B ) 2 + (z A z B ) 2.

LEZIONE 10. d(a, B) = AB = AB = (x A x B ) 2 + (y A y B ) 2 + (z A z B ) 2. LEZIONE 10 10.1. Distanze. Definizione 10.1.1. In S n sia fissata un unità di misua u. Se A, B S n, definiamo distanza fa A e B, e sciviamo d(a, B), la lunghezza del segmento AB ispetto ad u. Abbiamo già

Dettagli

I principi della Dinamica. L azione di una forza è descritta dalle leggi di Newton, possono fare Lavoro e trasferire Energia

I principi della Dinamica. L azione di una forza è descritta dalle leggi di Newton, possono fare Lavoro e trasferire Energia I pincipi della Dinamica Un oggetto si mette in movimento quando viene spinto o tiato o meglio quando è soggetto ad una foza 1. Le foze sono gandezze fisiche vettoiali che influiscono su un copo in modo

Dettagli

La fisica di Feynmann Meccanica

La fisica di Feynmann Meccanica La fisica di Feynmann Meccanica 1.1 CINEMATICA Moto di un punto Posizione r = ( x, y, z ) = x i + y j + z k Velocità v = dr/dt v = vx 2 + vy 2 + vz 2 Accelerazione a = d 2 r/dt 2 Moto rettilineo Spazio

Dettagli

Esercizi di Statica. Esercitazioni di Fisica LA per ingegneri - A.A

Esercizi di Statica. Esercitazioni di Fisica LA per ingegneri - A.A Esecizio 1 Esecizi di Statica Esecitazioni di Fisica LA pe ingegnei - A.A. 2004-2005 Un punto ateiale di assa = 0.1 kg (vedi FIG.1) é situato all esteitá di una sbaetta indefoabile di peso tascuabile e

Dettagli

Corso di Elettrotecnica 1 - Cod N Diploma Universitario Teledidattico in Ingegneria Informatica ed Automatica Polo Tecnologico di Alessandria

Corso di Elettrotecnica 1 - Cod N Diploma Universitario Teledidattico in Ingegneria Informatica ed Automatica Polo Tecnologico di Alessandria Schede di Elettotecnica oso di Elettotecnica 1 - od. 9200 N Diploma Univesitaio Teledidattico in Ingegneia Infomatica ed Automatica Polo Tecnologico di Alessandia A cua di uca FEAIS Scheda N 8 icuiti in

Dettagli

Esercizio (tratto dal problema 7.36 del Mazzoldi 2)

Esercizio (tratto dal problema 7.36 del Mazzoldi 2) Esercizio (tratto dal problema 7.36 del Mazzoldi 2) Un disco di massa m D = 2.4 Kg e raggio R = 6 cm ruota attorno all asse verticale passante per il centro con velocità angolare costante ω = 0 s. ll istante

Dettagli

Campo magnetico: concetti introduttivi

Campo magnetico: concetti introduttivi Appunti di Fisica II Campo magnetico: concetti intoduttivi Intoduzione ai fenomeni magnetici...1 Azione dei magneti su caiche elettiche in moto... Foza di Loentz...5 Selettoe di velocità...5 Invaianza

Dettagli

Campo elettrico e potenziale di un disco uniformemente carico

Campo elettrico e potenziale di un disco uniformemente carico Campo elettico e poteniale di un disco unifomemente caico q S densità supeficiale di caica Consideo l anello di aggio e spessoe d calcolo l anello sommo sugli anelli ho due integaioni dq da πd d Σ anello

Dettagli

Università La Sapienza - Ingegneria Informatica e Automatica. Corso di Fisica Generale: MOTI RELATIVI. A. Bosco, F. Pettazzi ed E.

Università La Sapienza - Ingegneria Informatica e Automatica. Corso di Fisica Generale: MOTI RELATIVI. A. Bosco, F. Pettazzi ed E. Univesità La Sapienza - Ingegneia Infomatica e Automatica Coso i Fisica Geneale: MOTI RELATIVI A. Bosco, F. Pettazzi e E. Fazio Consieiamo un punto mateiale P che si muove i moto abitaio all inteno i un

Dettagli

f = coefficiente di attrito

f = coefficiente di attrito La tasmissione di potenza ta albei con uote di fizione non è utilizzata peché ichiedeebbe enomi foze di contatto a fonte di modeste coppie tasmesse M = F t = N f f = coefficiente di attito Angolo d attito

Dettagli

Il Potenziale elettrostatico 3.1 Distribuzione della carica in eccesso sui conduttori metallici

Il Potenziale elettrostatico 3.1 Distribuzione della carica in eccesso sui conduttori metallici Il Potenziale elettostatico 3.1 Distibuzione della caica in eccesso sui conduttoi metallici Consideiamo un conduttoe metallico neuto, posto in una egione di spazio dove sia assente qualunque campo elettico

Dettagli

qq r Elettrostatica Legge di Coulomb permette di calcolare la forza che si esercita tra due particelle cariche.

qq r Elettrostatica Legge di Coulomb permette di calcolare la forza che si esercita tra due particelle cariche. lettostatica La mateia è costituita da atomi. Gli atomi sono fomati da un nucleo, contenete paticelle neute (neutoni) e paticelle caiche positivamente (potoni). Intono al nucleo ci sono paticelle caiche

Dettagli

= 4. L unita di misura della carica elettrica nel S.I. è il coulomb (C).

= 4. L unita di misura della carica elettrica nel S.I. è il coulomb (C). LGG DI COULOMB (3) L unta d msua della caca elettca nel.i. è l coulomb (C). F π o La caca elettca d C è uella caca che posta nel vuoto ad m d dstanza da una caca elettca uguale la espnge con la foza d

Dettagli

1Cuscinetti a Sfere a Contatto Obliquo di Alta Precisione (Serie Standard)

1Cuscinetti a Sfere a Contatto Obliquo di Alta Precisione (Serie Standard) Cuscinetti a Sfee a 1Cuscinetti a Sfee a di Alta Pecisione (Seie Standad)........ 44-56 Caatteistiche Sistema di designazione Tabelle dimensionali Seie Miniatua Seie 79 Seie 70 Seie 72 Cuscinetti a Sfee

Dettagli

Forza gravitazionale

Forza gravitazionale Foza gavitazionale Tea Mecuio Venee Mate Pianeti inteni Uano Nettuno Plutone atuno Giove istea solae Il oto dei pianeti descitto dalle 3 leggi di Kepleo Di qui Newton icavò la legge di gavitazione univesale:

Dettagli

Potenza in alternata

Potenza in alternata otenza in altenata sin t 0 ( ) ω +φ i [ ( )] sin ω t + φ ( ω + φ) 0 0 sin t E significativo consideae la potenza media dissipata sulla esistenza andando a calcolae l integale su un peiodo 1 T T 0 sin sin

Dettagli

Il magnetismo. Il Teorema di Ampere: la circuitazione del campo magnetico.

Il magnetismo. Il Teorema di Ampere: la circuitazione del campo magnetico. Il magnetismo Il Teoema di Ampee: la cicuitazione del campo magnetico. Richiamiamo la definizione geneale di cicuitazione pe un campo vettoiale Definizione: si definisce cicuitazione di un campo vettoiale

Dettagli

Grandezze angolari. Lineare Angolare Relazione x θ x = rθ. m I I = mr 2 F N N = rf sin θ 1 2 mv2 1

Grandezze angolari. Lineare Angolare Relazione x θ x = rθ. m I I = mr 2 F N N = rf sin θ 1 2 mv2 1 Grandezze angolari Lineare Angolare Relazione x θ x = rθ v ω v = ωr a α a = αr m I I = mr 2 F N N = rf sin θ 1 2 mv2 1 2 Iω 2 Energia cinetica In forma vettoriale: v = ω r questa collega la velocità angolare

Dettagli

Geometria analitica in sintesi

Geometria analitica in sintesi geometia analitica Geometia analitica in sintesi punti istanza ta ue punti punto meio baicento ta ue punti i un tiangolo i vetici aea i un tiangolo i vetici C B A etta e foma implicita foma esplicita foma

Dettagli