Dinamica. [studio delle cause del moto: forze] La forza è una grandezza vettoriale: una trazione o spinta ha sempre

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Dinamica. [studio delle cause del moto: forze] La forza è una grandezza vettoriale: una trazione o spinta ha sempre"

Transcript

1 Dinamica [studio delle cause del moto: foze] Il temine foza nel senso comune indica una tazione o una spinta La foza è una gandezza vettoiale: una tazione o spinta ha sempe una intensità (il modulo) una diezione un veso foze di contatto: espimono isultato di contatto fisico ta copi foze a distanza: agiscono attaveso lo spazio vuoto [campi di foze] foza gavitazionale foza elettica foza magnetica

2 Foze in natua In natua esistono 4 foze fondamentali con cui è possibile descivee tutti i fenomeni natuali noti: gavitazionale m 1m G F è esponsabile di tutti i fenomeni astonomici è la foza che pecepiamo nel modo più immediato [ legge di gavitazione univesale di Newton] elettomagnetica lega gli elettoni al nucleo è esponsabile dei fenomeni elettici e magnetici [ equazioni di Maxwell] nucleae fote lega i mattoni elementai della mateia mantiene unite le paticelle impedisce ai nuclei di disintegasi pe epulsione fa potoni [ la foma esplicita completa è tuttoa ignota] nucleae debole assicua poduzione di luce e caloe pe fusione nucleae è esponsabile dei decadimenti adioattivi. [ La foma esplicita non è completamente nota ] Qualsiasi alta foza deiva da queste quatto Foza peso Foza di attito Foza viscosa Foza elettostatica Foza di Loentz F mg j g 9.8 m/ s F kn F k 0v 1 qq 1 4πε F 0 F qv B

3 se la foza è una quantità eale deve essee misuabile deve indue effetti che possono essee quantificati 1600 Newton: espeimenti concettuali (oggetto in moto su supeficie senza attito) non è nella natua di un oggetto femasi una volta che sia posto in moto Pima legge di Newton [legge di inezia] Un copo imane nel suo stato di quiete o nel suo stato di moto ettilineo a velocità costante se una foza isultante non nulla non lo costinge a vaiae il suo stato di moto X assenza di foze implica assenza di vaiazione di moto, cioè assenza di acceleazione ΣF 0 a 0 una foza F applicata ad un copo gli impime una acceleazione X un copo senza acceleazione si dice in equilibio

4 Sistemi di ifeimento ineziali La pima legge di Newton non vale in tutti i sistemi di ifeimento un sistema di ifeimento è ineziale se in esso vale la pima legge di Newton qualunque sistema di ifeimento in moto con velocità costante ispetto ad un ifeimento ineziale e anch esso ineziale la tea NON è un sistema ineziale: a c m/s acceleazione centipeta veso il Sole [moto attono al sole] a c m/s acceleazione centipeta veso il cento della tea [moto attono all asse teeste] sono acceleazioni piccole ispetto a g 9.8 m/s si suppone che un sistema di ifeimento vicino alla supeficie teeste sia un ifeimento ineziale esempio: pove su un vagone pe veificae se è un sistema ineziale

5 La massa ineziale Ossevazione: una foza poduce acceleazioni di intensità divesa su copi divesi esempio: stesso calcio a palla da baseball gande acceleazione palla da bowling piccola acceleazione la diffeenza di acceleazione è dovuta alla diffeenza di massa copi meno massicci icevono una acceleazione maggioe massa m 1 m a a popietà intinseca di un copo indipendente da ciò che lo ciconda indipendente dal metodo di misua gandezza scalae obbedisce alle egole di aitmetica massa peso massa: mette in elazione foza applicata al copo e acceleazione subita peso: modulo della foza esecitata dalla tea sul copo (vaia con la posizione) mluna mtea esempio: Tea Luna peso < peso luna tea 1

6 Seconda legge di Newton L acceleazione di un oggetto è diettamente popozionale alla foza isultante su di esso invesamente popozionale alla sua massa F net ΣF ma ΣF ΣF ΣF x z m a m a m a x z [N.B. si consideano solo le foze che agiscono sul copo non tutte le foze pesenti nel poblema!!] un copo è in equilibio quando la somma di tutte le foze agenti è nulla F net 0 ΣF ΣF ΣF x z Dimensioni e Unità di misua m s [ Foza ] [ M ] [ a] kg N Newton

7 Teza legge di Newton [pincipio di azione e eazione] Se due copi inteagiscono le foze esecitate da un copo sull alto sono uguali in modulo e diezione opposte in veso F 1 F 1 esempio: libo B appoggiato su cassetta C F BC foza esecitata da libo su cassetta F CB foza esecitata da cassetta su libo le foze di azione e eazione agiscono sempe su copi divesi: non si combinano in una foza isultante; non si elidono a vicenda.

8 effetto indotto dalle foze di azione e eazione può essee sensibilmente diffeente esempio: F 36 N m astonave kg m uomo 9 kg a a astonave uomo m / s m / s

9 Alcune Foze Paticolai Foza gavitazionale foza di attazione di un copo veso un alto copo F g Fg j mg j se il secondo copo è la tea: dietta veso il F g cento della tea ogni copo in caduta libea subisce acceleazione g dietta veso il cento della tea g vaia con la posizione geogafica diminuisce all aumentae dell altezza

10 Foza peso modulo della foza netta ichiesta pe evitae che il copo cada modulo della foza gavitazionale P mg peso dipende da g massa NON dipende da g popietà intinseca esempio: P mg j mg vaia con la posizione geogafica g g tea luna 9.8 m/ s 1.7 m/ s p m tea tea > p m luna luna Bilancia a molla [dinamometo]: peso del copo allunga molla taata in unità di massa o peso, muovendo un indice su scala gaduata

11 Foza nomale Se un copo peme su una supeficie: la supeficie si defoma (anche se appaentemente igida) spinge il copo con foza nomale N N è sempe pependicolae alla supeficie stessa esempio: ΣF N F g ma N mg ma N mg + ma m ( g + a ) a 0 N mg la foza nomale bilancia il peso e detemina l equilibio che diffeenza c è ta foza nomale e foza peso? sono sempe uguali?

12 F N è sempe pependicolae alla supeficie di appoggio F g è sempe pependicolae alla supeficie della tea F g F N non sempe bilancia F g F F x F F g N sinθ ma F g x 0 cosθ 0 x F g F N bilancia SOLO componente di F g nomale al piano di appoggio

13 Tensione filo fissato ad un copo soggetto ad una foza il filo è sotto tensione il filo esecita sul copo una foza di tazione T dietta lungo il filo nel veso di allontanamento del copo con modulo tensione nella coda modulo T della foza agente sul copo

14 esempio: tio alla fune un individuo tia con foza F una fune attaccata alla paete non c è acceleazione due individui tiano con foza F in vesi opposti una fune non c è acceleazione cosa segna il dinamometo al cento della fune? il dinamometo è in equilibio in entambi i casi F net F + T 0 ciascun individuo è in equilibio il dinamometo segna F in entambi i casi!!!

15 applicazione: peso di un oggetto in ascensoe ascensoe acceleato NON è sistema di ifeimento ineziale ossevatoe in sistema ineziale ΣF T T mg ma mg + ma > mg ΣF T T mg ma mg ma < mg se ascensoe è femo a 0 o in moto con velocità costante: F T mg 0

16 Foza di Attito Statico foza necessaia pe mettee in moto un copo di massa M su una supeficie k poviene dalla scabosità delle supefici [coinvolge anche foze elettostatiche] copo in quiete non applico nessuna foza. quiete applico foza F < f s il copo imane femo aumento F ma sempe F < f s il copo imane femo F f s il copo imane femo accel. se F > f k il copo acquista acceleazione a velocità costante pe mantenee v costante iduco F: F < F max

17 Foza di Attito Dinamico foza che si oppone a qualsiasi moto di un copo che stiscia su un mateiale f d N v N f d v intensità foza d attito punto di ottua

18 popietà attito f f s d µ N µ s coefficiente attito statico s µ d N µ d coefficiente attito dinamico µ s, µ d dipendono dai mateiali a contatto [0.05 < µ < 1.5] µ d < µ s µ s, µ d f s, f d non dipendono dall aea di contatto paallele alla supeficie e opposte al moto coefficienti di attito

19 Foze itadanti [dipendenti dalla velocità] studio inteazione ta copo e mezzo nel quale si muove: il mezzo (liquido o gas) esecita una foza itadante R sul copo che si muove attaveso di esso modulo di R: funzione complessa di velocità v diezione e veso: opposti al moto Caso 1. R v Caso. R v

20 Caso 1. Foza itadante popozionale a v [esempio: oggetti che cadono in fluidi con bassa velocità; oggetti piccoli in aia (polvee) ] ΣF mg b v ma R b v b coeff. dipendente da popietà oggetto [foma, dimensioni] dv m dt dv b a g v equazione dt m diffeenziale seconda legge di Newton v v( t 0) 0 mg dv v( t ) vlimite pe R mg ( a b dt mg bt / m t /τ ( 1 e ) vlimite( 1 e ) b 0) pe tτm/b v 63% v limite [e.7, 1/e 0.37]

21 Caso. Foza itadante popozionale a v [esempio: oggetti di gandi dimensioni che cadono in aia velocità elevate (aeei, paacadutisti ) ] R 1 DρA v ρ densità aia A aea sezione oggetto D coeff. di esistenza (coeff. aeodinamico) [ 0.5 sfea, oggetto iegolae] R v RRR v limite 1 dv seconda legge ΣF mg D ρ Av ma m dt di Newton a dv dt g DρA m v equazione diffeenziale velocità limite: pe R mg a DρA g v limite 0 m dv dt 0 v limite mg DρA N.B. dipende da dimensioni oggetto

22 posizione a uovo: 4ende minima l aea efficace della sezione tasvesale 4iduce esistenza dell aia auto aeeodinamica: 4fasce lateali iducono esistenza dell aia posizione ad aquila ali distese: 4ende massima la esistenza dell aia

23 Foza elastica mateiale elastico: mateiale che ha capacità di iacquistae la foma iniziale dopo essee stato compesso o defomato esempio: molla 0 x 0 x F k( x x ) 0 foza necessaia pe allungae o accociae una molla: lineamente popozionale all allungamento k costante elastica x 0 estensione molla NON soggetta a foze x attuale posizione della molla se compimo la molla la foza che esecito è negativa x < x ( ) 0 F k x x0 < 0 0 x x 0 se estendo la molla la foza che esecito è positiva 0 x 0 x x > x ( ) 0 F k x x0 > 0 Pincipio di azione e eazione: la foza esecitata dalla molla ha modulo e diezione uguali F veso opposto : [ N.B. nella maggio pate dei casi si considea x 0 0] legge di Hooke k( x x ) 0

24 Foza centipeta [moto cicolae unifome] copo con: velocità v costante in modulo lungo taiettoia cicolae subisce acceleazione centipeta: v a dietta veso il cento ciconfeenza sempe pependicolae a v esempio: disco su taiettoia cicolae inezia del disco: moto su linea etta tensione del filo: mantiene taiettoia cicolae T F ma m v se ompo il filo il disco si muove lungo linea etta tangente alla ciconfeenza [v è infatti costante]

25 Attenzione: 4la foza centipeta NON è un nuovo tipo di foza 4è una qualunque foza che causa una acceleazione centipeta esempi: palla tattenuta da un filo T F otoe del paco dei divetimenti F N satellite attono alla tea mg F v taiettoia astonave in assenza di gavità

26 Foza centifuga [foza appaente] esempio 1: autista dell automobile sente una foza che lo pota veso l esteno f s foza attito statico questa foza è detta foza centifuga F mv / foza centifuga: foza appaente, viene sentita solo se l ossevatoe non è femo o in moto ettilineo unifome [ ossia in sistemi non ineziali ] N.B. pe un ossevatoe in moto con l auto (sistema non ineziale): 4 auto non è soggetta ad acceleazione 4 intoduce foza centifuga fittizia pe equilibae foza centipeta F m v

27 esempio : blocco di massa m fissato ad una fune su piattafoma otante ossevatoe ineziale: vede il copo che si muove lungo taiettoia cicolae T F m v ossevatoe NON ineziale: vede il blocco in quiete intoduce una foza [detta centifuga] che equiliba la tensione del filo T m v 0 le foze fittizie sono usate solo in sistemi acceleati non appesentano foze eali

Dinamica. [studio delle cause del moto: forze]

Dinamica. [studio delle cause del moto: forze] Dinamica [studio delle cause del moto: foze] Il temine foza nel senso comune indica una tazione o una spinta La foza è una gandezza vettoiale: una tazione o spinta ha sempe una intensità (il modulo) una

Dettagli

I 0 Principio o legge d inerzia: un corpo non soggetto ad alcuna sollecitazione esterna mantiene il suo stato di quiete o di moto rettilineo uniforme

I 0 Principio o legge d inerzia: un corpo non soggetto ad alcuna sollecitazione esterna mantiene il suo stato di quiete o di moto rettilineo uniforme Le leggi Newtoniane del moto Le foze sono vettoi I 0 Pincipio o legge d inezia: un copo non soggetto ad alcuna sollecitazione estena mantiene il suo stato di quiete o di moto ettilineo unifome Moto acceleato:

Dettagli

Gravitazione. Dati due corpi di massa m 1 e m 2, posti ad una distanza r, tra di essi si esercita una forza attrattiva data in modulo da

Gravitazione. Dati due corpi di massa m 1 e m 2, posti ad una distanza r, tra di essi si esercita una forza attrattiva data in modulo da Gavitazione Dati due copi di massa m 1 e m 2, posti ad una distanza, ta di essi si esecita una foza attattiva data in modulo da F = G m 1m 2 dove G è una costante univesale, avente lo stesso valoe pe tutte

Dettagli

Sistemi di riferimento inerziali:

Sistemi di riferimento inerziali: La pima legge di Newton sul moto è anche chiamata pincipio di inezia. In fisica inezia significa esistenza ai cambiamenti di velocità. Es.: - la foza d attito ta la moneta e la tessea è molto piccola e

Dettagli

4. DINAMICA. I tre principi della dinamica per un corpo puntiforme (detto anche punto materiale o particella) sono:

4. DINAMICA. I tre principi della dinamica per un corpo puntiforme (detto anche punto materiale o particella) sono: 4.1 Pincipi della dinamica 4. DINAMICA I te pincipi della dinamica pe un copo puntifome (detto anche punto mateiale o paticella) sono: 1) pincipio di intezia di Galilei; 2) legge dinamica di Newton; 3)

Dettagli

7. LA DINAMICA Primo principio della dinamica Secondo principio della dinamica.

7. LA DINAMICA Primo principio della dinamica Secondo principio della dinamica. 7. LA DINAMICA Ta la foza applicata ad un copo e il moto che essa povoca esistono dei appoti molto stetti che sono studiati da una banca della fisica: la dinamica. Lo studio della dinamica si è ilevato

Dettagli

Fisica Generale A. 9. Forze Inerziali. Cambiamento di Sistema di Riferimento. SdR in Moto Traslatorio Rettilineo Uniforme (II)

Fisica Generale A. 9. Forze Inerziali. Cambiamento di Sistema di Riferimento. SdR in Moto Traslatorio Rettilineo Uniforme (II) isica Geneale A 9. oze Ineziali http://campus.cib.unibo.it/2429/ ctobe 21, 2010 ambiamento di istema di ifeimento ome cambia la descizione del moto passando da un d a un alto? In paticolae, come cambia

Dettagli

Elettrostatica. P. Maestro Elettrostatica pag. 1

Elettrostatica. P. Maestro Elettrostatica pag. 1 Elettostatica Composizione dell atomo Caica elettica Legge di Coulomb Campo elettico Pincipio di sovapposizione Enegia potenziale del campo elettico Moto di una caica in un campo elettico statico Teoema

Dettagli

Sistemi inerziali Forza centripeta e forze apparenti Forza gravitazionale. 03/11/2011 G. Pagnoni 1

Sistemi inerziali Forza centripeta e forze apparenti Forza gravitazionale. 03/11/2011 G. Pagnoni 1 Sistemi ineziali Foza centipeta e foze appaenti Foza gavitazionale 03/11/011 G. Pagnoni 1 Sistemi ineziali Sistema di ifeimento ineziale: un sistema in cui è valida la pima legge di Newton (I legge della

Dettagli

L = F s cosα = r F r s

L = F s cosα = r F r s LVORO Se su un copo agisce una foza F, il lavoo compiuto dalla foza pe uno spostamento s è (podotto scalae di due vettoi): L = F s cosα = F s F α s LVORO L unità di misua del lavoo nel S.I. si chiama Joule:

Dettagli

Equilibrio dei corpi rigidi- Statica

Equilibrio dei corpi rigidi- Statica Equilibio dei copi igidi- Statica Ci ifeiamo solo a situazioni paticolai in cui i copi igidi non si muovono in nessun modo: ne taslano ( a 0 ), ne uotano ( 0 ), ossia sono femi in un oppotuno sistema di

Dettagli

Per migliorare la trasmissione tra satellite e Terra, emerge la necessità di portare il satellite ad un orbita circolare diversa.

Per migliorare la trasmissione tra satellite e Terra, emerge la necessità di portare il satellite ad un orbita circolare diversa. 1 Esecizio (tatto dagli esempi 5.3 e 5.4 del cap. V del Mazzoldi-Nigo-Voci) Un satellite atificiale di massa m 10 3 Kg uota attono alla Tea descivendo un obita cicolae di aggio 1 6.6 10 3 Km. 1. Calcolae

Dettagli

I principi della Dinamica. L azione di una forza è descritta dalle leggi di Newton, possono fare Lavoro e trasferire Energia

I principi della Dinamica. L azione di una forza è descritta dalle leggi di Newton, possono fare Lavoro e trasferire Energia I pincipi della Dinamica Un oggetto si mette in movimento quando viene spinto o tiato o meglio quando è soggetto ad una foza 1. Le foze sono gandezze fisiche vettoiali che influiscono su un copo in modo

Dettagli

Meccanica Gravitazione

Meccanica Gravitazione Meccanica 016-017 Gavitazione 3 oza Mediatoe Gavitazione Intensità elativa Andaento asintotico Raggio d'azione Inteazione fote gluone 10 38 0 10-15 Inteazione elettoagnetica Inteazione debole fotone 10

Dettagli

IL POTENZIALE. = d quindi: LAB

IL POTENZIALE. = d quindi: LAB 1 IL POTENZIALE Sappiamo che il campo gavitazionale è un campo consevativo cioè nello spostamento di un copo ta due punti del campo gavitazionale teeste, le foze del campo compiono un lavoo che dipende

Dettagli

I principi della dinamica ed il concetto di massa e di forza. Le forze nascono da interazioni tra corpi Questo però non è sempre vero!

I principi della dinamica ed il concetto di massa e di forza. Le forze nascono da interazioni tra corpi Questo però non è sempre vero! Lezione III 1 I pincipi della dinamica ed il concetto di massa e di foza Le foze sono la causa del cambiamento nel moto dei copi. In geneale noi associamo all azione di una foza la pesenza di un alto copo

Dettagli

Richiami di Fisica Generale

Richiami di Fisica Generale Richiami di Fisica Geneale Slide 1 Caica elettica (I) La caica elettica (q) è la popietà delle paticelle sensibili alla foza (inteazione) elettomagnetica, così come la massa (o caica) gavitazionale (m)

Dettagli

CENTRO DI MASSA. Il centro di massa C divide il segmento AB in parti inversamente proporzionali alle masse: AC. x C = m A x A + m B x B.

CENTRO DI MASSA. Il centro di massa C divide il segmento AB in parti inversamente proporzionali alle masse: AC. x C = m A x A + m B x B. Due paticelle: CENTRO DI MASSA 0 A m A A C m B B B C Il cento di massa C divide il segmento AB in pati invesamente popozionali alle masse: AC CB = m B m A C A B C = m B m A m A C m A A = m B B m B C (

Dettagli

Principio di inerzia

Principio di inerzia Dinamica abbiamo visto come si descrive il moto dei corpi (cinematica) ma oltre a capire come si muovono i corpi è anche necessario capire perchè essi si muovono Partiamo da una domanda fondamentale: qual

Dettagli

FISICA MATEMATICA 1 A.A. 2014/15 Problemi dal libro di testo: D. Giancoli, Fisica, 2a ed., CEA Capitolo 5

FISICA MATEMATICA 1 A.A. 2014/15 Problemi dal libro di testo: D. Giancoli, Fisica, 2a ed., CEA Capitolo 5 8360 - FISICA MATEMATICA 1 A.A. 014/15 Poblemi dal libo di testo: D. Giancoli, Fisica, a ed., CEA Capitolo 5 Poblema 1 Un bimbo su una giosta si muove con una velocità di 1.5 m/s quando è a 1.10 m dal

Dettagli

Precorso:parte 2 dott.francesca De Mori

Precorso:parte 2 dott.francesca De Mori Pecoso:pate 2 dott.fancesca De Moi Coso popedeutico di Fisica (Pate 2) Fancesca De Moi 1 Come possiamo descivee le gandezze fisiche? VETTORI Es. Velocita Caatteizzato da diezione oientata( diezione+veso),

Dettagli

Dinamica. Se un corpo non interagisce con altri corpi la sua velocità non cambia.

Dinamica. Se un corpo non interagisce con altri corpi la sua velocità non cambia. Poblema fondamentale: deteminae il moto note le cause (foze) pe oa copi «puntifomi» Dinamica Se un copo non inteagisce con alti copi la sua velocità non cambia. Se inizialmente femo imane in quiete, se

Dettagli

Lezione 3. Applicazioni della Legge di Gauss

Lezione 3. Applicazioni della Legge di Gauss Applicazioni della Legge di Gauss Lezione 3 Guscio sfeico di aggio con caica totale distibuita unifomemente sulla supeficie. immetia sfeica, dipende solo da supeficie sfeica di aggio

Dettagli

Un punto di vista euristico relativo alla evoluzione del Sistema Solare Convegno Mathesis

Un punto di vista euristico relativo alla evoluzione del Sistema Solare Convegno Mathesis 1 Un punto di vista euistico elativo alla evoluzione del Sistema Solae Paolo Allievi Albeto Totta Convegno Mathesis Tento,3,4 Novembe 006 Ipotesi di base: ogni copo emette natualmente e continuamente enegia

Dettagli

Moto di puro rotolamento

Moto di puro rotolamento oto-taslaione di un copo igido di seione cicolae (disco,cilindo,sfea) su di un piano, pe il quale il punto (o i punti) di contatto ta il copo ed il piano è femo ispetto a questo ( non vi è stisciamento

Dettagli

9 GRAVITAZIONE UNIVERSALE

9 GRAVITAZIONE UNIVERSALE 9 GRAVIAZIONE UNIVERSAE e conoscenze elative alla foza di gavitazione si sono sviluppate a patie dalle ossevazioni astonomiche del moto dei pianeti del sistema solae Attaveso tali ossevazioni yco Bahe

Dettagli

Forza gravitazionale

Forza gravitazionale Foza gavitazionale Tea Mecuio Venee Mate Pianeti inteni Uano Nettuno Plutone atuno Giove istea solae Il oto dei pianeti descitto dalle 3 leggi di Kepleo Di qui Newton icavò la legge di gavitazione univesale:

Dettagli

CASO 2 CASO 1. δ Lo. e N. δ Lo. e L. PROBLEMA A Corso di Fisica 1- Prima provetta- 22 maggio 2004 Facoltà di Ingegneria dell Università di Trento

CASO 2 CASO 1. δ Lo. e N. δ Lo. e L. PROBLEMA A Corso di Fisica 1- Prima provetta- 22 maggio 2004 Facoltà di Ingegneria dell Università di Trento PROBEMA A Coso di Fisica 1- Pima povetta- maggio 004 Facoltà di Ingegneia dell Univesità di Tento Un anello di massa m= 70 g, assimilabile ad un copo puntifome, è infilato in una asta igida liscia di lunghezza

Dettagli

Potenziale elettrostatico e lavoro. Potenziale elettrostatico Energia potenziale elettrostatica Esempi Moto di una carica in un potenziale e.s.

Potenziale elettrostatico e lavoro. Potenziale elettrostatico Energia potenziale elettrostatica Esempi Moto di una carica in un potenziale e.s. Potenziale elettostatico e lavoo Potenziale elettostatico Enegia potenziale elettostatica Esempi Moto di una caica in un potenziale e.s. Potenziale elettostatico Campo e.s. geneato da una caica puntifome

Dettagli

Cambiamento del Sistema di Riferimento

Cambiamento del Sistema di Riferimento Cambiamento del Sistema di Rifeimento Il moto dipende dal sistema di ifeimento dal quale viene ossevato: Un viaggiatoe seduto sul sedile di una caozza feoviaia non si muove ispetto al vagone Se ossevato

Dettagli

! Un asta di peso p =! + 1 (vedi figura) è appoggiata su due. supporti A e B, distanti, dal baricentro G dell asta,

! Un asta di peso p =! + 1 (vedi figura) è appoggiata su due. supporti A e B, distanti, dal baricentro G dell asta, isica eneale 5. Esecizi di Statica Esecizio Un asta di eso = + (vedi figua) è aoggiata su due 0 N suoti e, distanti, dal baicento dell asta, isettivamente a =. m e b = + 0. 000 m Calcolae la foza d aoggio

Dettagli

Energia cinetica di un corpo rigido in rotazione. ogni elemento del corpo ha la stessa velocità angolare m 2

Energia cinetica di un corpo rigido in rotazione. ogni elemento del corpo ha la stessa velocità angolare m 2 Enegia cinetica di un copo igido in otazione z Copo igido con asse di otazione fisso (Z) 1 1 ogni eleento del copo ha la stessa velocità angolae K un eleento a distanza K dall asse di otazione ha velocità

Dettagli

qq r Elettrostatica Legge di Coulomb permette di calcolare la forza che si esercita tra due particelle cariche.

qq r Elettrostatica Legge di Coulomb permette di calcolare la forza che si esercita tra due particelle cariche. lettostatica La mateia è costituita da atomi. Gli atomi sono fomati da un nucleo, contenete paticelle neute (neutoni) e paticelle caiche positivamente (potoni). Intono al nucleo ci sono paticelle caiche

Dettagli

Momenti. Momento di una forza, momento di inerzia, momento angolare

Momenti. Momento di una forza, momento di inerzia, momento angolare Momenti Momento di una foza, momento di inezia, momento angolae Momento di una foza Supponiamo di avee una pota vista dall alto e supponiamo che sia incadinata su un lato, diciamo in A. A Se applicassimo

Dettagli

MACCHINA ELEMENTARE A RILUTTANZA

MACCHINA ELEMENTARE A RILUTTANZA Sistemi magnetici con moto meccanico MACCHINA ELEMENTARE A RILUTTANZA Consiste in un nucleo magnetico con un avvolgimento a N spie e una pate mobile che uota con spostamento angolae θ e velocità angolae

Dettagli

durante lo spostamento infinitesimo dr la quantità data dal prodotto scalare F dr

durante lo spostamento infinitesimo dr la quantità data dal prodotto scalare F dr 4. Lavoo ed enegia Definizione di lavoo di una foza Si considea un copo di massa m in moto lungo una ceta taiettoia. Si definisce lavoo infinitesimo fatto dalla foza F duante lo spostamento infinitesimo

Dettagli

per Scienze Geologiche prof. Maurizio Spurio

per Scienze Geologiche prof. Maurizio Spurio pe Scienze Geologiche pof. Mauizio Spuio mauizio.spuio@unibo.it 1 Il Metodo Scientifico La stoia della Scienza modena inizia in Gecia: nascita della logica, della filosofia, della matematica e pimi tentativi

Dettagli

Energia potenziale elettrica

Energia potenziale elettrica Enegia potenziale elettica L ultima ossevazione del capitolo pecedente iguadava le analogie e le diffeenze ta il campo elettico e il campo gavitazionale pendendo in esame la foza di Coulomb e la legge

Dettagli

Sorgenti del campo magnetico. Forze tra correnti

Sorgenti del campo magnetico. Forze tra correnti Campo magnetico pag 31 A. Scimone Sogenti el campo magnetico. Foze ta coenti Un campo magnetico può essee pootto a una coente elettica. Espeienze i questo tipo fuono effettuate nella pima ventina i anni

Dettagli

Potenza volumica. Legge di Joule in forma locale

Potenza volumica. Legge di Joule in forma locale Potenza volumica. Legge di Joule in foma locale Si considei un tubo di flusso elementae all inteno di un copo conduttoe nel quale ha sede un campo di coente. n da La potenza elettica che fluisce nel bipolo

Dettagli

Politecnico di Milano Fondamenti di Fisica Sperimentale a.a Facoltà di Ingegneria Industriale - Ind. Aero-Energ-Mecc

Politecnico di Milano Fondamenti di Fisica Sperimentale a.a Facoltà di Ingegneria Industriale - Ind. Aero-Energ-Mecc Politecnico di Milano Fondamenti di Fisica Speimentale a.a. 9-1 - Facoltà di Ingegneia Industiale - Ind. Aeo-Eneg-Mecc II pova in itinee - 5/7/1 Giustificae le isposte e scivee in modo chiao e leggibile.

Dettagli

Campo magnetico B. Polo Nord. Terra. Polo Sud. Lezione V 1/15

Campo magnetico B. Polo Nord. Terra. Polo Sud. Lezione V 1/15 Leione V Campo magnetico B 1/15 Polo Nod N S S N Tea Sole Polo Sud Alcuni mineali (es. magnetite, da Magnesia Tessaglia) attiano il feo. Aghi calamitati si oientano nel campo magnetico teeste. Leione V

Dettagli

IL CAMPO ELETTROMAGNETICO DIPENDENTE DAL TEMPO

IL CAMPO ELETTROMAGNETICO DIPENDENTE DAL TEMPO IL CAMPO ELETTROMAGNETICO DIPENDENTE DAL TEMPO Legge di Faaday-Heny (o dell induzione elettomagnetica); Applicazioni della legge dell induzione e.m., caso della spia otante; Il fenomeno dell autoinduzione

Dettagli

Il rischio della embolia gassosa. Fsica Medica

Il rischio della embolia gassosa. Fsica Medica Il ischio della embolia gassosa La espiazione nei subacquei h 1atm 1atm +ρgh Il subacqueo che si tova alla pofondità h deve espiae aia ad una pessione maggioe ispetto a quella atmosfeica ate dell aia espiata

Dettagli

Effetto Hall. flusso reale dei portatori se positivi. flusso reale dei portatori se negativi

Effetto Hall. flusso reale dei portatori se positivi. flusso reale dei portatori se negativi Appunti di Fisica II Effetto Hall L'effetto Hall è un fenomeno legato al passaggio di una coente I, attaveso ovviamente un conduttoe, in una zona in cui è pesente un campo magnetico dietto otogonalmente

Dettagli

Esercizi di Statica. Esercitazioni di Fisica LA per ingegneri - A.A

Esercizi di Statica. Esercitazioni di Fisica LA per ingegneri - A.A Esecizio 1 Esecizi di Statica Esecitazioni di Fisica LA pe ingegnei - A.A. 2004-2005 Un punto ateiale di assa = 0.1 kg (vedi FIG.1) é situato all esteitá di una sbaetta indefoabile di peso tascuabile e

Dettagli

Nome..Cognome. classe 5D 29 Novembre VERIFICA di FISICA: Elettrostatica Domande

Nome..Cognome. classe 5D 29 Novembre VERIFICA di FISICA: Elettrostatica Domande Nome..ognome. classe 5 9 Novembe 8 RIFI di FISI: lettostatica omande ) ai la definizione di flusso di un campo vettoiale attaveso una supeficie. nuncia il teoema di Gauss pe il campo elettico (senza dimostalo)

Dettagli

DINAMICA Prima legge di Newton o principio di inerzia.

DINAMICA Prima legge di Newton o principio di inerzia. DINAMICA Pima legge di Newton o pincipio di inezia. Pe studiae coettamente un fenomeno fisico, bisogneebbe essee in gado di iconoscee e di mettee in evidenza gli elementi fondamentali, cioè quelli che

Dettagli

FENOMENI DI TRASPORTO: NATURA E RUOLO

FENOMENI DI TRASPORTO: NATURA E RUOLO FENOMENI DI TRSPORTO: NTUR E RUOLO tasfeimento di quantità di moto, di caloe e di mateia (momentum, heat, mass tansfe) pocessi comuni in campo industiale, biologico/medico, ambientale/geologico esempi

Dettagli

Moto su traiettorie curve: il moto circolare

Moto su traiettorie curve: il moto circolare Moto su taiettoie cuve: il moto cicolae Così come il moto ettilineo è un moto che avviene lungo una linea etta, il moto cicolae è un moto la cui taiettoia è cicolae, cioè un moto che avviene lungo una

Dettagli

L'atomo è così chiamato perché inizialmente dai filosofi greci era considerato l'unita più piccola ed indivisibile della materia.

L'atomo è così chiamato perché inizialmente dai filosofi greci era considerato l'unita più piccola ed indivisibile della materia. Il campo elettico La stuttua dell atomo L'atomo è così chiamato peché inizialmente dai filosofi geci ea consideato l'unita più piccola ed indivisibile della mateia. In ealtà sappiamo che non è così. Cecando

Dettagli

DISTRIBUZIONE DELLA CARICA NEI CONDUTTORI

DISTRIBUZIONE DELLA CARICA NEI CONDUTTORI 1 DISTRIBUZIONE DELLA CARICA NEI CONDUTTORI I copi conduttoi sono caatteizzati dal fatto di avee moltissimi elettoni libei di muovesi (elettoni di conduzione). Cosa accade se un copo conduttoe viene caicato

Dettagli

LICEO PEDAGOGICO-ARTISTICO G. Pascoli di BOLZANO TEST DI FISICA IN SOSTITUZIONE DELL ORALE- FILA A CLASSE V B-27/05/2010

LICEO PEDAGOGICO-ARTISTICO G. Pascoli di BOLZANO TEST DI FISICA IN SOSTITUZIONE DELL ORALE- FILA A CLASSE V B-27/05/2010 LICEO PEDAGOGICO-ARTISTICO G. Pascoli di BOLZANO TEST DI FISICA IN SOSTITUZIONE DELL ORALE- FILA A CLASSE V B-7/05/010 Ogni quesito va oppotunamente motivato, pena la sua esclusione dalla valutazione.

Dettagli

Forza gravitazionale

Forza gravitazionale Foza gavitazionale Tea Mecuio Venee Mate Pianeti inteni ano Nettuno Plutone Satuno iove Sistea solae Il oto dei pianeti descitto dalle 3 leggi di Kepleo Di qui Newton icavò la legge di gavitazione univesale:

Dettagli

Campo magnetico: concetti introduttivi

Campo magnetico: concetti introduttivi Appunti di Fisica II Campo magnetico: concetti intoduttivi Intoduzione ai fenomeni magnetici...1 Azione dei magneti su caiche elettiche in moto... Foza di Loentz...5 Selettoe di velocità...5 Invaianza

Dettagli

1 Potenziale elettrostatico e seconda equazione di Maxwell per E

1 Potenziale elettrostatico e seconda equazione di Maxwell per E 1 Potenziale elettostatico e seconda equazione di Maxwell pe E Consideiamo il campo elettico oiginato da una caica puntifome q che ipotizziamo fissa nell oigine degli assi: E( ) = q ˆ 2 = q 3 (1) Pe definizione,

Dettagli

M.T., M.T.T. Appunti di Fisica per Scienze Biologiche Vers /09/2005

M.T., M.T.T. Appunti di Fisica per Scienze Biologiche Vers /09/2005 MT, MTT Appunti di Fisica pe Scienze iologiche Ves 4 /9/5 L Elettostatica costituenti elementai della mateia possiedono, olte alla massa, la caica elettica La caica elettica si misua in oulomb () ed il

Dettagli

Facoltà di Ingegneria

Facoltà di Ingegneria Facoltà di Ingegneia Poa in Itinee di Fisica I (a. a. 004-005) 6 Noebe 004 COPITO C Esecizio n. 1 Un copo di assa è appoggiato su di un piano oizzontale scabo, con coefficiente di attito dinaico µ d. Coe

Dettagli

IL CALORE. Il calore Q è energia che sta transitando da un sistema all altro, e compare ogni volta che c è un dislivello di temperatura.

IL CALORE. Il calore Q è energia che sta transitando da un sistema all altro, e compare ogni volta che c è un dislivello di temperatura. IL CALORE Il caloe Il caloe Q è enegia che sta tansitando da un sistema all alto, e compae ogni volta che c è un dislivello di tempeatua. Il copo più caldo cede pate della sua enegia intena al copo più

Dettagli

FORZA AGENTE SU UN TRATTO DI FILO RETTILINEO. Dispositivo sperimentale

FORZA AGENTE SU UN TRATTO DI FILO RETTILINEO. Dispositivo sperimentale FORZA AGENTE SU UN TRATTO DI FILO RETTILINEO 0 Dispositivo speimentale Consideiamo pe semplicità un campo magnetico unifome, le linee di foza sono paallele ed equidistanti. Si osseva una foza di oigine

Dettagli

3. La velocità v di un satellite in un orbita circolare di raggio r intorno alla Terra è v = e,

3. La velocità v di un satellite in un orbita circolare di raggio r intorno alla Terra è v = e, Capitolo 10 La gavitazione Domande 1. La massa di un oggetto è una misua quantitativa della sua inezia ed è una popietà intinseca dell oggetto, indipendentemente dal luogo in cui esso si tova. Il peso

Dettagli

ESERCIZI DI CALCOLO STRUTTURALE

ESERCIZI DI CALCOLO STRUTTURALE ESERCIZIO A1 ESERCIZI DI CACOO SRUURAE Pate A: ave incastata Calcolo delle eazioni vincolai con caichi concentati o distibuiti P 1 P 1 = 10000 N = 1.2 m Sia la stuttua in figua soggetta al caico P 1 applicato

Dettagli

Massimi e minimi con le linee di livello

Massimi e minimi con le linee di livello Massimi e minimi con le linee di livello Pe affontae questo agomento è necessaio sape appesentae i fasci di cuve ed in paticolae: Fasci di paabole. Pe affontae questo agomento si consiglia di ivedee l

Dettagli

Magnetostatica: forze magnetiche e campo magnetico

Magnetostatica: forze magnetiche e campo magnetico Magnetostatica: foze magnetiche e campo magnetico Lezione 6 Campo di induzione magnetica B() (nomenclatua stoica ; in ealtà si dovebbe chiamae, e spesso lo è, campo magnetico) è un campo di foze vettoiale

Dettagli

Fisica II CdL Chimica. Magnetismo

Fisica II CdL Chimica. Magnetismo Magnetismo Magnetismo gli effetti magnetici da magneti natuali sono noti da molto tempo. Sono ipotate ossevazioni degli antichi Geci sin dall 800 A.C. la paola magnetismo deiva dalla paola geca pe un ceto

Dettagli

AI VERTICI DI UN QUADRATO DI LATO 2L SONO POSTE 4 CARICHE UGUALI Q. DETERMINARE: A) IL CAMPO ELETTRICO IN UN PUNTO P DELL ASSE.

AI VERTICI DI UN QUADRATO DI LATO 2L SONO POSTE 4 CARICHE UGUALI Q. DETERMINARE: A) IL CAMPO ELETTRICO IN UN PUNTO P DELL ASSE. ESERCIZIO 1 AI VERTICI DI UN UADRATO DI LATO SONO POSTE 4 CARICHE UGUALI. DETERMINARE: A) IL CAMPO ELETTRICO IN UN PUNTO P DELL ASSE. 4 caiche uguali sono poste ai vetiti di un quadato. L asse di un quadato

Dettagli

L INDETERMINAZIONE DEL CAMPO MAGNETOSTATICO

L INDETERMINAZIONE DEL CAMPO MAGNETOSTATICO L INDETERMINAZIONE DEL CAMPO MAGNETOSTATICO d.ing. Albeto Sacchi Sviluppo Pogetti Avanzati sl- R&D Dept. ing.sacchi@alice.it SINTESI (Abstact) La misua della Intensità di Campo (Induzione magnetica) ento

Dettagli

AZIONE A DISTANZA E TEORIA DI CAMPO (1)

AZIONE A DISTANZA E TEORIA DI CAMPO (1) Il campo elettico AZION A DITANZA TOIA DI CAMPO () Come fanno due caiche elettiche ad inteagie fa di loo? All inizio del 9 si sono confontate due ipotesi:.le caiche si scambiano dei messaggei e uindi si

Dettagli

I.15. Il teorema di conservazione dell'energia nella meccanica classica

I.15. Il teorema di conservazione dell'energia nella meccanica classica L enegia meccanica: consevazione e non consevazione Consevazione dell enegia nel caso di foze costanti Consevazione dell enegia nel caso di sistemi obitanti I diagammi della enegia potenziale Quesiti di

Dettagli

Misura della componente orizzontale del campo magnetico terrestre

Misura della componente orizzontale del campo magnetico terrestre Misua della componente oizzontale del campo magnetico teeste Pemessa teoica In tale pemessa vengono sintetizzati i peequisiti che si itengono indispensabili pe l'esecuzione e la compensione dell'espeienza

Dettagli

La legge di Lenz - Faraday Neumann

La legge di Lenz - Faraday Neumann 1 La legge di Lenz - Faaday Neumann Il flusso del campo magnetico B Pe dae una veste matematica alle conclusioni delle espeienze viste nella lezione pecedente, abbiamo bisogno di definie una nuova gandezza

Dettagli

Elettrostatica. Elettrostatica: branca della fisica che studia i fenomeni elettrici

Elettrostatica. Elettrostatica: branca della fisica che studia i fenomeni elettrici Elettostatica Elettostatica: banca della fisica che studia i fenomeni elettici Già nell antica Gecia (V secolo a.c.), si ea notato che l amba stofinata con un panno pesentava delle popietà attattive veso

Dettagli

Magnetostatica: forze magnetiche e campo magnetico

Magnetostatica: forze magnetiche e campo magnetico Magnetostatica: foze magnetiche e campo magnetico Lezione 6 Campo di induzione magnetica () (nomenclatua stoica ; in ealtà si dovebbe chiamae, e spesso lo è, campo magnetico) è un campo di foze vettoiale

Dettagli

LIBRO DI TESTO S.Melone, F.Rustichelli Introduzione alla Fisica Biomedica Libreria Scientifica Ragni Ancona, 1998

LIBRO DI TESTO S.Melone, F.Rustichelli Introduzione alla Fisica Biomedica Libreria Scientifica Ragni Ancona, 1998 LIBRO DI TESTO S.Melone, F.Rustichelli Intoduzione alla Fisica Biomedica Libeia Scientifica Ragni Ancona, 1998 TESTO DI CONSULTAZIONE E WEB F.Bosa, D.Scannicchio Fisica con Applicazioni in Biologia e Medicina

Dettagli

IL VOLUME DEI SOLIDI Conoscenze

IL VOLUME DEI SOLIDI Conoscenze IL VOLUME DEI SOLIDI Conoscenze 1. Completa. a. Il peso di un copo dipende dal volume e dalla sostanza di cui è costituito b. Ogni sostanza ha il suo peso specifico, che è il peso dell unità di volume

Dettagli

Legge di Ohm. La corrente elettrica dal punto di vista microscopico: modello di Drude

Legge di Ohm. La corrente elettrica dal punto di vista microscopico: modello di Drude Legge di Ohm. Obiettivi didattici: Veifica della elazione ta coente e d.d.p. pe un conduttoe metallico. Veifica della elazione ta la esistenza di un conduttoe e le sue dimensioni (lunghezza, sezione) Misua

Dettagli

Le equazioni di Maxwell.

Le equazioni di Maxwell. Le equazioni di Maxwell. Campi elettici indotti. Pe la legge di Faady, in una spia conduttice dove c è una vaiazione di Φ concatenato si osseva una coente indotta i. Ricodando che una coente è un flusso

Dettagli

Il magnetismo. Il Teorema di Ampere: la circuitazione del campo magnetico.

Il magnetismo. Il Teorema di Ampere: la circuitazione del campo magnetico. Il magnetismo Il Teoema di Ampee: la cicuitazione del campo magnetico. Richiamiamo la definizione geneale di cicuitazione pe un campo vettoiale Definizione: si definisce cicuitazione di un campo vettoiale

Dettagli

Rotazioni in Astrofisica

Rotazioni in Astrofisica Rotazioni in Astofisica Paolo de Benadis Dipatimento di Fisica, La Sapienza 25/11/2011 Le leggi che avete visto in azione in laboatoio Funzionano anche nello spazio, ed in galassie lontanissime, nello

Dettagli

Capacità ele+rica. Condensatori

Capacità ele+rica. Condensatori Capacità ele+ica Condensatoi Condensatoi Il sistema più semplice pe immagazzinae enegia elettostatica è caicae un condensatoe. Genealmente il condensatoe è costituito da due piani metallici sepaati da

Dettagli

dove per i simboli si sono adottate le seguenti notazioni: 2 Corpo girevole attorno ad un asse fisso

dove per i simboli si sono adottate le seguenti notazioni: 2 Corpo girevole attorno ad un asse fisso Il volano 1 Dinamica del copo igido Il poblema dello studio del moto di un copo igido libeo è il seguente: data una ceta sollecitazione F e del copo, cioè cete foze estene F i applicate nei punti del copo

Dettagli

Elettrostatica. Elettrostatica: branca della fisica che studia i fenomeni elettrici

Elettrostatica. Elettrostatica: branca della fisica che studia i fenomeni elettrici lettostatica lettostatica: banca della fisica che studia i fenomeni elettici Già nell antica Gecia (V secolo a.c.), si ea notato che l amba stofinata con un panno pesentava delle popietà attattive veso

Dettagli

GRAVITAZIONE. F = G m 1m 2 d 2. 2.3 10 12 = 19 m. F S L = G m Sm L d 2 S L F T L = G m T m L d 2 T L. = G m Sm L S L. 20 kg 7.0 kg 18 2 = 2.

GRAVITAZIONE. F = G m 1m 2 d 2. 2.3 10 12 = 19 m. F S L = G m Sm L d 2 S L F T L = G m T m L d 2 T L. = G m Sm L S L. 20 kg 7.0 kg 18 2 = 2. GAVITAZIONE Esecizi svolti e discussi dal pof. Gianluigi Tivia scitto con Lyx - www.lyx.og. Legge di gavitazione Esecizio. Tovae la distanza che sepaa due copi puntifomi, con masse 5. kg e.4 kg, anché

Dettagli

SECONDA LEZIONE (4 ore): CONDUTTORI e DIELETTRICI

SECONDA LEZIONE (4 ore): CONDUTTORI e DIELETTRICI SECONDA LEZIONE (4 oe): CONDUTTORI e DIELETTRICI Conduttoi in campo elettico Polaizzazione della mateia Vettoe polaizzazione Vettoe spostamento elettico Suscettività elettica Capacità Condensatoi Enegia

Dettagli

Unità Didattica N 27 Circonferenza e cerchio

Unità Didattica N 27 Circonferenza e cerchio 56 La ciconfeenza ed il cechio Ciconfeenza e cechio 01) Definizioni e popietà 02) Popietà delle code 03) Ciconfeenza passante pe te punti 04) Code e loo distanza dal cento 05) Angoli, achi e code 06) Mutua

Dettagli

1. Interazioni elettrostatiche

1. Interazioni elettrostatiche FISICA Elettostatica 9. Inteazioni elettostatiche. Alcuni fatti speimentali Pime definizioni di caica elettica L amba è una sostanza, che, stofinata con un pezzo di stoffa, acquista la popietà di attae

Dettagli

ψ β F ESERCIZIO PIEGAMENTI SULLE BRACCIA

ψ β F ESERCIZIO PIEGAMENTI SULLE BRACCIA S ϕ α E h W ψ β ESERCIZIO PIEGMENTI SULLE BRCCI W Un atleta compie una seie di piegamenti sulle baccia, mantenendo il movimento dei segmenti del baccio (omeo ed avambaccio) paalleli al piano sagittale.

Dettagli

effettuato una rotazione di 60 ; c) la velocità angolare quando il sistema ha effettuato una rotazione di 180.

effettuato una rotazione di 60 ; c) la velocità angolare quando il sistema ha effettuato una rotazione di 180. CORPO RIGIDO EX Un pofilo igido è costituito da un tatto ettileo AB e da una semiciconfeenza di aggio R=0cm come figua. Dal punto A viene lanciata una moneta di aggio =cm. Calcolae la mima velocità che

Dettagli

Elettrostatica. di Daniele Gasparri

Elettrostatica. di Daniele Gasparri lettostatica di Daniele Gaspai Indice: - Legge di Coulomb - Sistema di caiche puntifomi 5 - Distibuzioni continue di caiche 7 - Il campo elettico - Flusso del campo elettico e legge di Gauss - Potenziale

Dettagli

Fenomeni elettrici. I primordi

Fenomeni elettrici. I primordi enomeni elettici. I pimodi già gli antichi Geci ossevaono fenomeni di «elettizzazione», ad es. dell amba «ελεκτρον» Questi studi fuono ipesi in modo sistematico dagli «eletticisti» del XVIII- La mateia

Dettagli

Appunti su argomenti monografici per il corso di FM1 Prof. Pierluigi Contucci. Gravità e Teorema di Gauss

Appunti su argomenti monografici per il corso di FM1 Prof. Pierluigi Contucci. Gravità e Teorema di Gauss 1 Appunti su agomenti monogafici pe il coso di FM1 Pof. Pieluigi Contucci Gavità e Teoema di Gauss Vogliamo dimostae, a patie dalla legge di gavitazione univesale che il campo gavitazionale geneato da

Dettagli

12 L energia e la quantità di moto - 12. L impulso

12 L energia e la quantità di moto - 12. L impulso L enegia e la quantità di moto -. L impulso Il momento angolae e il momento d inezia Il momento angolae nalizziamo alcuni moti di otazione. Se gli attiti sono tascuabili, una uota di bicicletta messa in

Dettagli

Geometria analitica in sintesi

Geometria analitica in sintesi punti distanza ta due punti coodinate del punto medio coodinate del baicento ta due punti di un tiangolo di vetici etta e foma implicita foma esplicita foma segmentaia equazione della etta m è il coefficiente

Dettagli

GRAVITAZIONE UNIVERSALE E APPLICAZIONI Per la classe settima della licenza liceale europea

GRAVITAZIONE UNIVERSALE E APPLICAZIONI Per la classe settima della licenza liceale europea GRAVITAZIONE UNIVERSALE E APPLICAZIONI Pe la classe settima della licenza liceale euopea A cua di Raffaele SANTORO INTRODUZIONE... LE LEGGI DI KEPLERO... LA LEGGE DI GRAVITAZIONE UNIVERSALE DI NEWTON...

Dettagli

H = G m r 3 r. I. Le orbite dei pianeti sono ellissi, dei quali il Sole occupa uno dei fuochi.

H = G m r 3 r. I. Le orbite dei pianeti sono ellissi, dei quali il Sole occupa uno dei fuochi. 9 Gavitazione (3 poblemi difficoltà 7 soglia 159) Fomulaio Legge di Newton F = G m 1 m 3 (G = 667. 10 11 N m /kg ) Campo gavitazionale H = G m 3 Leggi di Kepleo I. Le obite dei pianeti sono ellissi dei

Dettagli

La forza di Lorentz: Una carica che si muove in un campo magnetico risente una forza F (forza di Lorentz) data da : r =

La forza di Lorentz: Una carica che si muove in un campo magnetico risente una forza F (forza di Lorentz) data da : r = INDUTTANZA RIASSUNTO: Richiami su campo magnetico, foza di oentz egge di Faaday Autoinduzione (dimensioni ) induttanza come elemento di cicuito Cicuito R: extacoente di apetua Enegia immagazzinata in una

Dettagli

7. Campo magnetostatico

7. Campo magnetostatico 7. Campo magnetostatico 7.1 Aspetti fenomenologici Inteazioni (attattive e epulsive) ta magneti (magnetite) In ogni magnete si possono individuae due poli che chiamiamo polo + (nod) e polo - (sud) Due

Dettagli

Attrito statico e attrito dinamico

Attrito statico e attrito dinamico Forza di attrito La presenza delle forze di attrito fa parte dell esperienza quotidiana. Se si tenta di far scorrere un corpo su una superficie, si sviluppa una resistenza allo scorrimento detta forza

Dettagli

Elettrostatica. G.P. Maggi - Lezioni di Fisica Generale AA 2001/2002

Elettrostatica. G.P. Maggi - Lezioni di Fisica Generale AA 2001/2002 G.P. Maggi - Lezioni di Fisica Geneale AA 2001/2002 Elettostatica La caica elettica Ta tutti i tipi di foza che abbiamo incontato in meccanica, solo la foza peso e quella di gavitazione univesale deivano

Dettagli

Moti relativi. dt dt dt. r r

Moti relativi. dt dt dt. r r P Moi elaivi Se i due sisemi aslano solo fa di loo, i vesoi non vaiano nel empo. = + ' d d d' v = = + = v + d d d Leggi di asfomazione di velocià e acceleazione P P pe due sisemi che aslano l uno ispeo

Dettagli