La Regressione X Variabile indipendente o esplicativa. La regressione. La Regressione. Y Variabile dipendente

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "La Regressione X Variabile indipendente o esplicativa. La regressione. La Regressione. Y Variabile dipendente"

Transcript

1 Unverstà d Macerata Dpartmento d Scenze Poltche, della Comuncazone e delle Relaz. Internazonal La Regressone Varable ndpendente o esplcatva Prezzo n () () 1 1 Varable dpendente Unverstà d Macerata Dpartmento d Scenze Poltche, della Comuncazone e delle Relaz. Internazonal Unverstà d Macerata Dpartmento d Scenze Poltche, della Comuncazone e delle Relaz. Internazonal La Regressone Varable ndpendente Varable dpendente Dpendenza funzonale (o determnstca): f ; Da un punto d vsta analtco, valor della possono essere determnat senza errore a partre da sol valor della ; Da un punto d vsta grafco, la dpendenza funzonale mplca la defnzone d una funzone che pass per tutt punt, e che qund rchede la determnazone d tant parametr quant sono punt. Dpendenza statstca: ; f e Il valore della varable dpendente non è unvocamente determnato a partre dal solo valore della varable esplcatva, potendos osservare, per cascun d, pù valor d ; Da un punto d vsta grafco,, la dpendenza statstca mplca una funzone che pass fra punt osservat. Il numero d parametr da determnare dpende, n questo caso, dal tpo d funzone scelta e non dal numero d punt osservat. La Regressone Varable ndpendente Varable dpendente

2 Unverstà d Macerata Dpartmento d Scenze Poltche, della Comuncazone e delle Relaz. Internazonal Unverstà d Macerata Dpartmento d Scenze Poltche, della Comuncazone e delle Relaz. Internazonal La Regressone f ; e Varable ndpendente Varable dpendente La Regressone f ; e Varable ndpendente Varable dpendente La scelta del tpo d funzone: Lneare La scelta del tpo d funzone: Lneare Equazone d una retta b è l ntercettat tt sull asse delle ordnate. Può essere nterpretato come l valore d per = (quando cò ha senso). = b + b 1 b 1 è l coeffcente angolare della retta d regressone n quanto funzone dell angolo che la retta forma con l asse delle ascsse. Esprme dunque la pendenza (postva, negatva o nulla) della retta. Esprme anche quanto vara la varable al varare untaro della varable. La determnazone de vncol: n 1 ˆ n ˆ 1 b b mn b b b b mn b 1 Cov Var ˆ Unverstà d Macerata Dpartmento d Scenze Poltche, della Comuncazone e delle Relaz. Internazonal Unverstà d Macerata Dpartmento d Scenze Poltche, della Comuncazone e delle Relaz. Internazonal La Regressone f ; e Varable ndpendente Varable dpendente La scelta del tpo d funzone: b b b b Cov b 1 Var Lneare E l ntercetta sull asse delle ordnate. Può essere nterpretato come l valore d per = (quando cò ha senso). Il punto d coordnate ; è un punto della retta d ; regressone. La retta d regressone passa, dunque, sempre per l barcentro della nube. E l coeffcente angolare della retta d regressone n quanto funzone dell angolo che la retta forma con l asse delle ascsse. Esprme dunque la pendenza (postva, negatva o nulla) della retta. Esprme anche quanto vara la varable al varare untaro della varable. ˆ La Regressone f ; e Varable ndpendente Varable dpendente La scelta del tpo d funzone: b b b b Cov b 1 Var Lneare E l ntercetta sull asse delle ordnate. Può essere nterpretato come l valore d per = (quando cò ha senso). Il punto d coordnate ; è un punto della retta d ; regressone. La retta d regressone passa, dunque, sempre per l barcentro della nube. E l coeffcente angolare della retta d regressone n quanto funzone dell angolo che la retta forma con l asse delle ascsse. Esprme dunque la pendenza (postva, negatva o nulla) della retta. Esprme anche quanto vara la varable al varare untaro della varable. ˆ

3 Unverstà d Macerata Dpartmento d Scenze Poltche, della Comuncazone e delle Relaz. Internazonal Unverstà d Macerata Dpartmento d Scenze Poltche, della Comuncazone e delle Relaz. Internazonal La Regressone f ; e Varable ndpendente Varable dpendente () Prezzo n () La Regressone f ; e Varable ndpendente Varable dpendente Prezzo n -M() -M() [-M()]*[-M()] () () 1-51, -, , -, , 666, ,6666, , -1, , -, ,6666, , -, , -1, ,5666, , -1, , -1, , 666, , 666,.11. 6, 666, ,,.. Meda =11, Meda =1., sqm =5, sqm =1.6,6 6 Cov n , Cov.6.666, b1.5,6 Var 6, Meda =11, sqm =5, Meda =1., sqm =1.6,6 b b1 1.,.5,6 11.6,5 Unverstà d Macerata Dpartmento d Scenze Poltche, della Comuncazone e delle Relaz. Internazonal Unverstà d Macerata Dpartmento d Scenze Poltche, della Comuncazone e delle Relaz. Internazonal La Regressone ; Prezzo n () () f e ˆ - ˆ ŷ b b ˆ.6,.5, La Regressone ; Prezzo n () () f e ˆ - ˆ ŷ b b ˆ.6,.5, e Meda =11, Meda =1., Meda =11, Meda =1., sqm =5, sqm =1.6,6 sqm =5, sqm =1.6,6

4 Unverstà d Macerata Dpartmento d Scenze Poltche, della Comuncazone e delle Relaz. Internazonal Unverstà d Macerata Dpartmento d Scenze Poltche, della Comuncazone e delle Relaz. Internazonal La Regressone ; Prezzo n () () f e ˆ - ˆ ŷ b b ˆ.6,.5, e La Regressone ; Prezzo n () () f e ˆ - ˆ ŷ b b ˆ.6,.5, Meda =11, Meda =1., Meda =11, Meda =1., sqm =5, sqm =1.6,6 sqm =5, sqm =1.6,6 Unverstà d Macerata Dpartmento d Scenze Poltche, della Comuncazone e delle Relaz. Internazonal Unverstà d Macerata Dpartmento d Scenze Poltche, della Comuncazone e delle Relaz. Internazonal La Regressone: Interpolazone ed estrapolazone Prezzo n () () Ŷ - ˆ ŷ b b.6,.5, La Regressone: Interpolazone ed estrapolazone Prezzo n () () ˆ - ˆ ŷ b b ˆ.6,.5, Qual è l prezzo prevsto d un appartamento d 16? ˆ.6,.5,6 16.5, Qual è l prezzo prevsto d un appartamento d 6?

5 Unverstà d Macerata Dpartmento d Scenze Poltche, della Comuncazone e delle Relaz. Internazonal Unverstà d Macerata Dpartmento d Scenze Poltche, della Comuncazone e delle Relaz. Internazonal La Regressone: Valutazone dell adattamento La Regressone: Valutazone dell adattamento ; b b Dev Unverstà d Macerata Dpartmento d Scenze Poltche, della Comuncazone e delle Relaz. Internazonal Unverstà d Macerata Dpartmento d Scenze Poltche, della Comuncazone e delle Relaz. Internazonal La Regressone: Valutazone dell adattamento La Regressone: Valutazone dell adattamento b b Parte resdua Dev e ˆ Parte spegata dalla regressone Dev ˆ ˆ Dev ˆ ˆ Dev e ˆ Dev Dev Dev ˆ Dev e R Indce d determnazone ˆ Dev ˆ R R Dev 1 L ndce d determnazone serve a valutare la capactà L ndce d determnazone serve a valutare la capactà prevsva del modello statstco ossa l grado d accostamento tra valor emprc e valor teorc

6 Unverstà d Macerata Dpartmento d Scenze Poltche, della Comuncazone e delle Relaz. Internazonal Unverstà d Macerata Dpartmento d Scenze Poltche, della Comuncazone e delle Relaz. Internazonal La Regressone ˆ.6,.5,6 La Regressone ˆ.6,.5,6 Prezzo n () () Ŷ - Ŷ- - ˆ Prezzo n () () Ŷ - Ŷ- - ˆ Dev ˆ ˆ Dev ˆ Dev e = =.56.. = Dev ˆ R Dev.56.., Unverstà d Macerata Dpartmento d Scenze Poltche, della Comuncazone e delle Relaz. Internazonal Dove e come studare S. Borra, A. D Cacco () Statstca Metodologe per le scenze economche e socal McGraw-Hll. Cap. 16 (escluso paragrafo 16.6). D. Pccolo () Statstca per le decson Il Mulno. Cap. 1 (escluso paragraf 1.6, 1.). Fle esercz statstche bvarate.pdf Eserczo n. Eserczo n. 5 Eserczo n. Eserczo n. Unverstà d Macerata Dpartmento d Scenze Poltche, della Comuncazone e delle Relaz. Internazonal Replogo Statstche bvarate per caratter quanttatv Studo della nterdpendenza Dagramma d dspersone Covaranza Coeffcente d correlazone Studo della dpendenza (Regressone) Dpendenza funzonale (o determnstca) e dpendenza statstca Scelta del tpo d funzone Scelta del vncolo (Metodo de mnm quadrat) Calcolo de parametr Interpolazone ed estrapolazone Anals della bontà dell adattamento d t Devanza totale Devanza spegata (o d regressone) Devanza resdua Indce d determnazone

La regressione. La Regressione. La Regressione. min. min. Var X. X Variabile indipendente (data) Y Variabile dipendente

La regressione. La Regressione. La Regressione. min. min. Var X. X Variabile indipendente (data) Y Variabile dipendente Unverstà d Macerata Facoltà d Scenze Poltche - Anno accademco - La Regressone Varable ndpendente (data) Varable dpendente Dpendenza funzonale (o determnstca): f ; Da un punto d vsta analtco, valor della

Dettagli

Campo di applicazione

Campo di applicazione Unverstà del Pemonte Orentale Corso d Laurea n Botecnologa Corso d Statstca Medca Correlazone Regressone Lneare Corso d laurea n botecnologa - Statstca Medca Correlazone e Regressone lneare semplce Campo

Dettagli

Correlazione lineare

Correlazione lineare Correlazone lneare Varable dpendente Mortaltà per crros 50 45 40 35 30 5 0 15 10 5 0 0 5 10 15 0 5 30 Consumo d alcool Varable ndpendente Metodologa per l anals de dat spermental L anals d stud con varabl

Dettagli

Esame di Statistica tema A Corso di Laurea in Economia Prof.ssa Giordano Appello del 15/07/2011

Esame di Statistica tema A Corso di Laurea in Economia Prof.ssa Giordano Appello del 15/07/2011 Esame d Statstca tema A Corso d Laurea n Economa Prof.ssa Gordano Appello del /07/0 Cognome Nome atr. Teora Dmostrare che la somma degl scart dalla meda artmetca è zero. Eserczo L accesso al credto è sempre

Dettagli

Ettore Limoli. Lezioni di Matematica Prof. Ettore Limoli. Sommario. Calcoli di regressione

Ettore Limoli. Lezioni di Matematica Prof. Ettore Limoli. Sommario. Calcoli di regressione Sto Personale d Ettore Lmol Lezon d Matematca Prof. Ettore Lmol Sommaro Calcol d regressone... 1 Retta d regressone con Ecel... Uso della funzone d calcolo della tendenza... 4 Uso della funzone d regressone

Dettagli

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione 1 La Regressone Lneare (Semplce) Relazone funzonale e statstca tra due varabl Modello d regressone lneare semplce Stma puntuale de coeffcent d regressone Decomposzone della varanza Coeffcente d determnazone

Dettagli

Analisi bivariata con variabili quantitative

Analisi bivariata con variabili quantitative Anals bvarata con varabl quanttatve Regressone lneare Correlazone lneare LA REGRESSIONE LINEARE In un campone d 33 donne, d età compresa tra 22 e 81 ann, è stata msurata la pressone sstolca (n mm d mercuro).

Dettagli

Statistica - metodologie per le scienze economiche e sociali /2e S. Borra, A. Di Ciaccio - McGraw Hill

Statistica - metodologie per le scienze economiche e sociali /2e S. Borra, A. Di Ciaccio - McGraw Hill Statstca - metodologe per le scenze economche e socal /e S Borra, A D Cacco - McGraw Hll Es Soluzone degl esercz del captolo 7 In base agl arrotondament effettuat ne calcol, s possono rscontrare pccole

Dettagli

Relazioni tra variabili: Correlazione e regressione lineare

Relazioni tra variabili: Correlazione e regressione lineare Dott. Raffaele Casa - Dpartmento d Produzone Vegetale Modulo d Metodologa Spermentale Febbrao 003 Relazon tra varabl: Correlazone e regressone lneare Anals d relazon tra varabl 6 Produzone d granella (kg

Dettagli

L'Analisi in Componenti Principali. Luigi D Ambra Dipartimento di Matematica e Statistica Università di Napoli Federico II

L'Analisi in Componenti Principali. Luigi D Ambra Dipartimento di Matematica e Statistica Università di Napoli Federico II L'Anals n Component Prncpal Lug D Ambra Dpartmento d Matematca e Statstca Unverstà d Napol Federco II ANALISI MULTIDIMENSIONALE DEI DATI (AMD) L Anals Multdmensonale de Dat (AMD) è una famgla d tecnche

Dettagli

FACOLTÀ DI SOCIOLOGIA CdL in SCIENZE DELL ORGANIZZAZIONE ESAME di STATISTICA 17/09/2012

FACOLTÀ DI SOCIOLOGIA CdL in SCIENZE DELL ORGANIZZAZIONE ESAME di STATISTICA 17/09/2012 CdL n SCIENZE DELL ORGANIZZAZIONE ESAME d STATISTICA ESERCIZIO 1 (+.5+.5+3) La tabella seguente rporta la dstrbuzone d frequenza del peso X n gramm d una partta d mele provenent da un certo frutteto. X=peso

Dettagli

Probabilità cumulata empirica

Probabilità cumulata empirica Probabltà cumulata emprca Se s effettua un certo numero d camponament da una popolazone con dstrbuzone cumulata F(y), s avranno allora n campon y, y,, y n. E possble consderarne la statstca d ordne, coè

Dettagli

REALTÀ E MODELLI SCHEDA DI LAVORO

REALTÀ E MODELLI SCHEDA DI LAVORO REALTÀ E MODELLI SCHEDA DI LAVORO 1 Le tabelle d crescta Nella tabella sono rportat dat relatv alle altezze mede delle bambne dalla nascta fno a un anno d età. Stablsc se esste una relazone lneare tra

Dettagli

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari Captolo 3 Covaranza, correlazone, bestft lnear e non lnear ) Covaranza e correlazone Ad un problema s assoca spesso pù d una varable quanttatva (es.: d una persona possamo determnare peso e altezza, oppure

Dettagli

Scienze Geologiche. Corso di Probabilità e Statistica. Prove di esame con soluzioni

Scienze Geologiche. Corso di Probabilità e Statistica. Prove di esame con soluzioni Scenze Geologche Corso d Probabltà e Statstca Prove d esame con soluzon 004-005 1 Corso d laurea n Scenze Geologche - Probabltà e Statstca Appello del 1 gugno 005 - Soluzon 1. (Punt 3) In una certa zona,

Dettagli

STATISTICA DESCRITTIVA - SCHEDA N. 5 REGRESSIONE LINEARE

STATISTICA DESCRITTIVA - SCHEDA N. 5 REGRESSIONE LINEARE Matematca e statstca: da dat a modell alle scelte www.dma.unge/pls_statstca Responsabl scentfc M.P. Rogantn e E. Sasso (Dpartmento d Matematca Unverstà d Genova) STATISTICA DESCRITTIVA - SCHEDA N. REGRESSIONE

Dettagli

Laboratorio 2B A.A. 2013/2014. Elaborazione Dati. Lab 2B CdL Fisica

Laboratorio 2B A.A. 2013/2014. Elaborazione Dati. Lab 2B CdL Fisica Laboratoro B A.A. 013/014 Elaborazone Dat Lab B CdL Fsca Elaborazone dat spermental Come rassumere un nseme d dat spermental? Una statstca è propro un numero calcolato a partre da dat stess. La Statstca

Dettagli

Esercitazioni del corso di Relazioni tra variabili. Giancarlo Manzi Facoltà di Sociologia Università degli Studi di Milano-Bicocca

Esercitazioni del corso di Relazioni tra variabili. Giancarlo Manzi Facoltà di Sociologia Università degli Studi di Milano-Bicocca Eserctazon del corso d Relazon tra varabl Gancarlo Manz Facoltà d Socologa Unverstà degl Stud d Mlano-Bcocca e-mal: gancarlo.manz@statstca.unmb.t Terza eserctazone Mlano, 8 febbrao 7 SOMMARIO TERZA ESERCITAZIONE

Dettagli

Appunti di statistica descrittiva Versione provvisoria

Appunti di statistica descrittiva Versione provvisoria Alessandro Benedett UnCAM-SSIS-FIM.04/3 Appunt d statstca descrttva Versone provvsora (v. allegato foglo Excel LDS4_Correlazone.xls) Correlazone e Regressone lneare La teora della correlazone s propone

Dettagli

Corso di. Dott.ssa Donatella Cocca

Corso di. Dott.ssa Donatella Cocca Corso d Statstca medca e applcata 3 a Lezone Dott.ssa Donatella Cocca Concett prncpale della lezone I concett prncpal che sono stat presentat sono: Mede forme o analtche (Meda artmetca semplce, Meda artmetca

Dettagli

LA CALIBRAZIONE NELL ANALISI STRUMENTALE

LA CALIBRAZIONE NELL ANALISI STRUMENTALE LA CALIBRAZIONE NELL ANALISI STRUMENTALE La maggor parte delle anals chmche sono ogg condotte medante metod strumental (spettrometra d assorbmento ed emssone a dverse λ, metod elettrochmc, spettrometra

Dettagli

LA VARIABILITA. Nella metodologia statistica si distinguono due aspetti della variabilità:

LA VARIABILITA. Nella metodologia statistica si distinguono due aspetti della variabilità: LA VARIABILITA LA VARIABILITA E L ATTITUDINE DEL FENOMENO QUANTITATIVO AD ASSUMERE DIVERSE MODALITA, O MEGLIO LA TENDENZA DI OGNI SINGOLA OSSERVAZIONE AD ASSUMERE VALORI DIFFERENTI RISPETTO AL VALORE MEDIO.

Dettagli

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI IL LEGAME TRA DUE VARIABILI I METODI DELLA CORRELAZIONE Prof.ssa G. Sero, Prof. P. Trerotol, Cattedra d Statstca Medca, Unverstà d Bar 1/19 IL PROBLEMA

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 5: 24 febbraio 2014

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa lezione 5: 24 febbraio 2014 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2013-2014 lezone 5: 24 febbrao 2014 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/24? Eserczo Trovare quale legge d captalzzazone

Dettagli

RAPPRESENTAZIONE DI MISURE. carta millimetrata

RAPPRESENTAZIONE DI MISURE. carta millimetrata carta mllmetrata carta mllmetrata non è necessaro rportare sul foglo la tabella (ma auta; l mportante è che sta da qualche parte) carta mllmetrata 8 7 6 5 4 3 smbolo della grandezza con untà d msura!!!

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa Lezione 1: Martedì 17/2/2015

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa Lezione 1: Martedì 17/2/2015 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2014-2015 Lezone 1: Martedì 17/2/2015 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/40? Codce docente 030508 Codce corso 00675 Matematca

Dettagli

Regressione Multipla e Regressione Logistica: concetti introduttivi ed esempi

Regressione Multipla e Regressione Logistica: concetti introduttivi ed esempi Regressone Multpla e Regressone Logstca: concett ntroduttv ed esemp I Edzone ottobre 014 Vncenzo Paolo Senese vncenzopaolo.senese@unna.t Indce Note prelmnar alla I edzone 1 Regressone semplce e multpla

Dettagli

Università di Cassino. Esercitazioni di Statistica 1 del 19 Febbraio Dott. Mirko Bevilacqua

Università di Cassino. Esercitazioni di Statistica 1 del 19 Febbraio Dott. Mirko Bevilacqua Unverstà d Cassno Eserctazon d Statstca del 9 Febbrao 00 Dott. Mro Bevlacqua DATASET STUDENTI N SESSO ALTEZZA PESO CORSO NUMERO COLORE COLORE (cm) (g) LAUREA SCARPA OCCHI CAPELLI M 79 65 INFORMAICA 43

Dettagli

CARATTERISTICHE DEI SEGNALI RANDOM

CARATTERISTICHE DEI SEGNALI RANDOM CARATTERISTICHE DEI SEGNALI RANDOM I segnal random o stocastc rvestono una notevole mportanza poché sono present, pù che segnal determnstc, nella maggor parte de process fsc real. Esempo d segnale random:

Dettagli

Regressione lineare con un singolo regressore

Regressione lineare con un singolo regressore Regressone lneare con un sngolo regressore Eduardo Ross 2 2 Unverstà d Pava (Italy) Marzo 2013 Ross Regressone lneare semplce Econometra - 2013 1 / 45 Outlne 1 Introduzone 2 Lo stmatore OLS 3 Esempo 4

Dettagli

Variabili statistiche - Sommario

Variabili statistiche - Sommario Varabl statstche - Sommaro Defnzon prelmnar Statstca descrttva Msure della tendenza centrale e della dspersone d un campone Introduzone La varable statstca rappresenta rsultat d un anals effettuata su

Dettagli

MEDIA DI Y (ALTEZZA):

MEDIA DI Y (ALTEZZA): Uverstà d Casso Eserctazo d Statstca del 4 Marzo 0 Dott. Mrko Bevlacqua ESERCIZIO Su u collettvo d dvdu soo stat rlevat caratter X Peso( kg) e Altezza ( cm) otteamo la seguete dstrbuzoe d frequeza coguta:

Dettagli

La t di Student. Per piccoli campioni si definisce la variabile casuale. = s N. detta t di Student.

La t di Student. Per piccoli campioni si definisce la variabile casuale. = s N. detta t di Student. Pccol campon I parametr della dstrbuzone d una popolazone sono n generale ncognt devono essere stmat dal campone de dat spermental per pccol campon (N N < 30) z = (x µ)/ )/σ non ha pù una dstrbuzone gaussana

Dettagli

LA REGRESSIONE LINEARE SEMPLICE

LA REGRESSIONE LINEARE SEMPLICE LA REGRESSIONE LINEARE SEMPLICE L ANALISI DI REGRESSIONE La regressoe è volta alla rcerca d u modello atto a descrvere la relazoe esstete tra ua varable Dpedete e ua varable dpedete (regressoe semplce)

Dettagli

Modelli con varabili binarie (o qualitative)

Modelli con varabili binarie (o qualitative) Modell con varabl bnare (o qualtatve E( Y X α + βx + ε quando Y è una varable benoullana Y 1 0 s ha l modello lneare d probabltà Pr( Y 1 X α + βx + ε dove valor stmat della Y assumono l sgnfcato d probabltà.

Dettagli

Elementi di statistica

Elementi di statistica Element d statstca Popolazone statstca e campone casuale S chama popolazone statstca l nseme d tutt gl element che s voglono studare (ndvdu, anmal, vegetal, cellule, caratterstche delle collettvtà..) e

Dettagli

Lezioni di Statistica (25 marzo 2013) Docente: Massimo Cristallo

Lezioni di Statistica (25 marzo 2013) Docente: Massimo Cristallo UNIVERSITA DEGLI STUDI DI BASILICATA FACOLTA DI ECONOMIA Corso d laurea n Economa Azendale Lezon d Statstca (25 marzo 2013) Docente: Massmo Crstallo QUARTILI Dvdono la dstrbuzone n quattro part d uguale

Dettagli

Esame di Statistica Corso di Laurea in Economia

Esame di Statistica Corso di Laurea in Economia Esame d Statstca Corso d Laurea n Economa 9 Gennao 0 Cognome Nome atr. Teora S dmostr la propretà d lneartà della meda artmetca. Eserczo Una casa edtrce è nteressata a valutare se tra lettor d lbr esste

Dettagli

La teoria del consumo

La teoria del consumo La teora del consumo La funzone d domanda ndvduale e l denttà d Slutsky. Maro Sportell Dpartmento d Matematca Unverstà degl Stud d Bar Va E. Orabona, 4 I 70125 Bar (Italy) (Tel.: +39 (0)99 7720 626; fa:

Dettagli

5. Baricentro di sezioni composte

5. Baricentro di sezioni composte 5. Barcentro d sezon composte Barcentro del trapezo Il barcentro del trapezo ( FIURA ) s trova sull asse d smmetra oblqua (medana) della fgura; è suffcente, qund, determnare la sola ordnata. A tal fne,

Dettagli

Una semplice applicazione del metodo delle caratteristiche: la propagazione di un onda di marea all interno di un canale a sezione rettangolare.

Una semplice applicazione del metodo delle caratteristiche: la propagazione di un onda di marea all interno di un canale a sezione rettangolare. Una semplce applcazone del metodo delle caratterstche: la propagazone d un onda d marea all nterno d un canale a sezone rettangolare. In generale la propagazone d un onda monodmensonale n una corrente

Dettagli

Ministero della Salute D.G. della programmazione sanitaria --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA

Ministero della Salute D.G. della programmazione sanitaria --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA Mnstero della Salute D.G. della programmazone santara --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA La valutazone del coeffcente d varabltà dell mpatto economco consente d ndvduare gl ACC e DRG

Dettagli

La contabilità analitica nelle aziende agrarie

La contabilità analitica nelle aziende agrarie 2 La contabltà analtca nelle azende agrare Estmo rurale ed element d contabltà (analtca) S. Menghn Corso d Laurea n Scenze e tecnologe agrare Percorso Economa ed Estmo Contabltà generale e cont. ndustrale

Dettagli

STATISTICA DESCRITTIVA CON EXCEL

STATISTICA DESCRITTIVA CON EXCEL STATISTICA DESCRITTIVA CON EXCEL Corso d CPS - II parte: Statstca Laurea n Informatca Sstem e Ret 2004-2005 1 Obettv della lezone Introduzone all uso d EXCEL Statstca descrttva Utlzzo dello strumento:

Dettagli

Circuiti dinamici. Circuiti del secondo ordine. (versione del ) Circuiti del secondo ordine

Circuiti dinamici. Circuiti del secondo ordine.  (versione del ) Circuiti del secondo ordine rcut dnamc rcut del secondo ordne www.de.ng.unbo.t/pers/mastr/ddattca.htm (versone del 9-6- rcut del secondo ordne rcut del secondo ordne: crcut l cu stato è defnto da due varabl x ( e x ( Per un crcuto

Dettagli

Norma UNI CEI ENV 13005: Guida all'espressione dell'incertezza di misura

Norma UNI CEI ENV 13005: Guida all'espressione dell'incertezza di misura orma UI CEI EV 3005: Guda all'espressone dell'ncertezza d msura L obettvo d una msurazone è quello d determnare l valore del msurando, n altre parole della grandezza da msurare. In generale, però, l rsultato

Dettagli

Progetto di travi in c.a.p isostatiche Il tracciato del cavi e il cavo risultante

Progetto di travi in c.a.p isostatiche Il tracciato del cavi e il cavo risultante Unverstà degl Stud d Roma Tre - Facoltà d Ingegnera Laurea magstrale n Ingegnera Cvle n Protezone Corso d Cemento Armato Precompresso A/A 2015-16 Progetto d trav n c.a.p sostatche Il traccato del cav e

Dettagli

Potenzialità degli impianti

Potenzialità degli impianti Unverstà degl Stud d Treste a.a. 2009-2010 Impant ndustral Potenzaltà degl mpant Impant ndustral Potenzaltà degl mpant 1 Unverstà degl Stud d Treste a.a. 2009-2010 Impant ndustral Defnzone della potenzaltà

Dettagli

Lezione n. 7. Legge di Raoult Legge di Henry Soluzioni ideali Deviazioni dall idealit. idealità. Antonino Polimeno 1

Lezione n. 7. Legge di Raoult Legge di Henry Soluzioni ideali Deviazioni dall idealit. idealità. Antonino Polimeno 1 Chmca Fsca Botecnologe santare Lezone n. 7 Legge d Raoult Legge d Henry Soluzon deal Devazon dall dealt dealtà Antonno Polmeno 1 Soluzon / comportamento deale - Il dagramma d stato d una soluzone bnara,

Dettagli

Il valore monetario del volontariato. Un esercizio sul caso napoletano

Il valore monetario del volontariato. Un esercizio sul caso napoletano Statstca & Socetà/Anno 2, N. 1/Lavoro, Economa, Fnanza 11 Il valore monetaro del volontarato. Un eserczo sul caso napoletano Marco Musella Drettore del Dpartmento d Scenze Poltche Unverstà degl Stud Federco

Dettagli

Appunti di Econometria

Appunti di Econometria Appunt d Econometra ARGOMENTO [4]: VARIABILI DIPENDENTI BINARIE Mara Lusa Mancus Unverstà Boccon Novembre 200 Introduzone Ne modell econometrc studat fno ad ora la varable dpendente, y, è sempre stata

Dettagli

Modelli decisionali su grafi - Problemi di Localizzazione

Modelli decisionali su grafi - Problemi di Localizzazione Modell decsonal su graf - Problem d Localzzazone Massmo Paolucc (paolucc@dst.unge.t) DIST Unverstà d Genova Locaton Problems: modell ed applcazon Decson a medo e lungo termne (panfcazone) Caratterstche

Dettagli

(B1) IL RUOLO DELL ANALISI STATISTICA DEI DATI NELLA GESTIONE AZIENDALE DATI GREZZI E INFORMAZIONI INDICI STATISTICI, TABELLE E GRAFICI

(B1) IL RUOLO DELL ANALISI STATISTICA DEI DATI NELLA GESTIONE AZIENDALE DATI GREZZI E INFORMAZIONI INDICI STATISTICI, TABELLE E GRAFICI Unverstà C. Cattaneo Luc, Corso d Statstca, 9 Ottobre 2013 Laboratoro Excel Sessone n. 1 Venerdì 041013 Gruppo PZ Lunedì 071013 Gruppo AD Martedì 081013 Gruppo EO VERSIONE DEFINITIVA (9 Ottobre 2013) degl

Dettagli

Cenni di regressione non-parametrica

Cenni di regressione non-parametrica S. Borra, A. D Cacco Statstca, metodologe per le scenze economche e socal, 0 Cenn d regressone non-parametrca funzone non-lneare non-lneartà ne parametr o nelle varabl overfttng funzon lnearzzabl funzone

Dettagli

Esercizi sulle reti elettriche in corrente continua (parte 2)

Esercizi sulle reti elettriche in corrente continua (parte 2) Esercz sulle ret elettrche n corrente contnua (parte ) Eserczo 3: etermnare gl equvalent d Thevenn e d Norton del bpolo complementare al resstore R 5 nel crcuto n fgura e calcolare la corrente che crcola

Dettagli

Adattamento di una relazione funzionale ai dati sperimentali

Adattamento di una relazione funzionale ai dati sperimentali Adattamento d una relazone 1 funzonale a dat spermental Sno ad ora abbamo vsto come può essere stmato, con un certo lvello d confdenza, l valore vero d una grandezza fsca (dretta o dervata) con l suo ntervallo

Dettagli

LEZIONE 2. Riassumere le informazioni: LE MEDIE MEDIA ARITMETICA MEDIANA, MODA, QUANTILI. La media aritmetica = = N

LEZIONE 2. Riassumere le informazioni: LE MEDIE MEDIA ARITMETICA MEDIANA, MODA, QUANTILI. La media aritmetica = = N LE MEDIE LEZIOE MEDIE ALGEBRICHE: calcolate con operazon algebrche su valor del carattere (meda artmetca) per varabl Rassumere le nformazon: MEDIA ARITMETICA MEDIAA, MODA, QUATILI MEDIE LASCHE: determnate

Dettagli

Soluzione attuale ONCE A YEAR. correlation curve (ISO10155) done with, at least 9 parallel measurements

Soluzione attuale ONCE A YEAR. correlation curve (ISO10155) done with, at least 9 parallel measurements Torna al programma Sstema per la garanza della qualtà ne sstem automatc d msura alle emsson: applcazone del progetto d norma pren 14181:2003. Rsultat dell esperenza n campo presso due mpant plota. Cprano

Dettagli

1) Dato un carattere X il rapporto tra devianza entro e devianza totale è 0.25 e la devianza totale è 40. La devianza tra vale: a) 10 b) 20 c) 30

1) Dato un carattere X il rapporto tra devianza entro e devianza totale è 0.25 e la devianza totale è 40. La devianza tra vale: a) 10 b) 20 c) 30 1) Dato un carattere X l rapporto tra devanza entro e devanza totale è 0.25 e la devanza totale è 40. La devanza tra vale: a) 10 b) 20 c) 30 2) Data una popolazone normalmente dstrbuta con meda 10 e varanza

Dettagli

Propagazione degli errori statistici. Test del χ 2 per la bontà di adattamento. Metodo dei minimi quadrati.

Propagazione degli errori statistici. Test del χ 2 per la bontà di adattamento. Metodo dei minimi quadrati. Propagazone degl error statstc. Test del χ per la bontà d adattamento. Metodo de mnm quadrat. Eserctazone 14 gennao 004 1 Propagazone degl error casual Sano B 1,..., B delle varabl casual con valor attes

Dettagli

Studente estratto Esami sostenuti voto Frequenza Pos.ne lavor.va sesso rendimento si No M B si No M O no No F S

Studente estratto Esami sostenuti voto Frequenza Pos.ne lavor.va sesso rendimento si No M B si No M O no No F S Esercz del corso d Statstca A.A 00-0 a cura d : Gulana Satta Eserczo E stato estratto un campone d 5 student tra frequentant l secondo semestre e s sono osservate le seguent caratterstche: esam sostenut

Dettagli

Università degli Studi di Napoli Parthenope. Facoltà di Scienze Motorie a.a. 2011/2012. Statistica. Lezione IV

Università degli Studi di Napoli Parthenope. Facoltà di Scienze Motorie a.a. 2011/2012. Statistica. Lezione IV Uverstà degl Stud d Napol Partheope Facoltà d Sceze Motore a.a. 011/01 Statstca Lezoe IV E-mal: paolo.mazzocch@upartheope.t Webste: www.statmat.upartheope.t Fuzoe d regressoe Attraverso la fuzoe d regressoe

Dettagli

Università degli Studi di Urbino Facoltà di Economia

Università degli Studi di Urbino Facoltà di Economia Unverstà degl Stud d Urbno Facoltà d Economa Lezon d Statstca Descrttva svolte durante la prma parte del corso d corso d Statstca / Statstca I A.A. 004/05 a cura d: F. Bartolucc Lez. 8/0/04 Statstca descrttva

Dettagli

Matematica II: Calcolo delle Probabilità e Statistica Matematica

Matematica II: Calcolo delle Probabilità e Statistica Matematica Matematca II: Calcolo delle Probabltà e Statstca Matematca ELT A-Z Docente: dott. F. Zucca Eserctazone # 8 Gl esercz contrassegnat con (*) sono tratt da Eserc. 2002-2003- Prof. Secch # 0 - Statstca Matematca

Dettagli

Valutazione dei Benefici interni

Valutazione dei Benefici interni Corso d Trasport Terrtoro prof. ng. Agostno Nuzzolo Valutazone de Benefc ntern Valutazone degl ntervent Indvduazone degl effett rlevant La defnzone degl effett rlevant per un ntervento sul sstema d trasporto

Dettagli

STATISTICA SOCIALE Corso di laurea in Scienze Turistiche, a.a. 2007/2008 Esercizi 16 novembre2007

STATISTICA SOCIALE Corso di laurea in Scienze Turistiche, a.a. 2007/2008 Esercizi 16 novembre2007 STATISTICA SOCIALE Corso d laurea n Scenze Turstche, a.a. 07/08 Esercz 6 novembre07 Eserczo La Tabella contene alcun dat relatv a 6 lavorator delle azende Alfa e Beta. Tabella Lavorator delle azende Alfa

Dettagli

Attività finanziarie e tasso di interesse

Attività finanziarie e tasso di interesse Attvtà fnanzare e tasso d nteresse Lezone 24 Tem della lezone 1. Ruolo e defnzone della moneta 2. Ruolo delle attvtà fnanzare 3. Il ruolo del tasso d nteresse 4. La domanda d moneta e teore economche 5.

Dettagli

COSTRUIRE UN PICCOLO SET DI DATI

COSTRUIRE UN PICCOLO SET DI DATI COSTRUIRE UN PICCOLO SET DI DATI Indvduazone degl obettv dello studo Indvduazone delle varabl che possono autare l raggungmento degl obettv dello studo Preparazone degl strument d rlevazone PATNO Numero

Dettagli

Obiettivi Il concetto di Resilienza applicato ai territori rurali Una proposta p metodologica Un esempio: diversità e sviluppo

Obiettivi Il concetto di Resilienza applicato ai territori rurali Una proposta p metodologica Un esempio: diversità e sviluppo Obettv Il concetto d Reslenza applcato a terrtor rural Una proposta p metodologca Un esempo: dverstà e svluppo Concluson Interpretare terrtor rural come sstem soco-ecologc Analzzare le propretà della reslenza

Dettagli

Il dimensionamento dei sistemi di fabbricazione

Il dimensionamento dei sistemi di fabbricazione Il dmensonamento de sstem d fabbrcazone 1 Processo d progettazone d un sstema produttvo Anals della domanda Industralzzazone d prodotto e processo (dstnte e ccl d lavorazone) Scelta delle soluzon produttve

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2011-2012 lezione 22: 30 maggio 2013

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2011-2012 lezione 22: 30 maggio 2013 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 22: 30 maggo 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/27? Eserczo Dmostrare che l equazone della frontera

Dettagli

lxmi.mi.infn.it/~camera/silsis/laboratorio-1/2-statistica.ppt http://www2.dm.unito.it/paginepersonali/zucca/index.htm Misura:

lxmi.mi.infn.it/~camera/silsis/laboratorio-1/2-statistica.ppt http://www2.dm.unito.it/paginepersonali/zucca/index.htm Misura: Elaborazone de dat geochmc e cenn d statstca lm.m.nfn.t/~camera/slss/laboratoro-1/-statstca.ppt http://www.dm.unto.t/pagnepersonal/zucca/nde.htm Msura: Espressone quanttatva del rapporto fra una grandezza

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 3:

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 3: Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 3: 21022012 professor Danele Rtell www.unbo.t/docdent/danele.rtell 1/31? Captalzzazone msta S usa l regme composto per l

Dettagli

Università di Cassino. Esercitazioni di Statistica 1 del 26 Febbraio Dott. Mirko Bevilacqua

Università di Cassino. Esercitazioni di Statistica 1 del 26 Febbraio Dott. Mirko Bevilacqua Uverstà d Casso Eserctazo d Statstca del 26 Febbrao 200 Dott. Mrko Bevlacqua ESERCIZIO Cosderado le class d altezza 60 6; 6 70; 70 78; 78 86 per u collettvo d 20 persoe, s può affermare che l ALTEZZA dpede

Dettagli

Capitolo 7. La «sintesi neoclassica» e il modello IS-LM. 2. La curva IS

Capitolo 7. La «sintesi neoclassica» e il modello IS-LM. 2. La curva IS Captolo 7 1. Il modello IS-LM La «sntes neoclassca» e l modello IS-LM Defnzone: ndvdua tutte le combnazon d reddto e saggo d nteresse per le qual l mercato de ben (curva IS) e l mercato della moneta (curva

Dettagli

IL RUMORE NEGLI AMPLIFICATORI

IL RUMORE NEGLI AMPLIFICATORI IL RUMORE EGLI AMPLIICATORI Defnzon S defnsce rumore elettrco (electrcal nose) l'effetto delle fluttuazon d corrente e/o d tensone sempre present a termnal degl element crcutal e de dspostv elettronc.

Dettagli

4.6 Dualità in Programmazione Lineare

4.6 Dualità in Programmazione Lineare 4.6 Dualtà n Programmazone Lneare Ad ogn PL n forma d mn (max) s assoca un PL n forma d max (mn) Spaz e funzon obettvo dvers ma n genere stesso valore ottmo! Esempo: l valore massmo d un flusso ammssble

Dettagli

Capitolo 11: IL METODO DEI MINIMI QUADRATI. Nel Capitolo precedente ci siamo posti il problema di determinare la miglior retta che passa per

Capitolo 11: IL METODO DEI MINIMI QUADRATI. Nel Capitolo precedente ci siamo posti il problema di determinare la miglior retta che passa per Captolo : IL METODO DEI MINIMI QUADRATI. La mglor retta Nel Captolo precedente c samo post l problema d determnare la mglor retta che passa per cert punt spermental, ed abbamo dscusso un metodo graco.

Dettagli

Trigger di Schmitt. e +V t

Trigger di Schmitt. e +V t CORSO DI LABORATORIO DI OTTICA ED ELETTRONICA Scopo dell esperenza è valutare l ampezza dell steres d un trgger d Schmtt al varare della frequenza e dell ampezza del segnale d ngresso e confrontarla con

Dettagli

Corso di laurea in Ingegneria per l Ambiente e il Territorio a.a RETI TOPOGRAFICHE

Corso di laurea in Ingegneria per l Ambiente e il Territorio a.a RETI TOPOGRAFICHE Corso d laurea n Ingegnera per l Ambente e l Terrtoro a.a. 006-007 Prof. V. Franco: Topografa e tecnche cartografche RETI TOPOGRAFICHE Unverstà degl Stud d Palermo Dpartmento d Rappresentazone Corso d

Dettagli

Caso studio 10. Dipendenza in media. Esempio

Caso studio 10. Dipendenza in media. Esempio 09/03/06 Caso studo 0 S cosder la seguete dstrbuzoe degl occupat Itala secodo l umero d ore settmaal effettvamete lavorate e l settore d attvtà (cfr. Itala cfre, Ao 008, pag. 7 ): Ore lavorate Settore

Dettagli

LEZIONE 2 e 3. La teoria della selezione di portafoglio di Markowitz

LEZIONE 2 e 3. La teoria della selezione di portafoglio di Markowitz LEZIONE e 3 La teora della selezone d portafoglo d Markowtz Unverstà degl Stud d Bergamo Premessa Unverstà degl Stud d Bergamo Premessa () È puttosto frequente osservare come gl nvesttor tendano a non

Dettagli

Ottimizzazione nella gestione dei progetti Capitolo 6 Project Scheduling con vincoli sulle risorse CARLO MANNINO

Ottimizzazione nella gestione dei progetti Capitolo 6 Project Scheduling con vincoli sulle risorse CARLO MANNINO Ottmzzazone nella gtone de progett Captolo 6 Project Schedulng con vncol sulle rsorse CARLO MANNINO Unverstà d Roma La Sapenza Dpartmento d Informatca e Sstemstca 1 Rsorse Ogn attvtà rchede rsorse per

Dettagli

31/03/2012. Collusione (Cabral cap.8 PRN capp. 13-14) Il modello standard. Collusione nel modello di Bertrand. Collusione nel modello di Bertrand

31/03/2012. Collusione (Cabral cap.8 PRN capp. 13-14) Il modello standard. Collusione nel modello di Bertrand. Collusione nel modello di Bertrand Collusone (Cabral cap.8 PRN capp. 13-14) Accord tact o esplct per aumentare l potere d mercato e pratcare prezz pù elevat rspetto all equlbro non cooperatvo corrspondente Esste un vantaggo dalla collusone

Dettagli

Un indice sintetico di misurazione della dotazione di infrastrutture e servizi nella sanità C. Brunini, M. Mazziotta e A. Pareto

Un indice sintetico di misurazione della dotazione di infrastrutture e servizi nella sanità C. Brunini, M. Mazziotta e A. Pareto La msuraone d fenomen multdmensonal: ndc sntetc ed esperene a confronto Un ndce sntetco d msuraone della nfrastrutture e serv nella santà C. Brunn, M. Maotta e A. Pareto Un ndce sntetco d nfrastrutture

Dettagli

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI CONFRONTO DI PIU MEDIE IL METODO DI ANALISI DELLA VARIANZA

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI CONFRONTO DI PIU MEDIE IL METODO DI ANALISI DELLA VARIANZA NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI CONFRONTO DI PIU MEDIE IL METODO DI ANALISI DELLA VARIANZA IL PROBLEMA Supponamo d voler studare l effetto d 4 dverse dete su un campone casuale d 4

Dettagli

UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II FACOLTÀ DI INGEGNERIA

UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II FACOLTÀ DI INGEGNERIA UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II FACOLTÀ DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA PER L AMBIENTE E IL TERRITORIO METODI DI LOCALIZZAZIONE DEL RISALTO IDRAULICO RELATORE Ch.mo Prof. Ing.

Dettagli

Corso di laurea in Ingegneria Meccatronica. DINAMICI CA - 04 ModiStabilita

Corso di laurea in Ingegneria Meccatronica. DINAMICI CA - 04 ModiStabilita Automaton Robotcs and System CONTROL Unverstà degl Stud d Modena e Reggo Emla Corso d laurea n Ingegnera Meccatronca MODI E STABILITA DEI SISTEMI DINAMICI CA - 04 ModStablta Cesare Fantuzz (cesare.fantuzz@unmore.t)

Dettagli

Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili. Modelli per la Logistica: Single Flow One Level Model Multi Flow Two Level Model

Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili. Modelli per la Logistica: Single Flow One Level Model Multi Flow Two Level Model Rcerca Operatva e Logstca Dott. F.Carrabs e Dott.ssa M.Gentl Modell per la Logstca: Sngle Flow One Level Model Mult Flow Two Level Model Modell d localzzazone nel dscreto Modell a Prodotto Sngolo e a Un

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa 2012-2013 lezione 13: 24 aprile 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa 2012-2013 lezione 13: 24 aprile 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 13: 24 aprle 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/23? reammortamento uò accadere che, dopo l erogazone

Dettagli

I MODELLI MULTISTATO PER LE ASSICURAZIONI DI PERSONE

I MODELLI MULTISTATO PER LE ASSICURAZIONI DI PERSONE Facoltà d Economa Valutazone de prodott e dell mpresa d asscurazone I MODELLI MULTISTATO PER LE ASSICURAZIONI DI PERSONE Clauda Colucc Letza Monno Gordano Caporal Martna Ragg I Modell Multstato sono un

Dettagli

Lezione 2 a - Statistica descrittiva per variabili quantitative

Lezione 2 a - Statistica descrittiva per variabili quantitative Lezone 2 a - Statstca descrttva per varabl quanttatve Esempo 5. Nella tabella seguente sono rportat valor del tasso glcemco rlevat su 10 pazent: Pazente Glcema (mg/100cc) 1 x 1 =103 2 x 2 =97 3 x 3 =90

Dettagli

Test delle ipotesi Parte 2

Test delle ipotesi Parte 2 Test delle potes arte Test delle potes sulla dstrbuzone: Introduzone Test χ sulla dstrbuzone b Test χ sulla dstrbuzone: Eserczo Test delle potes sulla dstrbuzone Molte concluson tratte nell nferenza parametrca

Dettagli

Calibrazione. Lo strumento idealizzato

Calibrazione. Lo strumento idealizzato Calbrazone Come possamo fdarc d uno strumento? Abbamo bsogno d dentfcare l suo funzonamento n condzon controllate. L dentfcazone deve essere razonalmente organzzata e condvsa n termn procedural: s tratta

Dettagli

Taratura: serve a trovare il legame tra il valore letto sullo strumento e il valore della grandezza fisica misurata

Taratura: serve a trovare il legame tra il valore letto sullo strumento e il valore della grandezza fisica misurata Taratura: serve a trovare l legame tra l valore letto sullo strumento e l valore della grandezza fsca msurata Msure Meccanche e Termche Dsturb d trasduttor anello dnamometrco trasduttore d spostamento

Dettagli

Esercizio. Alcuni esercizi su algoritmi e programmazione. Schema a blocchi. Calcolo massimo, minimo e media

Esercizio. Alcuni esercizi su algoritmi e programmazione. Schema a blocchi. Calcolo massimo, minimo e media Alcun esercz su algortm e programmazone Fondament d Informatca A Ingegnera Gestonale Unverstà degl Stud d Bresca Docente: Prof. Alfonso Gerevn Scrvere l algortmo e l dagramma d flusso per l seguente problema:

Dettagli

Modello logistico (Modello di regressione logistica)

Modello logistico (Modello di regressione logistica) Modello logstco (Modello d regressone logstca) Prof. Guseppe Verlato Prof. Elsabetta Zanoln Sezone d Epdemologa e Statstca Medca, Dpartmento d Santà Pubblca e Medcna d Comuntà, Unverstà degl Stud d Verona

Dettagli

SOLUZIONI III PLICO DI ESERCIZI DI RAGIONERIA

SOLUZIONI III PLICO DI ESERCIZI DI RAGIONERIA SOLUZIONI III PLICO DI ESERCIZI DI RAGIONERIA ESERCIZIO N.1 Calcolo del metodo patrmonale semplce con correzone reddtuale 1. Determnazone del patrmono netto rettfcato Dat blanco stato patrmonale al 31.12.01

Dettagli

Aritmetica e architetture

Aritmetica e architetture Unverstà degl stud d Parma Dpartmento d Ingegnera dell Informazone Poltecnco d Mlano Artmetca e archtetture Sommator Rpple Carry e CLA Bozza da completare del 7 nov 03 La rappresentazone de numer Rappresentazone

Dettagli

Trattamento delle Osservazioni

Trattamento delle Osservazioni Unverstà d Bresca - Corso d Topografa A Trattamento delle Osservazon Generaltà Scopo: descrzone d fenomen; Metodologa: elaborazone d modell e dotazone d strument per verfcare l grado d approssmazone d

Dettagli