Laboratorio 2B A.A. 2013/2014. Elaborazione Dati. Lab 2B CdL Fisica

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Laboratorio 2B A.A. 2013/2014. Elaborazione Dati. Lab 2B CdL Fisica"

Transcript

1 Laboratoro B A.A. 013/014 Elaborazone Dat Lab B CdL Fsca

2 Elaborazone dat spermental Come rassumere un nseme d dat spermental? Una statstca è propro un numero calcolato a partre da dat stess. La Statstca descrttva fornsce mezz per rassumere le propretà d un campone d dat (molt numer) n modo che possano essere comuncat effcacemente (con poch numer). Metod numerc e grafc vengono utlzzat nella EDA (Exploratory Data Analyss) per semplfcare le cose meno nteressant e rvelare gl aspett nattes e/o anomal del campone d dat. Uno de prncp fondamental d una buona anals dat è: rportare sempre n grafco dat! Lab B CdL Fsca

3 Presentazone dat spermental - 1 Prma d nzare un espermento è opportuno, sulla base dell anals prelmnare, predsporre una tabella per la raccolta ordnata de dat. La tabella potrà contenere: l numero progressvo delle msure effettuate, valor ottenut nella msura, corrspondent error, valor med, la varanza, la devazone standard, etc. I dat spermental s possono presentare n vare forme (mono-, b-, tr- e mult-dmensonal), tuttava sono usualmente rappresentat a schermo o su carta (così da apparre bdmensonal, anche se n realtà potrebbero non esserlo). Lab B CdL Fsca

4 Presentazone dat spermental - La rappresentazone attraverso tabelle e stogramm fornsce utl nformazon per ndvduare e comprendere le relazon tra dat. Il modo pù semplce e mmedato per ndagare la possble relazone tra due grandezze è quello d costrure un grafco. Esempo: Dlatazone elastca d un corpo n funzone della forza applcata Dl = K m Lab B CdL Fsca

5 Presentazone dat spermental - 3 Perché occorre sempre rportare n grafco dat? Esempo: Anscombe, (1973). Graphs n statstcal analyss.amercan Statstcan 7, 17 Lab B CdL Fsca

6 Lab B CdL Fsca Elaborazone dat spermental Prncpo della massma verosmglanza Quando eseguamo una sere d msure relatve ad una data grandezza fsca, quanto ottenamo corrsponde al rsultato pù probable. Il prncpo della massma verosmglanza permette d concludere che l valore pù attendble d una sere d msure, caratterzzate da error casual dstrbut secondo la stessa legge normale e n assenza d error sstematc, è dato dalla loro meda artmetca. (lnk) Il metodo de mnm quadrat è una dretta conseguenza del prncpo della massma verosmglanza: s basa sull potes per cu l valore pù attendble d una grandezza corrsponde a quello per cu è mnma la somma de quadrat degl scart dvs per σ (nel caso n cu le msure provengano da n dstrbuzon teorche dfferent, ognuna caratterzzata da varanza σ, con = 1,..., n). el caso d msure provenent dalla medesma dstrbuzone teorca, l valore pù attendble corrsponde alla meda artmetca. el caso, nvece, d osservazon provenent da dstrbuzon teorche dfferent esso è la meda pesata delle osservazon, dove pes sono recproc delle varanze delle sngole msure.

7 Prncpo della massma verosmglanza Consderamo una varable casuale X che presenta una dstrbuzone gaussana d valor, coè che la probabltà d ottenere, eseguendo una msura, un valore compreso tra x e x + dx è data da: x 1 m P x dx e dx Questa probabltà è la verosmglanza d trovare (msurare) l valore x posto che la dstrbuzone presenta specfc, ma gnot, valor d m e s. Il metodo è basato sul postulato che valor gnot de parametrmessano quell che producono la probabltà massma d osservare gl dat msurat (x ). 1 P P x e 1 1 x m Occorre, qund, trovare parametr della dstrbuzone,mes, che rendono massma questa probabltà. Lab B CdL Fsca

8 Msure d coppe d varabl Supponamo d esegure msure (x,y ) d coppe d varabl X e Y e d rcercare una relazone del tpo y=y(x) tra esse. D solto X rappresenta la varable ndpendente e Y quella dpendente. Inoltre spesso (ma non sempre) σ x σ y. el caso lneare, y x = a + bx, con X prva d error, la stuazone può essere rappresentata come n grafco, per un nseme d dat del tpo x, y Assumendo che cascuna varable casuale y(x ) sa una gaussana con parametr m y x Meda determnata da y(x) Varanza stmata da dat Lab B CdL Fsca

9 Lab B CdL Fsca Crtero d massma verosmglanza per un nseme d dat gaussan Dato un nseme d dat gaussan x, y ± σ da confrontare con un modello y = y x voglamo determnare: l accuratezza del modello y = y x valor de parametr varabl che sono compatbl con dat Defnta la verosmglanza L come la probabltà che dat rproducano l modello e nell potes d msure ndpendent (le probabltà gaussane possono essere moltplcate) s ha: y yx y yx 1 1 L e e L è massmo se mnmzzamo l argomento dell esponente: y y x 1 Questa funzone rappresenta la best-ft functon (bontà del ft).

10 Valore crtco d Defnto f=-m e fssato l lvello d confdenza p rchesto (es. 90%), se < crt l ft è consstente. Lab B CdL Fsca

11 Modellzzazone Dat Inseme d osservazon msure d laboratoro (coppe x var. ndpendente,y varable dpendente) Raffrontare dat con un modello che dpende da parametr varabl (modfcabl) Defnre una Funzone d Merto Modfcare parametr per ottenere la mglore funzone d merto IMPORTATE! Lab B CdL Fsca Procedura d best-ft Una procedura d best-ft deve fornre: () parametr, () l errore stmato su parametr, () una msura statstca della bontà del ft

12 I mnm quadrat come crtero d massma verosmglanza Ft d punt spermental (x,y ) =1,, con un modello che ha M parametr varabl mnmzzare rspetto ad a 1 a M -fttng ; y y x a a 1 1 M è l ncertezza (errore) sul dato e W è l cosddetto peso del dato mnmzzando deve essere Lab B CdL Fsca ; y x y x a a ; 1,..., M y y x a1 am 1 y y x y x ak 0 k 1,, M 1 ak W ; 1 1 y

13 I mnm quadrat nel caso d una retta Immagnamo d aver effettuato le msure d due grandezze che sano l una una funzone dell altra. Supponamo noltre d rtenere che la relazone che lega le due grandezze n questone sa lneare. L potes d lneartà può essere un dea da confermare, un prmo tentatvo d approssmare la legge che mette n relazone dat, o una ragonevole approssmazone della funzone su un ntervallo d valor della varable ndpendente suffcentemente pccolo perchè abba senso aspettars un andamento lneare. Può anche essere, n alcun cas, che no gà sappamo che la legge che regola l fenomeno che stamo nvestgando è lneare: n tal caso samo nteressat a determnare valor del coeffcente angolare e dell ntercetta con l asse delle y per assegnarl alle grandezze fsche a cu sono assocat. In generale, per un problema d questo tpo, saremo nteressat a determnare valor d a e b present nella relazone: Lab B CdL Fsca y a bx

14 Dat, Modello e Resdu La dfferenza tra valor osservat e quell predett dal modello s defnsce resduo: Dat = Modello + Resdu Resdu = dat - modello e y a bx Occorre mnmzzare n n 1 1 SSE e y a bx Lab B CdL Fsca

15 Data fttng con una retta - 1 Quale che sa l orgne de dat, non c aspettamo che ess s dspongano su una lnea retta ma, puttosto, che sano dstrbut n modo casuale: coeffcent a e b della retta che meglo s adatta a dat vanno determnat n modo da rendere mnma la dfferenza de quadrat degl scart. Occorre mnmzzare da cu, le condzon formamo le seguent quanttà: Lab B CdL Fsca ab, y a bx 1 a b 1 y a bx x y a bx 1 x S S S S xx x y x x y S xy 1 1 y

16 Data fttng con una retta - Le due equazon dventano as bs S as bs S x x xx xy y ponendo D SS xx S x le soluzon sono a b S S SS S S xx y x xy D S S xy x y D Lab B CdL Fsca

17 Data fttng con una retta - 3 Varanza d un parametro per la retta pertanto Lab B CdL Fsca p k p k 1 y a b S S xx a S S x b Sx S ; y D D xx x x y Il coeffcente d correlazone tra le ncertezze a e b è un numero compreso tra -1 ed 1 rab Sx SSxx Un valore postvo d r ab ndca che è probable che gl error su a e b abbano lo stesso segno D D

18 Lab B CdL Fsca Resdu La relazone Dat = Modello + Resdu s può anche scrvere (dat valor medo) (modello valor medo) y y yˆ y y yˆ La relazone vale anche per quadrat delle devazon: n n n y y yˆ y y yˆ Resdu SST SSM SSE Partzonamento somma quadrat somma quadrat somma quadrat devazontotal devazon modello valor error somma de quadrat La relazone esprme quanta varanza totale è contenuta nel modello. SSE esprme la varanza "non spegata" dovuta agl error (S ). n n 1 ˆ Frazone varanza SSM yˆ 1 y spegata dal r n SST 1 modello y y SSE S y y n n 1 Resdu

19 Data fttng con una retta - 5 La probabltà che un valore nadeguato per possa verfcars è dato da: Q IncGammaFunc, x 1 t a1, 1! a 0 IncGammaFunc P x a e t dt a a se 1> Q > 0.1 bontà del ft credble se Q > bontà del ft potzzable se gl error sono non normal o sono stat un po sottostmat se 0 < Q < l modello e/o la procedura d stma sono nadeguat Lab B CdL Fsca

20 Eserctazone rportare su un foglo Excel dat sotto elencat (x, y, W ) utlzzando le formule d calcolo esposte n precedenza, determnare la regressone lneare su quest dat n partcolare determnare parametr e gl error assocat al ft rportare n grafco l rsultato e confrontarlo con l caso d pes untar (W =1 per tutt punt) Rammentare che W è l peso, da cu occorre calcolare l ncertezza Lab B CdL Fsca W 1 x y W 0,0 5,9 1,0 0,9 5,4 1,8 1,8 4,4 4,0,6 4,6 8,0 3,3 3,5 0,0 4,4 3,7 0,0 5,,8 70,0 6,1,8 70,0 6,5,4 100,0 7,4 1,5 500,0

Laboratorio 2B A.A. 2012/2013. Elaborazione Dati. Lab 2B CdL Fisica

Laboratorio 2B A.A. 2012/2013. Elaborazione Dati. Lab 2B CdL Fisica Laboratoro B A.A. 01/013 Elaborazone Dat Lab B CdL Fsca Lab B CdL Fsca Elaborazone dat spermental Prncpo della massma verosmglanza Quando eseguamo una sere d msure relatve ad una data grandezza fsca, quanto

Dettagli

Laboratorio 2B A.A. 2014/2015. Elaborazione Dati. Lab 2B CdL Fisica

Laboratorio 2B A.A. 2014/2015. Elaborazione Dati. Lab 2B CdL Fisica Laboratoro B A.A. 014/015 Elaborazone Dat Lab B CdL Fca Elaborazone dat permental Come raumere un neme d dat permental? Una tattca è propro un numero calcolato a partre da dat te. La Stattca decrttva fornce

Dettagli

Corso di. Dott.ssa Donatella Cocca

Corso di. Dott.ssa Donatella Cocca Corso d Statstca medca e applcata 3 a Lezone Dott.ssa Donatella Cocca Concett prncpale della lezone I concett prncpal che sono stat presentat sono: Mede forme o analtche (Meda artmetca semplce, Meda artmetca

Dettagli

Capitolo 3. Cap. 3-1

Capitolo 3. Cap. 3-1 Statstca Captolo 3 Descrzone Numerca de Dat Cap. 3-1 Obettv del Captolo Dopo aver completato l captolo, sarete n grado d: Calcolare ed nterpretare la meda, la medana e la moda d un set tdd dat Trovare

Dettagli

Correlazione lineare

Correlazione lineare Correlazone lneare Varable dpendente Mortaltà per crros 50 45 40 35 30 5 0 15 10 5 0 0 5 10 15 0 5 30 Consumo d alcool Varable ndpendente Metodologa per l anals de dat spermental L anals d stud con varabl

Dettagli

FACOLTÀ DI SOCIOLOGIA CdL in SCIENZE DELL ORGANIZZAZIONE ESAME di STATISTICA 17/09/2012

FACOLTÀ DI SOCIOLOGIA CdL in SCIENZE DELL ORGANIZZAZIONE ESAME di STATISTICA 17/09/2012 CdL n SCIENZE DELL ORGANIZZAZIONE ESAME d STATISTICA ESERCIZIO 1 (+.5+.5+3) La tabella seguente rporta la dstrbuzone d frequenza del peso X n gramm d una partta d mele provenent da un certo frutteto. X=peso

Dettagli

La t di Student. Per piccoli campioni si definisce la variabile casuale. = s N. detta t di Student.

La t di Student. Per piccoli campioni si definisce la variabile casuale. = s N. detta t di Student. Pccol campon I parametr della dstrbuzone d una popolazone sono n generale ncognt devono essere stmat dal campone de dat spermental per pccol campon (N N < 30) z = (x µ)/ )/σ non ha pù una dstrbuzone gaussana

Dettagli

Teoria degli errori. La misura implica un giudizio sull uguaglianza tra la grandezza incognita e la grandezza campione. Misure indirette: velocita

Teoria degli errori. La misura implica un giudizio sull uguaglianza tra la grandezza incognita e la grandezza campione. Misure indirette: velocita Teora degl error Processo d msura defnsce una grandezza fsca. Sstema oggetto. Apparato d msura 3. Sstema d confronto La msura mplca un gudzo sull uguaglanza tra la grandezza ncognta e la grandezza campone

Dettagli

Campo di applicazione

Campo di applicazione Unverstà del Pemonte Orentale Corso d Laurea n Botecnologa Corso d Statstca Medca Correlazone Regressone Lneare Corso d laurea n botecnologa - Statstca Medca Correlazone e Regressone lneare semplce Campo

Dettagli

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione 1 La Regressone Lneare (Semplce) Relazone funzonale e statstca tra due varabl Modello d regressone lneare semplce Stma puntuale de coeffcent d regressone Decomposzone della varanza Coeffcente d determnazone

Dettagli

Precisione e Cifre Significative

Precisione e Cifre Significative Precsone e Cfre Sgnfcatve Un numero (una msura) è una nformazone! E necessaro conoscere la precsone e l accuratezza dell nformazone. La precsone d una msura è contenuta nel numero d cfre sgnfcatve fornte

Dettagli

* PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE *

* PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE * * PROBABILITÀ - SCHEDA N. LE VARIABILI ALEATORIE *. Le varabl aleatore Nella scheda precedente abbamo defnto lo spazo camponaro come la totaltà degl est possbl d un espermento casuale; abbamo vsto che

Dettagli

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari Captolo 3 Covaranza, correlazone, bestft lnear e non lnear ) Covaranza e correlazone Ad un problema s assoca spesso pù d una varable quanttatva (es.: d una persona possamo determnare peso e altezza, oppure

Dettagli

SERIE STORICHE, TREND, MEDIE MOBILI, REGRESSIONE Andrea Prevete

SERIE STORICHE, TREND, MEDIE MOBILI, REGRESSIONE Andrea Prevete SERIE STORICHE, TREND, MEDIE MOBILI, REGRESSIONE Andrea Prevete Una sere storca o temporale è un nseme d dat costtut da una sequenza d osservazon su un fenomeno d nteresse X, effettuate n stant (per le

Dettagli

Relazioni tra variabili: Correlazione e regressione lineare

Relazioni tra variabili: Correlazione e regressione lineare Dott. Raffaele Casa - Dpartmento d Produzone Vegetale Modulo d Metodologa Spermentale Febbrao 003 Relazon tra varabl: Correlazone e regressone lneare Anals d relazon tra varabl 6 Produzone d granella (kg

Dettagli

RAPPRESENTAZIONE DI MISURE. carta millimetrata

RAPPRESENTAZIONE DI MISURE. carta millimetrata carta mllmetrata carta mllmetrata non è necessaro rportare sul foglo la tabella (ma auta; l mportante è che sta da qualche parte) carta mllmetrata 8 7 6 5 4 3 smbolo della grandezza con untà d msura!!!

Dettagli

S O L U Z I O N I. 1. Effettua uno studio qualitativo della funzione. con particolare riferimento ai seguenti aspetti:

S O L U Z I O N I. 1. Effettua uno studio qualitativo della funzione. con particolare riferimento ai seguenti aspetti: S O L U Z I O N I 1 Effettua uno studo qualtatvo della funzone con partcolare rfermento a seguent aspett: f ( ) ln( ) a) trova l domno della funzone b) ndca qual sono gl ntervall n cu f() rsulta postva

Dettagli

Scienze Geologiche. Corso di Probabilità e Statistica. Prove di esame con soluzioni

Scienze Geologiche. Corso di Probabilità e Statistica. Prove di esame con soluzioni Scenze Geologche Corso d Probabltà e Statstca Prove d esame con soluzon 004-005 1 Corso d laurea n Scenze Geologche - Probabltà e Statstca Appello del 1 gugno 005 - Soluzon 1. (Punt 3) In una certa zona,

Dettagli

La Regressione X Variabile indipendente o esplicativa. La regressione. La Regressione. Y Variabile dipendente

La Regressione X Variabile indipendente o esplicativa. La regressione. La Regressione. Y Variabile dipendente Unverstà d Macerata Dpartmento d Scenze Poltche, della Comuncazone e delle Relaz. Internazonal La Regressone Varable ndpendente o esplcatva Prezzo n () () 1 1 Varable dpendente 15 1 1 1 5 5 6 6 61 6 1

Dettagli

STATISTICA DESCRITTIVA - SCHEDA N. 5 REGRESSIONE LINEARE

STATISTICA DESCRITTIVA - SCHEDA N. 5 REGRESSIONE LINEARE Matematca e statstca: da dat a modell alle scelte www.dma.unge/pls_statstca Responsabl scentfc M.P. Rogantn e E. Sasso (Dpartmento d Matematca Unverstà d Genova) STATISTICA DESCRITTIVA - SCHEDA N. REGRESSIONE

Dettagli

una variabile casuale è continuase può assumere un qualunque valore in un intervallo

una variabile casuale è continuase può assumere un qualunque valore in un intervallo Varabl casual contnue Se samo nteressat alla temperatura massma gornaleraquesta è una varable casuale msurata n un ntervallo contnuoe qund è una v.c. contnua una varable casuale è contnuase può assumere

Dettagli

Metodologie informatiche per la chimica

Metodologie informatiche per la chimica Metodologe nforatche per la chca Dr. Sergo Brutt Anals de dat 6 Y Rcaptolo generale Dato un nsee d sure sperental d una varable dpendente al varare d una varable ndpendente è possble edante l crtero de

Dettagli

LA COMPATIBILITA tra due misure:

LA COMPATIBILITA tra due misure: LA COMPATIBILITA tra due msure: 0.4 Due msure, supposte affette da error casual, s dcono tra loro compatbl quando la loro dfferenza può essere rcondotta ad una pura fluttuazone statstca attorno al valore

Dettagli

ESERCIZIO 4.1 Si consideri una popolazione consistente delle quattro misurazioni 0, 3, 12 e 20 descritta dalla seguente distribuzione di probabilità:

ESERCIZIO 4.1 Si consideri una popolazione consistente delle quattro misurazioni 0, 3, 12 e 20 descritta dalla seguente distribuzione di probabilità: ESERCIZIO. S consder una popolazone consstente delle quattro msurazon,, e descrtta dalla seguente dstrbuzone d probabltà: X P(X) ¼ ¼ ¼ ¼ S estrae casualmente usando uno schema d camponamento senza rpetzone

Dettagli

Probabilità cumulata empirica

Probabilità cumulata empirica Probabltà cumulata emprca Se s effettua un certo numero d camponament da una popolazone con dstrbuzone cumulata F(y), s avranno allora n campon y, y,, y n. E possble consderarne la statstca d ordne, coè

Dettagli

Elementi di statistica

Elementi di statistica Element d statstca Popolazone statstca e campone casuale S chama popolazone statstca l nseme d tutt gl element che s voglono studare (ndvdu, anmal, vegetal, cellule, caratterstche delle collettvtà..) e

Dettagli

LA CALIBRAZIONE NELL ANALISI STRUMENTALE

LA CALIBRAZIONE NELL ANALISI STRUMENTALE LA CALIBRAZIONE NELL ANALISI STRUMENTALE La maggor parte delle anals chmche sono ogg condotte medante metod strumental (spettrometra d assorbmento ed emssone a dverse λ, metod elettrochmc, spettrometra

Dettagli

Propagazione degli errori statistici. Test del χ 2 per la bontà di adattamento. Metodo dei minimi quadrati.

Propagazione degli errori statistici. Test del χ 2 per la bontà di adattamento. Metodo dei minimi quadrati. Propagazone degl error statstc. Test del χ per la bontà d adattamento. Metodo de mnm quadrat. Eserctazone 14 gennao 004 1 Propagazone degl error casual Sano B 1,..., B delle varabl casual con valor attes

Dettagli

Matematica II: Calcolo delle Probabilità e Statistica Matematica

Matematica II: Calcolo delle Probabilità e Statistica Matematica Matematca II: Calcolo delle Probabltà e Statstca Matematca ELT A-Z Docente: dott. F. Zucca Eserctazone # 8 Gl esercz contrassegnat con (*) sono tratt da Eserc. 2002-2003- Prof. Secch # 0 - Statstca Matematca

Dettagli

La soluzione delle equazioni differenziali con il metodo di Galerkin

La soluzione delle equazioni differenziali con il metodo di Galerkin Il metodo de resdu pesat per gl element fnt a soluzone delle equazon dfferenzal con l metodo d Galerkn Tra le procedure generalmente adottate per formulare e rsolvere le equazon dfferenzal con un metodo

Dettagli

LA VARIABILITA. Nella metodologia statistica si distinguono due aspetti della variabilità:

LA VARIABILITA. Nella metodologia statistica si distinguono due aspetti della variabilità: LA VARIABILITA LA VARIABILITA E L ATTITUDINE DEL FENOMENO QUANTITATIVO AD ASSUMERE DIVERSE MODALITA, O MEGLIO LA TENDENZA DI OGNI SINGOLA OSSERVAZIONE AD ASSUMERE VALORI DIFFERENTI RISPETTO AL VALORE MEDIO.

Dettagli

Università di Cassino. Esercitazione di Statistica 1 del 4 dicembre Dott.ssa Simona Balzano

Università di Cassino. Esercitazione di Statistica 1 del 4 dicembre Dott.ssa Simona Balzano Unverstà d Cassno Eserctazone d Statstca del 4 dcembre 6 Dott.ssa Smona Balzano Eserczo Sa la varable casuale che descrve l rsultato del lanco d dad, sulle cu facce v sono numer: 5, 5, 7, 7, 9, 9. a) Defnre

Dettagli

Strada B. Classe Velocità valore frequenza Frequ. ass Frequ. % hi Freq. Cum

Strada B. Classe Velocità valore frequenza Frequ. ass Frequ. % hi Freq. Cum Eserczo SINTESI S supponga d avere eseguto 70 msure della veloctà stantanea de vecol che transtano nelle sezon d due strade A e B. S supponga che tal msure sano state eseguta n corrspondenza d valor modest

Dettagli

CARATTERISTICHE DEI SEGNALI RANDOM

CARATTERISTICHE DEI SEGNALI RANDOM CARATTERISTICHE DEI SEGNALI RANDOM I segnal random o stocastc rvestono una notevole mportanza poché sono present, pù che segnal determnstc, nella maggor parte de process fsc real. Esempo d segnale random:

Dettagli

Statistica - metodologie per le scienze economiche e sociali /2e S. Borra, A. Di Ciaccio - McGraw Hill

Statistica - metodologie per le scienze economiche e sociali /2e S. Borra, A. Di Ciaccio - McGraw Hill Statstca - metodologe per le scenze economche e socal /e S Borra, A D Cacco - McGraw Hll Es Soluzone degl esercz del captolo 7 In base agl arrotondament effettuat ne calcol, s possono rscontrare pccole

Dettagli

Qualità dell adattamento di una funzione y=f(x) ad un insieme di misure (y in funzione di x)

Qualità dell adattamento di una funzione y=f(x) ad un insieme di misure (y in funzione di x) Qualtà ell aattamento una funzone y=f() a un nseme msure (y n funzone ) Date N msure coppe valor elle granezze e y, legate alla relazone y=f(;a,b), nell potes che le ncertezze sulle sano trascurabl e y

Dettagli

LE FREQUENZE CUMULATE

LE FREQUENZE CUMULATE LE FREQUENZE CUMULATE Dott.ssa P. Vcard Introducamo questo argomento con l seguente Esempo: consderamo la seguente dstrbuzone d un campone d 70 sttut d credto numero flal present nel terrtoro del comune

Dettagli

Ministero della Salute D.G. della programmazione sanitaria --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA

Ministero della Salute D.G. della programmazione sanitaria --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA Mnstero della Salute D.G. della programmazone santara --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA La valutazone del coeffcente d varabltà dell mpatto economco consente d ndvduare gl ACC e DRG

Dettagli

Regressione lineare con un singolo regressore

Regressione lineare con un singolo regressore Regressone lneare con un sngolo regressore Eduardo Ross 2 2 Unverstà d Pava (Italy) Marzo 2013 Ross Regressone lneare semplce Econometra - 2013 1 / 45 Outlne 1 Introduzone 2 Lo stmatore OLS 3 Esempo 4

Dettagli

Ettore Limoli. Lezioni di Matematica Prof. Ettore Limoli. Sommario. Calcoli di regressione

Ettore Limoli. Lezioni di Matematica Prof. Ettore Limoli. Sommario. Calcoli di regressione Sto Personale d Ettore Lmol Lezon d Matematca Prof. Ettore Lmol Sommaro Calcol d regressone... 1 Retta d regressone con Ecel... Uso della funzone d calcolo della tendenza... 4 Uso della funzone d regressone

Dettagli

PREVEDONO: Capitolo 17 del libro di testo. Copyright 2005 The McGraw-Hill Companies srl

PREVEDONO: Capitolo 17 del libro di testo. Copyright 2005 The McGraw-Hill Companies srl Le Inferenze sul modello d regressone PREVEDONO: Assunzone d normaltà degl error e nferenza su parametr Anals della Varanza Inferenza per la rsposta meda e la prevsone Anals de resdu Valor anomal Captolo

Dettagli

Variabili statistiche - Sommario

Variabili statistiche - Sommario Varabl statstche - Sommaro Defnzon prelmnar Statstca descrttva Msure della tendenza centrale e della dspersone d un campone Introduzone La varable statstca rappresenta rsultat d un anals effettuata su

Dettagli

PIANIFICAZIONE DEI TRASPORTI

PIANIFICAZIONE DEI TRASPORTI Unverstà d Caglar DICAAR Dpartmento d Ingegnera Cvle, Ambentale e archtettura Sezone Trasport PIANIFICAZIONE DEI TRASPORTI Eserctazone su modell d generazone A.A. 2016-2017 Ing. Francesco Pras Ing. Govann

Dettagli

= = = = = 0.16 NOTA: X P(X) Evento Acquisto PC Intel Acquisto PC Celeron P(X)

= = = = = 0.16 NOTA: X P(X) Evento Acquisto PC Intel Acquisto PC Celeron P(X) ESERCIZIO 3.1 Una dtta vende computer utlzzando on-lne, utlzzando sa processor Celeron che processor Intel. Dat storc mostrano che l 80% de clent preferscono acqustare un PC con processore Intel. a) Sa

Dettagli

STATISTICA DESCRITTIVA CON EXCEL

STATISTICA DESCRITTIVA CON EXCEL STATISTICA DESCRITTIVA CON EXCEL Corso d CPS - II parte: Statstca Laurea n Informatca Sstem e Ret 2004-2005 1 Obettv della lezone Introduzone all uso d EXCEL Statstca descrttva Utlzzo dello strumento:

Dettagli

LEZIONE 2. Riassumere le informazioni: LE MEDIE MEDIA ARITMETICA MEDIANA, MODA, QUANTILI. La media aritmetica = = N

LEZIONE 2. Riassumere le informazioni: LE MEDIE MEDIA ARITMETICA MEDIANA, MODA, QUANTILI. La media aritmetica = = N LE MEDIE LEZIOE MEDIE ALGEBRICHE: calcolate con operazon algebrche su valor del carattere (meda artmetca) per varabl Rassumere le nformazon: MEDIA ARITMETICA MEDIAA, MODA, QUATILI MEDIE LASCHE: determnate

Dettagli

CAPITOLO 3 Incertezza di misura Pagina 26

CAPITOLO 3 Incertezza di misura Pagina 26 CAPITOLO 3 Incertezza d msura Pagna 6 CAPITOLO 3 INCERTEZZA DI MISURA Le operazon d msurazone sono tutte nevtablmente affette da ncertezza e coè da un grado d ndetermnazone con l quale l processo d msurazone

Dettagli

Per calcolare le probabilità di Testa e Croce è possibile risolvere il seguente sistema di due equazioni in due incognite:

Per calcolare le probabilità di Testa e Croce è possibile risolvere il seguente sistema di due equazioni in due incognite: ESERCIZIO.1 Sa X la varable casuale che descrve l numero d teste ottenute nella prova lanco d tre monete truccate dove P(Croce)= x P(Testa). 1) Defnrne la dstrbuzone d probabltà ) Rappresentarla grafcamente

Dettagli

Introduzione al Machine Learning

Introduzione al Machine Learning Introduzone al Machne Learnng Note dal corso d Machne Learnng Corso d Laurea Magstrale n Informatca aa 2010-2011 Prof Gorgo Gambos Unverstà degl Stud d Roma Tor Vergata 2 Queste note dervano da una selezone

Dettagli

Esame di Statistica tema A Corso di Laurea in Economia Prof.ssa Giordano Appello del 15/07/2011

Esame di Statistica tema A Corso di Laurea in Economia Prof.ssa Giordano Appello del 15/07/2011 Esame d Statstca tema A Corso d Laurea n Economa Prof.ssa Gordano Appello del /07/0 Cognome Nome atr. Teora Dmostrare che la somma degl scart dalla meda artmetca è zero. Eserczo L accesso al credto è sempre

Dettagli

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI IL LEGAME TRA DUE VARIABILI I METODI DELLA CORRELAZIONE Prof.ssa G. Sero, Prof. P. Trerotol, Cattedra d Statstca Medca, Unverstà d Bar 1/19 IL PROBLEMA

Dettagli

Esame di Statistica tema B Corso di Laurea in Economia Prof.ssa Giordano Appello del 15/07/2011

Esame di Statistica tema B Corso di Laurea in Economia Prof.ssa Giordano Appello del 15/07/2011 Esame d Statstca tema B Corso d Laurea n Economa Prof.ssa Gordano Appello del 15/07/011 Cognome Nome Matr. Teora Dmostrare la propretà assocatva della meda artmetca. Eserczo 1 L accesso al credto è sempre

Dettagli

C.I. di Metodologia clinica

C.I. di Metodologia clinica C.I. d Metodologa clnca I metod per la sntes e la comuncazone delle nformazon sulla salute Come possamo trarre concluson attendbl su parametr a partre dalle stme camponare? I metod per la produzone delle

Dettagli

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI CONFRONTO DI PIU MEDIE IL METODO DI ANALISI DELLA VARIANZA

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI CONFRONTO DI PIU MEDIE IL METODO DI ANALISI DELLA VARIANZA NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI CONFRONTO DI PIU MEDIE IL METODO DI ANALISI DELLA VARIANZA IL PROBLEMA Supponamo d voler studare l effetto d 4 dverse dete su un campone casuale d 4

Dettagli

GLI ERRORI SPERIMENTALI NELLE MISURE DI LABORATORIO

GLI ERRORI SPERIMENTALI NELLE MISURE DI LABORATORIO GLI ERRORI SPERIMETALI ELLE MISURE DI LABORATORIO MISURA DI UA GRADEZZA FISICA S defnsce grandezza fsca una propretà de corp sulla quale possa essere eseguta un operazone d msura. Msurare una grandezza

Dettagli

La regressione. La Regressione. La Regressione. min. min. Var X. X Variabile indipendente (data) Y Variabile dipendente

La regressione. La Regressione. La Regressione. min. min. Var X. X Variabile indipendente (data) Y Variabile dipendente Unverstà d Macerata Facoltà d Scenze Poltche - Anno accademco - La Regressone Varable ndpendente (data) Varable dpendente Dpendenza funzonale (o determnstca): f ; Da un punto d vsta analtco, valor della

Dettagli

Lezione 2 a - Statistica descrittiva per variabili quantitative

Lezione 2 a - Statistica descrittiva per variabili quantitative Lezone 2 a - Statstca descrttva per varabl quanttatve Esempo 5. Nella tabella seguente sono rportat valor del tasso glcemco rlevat su 10 pazent: Pazente Glcema (mg/100cc) 1 x 1 =103 2 x 2 =97 3 x 3 =90

Dettagli

Analisi della Varianza

Analisi della Varianza Anals della Varanza Esempo: Una ndustra d carta usata per buste per salumere vuole mglorare la resstenza alla trazone del propro prodotto. S rtene che resstenza alla trazone = f(concentrazone d legno nella

Dettagli

Lezione 2 le misure di sintesi: le medie

Lezione 2 le misure di sintesi: le medie Lezone le msure d sntes: le mede Cattedra d Bostatstca Dpartmento d Scenze spermental e clnche, Unverstà degl Stud G. d Annunzo d Chet-Pescara Prof. Enzo Ballone Lezone a- Statstca descrttva per varabl

Dettagli

Lezioni di Statistica (25 marzo 2013) Docente: Massimo Cristallo

Lezioni di Statistica (25 marzo 2013) Docente: Massimo Cristallo UNIVERSITA DEGLI STUDI DI BASILICATA FACOLTA DI ECONOMIA Corso d laurea n Economa Azendale Lezon d Statstca (25 marzo 2013) Docente: Massmo Crstallo QUARTILI Dvdono la dstrbuzone n quattro part d uguale

Dettagli

Tutti gli strumenti vanno tarati

Tutti gli strumenti vanno tarati L'INCERTEZZA DI MISURA Anta Calcatell I.N.RI.M S eseguono e producono msure per prendere delle decson sulla base del rsultato ottenuto, come per esempo se bloccare l traffco n funzone d msure d lvello

Dettagli

Adattamento di una relazione funzionale ai dati sperimentali

Adattamento di una relazione funzionale ai dati sperimentali Adattamento d una relazone 1 funzonale a dat spermental Sno ad ora abbamo vsto come può essere stmato, con un certo lvello d confdenza, l valore vero d una grandezza fsca (dretta o dervata) con l suo ntervallo

Dettagli

Modelli con varabili binarie (o qualitative)

Modelli con varabili binarie (o qualitative) Modell con varabl bnare (o qualtatve E( Y X α + βx + ε quando Y è una varable benoullana Y 1 0 s ha l modello lneare d probabltà Pr( Y 1 X α + βx + ε dove valor stmat della Y assumono l sgnfcato d probabltà.

Dettagli

Grafico di una serie di dati sperimentali in EXCEL

Grafico di una serie di dati sperimentali in EXCEL Grafco d una sere d dat spermental n EXCEL 1. Inseramo sulla prma rga l ttolo che defnsce l contenuto del foglo. Po nseramo su un altra rga valor spermental della x e su quella successva valor della y.

Dettagli

Università degli Studi di Urbino Facoltà di Economia

Università degli Studi di Urbino Facoltà di Economia Unverstà degl Stud d Urbno Facoltà d Economa Lezon d Statstca Descrttva svolte durante la prma parte del corso d corso d Statstca / Statstca I A.A. 004/05 a cura d: F. Bartolucc Lez. 8/0/04 Statstca descrttva

Dettagli

Norma UNI CEI ENV 13005: Guida all'espressione dell'incertezza di misura

Norma UNI CEI ENV 13005: Guida all'espressione dell'incertezza di misura orma UI CEI EV 3005: Guda all'espressone dell'ncertezza d msura L obettvo d una msurazone è quello d determnare l valore del msurando, n altre parole della grandezza da msurare. In generale, però, l rsultato

Dettagli

REALTÀ E MODELLI SCHEDA DI LAVORO

REALTÀ E MODELLI SCHEDA DI LAVORO REALTÀ E MODELLI SCHEDA DI LAVORO 1 Le tabelle d crescta Nella tabella sono rportat dat relatv alle altezze mede delle bambne dalla nascta fno a un anno d età. Stablsc se esste una relazone lneare tra

Dettagli

Concetti principale della lezione precedente

Concetti principale della lezione precedente Corso d Statstca medca e applcata 6 a Lezone Dott.ssa Donatella Cocca Concett prncpale della lezone precedente I concett prncpal che sono stat presentat sono: I fenomen probablstc RR OR ROC-curve Varabl

Dettagli

Capitolo 11: IL METODO DEI MINIMI QUADRATI. Nel Capitolo precedente ci siamo posti il problema di determinare la miglior retta che passa per

Capitolo 11: IL METODO DEI MINIMI QUADRATI. Nel Capitolo precedente ci siamo posti il problema di determinare la miglior retta che passa per Captolo : IL METODO DEI MINIMI QUADRATI. La mglor retta Nel Captolo precedente c samo post l problema d determnare la mglor retta che passa per cert punt spermental, ed abbamo dscusso un metodo graco.

Dettagli

Potenzialità degli impianti

Potenzialità degli impianti Unverstà degl Stud d Treste a.a. 2009-2010 Impant ndustral Potenzaltà degl mpant Impant ndustral Potenzaltà degl mpant 1 Unverstà degl Stud d Treste a.a. 2009-2010 Impant ndustral Defnzone della potenzaltà

Dettagli

Modelli descrittivi, statistica e simulazione

Modelli descrittivi, statistica e simulazione Modell descrttv, statstca e smulazone Master per Smart Logstcs specalst Roberto Cordone (roberto.cordone@unm.t) Statstca descrttva Cernusco S.N., govedì 28 gennao 2016 (9.00/13.00) 1 / 15 Indc d poszone

Dettagli

1) Dato un carattere X il rapporto tra devianza entro e devianza totale è 0.25 e la devianza totale è 40. La devianza tra vale: a) 10 b) 20 c) 30

1) Dato un carattere X il rapporto tra devianza entro e devianza totale è 0.25 e la devianza totale è 40. La devianza tra vale: a) 10 b) 20 c) 30 1) Dato un carattere X l rapporto tra devanza entro e devanza totale è 0.25 e la devanza totale è 40. La devanza tra vale: a) 10 b) 20 c) 30 2) Data una popolazone normalmente dstrbuta con meda 10 e varanza

Dettagli

Integrazione numerica dell equazione del moto per un sistema lineare viscoso a un grado di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1

Integrazione numerica dell equazione del moto per un sistema lineare viscoso a un grado di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1 Integrazone numerca dell equazone del moto per un sstema lneare vscoso a un grado d lbertà Prof. Adolfo Santn - Dnamca delle Strutture 1 Introduzone 1/2 L equazone del moto d un sstema vscoso a un grado

Dettagli

3 (solo esame 6 cfu) Elementi di Analisi Numerica, Probabilità e Statistica, modulo 2: Elementi di Probabilità e Statistica (3 cfu)

3 (solo esame 6 cfu) Elementi di Analisi Numerica, Probabilità e Statistica, modulo 2: Elementi di Probabilità e Statistica (3 cfu) lement d Anals Numerca, Probabltà e Statstca, modulo 2: lement d Probabltà e Statstca ( cfu) Probabltà e Statstca (6 cfu) Scrtto del 06 febbrao 205. Secondo Appello Id: A Nome e Cognome: same da 6 cfu

Dettagli

CORRETTA RAPPRESENTAZIONE DI UN RISULTATO: LE CIFRE SIGNIFICATIVE

CORRETTA RAPPRESENTAZIONE DI UN RISULTATO: LE CIFRE SIGNIFICATIVE CORRETT RPPREETZIOE DI U RIULTTO: LE CIFRE IGIFICTIVE Defnamo cfre sgnfcatve quelle cfre che esprmono realmente l rsultato d una msura, o del suo errore, coè che non sono completamente ncluse nell ntervallo

Dettagli

Modelli di variabili casuali

Modelli di variabili casuali Modell d varabl casual Un modello d v.c. è una funzone f() che assoca ad ogn valore d una v.c. X la corrspondente probabltà. Obettvo: calcolo della probabltà per tutt valor che X può assumere Per le v.c.

Dettagli

Gli errori nelle misure

Gli errori nelle misure Appunt d Msure Elettrche Gl error nelle msure Classfcazone degl error... Error sstematc...4 Accuratezza e precsone...5 Errore stmato...7 Meda, devazone meda, devazone standard e varanza d un campone d

Dettagli

LA VARIABILITA. IV lezione di Statistica Medica

LA VARIABILITA. IV lezione di Statistica Medica LA VARIABILITA IV lezone d Statstca Medca Sntes della lezone Il concetto d varabltà Campo d varazone Dfferenza nterquartle La varanza La devazone standard Scostament med Il concetto d varabltà S defnsce

Dettagli

METODI DI MISURA LEZIONI DEL CORSO DI FISICA I E METODI DI MISURA. Enrico Ferrero

METODI DI MISURA LEZIONI DEL CORSO DI FISICA I E METODI DI MISURA. Enrico Ferrero METODI DI MISURA LEZIOI DEL CORSO DI FISICA I E METODI DI MISURA Enrco Ferrero ITRODUZIOE Error come ncertezze: non sono sbagl, sono nevtabl e devono essere rdott l pù possble. Inevtabltà degl error nella

Dettagli

Cenni di Statistica. AA Corso di Laurea in Biologia Molecolare

Cenni di Statistica. AA Corso di Laurea in Biologia Molecolare AA 009-00 Corso d Laurea n Bologa Molecolare Cenn d Statstca Introduzone Descrvere dat (statstca descrttva) Meda artmetca Varanza Devazone standard Correlazone Dstrbuzon teorche La legge de grand numer

Dettagli

Il pendolo di torsione

Il pendolo di torsione Unverstà degl Stud d Catana Facoltà d Scenze MM.FF.NN. Corso d aurea n FISICA esna d ABORAORIO DI FISICA I Il pendolo d torsone (sezone costante) Moreno Bonaventura Anno Accademco 005/06 Introduzone. I

Dettagli

Metodi variazionali. ed agiscono sulla FORMA DEBOLE DEL PROBLEMA

Metodi variazionali. ed agiscono sulla FORMA DEBOLE DEL PROBLEMA Metod varazonal OBIETTIVO: determnare funzon ncognte, chamate varabl dpendent, che soddsfano un certo nseme d equazon dfferenzal n un determnato domno e condzon al contorno STRUMETO: Metod varazonal: servono

Dettagli

Statistica e calcolo delle Probabilità. Allievi INF

Statistica e calcolo delle Probabilità. Allievi INF Statstca e calcolo delle Probabltà. Allev INF Proff. L. Ladell e G. Posta 06.09.10 I drtt d autore sono rservat. Ogn sfruttamento commercale non autorzzato sarà perseguto. Cognome e Nome: Matrcola: Docente:

Dettagli

Sommario. Obiettivo. Quando studiarla? La concentrazione. X: carattere quantitativo tra le unità statistiche. Quando studiarla?

Sommario. Obiettivo. Quando studiarla? La concentrazione. X: carattere quantitativo tra le unità statistiche. Quando studiarla? Corso d Statstca a.a. 9- uando studarla? Obettvo Dagramma d Lorenz Rapporto d concentrazone rea d concentrazone Esemp Sommaro La concentrazone uando studarla? Obettvo X: carattere quanttatvo tra le untà

Dettagli

Chimica Fisica II Dispense di LABORATORIO

Chimica Fisica II Dispense di LABORATORIO Dspense d Laboratoro Chmca Fsca II, A.A. 0-03 Unverstà degl stud d Padova Dpartmento d Scenze Chmche Corso d Laurea Trennale n Chmca Chmca Fsca II Dspense d LABORATORIO (Anno Accademco 0-03) A cura d:

Dettagli

Valutazione dei Benefici interni

Valutazione dei Benefici interni Corso d Trasport Terrtoro prof. ng. Agostno Nuzzolo Valutazone de Benefc ntern Valutazone degl ntervent Indvduazone degl effett rlevant La defnzone degl effett rlevant per un ntervento sul sstema d trasporto

Dettagli

Segmentazione di immagini

Segmentazione di immagini Segmentazone d mmagn Introduzone Segmentazone: processo d partzonamento d un mmagne n regon dsgunte e omogenee. Esempo d segmentazone. Tratta da [] Introduzone (def. formale ( Sa R l ntera regone spazale

Dettagli

Università di Cassino. Esercitazioni di Statistica 1 del 19 Febbraio Dott. Mirko Bevilacqua

Università di Cassino. Esercitazioni di Statistica 1 del 19 Febbraio Dott. Mirko Bevilacqua Unverstà d Cassno Eserctazon d Statstca del 9 Febbrao 00 Dott. Mro Bevlacqua DATASET STUDENTI N SESSO ALTEZZA PESO CORSO NUMERO COLORE COLORE (cm) (g) LAUREA SCARPA OCCHI CAPELLI M 79 65 INFORMAICA 43

Dettagli

Interpolazione con una retta per l origine

Interpolazione con una retta per l origine 84 Captolo Stme d parametr.4 Interpolazone de dat con una curva 85 Così come abbamo dmostrato che, al fne d correggere questa sottostma (n meda) per le msure rpetute, occorre dvdere la somma de quadrat

Dettagli

Appunti di Econometria

Appunti di Econometria Appunt d Econometra ARGOMENTO [4]: VARIABILI DIPENDENTI BINARIE Mara Lusa Mancus Unverstà Boccon Novembre 200 Introduzone Ne modell econometrc studat fno ad ora la varable dpendente, y, è sempre stata

Dettagli

3) Entropie condizionate, entropie congiunte ed informazione mutua

3) Entropie condizionate, entropie congiunte ed informazione mutua Argoment della Lezone ) Coppe d varabl aleatore 2) Canale dscreto senza memora 3) Entrope condzonate, entrope congunte ed nformazone mutua 4) Esemp d canal Coppe d varabl aleatore Fno ad ora è stata consderata

Dettagli

Statistica descrittiva

Statistica descrittiva Statstca descrttva. Indc d poszone. Per ndc d poszone d un nseme d dat, ordnat secondo la loro randezza, s ntendono alcun valor che cadono all nterno dell nseme. Gl ndc pù usat sono: I. eda. II. edana.

Dettagli

Regressione Multipla e Regressione Logistica: concetti introduttivi ed esempi

Regressione Multipla e Regressione Logistica: concetti introduttivi ed esempi Regressone Multpla e Regressone Logstca: concett ntroduttv ed esemp I Edzone ottobre 014 Vncenzo Paolo Senese vncenzopaolo.senese@unna.t Indce Note prelmnar alla I edzone 1 Regressone semplce e multpla

Dettagli

1 La domanda di moneta

1 La domanda di moneta La domanda d moneta Eserczo.4 (a) Keynes elenca tre motv per detenere moneta: Scopo transattvo Scopo precauzonale Scopo speculatvo Il modello d domanda d moneta a scopo speculatvo d Keynes consdera la

Dettagli

Intorduzione alla teoria delle Catene di Markov

Intorduzione alla teoria delle Catene di Markov Intorduzone alla teora delle Catene d Markov Mchele Ganfelce a.a. 2014/2015 Defnzone 1 Sa ( Ω, F, {F n } n 0, P uno spazo d probabltà fltrato. Una successone d v.a. {ξ n } n 0 defnta su ( Ω, F, {F n }

Dettagli

Note sulla stima dell incertezza sperimentale

Note sulla stima dell incertezza sperimentale ote sulla stma dell ncertezza spermentale Quando s effettua una msura spermentale, essa è sempre defnta a meno d una ncertezza (errore) che dpende dale condzon n cu la msura vene eseguta. Il valore numerco

Dettagli

IL RUMORE NEGLI AMPLIFICATORI

IL RUMORE NEGLI AMPLIFICATORI IL RUMORE EGLI AMPLIICATORI Defnzon S defnsce rumore elettrco (electrcal nose) l'effetto delle fluttuazon d corrente e/o d tensone sempre present a termnal degl element crcutal e de dspostv elettronc.

Dettagli

,29 7. Distribuzioni di frequenza. x 1 n 1 n 1 n 1 /N n 1 /N*100 x 2 n 2 n 1 +n 2 n 2 /N n 2 /N*100

,29 7. Distribuzioni di frequenza. x 1 n 1 n 1 n 1 /N n 1 /N*100 x 2 n 2 n 1 +n 2 n 2 /N n 2 /N*100 Dstrbuzon d frequenza Varable x Frequenze Frequenze Frequenze Frequenze % cumulate relatve x 1 n 1 n 1 n 1 / n 1 /*100 x n n 1 +n n / n /*100 x k n k n 1 +.+n k = n k / n k /*100 totale 1 100 Indc sntetc

Dettagli

Regressione lineare: definizione delle incertezze dei coefficienti (calibrazione e regressione generica)

Regressione lineare: definizione delle incertezze dei coefficienti (calibrazione e regressione generica) Regressone lneare: defnzone delle ncertezze de coeffcent (calbrazone e regressone generca) Argoment: regressone lneare affetta da ncertezza; ncertezza del coeffcente angolare della retta d regressone;

Dettagli

Variabili aleatorie discrete. Probabilità e Statistica I - a.a. 04/05-1

Variabili aleatorie discrete. Probabilità e Statistica I - a.a. 04/05-1 Varabl aleatore dscrete Probabltà e Statstca I - a.a. 04/05 - Defnzone Una varable aleatora è una funzone che assoca ad ogn esto dello spazo campone d un espermento casuale un numero. L nseme de possbl

Dettagli