Regressione lineare con un singolo regressore

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Regressione lineare con un singolo regressore"

Transcript

1 Regressone lneare con un sngolo regressore Eduardo Ross 2 2 Unverstà d Pava (Italy) Marzo 2013 Ross Regressone lneare semplce Econometra / 45

2 Outlne 1 Introduzone 2 Lo stmatore OLS 3 Esempo 4 Assunzon OLS 5 Dstrbuzone camponara degl stmator OLS 6 Meda e varanza camponara stmator OLS Ross Regressone lneare semplce Econometra / 45

3 Introduzone Captolo 4 - Regressone lneare con un sngolo regressore Il modello d regressone lneare semplce Lo stmatore de mnm quadrat ordnar (OLS) e la retta d regressone camponara Msure d bontà della regressone camponara Le assunzon de mnm quadrat La dstrbuzone camponara dello stmatore OLS Ross Regressone lneare semplce Econometra / 45

4 Introduzone Regressone lneare con un sngolo regressore La regressone lneare consente d stmare la pendenza della retta d regressone La pendenza della retta d regressone è l effetto atteso su Y d una varazone untara n X. Il nostro scopo ultmo è quello d stmare l effetto causale su Y d una varazone untara n X - ma per ora c lmtamo a consderare l problema dell adattamento d una retta a dat su due varabl Y e X. Ross Regressone lneare semplce Econometra / 45

5 Introduzone Regressone lneare con un sngolo regressore Il problema dell nferenza statstca per la regressone lneare è, a lvello generale, dentco a quello della stma della meda o delle dfferenze tra mede. L nferenza statstca, o econometrca, sulla pendenza comporta: 1 Stma: Come traccare una retta attraverso dat per stmare la pendenza della regressone? Rsposta: mnm quadrat ordnar (OLS). Qual sono vantagg e svantagg de mnm quadrat ordnar? 2 Verfca d potes: Come verfcare se la pendenza è zero? 3 Intervall d confdenza: Come costrure un ntervallo d confdenza per la pendenza? Ross Regressone lneare semplce Econometra / 45

6 Introduzone Il modello d regressone lneare La retta d regressone TestScore = β 0 + β 1 STR Test Score β 1 = pendenza della retta d regressone = STR = varazone nel punteggo ne test per una varazone untara n STR Perchè β 0 e β 1 sono parametr della popolazone? Vorremmo conoscere l valore d β 1. Non conoscamo β 1, perchè dobbamo stmarlo utlzzando dat. Ross Regressone lneare semplce Econometra / 45

7 Introduzone Il modello d regressone lneare Y = β 0 + β 1 X + u = 1, 2,..., n Abbamo n osservazon,(y, X ), = 1, 2,..., n X è la varable ndpendente o regressore Y è la varable dpendente β 0 = ntercetta β 1 = pendenza u = errore della regressone L errore d regressone è costtuto da fattor omess. In generale quest fattor omess sono altr fattor, dvers dalla varable X, che nfluenzano Y. L errore d regressone nclude anche l errore nella msura d Y. Ross Regressone lneare semplce Econometra / 45

8 Introduzone Il modello d regressone lneare: esempo Osservazon su Y e X (n = 7); la retta d regressone; l errore d regressone (l termne d errore): Ross Regressone lneare semplce Econometra / 45

9 Lo stmatore OLS Lo stmatore OLS Come possamo stmare β 0 e β 1 da dat? S rcord che lo stmatore OLS d µ Y : Ȳ è mn m m (Y m) 2 Per analoga, c concentreremo sullo stmatore de mnm quadrat (OLS) ordnary least squares de parametr gnot β 0 e β 1. Lo stmatore OLS è dato da mn β 0,β 1 m (Y β 0 β 1 X ) 2 Ross Regressone lneare semplce Econometra / 45

10 Lo stmatore OLS Meccansmo de mnm quadrat ordnar La retta d regressone: TestScore = β 0 + β 1 STR β 1 =?? Ross Regressone lneare semplce Econometra / 45

11 Lo stmatore OLS Lo stmatore OLS Lo stmatore OLS mnmzza la dfferenza quadratca meda tra valor real d Y e la prevsone ( valor prevst ) basata sulla retta stmata. Questo problema d mnmzzazone s può rsolvere con l calcolo dfferenzale (App. 4.2). Il rsultato sono gl stmator OLS d β 0 e β 1. Ross Regressone lneare semplce Econometra / 45

12 Dato: Problema: Lo stmatore OLS S(β 0, β 1 ) = n ) 2 (Y β 0 β 1 X { ˆβ 0, ˆβ 1 } = mn β 0,β 1 S(β 0, β 1 ) S(β 0, β 1 ) β 0 S(β 0, β 1 ) β 1 = 2 = 2 n (Y ˆβ 0 ˆβ ) 1 X = 0 n (Y ˆβ 0 ˆβ ) 1 X X = 0 ˆβ 0 = 1 n n ˆβ n 0 = (Y ˆβ ) 1 X n (Y ˆβ ) 1 X = Ȳ ˆβ 1 X Ross Regressone lneare semplce Econometra / 45

13 Lo stmatore OLS n (Y (Ȳ ˆβ ) 1 X) ˆβ1 X X = 0 n ( Y Ȳ ˆβ 1 (X X) ) X = 0 n ( Y )X Ȳ ˆβ n ( 1 X X ) X = 0 n ( Y Ȳ ˆβ 1 ˆβ 1 n n ( ) X [ n ( )] Y Ȳ X ( X X )X + ˆβ n ( X) 1 X X = 0 X X ) 2 n ( = Y Ȳ )( X X ) Ross Regressone lneare semplce Econometra / 45

14 Lo stmatore OLS Lo stmatore OLS ˆβ 1 = n (X X)(Y Ȳ ) (X X) 2 ˆβ 0 = Ȳ ˆβ 1 X = s XY s 2 X Valor prevst Resdu: Ŷ = ˆβ 0 + ˆβ 1 X = 1, 2,..., n û = Y Ŷ = Y ˆβ 0 ˆβ 1 X Ross Regressone lneare semplce Econometra / 45

15 Lo stmatore OLS Resdu û = Y Ŷ = Y ˆβ 0 ˆβ 1 X = Y (Ȳ ˆβ 1 X) ˆβ1 X = (Y Ȳ ) ˆβ 1 (X X) ne segue che û = = 0 (Y Ȳ ) ˆβ 1 (X X) Ross Regressone lneare semplce Econometra / 45

16 Esempo Applcazone a dat de puntegg ne test della Calforna Punteggo ne test - Dmenson delle class ˆβ 1 = Pendenza stmata = -2,28 ˆβ 0 = Intercetta stmata = 698,9 Retta d regressone stmata: TestScore = 698, 9 2, 28 ŜTR Ross Regressone lneare semplce Econometra / 45

17 Esempo Interpretazone delle stme d pendenza e ntercetta I dstrett con uno studente n pù per nsegnante n meda ottengono puntegg ne test nferor d 2,28 punt. Coè TestScore STR = 2, 28. L ntercetta (letteralmente) sgnfca che, secondo questa retta stmata, dstrett con zero student per nsegnante otterrebbero un punteggo ne test stmato n 698,9. Ma questa nterpretazone dell ntercetta non ha senso - estrapola la lnea al d fuor dell ntervallo de dat - n questo caso, l ntercetta non ha sgnfcato dal punto d vsta economco. Ross Regressone lneare semplce Econometra / 45

18 Esempo Valor prevst e resdu Uno de dstrett nella banca dat è Antelope, CA, con STR = 19,33 e TestScore = 657,8 Valore prevsto: Ŷ Antelope = 698, 9 2, 28 19, 33 = 654, 8 resduo: û Antelope = 657, 8 654, 8 Ross Regressone lneare semplce Econometra / 45

19 Esempo Msure d bontà dell adattamento Due statstche d regressone fornscono msure complementar della bonta dell adattamento della regressone a dat: L R 2 della regressone msura la frazone della varanza d Y spegata da X; è prva d untà e può varare tra zero (nessun adattamento) e uno (perfetto adattamento); L errore standard della regressone (SER) msura la dmensone d un tpco resduo d regressone nelle untà d Y. Ross Regressone lneare semplce Econometra / 45

20 Esempo Rsultat della regressone Dato che u = Y ˆβ 0 ˆβ 1 X û = 0 Y = Ŷ + û 1 Y = 1 n n Ȳ = Ŷ Ŷ Ross Regressone lneare semplce Econometra / 45

21 Esempo Rsultat della regressone Inoltre, resdu û sono ortogonal a X X û = X (Y ˆβ 0 ˆβ 1 X ) X û = (Y ˆβ 0 ˆβ 1 X )X con = = (Y (Ȳ ˆβ 1 X) ˆβ1 X )X (Y Ȳ )X ˆβ 1 (X X)X ˆβ 1 = n (Y Ȳ )X (X X)X X û = (Y Ȳ )X n (Y Ȳ )X (X X)X (X X)X = 0 Ross Regressone lneare semplce Econometra / 45

22 Esempo Rsultat della regressone TSS = total sum of squares SSR = sum of squared resduals ESS = Explaned sum of squares T SS = (Y Ȳ) 2 = (Y Ŷ + Ŷ Ȳ) 2 = (Y Ŷ) 2 + (Ŷ Ȳ) (Y Ŷ)(Ŷ Ȳ) = SSR + ESS + 2 û Ŷ = SSR + ESS perché û Ŷ = û ( ˆβ 0 + ˆβ 1 X ) = ˆβ 0 û + ˆβ 1 û X = 0 Ross Regressone lneare semplce Econometra / 45

23 Esempo L R 2 della regressone L R 2 è la frazone della varanza camponara d Y spegata dalla regressone. Y = Ŷ + û = stma OLS + resduo OLS Var camp.(y ) = Var camp.(ŷ) + Var camp.(û ) Somma de quadrat = SS spegata + SS resdua Defnzone R 2 : R 2 = 0 sgnfca ESS = 0 R 2 = 1 sgnfca ESS = TSS 0 R 2 1 R 2 = ESS T SS = (Ŷ Ŷ ) 2 (Y Ȳ )2 Per la regressone con una sngola X, R 2 concde con l quadrato del coeffcente d correlazone tra X e Y. Ross Regressone lneare semplce Econometra / 45

24 Esempo L errore standard della regressone (SER) Il SER msura la dspersone della dstrbuzone d u. È (quas) la devazone standard camponara de resdu OLS: SER = 1 n (û n 2 û) 2 = 1 n û 2 n 2 La seconda uguaglanza vale perché û = 1 n n û = 0 Ross Regressone lneare semplce Econometra / 45

25 Esempo L errore standard della regressone (SER) Il SER ha le untà d u, che sono le untà d Y msura la dmensone meda del resduo OLS (l errore medo della retta d regressone OLS) La radce dell errore quadratco medo (RMSE, Root Mean Squared Error) è strettamente legata al SER: RMSE = 1 n û 2 n Msura la stessa cosa del SER: la dfferenza sta nel fattore 1/n anzchè 1/(n 2). Ross Regressone lneare semplce Econometra / 45

26 Esempo Nota tecnca Perchè dvdere per n 2 anzchè per n 1? SER = 1 n n 2 û 2 La dvsone per n 2 è una correzone de grad d lbertà - esattamente come la dvsone per n 1, con la dfferenza che per l SER sono stat stmat due parametr β 0 e β 1 ), mentre n s 2 Y ne è stato stmato solo uno µ Y. Quando n è grande non mporta se s utlzza n, n 1 o n 2, anche se la formula convenzonale utlzza n 2 quando c è un sngolo regressore. Ross Regressone lneare semplce Econometra / 45

27 Esempo Esempo d R 2 e SER R 2 = 0, 05 SER = 18, 6 STR spega soltanto una pccola frazone della varazone ne puntegg ne test. Ha senso questo? Sgnfca che STR non è una varable mportante? Ross Regressone lneare semplce Econometra / 45

28 Assunzon OLS Le assunzon de mnm quadrat Qual sono, precsamente, le propretà della dstrbuzone camponara dello stmatore OLS? Quando lo stmatore sarà non dstorto? Qual è la sua varanza? Per rspondere a queste domande dobbamo fare alcune assunzon sulla relazone tra Y e X e su come sono ottenute (lo schema d camponamento) Queste assunzon - sono tre - sono note come assunzon de mnm quadrat. ved Paragrafo 4.4. Ross Regressone lneare semplce Econometra / 45

29 Assunzon OLS Le assunzon de mnm quadrat Y = β 0 + β 1 X + u = 1, 2,..., n La dstrbuzone d u condzonata a X ha meda nulla, coè E[u X ] = 0 u rappresenta l nfluenza che altr fattor hanno sulla relazone tra Y e X. Quando u > 0, Y < E[Y X ]; u < 0, Y > E[Y X ]. L assunzone esclude che fattor n u sano correlat con X. Questo mplca che ˆβ 1 è non dstorto. {X, Y }, = 1,..., n, sono..d. Questo è vero se {X, Y } sono ottenut medante camponamento casuale Questo fornsce la dstrbuzone camponara d e Gl outler n X e/o Y sono rar. Tecncamente, X e Y hanno moment quart fnt. Gl outler possono rsultare n valor prv d senso d ˆβ 1. Ross Regressone lneare semplce Econometra / 45

30 Assunzon OLS Assunzone de mnm quadrat n. 1 Per ogn dato valore d X, la meda d u è zero E[u X ] = 0 Ross Regressone lneare semplce Econometra / 45

31 Assunzon OLS Mnm quadrat, Assunzone 1 Consderamo un espermento controllato casualzzato deale: X è assegnato casualmente a persone (student assegnat casualmente a class d dmenson dverse; pazent assegnat casualmente a trattament medc). La casualzzazone è svolta dal computer - senza utlzzare nformazon sull ndvduo. Poché X è assegnata casualmente, tutte le altre caratterstche ndvdual - gl aspett rassunt da u - sono dstrbute ndpendentemente da X, percò u e X sono ndpendent. Qund, n un espermento controllato casualzzato deale, E[u X ] = 0 (coè vale l assunzone 1) In esperment real, o con dat non spermental, dovremo rflettere bene sul fatto che E[u X = x] = 0 valga o meno. Ross Regressone lneare semplce Econometra / 45

32 Assunzon OLS Mnm quadrat, Assunzone 2 {Y, X }, = 1, 2,..., n sono..d. Questo s verfca automatcamente se l untà (ndvduo, dstretto) è camponata medante camponamento casuale semplce: Le untà sono scelte dalla stessa popolazone, percò {X, Y } sono dentcamente dstrbute per ogn = 1, 2,..., n. Le untà sono scelte a caso, percò valor d {X, Y } per untà dverse sono ndpendentemente dstrbute. I camponament non..d. s ncontrano prncpalmente quando s regstrano dat nel tempo per la stessa untà (dat panel e sere temporal). Ross Regressone lneare semplce Econometra / 45

33 Assunzon OLS Mnm quadrat, Assunzone 3 Gl outler sono rar E[Y 4 ] < E[X 8 ] < Un outler è un valore estremo d X o Y A lvello tecnco, se X e Y sono lmtate, allora hanno moment quart fnt ( puntegg ne test standardzzat soddsfano questa condzone, come anche STR, reddto famlare, ecc.) La sostanza d questa assunzone è che un outler può nfluenzare fortemente rsultat, percò dobbamo escludere valor estrem. Esamnate dat! Se avete un outler, s tratta d un refuso? Non appartene al dataset? Perchè è un outler? Ross Regressone lneare semplce Econometra / 45

34 Assunzon OLS Lo stmatore OLS può essere sensble a un outler Il punto solato è un outler n X o Y? In pratca, gl outler sono spesso dstorson de dat (problem nella codfca o nella regstrazone). Talvolta sono osservazon che non dovrebbero stare nel dataset. Ross Regressone lneare semplce Econometra / 45

35 Dstrbuzone camponara degl stmator OLS Dstrbuzone camponara degl stmator OLS (Paragrafo 4.5) Lo stmatore OLS è calcolato da un campone d dat. Un campone dverso porta a un valore dverso d ˆβ 1. Questa è l orgne della ncertezza camponara d ˆβ 1. Voglamo: quantfcare l ncertezza camponara assocata a ˆβ 1 usare ˆβ 1 per verfcare potes qual β 1 = 0. costrure un ntervallo d confdenza per β 1 = 0. Tutt quest punt rchedono d determnare la dstrbuzone camponara dello stmatore OLS. Due passagg... Quadro d rfermento probablstco per la regressone lneare Dstrbuzone dello stmatore OLS Ross Regressone lneare semplce Econometra / 45

36 Dstrbuzone camponara degl stmator OLS Quadro d rfermento probablstco per la regressone lneare Il quadro d rfermento probablstco per la regressone lneare è replogato dalle tre assunzon de mnm quadrat. 1 Popolazone Il gruppo d nteresse (esempo: tutt possbl dstrett scolastc) 2 Varabl casual: Y, X Esempo: TestScore, STR 3 Dstrbuzone congunta d Y, X. Assumamo: La funzone d regressone è lneare E[u X ] = 0 (prma assunzone de mnm quadrat) X, Y hanno moment quart fnt non null (terza assunzone) 4 La raccolta de dat medante camponamento casuale semplce mplca: {Y, X }, = 1, 2,..., n sono..d. (seconda assunzone). Ross Regressone lneare semplce Econometra / 45

37 Dstrbuzone camponara degl stmator OLS Dstrbuzone camponara d ˆβ 1 ˆβ 1 ha una dstrbuzone camponara. Qual è E[ ˆβ 1 ]? Se E[ ˆβ 1] = β 1, allora lo stmatore OLS è non dstorto. Qual è V ar[ ˆβ 1 ]? (msura d ncertezza camponara) Dobbamo dervare una formula per poter calcolare l errore standard d. Qual è la dstrbuzone d n pccol campon? E molto complessa, n generale. Qual è la dstrbuzone d ˆβ 1 n grand campon? In grand campon, ˆβ 1 ha dstrbuzone normale. Ross Regressone lneare semplce Econometra / 45

38 Meda e varanza camponara stmator OLS Meda e varanza della dstrbuzone camponara d ˆβ 1 ˆβ 1 = = Y = β 0 + β 1 X + u Ȳ = β 0 + β 1 X + ū Y Ȳ = β 1(X X) + (u ū) n (X X)(Y Ȳ ) (X X) 2 n (X X)(β 1 (X X) + (u ū)) (X X) 2 = β 1 n (X X)(X X) (X X) 2 + n = β 1 + (u ū)(x X) (X X) 2 n ˆβ 1 β 1 = (u ū)(x X) (X X) 2 n (u ū)(x X) (X X) 2 Ross Regressone lneare semplce Econometra / 45

39 Meda e varanza camponara stmator OLS Meda e varanza della dstrbuzone camponara d ˆβ 1 Il numeratore: Segue che n (X X)(u ū) = ˆβ 1 β 1 = = = n (X X)u [ n (X X) ] ū n (X X)u 0 ū n (X X)u n (u ū)(x X) n (X X) = (X X)u 2 (X X) 2 Ross Regressone lneare semplce Econometra / 45

40 Meda e varanza camponara stmator OLS Meda d ˆβ 1 E[ ˆβ 1 ] β 1 = E [ n (X X)u ] (X X) 2 per la legge de valor attes terat: { [ n E[ ˆβ 1 ] β 1 = E E (X X)u ]} (X X) X 2 1, X 2,..., X n { n = E (X X)E } [u X 1, X 2,..., X n ] (X X) 2 = 0 per l Assunzone 1, coè E [u X 1, X 2,..., X n ] = E[u X ] = 0. ˆβ 1 è non dstorto: E[ ˆβ 1 ] = β 1. Ross Regressone lneare semplce Econometra / 45

41 Meda e varanza camponara stmator OLS Varanza d ˆβ 1 dove Se n è grande ˆβ 1 β 1 = n (X X)u (X X) 2 = v = (X X)u s 2 X σ 2 X e n 1 n 1. Qund ˆβ1 β 1 1 n v σx 2 1 n v n 1 n s2 X dato E[ ˆβ 1 ] = β 1 V ar[ ˆβ 1 β 1 ] = V ar[ ˆβ 1 ] V ar[ ˆβ 1 ] V ar [ 1 n v ] (σx 2 )2 Ross Regressone lneare semplce Econometra / 45

42 Meda e varanza camponara stmator OLS Varanza d ˆβ 1 V ar [ 1 n ] v = V ar [ 1 n ] (X X)u Per l assunzone 1: [ ] E (X X)u = Per l assunzone 2: Per l assunzone 3: v..d. E [ (X X)u ] = 0 V ar [ (X X)u ] = E[(X X) 2 u 2 ] = σv 2 < [ ] 1 V ar (X n X)u = 1 n 2 nσ2 v < Ross Regressone lneare semplce Econometra / 45

43 Meda e varanza camponara stmator OLS Varanza d ˆβ 1 E[ ˆβ 1 ] = β 1. V ar[ ˆβ 1 ] = 1 n V ar [v ] (σx 2 = 1 )2 n V ar[ ˆβ 1 ] è nversamente proporzonale a n. σv 2 (σx 2 )2 Ross Regressone lneare semplce Econometra / 45

44 Meda e varanza camponara stmator OLS Dstrbuzone asntotca d ˆβ 1 v = 1 n v soddsfa le condzon per l applcazone de TLC v σ v / N(0, 1) n ˆβ 1 β 1 = 1 n v n 1 n s2 X v 1 n v V ar[x ] V ar[ ˆβ 1 ] = V ar[ v] [V ar(x )] 2 = 1 V ar[v ] n [V ar(x )] 2 Qund, per n grande, la dstrbuzone d ˆβ 1 ( σ ˆβ 2 ) v 1 N β 1, n(σx 2 )2 Ross Regressone lneare semplce Econometra / 45

45 Meda e varanza camponara stmator OLS Dstrbuzone asntotca d ˆβ 1 Anche la dstrbuzone approssmata d ˆβ 0 è gaussana ( ˆβ 0 N β 0, V ar[h u ] ) n[e(h 2)]2 [ µx ] H = 1 E(X 2) X La dstrbuzone congunta d ˆβ 0 e ˆβ 1 è bene approssmata dalla gaussana bvarata. Ross Regressone lneare semplce Econometra / 45

Relazioni tra variabili: Correlazione e regressione lineare

Relazioni tra variabili: Correlazione e regressione lineare Dott. Raffaele Casa - Dpartmento d Produzone Vegetale Modulo d Metodologa Spermentale Febbrao 003 Relazon tra varabl: Correlazone e regressone lneare Anals d relazon tra varabl 6 Produzone d granella (kg

Dettagli

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione 1 La Regressone Lneare (Semplce) Relazone funzonale e statstca tra due varabl Modello d regressone lneare semplce Stma puntuale de coeffcent d regressone Decomposzone della varanza Coeffcente d determnazone

Dettagli

Campo di applicazione

Campo di applicazione Unverstà del Pemonte Orentale Corso d Laurea n Botecnologa Corso d Statstca Medca Correlazone Regressone Lneare Corso d laurea n botecnologa - Statstca Medca Correlazone e Regressone lneare semplce Campo

Dettagli

Correlazione lineare

Correlazione lineare Correlazone lneare Varable dpendente Mortaltà per crros 50 45 40 35 30 5 0 15 10 5 0 0 5 10 15 0 5 30 Consumo d alcool Varable ndpendente Metodologa per l anals de dat spermental L anals d stud con varabl

Dettagli

La t di Student. Per piccoli campioni si definisce la variabile casuale. = s N. detta t di Student.

La t di Student. Per piccoli campioni si definisce la variabile casuale. = s N. detta t di Student. Pccol campon I parametr della dstrbuzone d una popolazone sono n generale ncognt devono essere stmat dal campone de dat spermental per pccol campon (N N < 30) z = (x µ)/ )/σ non ha pù una dstrbuzone gaussana

Dettagli

Corso di. Dott.ssa Donatella Cocca

Corso di. Dott.ssa Donatella Cocca Corso d Statstca medca e applcata 3 a Lezone Dott.ssa Donatella Cocca Concett prncpale della lezone I concett prncpal che sono stat presentat sono: Mede forme o analtche (Meda artmetca semplce, Meda artmetca

Dettagli

ESERCIZIO 4.1 Si consideri una popolazione consistente delle quattro misurazioni 0, 3, 12 e 20 descritta dalla seguente distribuzione di probabilità:

ESERCIZIO 4.1 Si consideri una popolazione consistente delle quattro misurazioni 0, 3, 12 e 20 descritta dalla seguente distribuzione di probabilità: ESERCIZIO. S consder una popolazone consstente delle quattro msurazon,, e descrtta dalla seguente dstrbuzone d probabltà: X P(X) ¼ ¼ ¼ ¼ S estrae casualmente usando uno schema d camponamento senza rpetzone

Dettagli

Matematica II: Calcolo delle Probabilità e Statistica Matematica

Matematica II: Calcolo delle Probabilità e Statistica Matematica Matematca II: Calcolo delle Probabltà e Statstca Matematca ELT A-Z Docente: dott. F. Zucca Eserctazone # 8 Gl esercz contrassegnat con (*) sono tratt da Eserc. 2002-2003- Prof. Secch # 0 - Statstca Matematca

Dettagli

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI IL LEGAME TRA DUE VARIABILI I METODI DELLA CORRELAZIONE Prof.ssa G. Sero, Prof. P. Trerotol, Cattedra d Statstca Medca, Unverstà d Bar 1/19 IL PROBLEMA

Dettagli

Propagazione degli errori statistici. Test del χ 2 per la bontà di adattamento. Metodo dei minimi quadrati.

Propagazione degli errori statistici. Test del χ 2 per la bontà di adattamento. Metodo dei minimi quadrati. Propagazone degl error statstc. Test del χ per la bontà d adattamento. Metodo de mnm quadrat. Eserctazone 14 gennao 004 1 Propagazone degl error casual Sano B 1,..., B delle varabl casual con valor attes

Dettagli

Appunti di Econometria

Appunti di Econometria Appunt d Econometra ARGOMENTO [4]: VARIABILI DIPENDENTI BINARIE Mara Lusa Mancus Unverstà Boccon Novembre 200 Introduzone Ne modell econometrc studat fno ad ora la varable dpendente, y, è sempre stata

Dettagli

Statistica - metodologie per le scienze economiche e sociali /2e S. Borra, A. Di Ciaccio - McGraw Hill

Statistica - metodologie per le scienze economiche e sociali /2e S. Borra, A. Di Ciaccio - McGraw Hill Statstca - metodologe per le scenze economche e socal /e S Borra, A D Cacco - McGraw Hll Es Soluzone degl esercz del captolo 7 In base agl arrotondament effettuat ne calcol, s possono rscontrare pccole

Dettagli

FACOLTÀ DI SOCIOLOGIA CdL in SCIENZE DELL ORGANIZZAZIONE ESAME di STATISTICA 17/09/2012

FACOLTÀ DI SOCIOLOGIA CdL in SCIENZE DELL ORGANIZZAZIONE ESAME di STATISTICA 17/09/2012 CdL n SCIENZE DELL ORGANIZZAZIONE ESAME d STATISTICA ESERCIZIO 1 (+.5+.5+3) La tabella seguente rporta la dstrbuzone d frequenza del peso X n gramm d una partta d mele provenent da un certo frutteto. X=peso

Dettagli

La Regressione X Variabile indipendente o esplicativa. La regressione. La Regressione. Y Variabile dipendente

La Regressione X Variabile indipendente o esplicativa. La regressione. La Regressione. Y Variabile dipendente Unverstà d Macerata Dpartmento d Scenze Poltche, della Comuncazone e delle Relaz. Internazonal La Regressone Varable ndpendente o esplcatva Prezzo n () () 1 1 Varable dpendente 15 1 1 1 5 5 6 6 61 6 1

Dettagli

Lezioni di Statistica (25 marzo 2013) Docente: Massimo Cristallo

Lezioni di Statistica (25 marzo 2013) Docente: Massimo Cristallo UNIVERSITA DEGLI STUDI DI BASILICATA FACOLTA DI ECONOMIA Corso d laurea n Economa Azendale Lezon d Statstca (25 marzo 2013) Docente: Massmo Crstallo QUARTILI Dvdono la dstrbuzone n quattro part d uguale

Dettagli

Variabili statistiche - Sommario

Variabili statistiche - Sommario Varabl statstche - Sommaro Defnzon prelmnar Statstca descrttva Msure della tendenza centrale e della dspersone d un campone Introduzone La varable statstca rappresenta rsultat d un anals effettuata su

Dettagli

Scienze Geologiche. Corso di Probabilità e Statistica. Prove di esame con soluzioni

Scienze Geologiche. Corso di Probabilità e Statistica. Prove di esame con soluzioni Scenze Geologche Corso d Probabltà e Statstca Prove d esame con soluzon 004-005 1 Corso d laurea n Scenze Geologche - Probabltà e Statstca Appello del 1 gugno 005 - Soluzon 1. (Punt 3) In una certa zona,

Dettagli

Elementi di statistica

Elementi di statistica Element d statstca Popolazone statstca e campone casuale S chama popolazone statstca l nseme d tutt gl element che s voglono studare (ndvdu, anmal, vegetal, cellule, caratterstche delle collettvtà..) e

Dettagli

RAPPRESENTAZIONE DI MISURE. carta millimetrata

RAPPRESENTAZIONE DI MISURE. carta millimetrata carta mllmetrata carta mllmetrata non è necessaro rportare sul foglo la tabella (ma auta; l mportante è che sta da qualche parte) carta mllmetrata 8 7 6 5 4 3 smbolo della grandezza con untà d msura!!!

Dettagli

LA CALIBRAZIONE NELL ANALISI STRUMENTALE

LA CALIBRAZIONE NELL ANALISI STRUMENTALE LA CALIBRAZIONE NELL ANALISI STRUMENTALE La maggor parte delle anals chmche sono ogg condotte medante metod strumental (spettrometra d assorbmento ed emssone a dverse λ, metod elettrochmc, spettrometra

Dettagli

Laboratorio 2B A.A. 2013/2014. Elaborazione Dati. Lab 2B CdL Fisica

Laboratorio 2B A.A. 2013/2014. Elaborazione Dati. Lab 2B CdL Fisica Laboratoro B A.A. 013/014 Elaborazone Dat Lab B CdL Fsca Elaborazone dat spermental Come rassumere un nseme d dat spermental? Una statstca è propro un numero calcolato a partre da dat stess. La Statstca

Dettagli

Concetti principale della lezione precedente

Concetti principale della lezione precedente Corso d Statstca medca e applcata 6 a Lezone Dott.ssa Donatella Cocca Concett prncpale della lezone precedente I concett prncpal che sono stat presentat sono: I fenomen probablstc RR OR ROC-curve Varabl

Dettagli

1) Dato un carattere X il rapporto tra devianza entro e devianza totale è 0.25 e la devianza totale è 40. La devianza tra vale: a) 10 b) 20 c) 30

1) Dato un carattere X il rapporto tra devianza entro e devianza totale è 0.25 e la devianza totale è 40. La devianza tra vale: a) 10 b) 20 c) 30 1) Dato un carattere X l rapporto tra devanza entro e devanza totale è 0.25 e la devanza totale è 40. La devanza tra vale: a) 10 b) 20 c) 30 2) Data una popolazone normalmente dstrbuta con meda 10 e varanza

Dettagli

Regressione Multipla e Regressione Logistica: concetti introduttivi ed esempi

Regressione Multipla e Regressione Logistica: concetti introduttivi ed esempi Regressone Multpla e Regressone Logstca: concett ntroduttv ed esemp I Edzone ottobre 014 Vncenzo Paolo Senese vncenzopaolo.senese@unna.t Indce Note prelmnar alla I edzone 1 Regressone semplce e multpla

Dettagli

Modelli con varabili binarie (o qualitative)

Modelli con varabili binarie (o qualitative) Modell con varabl bnare (o qualtatve E( Y X α + βx + ε quando Y è una varable benoullana Y 1 0 s ha l modello lneare d probabltà Pr( Y 1 X α + βx + ε dove valor stmat della Y assumono l sgnfcato d probabltà.

Dettagli

STATISTICA DESCRITTIVA - SCHEDA N. 5 REGRESSIONE LINEARE

STATISTICA DESCRITTIVA - SCHEDA N. 5 REGRESSIONE LINEARE Matematca e statstca: da dat a modell alle scelte www.dma.unge/pls_statstca Responsabl scentfc M.P. Rogantn e E. Sasso (Dpartmento d Matematca Unverstà d Genova) STATISTICA DESCRITTIVA - SCHEDA N. REGRESSIONE

Dettagli

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari Captolo 3 Covaranza, correlazone, bestft lnear e non lnear ) Covaranza e correlazone Ad un problema s assoca spesso pù d una varable quanttatva (es.: d una persona possamo determnare peso e altezza, oppure

Dettagli

Norma UNI CEI ENV 13005: Guida all'espressione dell'incertezza di misura

Norma UNI CEI ENV 13005: Guida all'espressione dell'incertezza di misura orma UI CEI EV 3005: Guda all'espressone dell'ncertezza d msura L obettvo d una msurazone è quello d determnare l valore del msurando, n altre parole della grandezza da msurare. In generale, però, l rsultato

Dettagli

Modelli descrittivi, statistica e simulazione

Modelli descrittivi, statistica e simulazione Modell descrttv, statstca e smulazone Master per Smart Logstcs specalst Roberto Cordone (roberto.cordone@unm.t) Statstca descrttva Cernusco S.N., govedì 28 gennao 2016 (9.00/13.00) 1 / 15 Indc d poszone

Dettagli

Statistica e calcolo delle Probabilità. Allievi INF

Statistica e calcolo delle Probabilità. Allievi INF Statstca e calcolo delle Probabltà. Allev INF Proff. L. Ladell e G. Posta 06.09.10 I drtt d autore sono rservat. Ogn sfruttamento commercale non autorzzato sarà perseguto. Cognome e Nome: Matrcola: Docente:

Dettagli

* PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE *

* PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE * * PROBABILITÀ - SCHEDA N. LE VARIABILI ALEATORIE *. Le varabl aleatore Nella scheda precedente abbamo defnto lo spazo camponaro come la totaltà degl est possbl d un espermento casuale; abbamo vsto che

Dettagli

Probabilità cumulata empirica

Probabilità cumulata empirica Probabltà cumulata emprca Se s effettua un certo numero d camponament da una popolazone con dstrbuzone cumulata F(y), s avranno allora n campon y, y,, y n. E possble consderarne la statstca d ordne, coè

Dettagli

Introduzione al Machine Learning

Introduzione al Machine Learning Introduzone al Machne Learnng Note dal corso d Machne Learnng Corso d Laurea Magstrale n Informatca aa 2010-2011 Prof Gorgo Gambos Unverstà degl Stud d Roma Tor Vergata 2 Queste note dervano da una selezone

Dettagli

LA VARIABILITA. Nella metodologia statistica si distinguono due aspetti della variabilità:

LA VARIABILITA. Nella metodologia statistica si distinguono due aspetti della variabilità: LA VARIABILITA LA VARIABILITA E L ATTITUDINE DEL FENOMENO QUANTITATIVO AD ASSUMERE DIVERSE MODALITA, O MEGLIO LA TENDENZA DI OGNI SINGOLA OSSERVAZIONE AD ASSUMERE VALORI DIFFERENTI RISPETTO AL VALORE MEDIO.

Dettagli

La regressione. La Regressione. La Regressione. min. min. Var X. X Variabile indipendente (data) Y Variabile dipendente

La regressione. La Regressione. La Regressione. min. min. Var X. X Variabile indipendente (data) Y Variabile dipendente Unverstà d Macerata Facoltà d Scenze Poltche - Anno accademco - La Regressone Varable ndpendente (data) Varable dpendente Dpendenza funzonale (o determnstca): f ; Da un punto d vsta analtco, valor della

Dettagli

Ettore Limoli. Lezioni di Matematica Prof. Ettore Limoli. Sommario. Calcoli di regressione

Ettore Limoli. Lezioni di Matematica Prof. Ettore Limoli. Sommario. Calcoli di regressione Sto Personale d Ettore Lmol Lezon d Matematca Prof. Ettore Lmol Sommaro Calcol d regressone... 1 Retta d regressone con Ecel... Uso della funzone d calcolo della tendenza... 4 Uso della funzone d regressone

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 3:

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa lezione 3: Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2011-2012 lezone 3: 21022012 professor Danele Rtell www.unbo.t/docdent/danele.rtell 1/31? Captalzzazone msta S usa l regme composto per l

Dettagli

CARATTERISTICHE DEI SEGNALI RANDOM

CARATTERISTICHE DEI SEGNALI RANDOM CARATTERISTICHE DEI SEGNALI RANDOM I segnal random o stocastc rvestono una notevole mportanza poché sono present, pù che segnal determnstc, nella maggor parte de process fsc real. Esempo d segnale random:

Dettagli

Quattro passi nella statistica per chimici

Quattro passi nella statistica per chimici Quattro pass nella statstca per chmc Lo scopo dell anals statstca applcata a sere d dat spermental è quella d ottenere nformazon per valutare la valdtà d una procedura o la accettabltà d un dato analtco.

Dettagli

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI CONFRONTO DI PIU MEDIE IL METODO DI ANALISI DELLA VARIANZA

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI CONFRONTO DI PIU MEDIE IL METODO DI ANALISI DELLA VARIANZA NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI CONFRONTO DI PIU MEDIE IL METODO DI ANALISI DELLA VARIANZA IL PROBLEMA Supponamo d voler studare l effetto d 4 dverse dete su un campone casuale d 4

Dettagli

Ministero della Salute D.G. della programmazione sanitaria --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA

Ministero della Salute D.G. della programmazione sanitaria --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA Mnstero della Salute D.G. della programmazone santara --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA La valutazone del coeffcente d varabltà dell mpatto economco consente d ndvduare gl ACC e DRG

Dettagli

Analisi statistica di dati biomedici Analysis of biologicalsignals

Analisi statistica di dati biomedici Analysis of biologicalsignals Anals statstca d dat bomedc Analyss of bologcalsgnals I Parte Inferenza statstca Agostno Accardo (accardo@unts.t) Master n Ingegnera Clnca LM Neuroscenze 2013-2014 e segg. Altman Practcal statstcs for

Dettagli

Taratura: serve a trovare il legame tra il valore letto sullo strumento e il valore della grandezza fisica misurata

Taratura: serve a trovare il legame tra il valore letto sullo strumento e il valore della grandezza fisica misurata Taratura: serve a trovare l legame tra l valore letto sullo strumento e l valore della grandezza fsca msurata Msure Meccanche e Termche Dsturb d trasduttor anello dnamometrco trasduttore d spostamento

Dettagli

Studente estratto Esami sostenuti voto Frequenza Pos.ne lavor.va sesso rendimento si No M B si No M O no No F S

Studente estratto Esami sostenuti voto Frequenza Pos.ne lavor.va sesso rendimento si No M B si No M O no No F S Esercz del corso d Statstca A.A 00-0 a cura d : Gulana Satta Eserczo E stato estratto un campone d 5 student tra frequentant l secondo semestre e s sono osservate le seguent caratterstche: esam sostenut

Dettagli

UNIVERSITÀ DEGLI STUDI DI PADOVA

UNIVERSITÀ DEGLI STUDI DI PADOVA UNIVERSITÀ DEGLI STUDI DI PADOVA FACOLTÀ DI SCIENZE STATISTICHE CORSO DI LAUREA IN STATISTICA ECONOMIA E FINANZA Tes d laurea Selezone delle varable per mglorare le Prevson: l LASSO Relatore: Prof. Gudo

Dettagli

Intorduzione alla teoria delle Catene di Markov

Intorduzione alla teoria delle Catene di Markov Intorduzone alla teora delle Catene d Markov Mchele Ganfelce a.a. 2014/2015 Defnzone 1 Sa ( Ω, F, {F n } n 0, P uno spazo d probabltà fltrato. Una successone d v.a. {ξ n } n 0 defnta su ( Ω, F, {F n }

Dettagli

LE FREQUENZE CUMULATE

LE FREQUENZE CUMULATE LE FREQUENZE CUMULATE Dott.ssa P. Vcard Introducamo questo argomento con l seguente Esempo: consderamo la seguente dstrbuzone d un campone d 70 sttut d credto numero flal present nel terrtoro del comune

Dettagli

Tutti gli strumenti vanno tarati

Tutti gli strumenti vanno tarati L'INCERTEZZA DI MISURA Anta Calcatell I.N.RI.M S eseguono e producono msure per prendere delle decson sulla base del rsultato ottenuto, come per esempo se bloccare l traffco n funzone d msure d lvello

Dettagli

Il campionamento casuale semplice

Il campionamento casuale semplice Il camponamento casuale semplce Metod d estrazone del campone. robabltà d nclusone. π = n N π j = n N n 1 N 1 Stmatore corretto del totale e della meda. Ŷ = Nȳ e ˆȲ = ȳ Varanza degl stmator corrett. V

Dettagli

Sommario. Obiettivo. Quando studiarla? La concentrazione. X: carattere quantitativo tra le unità statistiche. Quando studiarla?

Sommario. Obiettivo. Quando studiarla? La concentrazione. X: carattere quantitativo tra le unità statistiche. Quando studiarla? Corso d Statstca a.a. 9- uando studarla? Obettvo Dagramma d Lorenz Rapporto d concentrazone rea d concentrazone Esemp Sommaro La concentrazone uando studarla? Obettvo X: carattere quanttatvo tra le untà

Dettagli

Variabili aleatorie discrete. Probabilità e Statistica I - a.a. 04/05-1

Variabili aleatorie discrete. Probabilità e Statistica I - a.a. 04/05-1 Varabl aleatore dscrete Probabltà e Statstca I - a.a. 04/05 - Defnzone Una varable aleatora è una funzone che assoca ad ogn esto dello spazo campone d un espermento casuale un numero. L nseme de possbl

Dettagli

STATISTICA DESCRITTIVA CON EXCEL

STATISTICA DESCRITTIVA CON EXCEL STATISTICA DESCRITTIVA CON EXCEL Corso d CPS - II parte: Statstca Laurea n Informatca Sstem e Ret 2004-2005 1 Obettv della lezone Introduzone all uso d EXCEL Statstca descrttva Utlzzo dello strumento:

Dettagli

Adattamento di una relazione funzionale ai dati sperimentali

Adattamento di una relazione funzionale ai dati sperimentali Adattamento d una relazone 1 funzonale a dat spermental Sno ad ora abbamo vsto come può essere stmato, con un certo lvello d confdenza, l valore vero d una grandezza fsca (dretta o dervata) con l suo ntervallo

Dettagli

3 (solo esame 6 cfu) Elementi di Analisi Numerica, Probabilità e Statistica, modulo 2: Elementi di Probabilità e Statistica (3 cfu)

3 (solo esame 6 cfu) Elementi di Analisi Numerica, Probabilità e Statistica, modulo 2: Elementi di Probabilità e Statistica (3 cfu) lement d Anals Numerca, Probabltà e Statstca, modulo 2: lement d Probabltà e Statstca ( cfu) Probabltà e Statstca (6 cfu) Scrtto del 06 febbrao 205. Secondo Appello Id: A Nome e Cognome: same da 6 cfu

Dettagli

MODELLI STOCASTICI DELLA CLASSE GLM

MODELLI STOCASTICI DELLA CLASSE GLM MODELLI STOCASTICI DELLA CLASSE GLM S possono consderare GLM con dstrbuzone specfcata o modell con quas-verosmglanza, quest ultm sono modell d tpo semparametrco. Illustramo l loro uso come: strumento d

Dettagli

PhD Course Cassino Prof. Mannina - Università di Palermo 1

PhD Course Cassino Prof. Mannina - Università di Palermo 1 Laboratoro d Modellstca Santaro-Ambentale Anals d senstvtà, calbrazone e valutazone dell ncertezza degl nput d un modello matematco: fondament e metodologe Gorgo Mannna gorgo.mannna@unpa.t Sommaro Defnzon

Dettagli

L'Analisi in Componenti Principali. Luigi D Ambra Dipartimento di Matematica e Statistica Università di Napoli Federico II

L'Analisi in Componenti Principali. Luigi D Ambra Dipartimento di Matematica e Statistica Università di Napoli Federico II L'Anals n Component Prncpal Lug D Ambra Dpartmento d Matematca e Statstca Unverstà d Napol Federco II ANALISI MULTIDIMENSIONALE DEI DATI (AMD) L Anals Multdmensonale de Dat (AMD) è una famgla d tecnche

Dettagli

Università degli Studi di Urbino Facoltà di Economia

Università degli Studi di Urbino Facoltà di Economia Unverstà degl Stud d Urbno Facoltà d Economa Lezon d Statstca Descrttva svolte durante la prma parte del corso d corso d Statstca / Statstca I A.A. 004/05 a cura d: F. Bartolucc Lez. 8/0/04 Statstca descrttva

Dettagli

Test delle ipotesi Parte 2

Test delle ipotesi Parte 2 Test delle potes arte Test delle potes sulla dstrbuzone: Introduzone Test χ sulla dstrbuzone b Test χ sulla dstrbuzone: Eserczo Test delle potes sulla dstrbuzone Molte concluson tratte nell nferenza parametrca

Dettagli

L analisi di studi con variabili di risposta multiple

L analisi di studi con variabili di risposta multiple X1 X X 3 Quando un confronto venga effettuato per tre lvell d un fattore, sembrerebbe ntutvo effettuare l confronto con l test t d Student a pù lvell: X X X 1 1 vs vs vs X X X 3 3 Metodologa per l anals

Dettagli

Esercitazioni del corso di Relazioni tra variabili. Giancarlo Manzi Facoltà di Sociologia Università degli Studi di Milano-Bicocca

Esercitazioni del corso di Relazioni tra variabili. Giancarlo Manzi Facoltà di Sociologia Università degli Studi di Milano-Bicocca Eserctazon del corso d Relazon tra varabl Gancarlo Manz Facoltà d Socologa Unverstà degl Stud d Mlano-Bcocca e-mal: gancarlo.manz@statstca.unmb.t Terza eserctazone Mlano, 8 febbrao 7 SOMMARIO TERZA ESERCITAZIONE

Dettagli

Esame di Statistica tema A Corso di Laurea in Economia Prof.ssa Giordano Appello del 15/07/2011

Esame di Statistica tema A Corso di Laurea in Economia Prof.ssa Giordano Appello del 15/07/2011 Esame d Statstca tema A Corso d Laurea n Economa Prof.ssa Gordano Appello del /07/0 Cognome Nome atr. Teora Dmostrare che la somma degl scart dalla meda artmetca è zero. Eserczo L accesso al credto è sempre

Dettagli

4.6 Dualità in Programmazione Lineare

4.6 Dualità in Programmazione Lineare 4.6 Dualtà n Programmazone Lneare Ad ogn PL n forma d mn (max) s assoca un PL n forma d max (mn) Spaz e funzon obettvo dvers ma n genere stesso valore ottmo! Esempo: l valore massmo d un flusso ammssble

Dettagli

Corso di Statistica (canale P-Z) A.A. 2009/10 Prof.ssa P. Vicard

Corso di Statistica (canale P-Z) A.A. 2009/10 Prof.ssa P. Vicard Corso d Statstca (canale P-Z) A.A. 2009/0 Prof.ssa P. Vcard VALORI MEDI Introduzone Con le dstrbuzon e le rappresentazon grafche abbamo effettuato le prme sntes de dat. E propro osservando degl stogramm

Dettagli

Esercizi sulle reti elettriche in corrente continua (parte 2)

Esercizi sulle reti elettriche in corrente continua (parte 2) Esercz sulle ret elettrche n corrente contnua (parte ) Eserczo 3: etermnare gl equvalent d Thevenn e d Norton del bpolo complementare al resstore R 5 nel crcuto n fgura e calcolare la corrente che crcola

Dettagli

PREVEDERE IL CHURN: UN APPROCCIO LONGITUDINALE

PREVEDERE IL CHURN: UN APPROCCIO LONGITUDINALE UNIVERSITÀ DEGLI STUDI DI PADOVA FACOLTÀ DI SCIENZE STATISTICHE CORSO DI LAUREA SPECIALISTICA IN SCIENZE STATISTICHE, ECONOMICHE, FINANZIARIE E AZIENDALI PREVEDERE IL CHURN: UN APPROCCIO LONGITUDINALE

Dettagli

Potenzialità degli impianti

Potenzialità degli impianti Unverstà degl Stud d Treste a.a. 2009-2010 Impant ndustral Potenzaltà degl mpant Impant ndustral Potenzaltà degl mpant 1 Unverstà degl Stud d Treste a.a. 2009-2010 Impant ndustral Defnzone della potenzaltà

Dettagli

Analisi bivariata con variabili quantitative

Analisi bivariata con variabili quantitative Anals bvarata con varabl quanttatve Regressone lneare Correlazone lneare LA REGRESSIONE LINEARE In un campone d 33 donne, d età compresa tra 22 e 81 ann, è stata msurata la pressone sstolca (n mm d mercuro).

Dettagli

5: Strato fisico: limitazione di banda, formula di Nyquist; caratterizzazione del canale in frequenza

5: Strato fisico: limitazione di banda, formula di Nyquist; caratterizzazione del canale in frequenza 5: Strato fsco: lmtazone d banda, formula d Nyqust; caratterzzazone del canale n frequenza Larghezza d banda d un segnale La larghezza d banda d un segnale è data dall ntervallo delle frequenze d cu è

Dettagli

CAPITOLO 3 Incertezza di misura Pagina 26

CAPITOLO 3 Incertezza di misura Pagina 26 CAPITOLO 3 Incertezza d msura Pagna 6 CAPITOLO 3 INCERTEZZA DI MISURA Le operazon d msurazone sono tutte nevtablmente affette da ncertezza e coè da un grado d ndetermnazone con l quale l processo d msurazone

Dettagli

LEZIONE 2. Riassumere le informazioni: LE MEDIE MEDIA ARITMETICA MEDIANA, MODA, QUANTILI. La media aritmetica = = N

LEZIONE 2. Riassumere le informazioni: LE MEDIE MEDIA ARITMETICA MEDIANA, MODA, QUANTILI. La media aritmetica = = N LE MEDIE LEZIOE MEDIE ALGEBRICHE: calcolate con operazon algebrche su valor del carattere (meda artmetca) per varabl Rassumere le nformazon: MEDIA ARITMETICA MEDIAA, MODA, QUATILI MEDIE LASCHE: determnate

Dettagli

CORRETTA RAPPRESENTAZIONE DI UN RISULTATO: LE CIFRE SIGNIFICATIVE

CORRETTA RAPPRESENTAZIONE DI UN RISULTATO: LE CIFRE SIGNIFICATIVE CORRETT RPPREETZIOE DI U RIULTTO: LE CIFRE IGIFICTIVE Defnamo cfre sgnfcatve quelle cfre che esprmono realmente l rsultato d una msura, o del suo errore, coè che non sono completamente ncluse nell ntervallo

Dettagli

* * * Nota inerente il calcolo della concentrazione rappresentativa della sorgente. Aprile 2006 RL/SUO-TEC 166/2006 1

* * * Nota inerente il calcolo della concentrazione rappresentativa della sorgente. Aprile 2006 RL/SUO-TEC 166/2006 1 APAT Agenza per la Protezone dell Ambente e per Servz Tecnc Dpartmento Dfesa del Suolo / Servzo Geologco D Itala Servzo Tecnologe del sto e St Contamnat * * * Nota nerente l calcolo della concentrazone

Dettagli

REALTÀ E MODELLI SCHEDA DI LAVORO

REALTÀ E MODELLI SCHEDA DI LAVORO REALTÀ E MODELLI SCHEDA DI LAVORO 1 Le tabelle d crescta Nella tabella sono rportat dat relatv alle altezze mede delle bambne dalla nascta fno a un anno d età. Stablsc se esste una relazone lneare tra

Dettagli

Analisi di mercurio in matrici solide mediante spettrometria di assorbimento atomico a vapori freddi

Analisi di mercurio in matrici solide mediante spettrometria di assorbimento atomico a vapori freddi ESEMPIO N. Anals d mercuro n matrc solde medante spettrometra d assorbmento atomco a vapor fredd 0 Introduzone La determnazone del mercuro n matrc solde è effettuata medante trattamento termco del campone

Dettagli

Calibrazione. Lo strumento idealizzato

Calibrazione. Lo strumento idealizzato Calbrazone Come possamo fdarc d uno strumento? Abbamo bsogno d dentfcare l suo funzonamento n condzon controllate. L dentfcazone deve essere razonalmente organzzata e condvsa n termn procedural: s tratta

Dettagli

Per calcolare le probabilità di Testa e Croce è possibile risolvere il seguente sistema di due equazioni in due incognite:

Per calcolare le probabilità di Testa e Croce è possibile risolvere il seguente sistema di due equazioni in due incognite: ESERCIZIO.1 Sa X la varable casuale che descrve l numero d teste ottenute nella prova lanco d tre monete truccate dove P(Croce)= x P(Testa). 1) Defnrne la dstrbuzone d probabltà ) Rappresentarla grafcamente

Dettagli

Cenni di regressione non-parametrica

Cenni di regressione non-parametrica S. Borra, A. D Cacco Statstca, metodologe per le scenze economche e socal, 0 Cenn d regressone non-parametrca funzone non-lneare non-lneartà ne parametr o nelle varabl overfttng funzon lnearzzabl funzone

Dettagli

Appunti di statistica descrittiva Versione provvisoria

Appunti di statistica descrittiva Versione provvisoria Alessandro Benedett UnCAM-SSIS-FIM.04/3 Appunt d statstca descrttva Versone provvsora (v. allegato foglo Excel LDS4_Correlazone.xls) Correlazone e Regressone lneare La teora della correlazone s propone

Dettagli

Lezione 2 a - Statistica descrittiva per variabili quantitative

Lezione 2 a - Statistica descrittiva per variabili quantitative Lezone 2 a - Statstca descrttva per varabl quanttatve Esempo 5. Nella tabella seguente sono rportat valor del tasso glcemco rlevat su 10 pazent: Pazente Glcema (mg/100cc) 1 x 1 =103 2 x 2 =97 3 x 3 =90

Dettagli

ESERCIZI SULLE VARIABILI CASUALI DISCRETE

ESERCIZI SULLE VARIABILI CASUALI DISCRETE ESERCIZI SULLE VARIABILI CASUALI DISCRETE 1) S lanca un dado. Rappresentare la varable casuale: X = " facca mnore d tre ". 2) S lancano due dad. Rappresentare la varable casuale: X = "somma delle facce

Dettagli

LA COMPATIBILITA tra due misure:

LA COMPATIBILITA tra due misure: LA COMPATIBILITA tra due msure: 0.4 Due msure, supposte affette da error casual, s dcono tra loro compatbl quando la loro dfferenza può essere rcondotta ad una pura fluttuazone statstca attorno al valore

Dettagli

Economia del Settore Pubblico 97. Economia del Settore Pubblico 99. Quale indice di diseguaglianza usare? il rapporto interdecilico PROBLEMA:

Economia del Settore Pubblico 97. Economia del Settore Pubblico 99. Quale indice di diseguaglianza usare? il rapporto interdecilico PROBLEMA: Economa del Settore Pubblco Laura Vc laura.vc@unbo.t www.dse.unbo.t/lvc/edsp_.htm LEZIONE 4 Rmn, 9 aprle 008 Economa del Settore Pubblco 96 I prncpal ndc d dseguaglanza: ndc d entropa generalzzata Isprata

Dettagli

Argomenti del corso Parte I Caratteristiche generali e strumenti terminali

Argomenti del corso Parte I Caratteristiche generali e strumenti terminali Unverstà del Salento Argoment del corso Parte I Caratterstche general e strument termnal 3. Prestazon general degl strument d msura: caratterstche statche Taratura statca Elaborazone statstca de dat Cenn

Dettagli

Esercitazioni del corso: STATISTICA

Esercitazioni del corso: STATISTICA A. A. 0-0 Eserctazon del corso: STATISTICA Sommaro Eserctazone : Moda Medana Meda Artmetca Varabltà: Varanza, Devazone Standard, Coefcente d Varazone ESERCIZIO : UNIVERSITÀ DEGLI STUDI DI MILANO BICOCCA

Dettagli

CAPITOLO VII METODI NON PARAMETRICI PER UN CAMPIONE

CAPITOLO VII METODI NON PARAMETRICI PER UN CAMPIONE CAPITOLO VII METODI NON PARAMETRICI PER UN CAMPIONE 7.1. Caratterstche de test non parametrc 1 7.. I test esatt e l metodo Monte Carlo 7 7.3. Il test delle successon per un campone 10 7.4. Il test de segn

Dettagli

INDAGINE ESAUSTIVA O CAMPIONARIA?

INDAGINE ESAUSTIVA O CAMPIONARIA? INDAGINE ESAUSTIVA O CAMPIONARIA? S rcorre certamente all ndagne per campone quando la rlevazone completa è mpossble e quando la determnazone delle modaltà possedute dalle untà n esame ne comporta la dstruzone

Dettagli

TEORIA DELLA STIMA E DELLA DESCISIONE STATISTICA

TEORIA DELLA STIMA E DELLA DESCISIONE STATISTICA TEORIA DELLA STIMA E DELLA DESCISIOE STATISTICA STIMA A MASSIMA VEROSIMIGLIAZA Per determnare la stma a massma verosmglanza d un parametro θ, partendo da un campone d dat X, bsogna scrvere la denstà d

Dettagli

Esercitazione 8 del corso di Statistica (parte 1)

Esercitazione 8 del corso di Statistica (parte 1) Eserctazone 8 del corso d Statstca (parte ) Dott.ssa Paola Costantn Eserczo Marzo 0 Un urna rossa contene 3 pallne banche, nere e galla. S consder l estrazone d due pallne. S calcol la probabltà d estrarre:.

Dettagli

Fondamenti di Visione Artificiale (Seconda Parte) Corso di Robotica Prof.ssa Giuseppina Gini Anno Acc.. 2006/2007

Fondamenti di Visione Artificiale (Seconda Parte) Corso di Robotica Prof.ssa Giuseppina Gini Anno Acc.. 2006/2007 Fondament d Vsone Artfcale (Seconda Parte PhD. Ing. Mchele Folgherater Corso d Robotca Prof.ssa Guseppna Gn Anno Acc.. 006/007 Caso Bdmensonale el caso bdmensonale, per ndvduare punt d contorno degl oggett

Dettagli

RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A 2

RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A 2 RICHIAMI SULLA RAPPRESENTAZIONE IN COMPLEMENTO A La rappresentazone n Complemento a Due d un numero ntero relatvo (.-3,-,-1,0,+1,+,.) una volta stablta la precsone che s vuole ottenere (coè l numero d

Dettagli

SOLUZIONE ESERCIZI: STRUTTURA DI MERCATO. ECONOMIA INDUSTRIALE Università degli Studi di Milano-Bicocca. Christian Garavaglia

SOLUZIONE ESERCIZI: STRUTTURA DI MERCATO. ECONOMIA INDUSTRIALE Università degli Studi di Milano-Bicocca. Christian Garavaglia SOLUZIONE ESERCIZI: STRUTTURA DI MERCATO ECONOMIA INDUSTRIALE Unverstà degl Stud d Mlano-Bcocca Chrstan Garavagla Soluzone 7 a) L ndce d concentrazone C (o CR k ) è la somma delle uote d mercato (o share)

Dettagli

TITOLO: L INCERTEZZA DI TARATURA DELLE MACCHINE PROVA MATERIALI (MPM)

TITOLO: L INCERTEZZA DI TARATURA DELLE MACCHINE PROVA MATERIALI (MPM) Identfcazone: SIT/Tec-012/05 Revsone: 0 Data 2005-06-06 Pagna 1 d 7 Annotazon: Il presente documento fornsce comment e lnee guda sull applcazone della ISO 7500-1 COPIA CONTROLLATA N CONSEGNATA A: COPIA

Dettagli

Università di Cassino. Esercitazioni di Statistica 1 del 19 Febbraio Dott. Mirko Bevilacqua

Università di Cassino. Esercitazioni di Statistica 1 del 19 Febbraio Dott. Mirko Bevilacqua Unverstà d Cassno Eserctazon d Statstca del 9 Febbrao 00 Dott. Mro Bevlacqua DATASET STUDENTI N SESSO ALTEZZA PESO CORSO NUMERO COLORE COLORE (cm) (g) LAUREA SCARPA OCCHI CAPELLI M 79 65 INFORMAICA 43

Dettagli

LA STATISTICA: OBIETTIVI; RACCOLTA DATI; LE FREQUENZE (EXCEL) ASSOLUTE E RELATIVE

LA STATISTICA: OBIETTIVI; RACCOLTA DATI; LE FREQUENZE (EXCEL) ASSOLUTE E RELATIVE Lezone 6 - La statstca: obettv; raccolta dat; le frequenze (EXCEL) assolute e relatve 1 LA STATISTICA: OBIETTIVI; RACCOLTA DATI; LE FREQUENZE (EXCEL) ASSOLUTE E RELATIVE GRUPPO MAT06 Dp. Matematca, Unverstà

Dettagli

Valutazione dei Benefici interni

Valutazione dei Benefici interni Corso d Trasport Terrtoro prof. ng. Agostno Nuzzolo Valutazone de Benefc ntern Valutazone degl ntervent Indvduazone degl effett rlevant La defnzone degl effett rlevant per un ntervento sul sstema d trasporto

Dettagli

La taratura degli strumenti di misura

La taratura degli strumenti di misura La taratura degl strument d msura L mportanza dell operazone d taratura nasce dall esgenza d rendere l rsultato d una msura rferble a campon nazonal od nternazonal del msurando n questone affnché pù msure

Dettagli

Corso di laurea in Ingegneria per l Ambiente e il Territorio a.a RETI TOPOGRAFICHE

Corso di laurea in Ingegneria per l Ambiente e il Territorio a.a RETI TOPOGRAFICHE Corso d laurea n Ingegnera per l Ambente e l Terrtoro a.a. 006-007 Prof. V. Franco: Topografa e tecnche cartografche RETI TOPOGRAFICHE Unverstà degl Stud d Palermo Dpartmento d Rappresentazone Corso d

Dettagli

6. Catene di Markov a tempo continuo (CMTC)

6. Catene di Markov a tempo continuo (CMTC) 6. Catene d Markov a tempo contnuo (CMTC) Defnzone Una CMTC è un processo stocastco defnto come segue: lo spazo d stato è dscreto: X{x,x 2, }. L nseme X può essere sa fnto sa nfnto numerable. L nseme de

Dettagli

lxmi.mi.infn.it/~camera/silsis/laboratorio-1/2-statistica.ppt http://www2.dm.unito.it/paginepersonali/zucca/index.htm Misura:

lxmi.mi.infn.it/~camera/silsis/laboratorio-1/2-statistica.ppt http://www2.dm.unito.it/paginepersonali/zucca/index.htm Misura: Elaborazone de dat geochmc e cenn d statstca lm.m.nfn.t/~camera/slss/laboratoro-1/-statstca.ppt http://www.dm.unto.t/pagnepersonal/zucca/nde.htm Msura: Espressone quanttatva del rapporto fra una grandezza

Dettagli