Consideriamo il seguente sistema di equazioni differenziali ordinarie (ODE) ai valori iniziali:

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Consideriamo il seguente sistema di equazioni differenziali ordinarie (ODE) ai valori iniziali:"

Transcript

1 Capitolo 1 PROBLEMI INIZIALI PER ODE Consideriamo il seguente sistema di equazioni differenziali ordinarie (ODE) ai valori iniziali: { y (t) = f(t, y(t)), t t f (1.1) y( ) = y 0 dove f : [, t f ] R m R m è continua ed y 0 R m. Diremo soluzione di (1) ogni funzione y C 1 ([, t f ], R m ) che la verifica. Teorema 1 Se la funzione f è continua in entrambe le variabili t e y ed è lipschitziana nel dominio [, t f ] R m rispetto ad y, allora il problema (1.1) ammette un unica soluzione y C 1 ([, t f ], R m ). Prima di vederne la dimostrazione, ricordiamo che f è lipschitziana in [, t f ] R m rispetto ad y se esiste una costante (di Lipschitz) L > 0 tale che, per una certa norma definita in R m, si ha: f(t, y 1 ) f(t, y 2 ) L y 1 y 2 t [, t f ] e y 1, y 2 R m. Proponiamo due dimostrazioni del teorema. Entrambe fanno uso del teorema delle contrazioni in spazi metrici completi. Inoltre, per entrambe le dimostrazioni, faremo uso del fatto che il problema (1.1) è equivalmente alla seguente equazione integrale in C 0 ([, t f ], R m ): 1

2 2 CAPITOLO 1. PROBLEMI INIZIALI PER ODE (1.2) y(t) = y 0 + La verifica di ciò è banale. f(x, y(x))dx, t t f. Dimostrazione n. 1 Dividiamo l intervallo [, t f ] in un certo numero N di sottointervalli di uguale lunghezza T (ma non è necessario) tale che risulti LT < 1. Definiamo poi t n := + nt, n = 1,..., N, e l operatore tale che Φ n : R m C 0 ([, t f ], R m ) C 0 ([, t f ], R m ) Φ n (u, y) := u + t n 1 f(x, y(x))dx, t n 1 t t n. Si ha che u R m l operatore di C 0 ([t n 1, t n ], R m ) Φ n(u) : y Φ n (u, y) è una contrazione nella norma uniforme così definita: y := Infatti y, z C 0 ([t n 1, t n ], R m ) si ha: Φ n (u, y) Φ(u, z) = max t n 1 tt n cioè max y(t). t n 1 tt n u + f(x, y(x)) dx u t n 1 f(x, z(x)) dx t n 1 max f(x, y(x)) f(x, z(x)) dx t n 1 tt n t n 1 max L y(x) z(x) dx t n 1 tt n t n 1 LT y z,

3 3 Φ n (u, y) Φ n (u, z) LT y z e quindi l asserto, essendo LT < 1. Quanto appena dimostrato permette di affermare che esiste un unica soluzione del problema cioè di y = Φ 1 (y 0, y), y(t) = y 0 + Esiste poi un unica soluzione del problema f(x, y(x)) dx, t t 1. cioè di y = Φ 2 (y(t 1 ), y), y(t) = y(t 1 ) + f(x, y(x)) dx, t 1 t t 2. Chiaramente la funzione y, definita su [, t 2 ] ed ottenuta risolvendo in sequenza i due precedenti problemi separatamente su [, t 1 ] e [t 1, t 2 ], è soluzione di y(t) = y 0 + Infatti, per t 1 t t 2 si ha: f(x, y(x)) dx, t t 2. y(t) = y(t 1 ) + = y 0 + = y t 1 f(x, y(x)) dx f(x, y(x)) dx + f(x, y(x)) dx. t 1 f(x, y(x)) dx Analogamente, ragionando in modo induttivo sugli altri intervalli rimanenti, si ottengono esistenza ed unicità della soluzione di (1.2). CVD

4 4 CAPITOLO 1. PROBLEMI INIZIALI PER ODE Si noti che il risultato è valido anche per t f = +, cioè per equazioni definite su tutto il semiasse [t f, + ). Si noti inoltre che l operatore Φ definito da (1.2) in C 0 ([, t f ], R m ), cioè tale che Φ(y)(t) := y 0 + f(x, y(x)) dx, t t f, non è una contrazione in se L(t f ) 1. Dimostrazione n. 2 Questa volta dimostriamo che l operatore Φ definito da (1.2) è una contrazione in una norma equivalente alla norma, il che è sufficiente per ottenere la tesi. Definiamo la seguente norma su C 0 ([, t f ], R m ): y := max tt f e ρ(t ) y(t), dove ρ è fissato, ρ L (costante di Lipschitz di f). Si ha immediatamente che y y e ρ(t f ) y y C 0 ([, t f ], R m ) e, pertanto, le due norme sono equivalenti (qui si suppone sempre t f < + ). Verifichiamo ora che Φ è una contrazione in. Si ha y, z C 0 ([, t f ], R m ): Φ(y) Φ(z) = max tt f e ρ(t ) max e ρ(t ) tt f = max tt f e ρ(t ) L f(x, y(x)) dx f(x, y(x)) dx L y(x) z(x) dx e ρ(x ) e ρ(x ) y(x) z(x) dx max e ρ(t t0) L y z tt e ρ(x t0) dx f L max tt f ρ y z (1 e ρ(t ) ) = L ρ (1 e ρ(t f ) ) y z,

5 5 cioè Φ(y) Φ(z) L ρ (1 e ρ(t f ) ) y z e quindi l asserto, essendo L ρ 1 ed e ρ(t f ) > 0. CVD L applicazione iterata dell operatore Φ ad un approssimazione iniziale y 0 (t), in modo da formare la successione di funzioni {y k (t)} che converge uniformemente alla soluzione y di (1.2), può essere considerata un metodo costruttivo per la soluzione di (1.1). Questo metodo, noto con il nome di metodo iterativo di Picard, non è però usato nella pratica in quanto lentamente convergente. Si noti che esso è definito da y k (t) = y 0 + f(x, y k 1 (x)) dx, t t f. In mancanza di ragioni particolari che consiglino scelte diverse, si pone y 0 (t) y 0 per iniziale il processo iterativo. Vale la pena di notare che, in molti casi di utilità pratica, la funzione f che compare in (1.1) non verifica la condizione di Lipschitz che abbiamo supposto in precedenza. In casi del genere l esistenza ed unicità della soluzione non è più garantita su tutto [, t f ], ma si hanno invece teoremi di esistenza ed unicità di carattere locale. Tuttavia, noi ci mettiamo per semplicità nelle ipotesi più restrittive, dato che il nostro scopo è quello di studiare i metodi numerici nelle loro potenzialità generali, lasciando (almeno per il momento) da parte la trattazione di casi particolari e/o casi in cui vengono a mancare certe condizioni di regolarità. Dopo aver analizzato sommariamente il problema dell esistenza ed unicità di soluzioni, passiamo a trattare brevemente quello della dipendenza continua dai dati iniziali. Teorema 2 Se la funzione f è continua in entrambe le variabili t e y ed è lipschitziana nel dominio [, t f ] R m rispetto ad y, allora la soluzione di (1.1) e quella del problema { z (t) = f(t, z(t)), t t f z( ) = z 0

6 6 CAPITOLO 1. PROBLEMI INIZIALI PER ODE corrispondente ad un altro dato iniziale z 0, verificano la seguente disuguaglianza: y(t) z(t) e L(t ) y 0 z 0, t t f, dove L è la costante di Lipschitz di f. Dimostrazione (è in sostanza la dimostrazione del Lemma di Gronwall) E chiaro che z è soluzione del problema z(t) = z 0 + Pertanto, essendo y soluzione di (1.2), si ha t o f(x, z(x)) dx, t t f. y(t) z(t) y 0 z 0 + y 0 z 0 + L Dunque, posto f(x, y(x)) f(x, z(x)) dx f(x, y(x)) f(x, z(x)) dx. si ottiene ϕ( ) = 0 e ϕ(t) := y(x) z(x) dx, (1.3) ϕ (t) Lϕ(t) y 0 z 0. Posto ancora α(t) := φ (t) Lφ(t), si ha pertanto α(t) y 0 z 0. Ora l equazione differenziale scalare { ϕ (t) Lϕ(t) = α(t), t t f ϕ( ) = 0 ammette come unica soluzione la funzione ϕ(t) = e, quindi, essendo α(t) y 0 z 0, si ha e L(t x) α(x) dx

7 7 ϕ(t) e L(t t0) y 0 z 0 e L(x t0) dx = 1 L y 0 z 0 (e L(t ) 1). Da questo e da (1.3) segue infine: y(t) z(t) = ϕ (t) Lϕ(t) + y 0 z 0 y 0 z 0 e L(t ). CVD Si noti che questo teorema fornisce anche un primo criterio per valutare il condizionamento del problema differenziale (1.1). Sembrerebbe evidente che esso risulti tanto meglio condizionato quanto più piccola è la costante di Lipschitz L. Tuttavia vedremo in seguito, utilizzando la cosiddetta costante di Lipschitz destra, che questa conclusione non è in generale corretta.

Esistenza ed unicità per equazioni differenziali

Esistenza ed unicità per equazioni differenziali Esistenza ed unicità per equazioni differenziali Per concludere queste lezioni sulle equazioni differenziali vogliamo dimostrare il teorema esistenza ed unicità per il problema di Cauchy. Faremo la dimostrazione

Dettagli

SPAZI METRICI COMPLETI

SPAZI METRICI COMPLETI Capitolo 1 SPAZI METRICI COMPLETI Sia dato uno spazio metrico (X, d). Definizione 1.1 Una successione {x n } si dice successione di Cauchy se ε > 0 n 0 n, m n 0 = d(x n x m ) < ε (1.1) Esercizio 1.1 Dimostrare

Dettagli

Equazioni differenziali del primo ordine: casi particolari e teorema di esistenza per il problema di Cauchy

Equazioni differenziali del primo ordine: casi particolari e teorema di esistenza per il problema di Cauchy Equazioni differenziali del primo ordine: casi particolari e teorema di esistenza per il problema di Cauchy 10 maggio 2010 Supponiamo che f(x, y) sia una funzione continua definita in un rettangolo del

Dettagli

Analisi IV - esercizi. G.P.Leonardi 2008

Analisi IV - esercizi. G.P.Leonardi 2008 Analisi IV - esercizi G.P.Leonardi 2008 1 1 Esercizi settimana n.1 1.1 Siano (X, d) e (X, d ) due spazi metrici. Dimostrare che la funzione d : (X X ) (X X ) [0, ) definita da d((x, x ), (y, y )) = d(x,

Dettagli

COMPLETAMENTO DI SPAZI METRICI

COMPLETAMENTO DI SPAZI METRICI COMPLETAMENTO DI SPAZI METRICI 1. Successioni di Cauchy e spazi metrici completi Definizione 1.1. Una successione x n n N a valori in uno spazio metrico X, d si dice di Cauchy se, per ogni ε > 0 esiste

Dettagli

y = f(t, y) y = y y(0) = 0,

y = f(t, y) y = y y(0) = 0, Il teorema di Peano Considerato il problema di Cauchy 1) y = ft, y) y ) = y 0, se il campo vettoriale f è solamente continuo e non localmente lipschitziano nella seconda variabile, la successione delle

Dettagli

1 Equazioni differenziali

1 Equazioni differenziali 1 Equazioni differenziali Definizione 1.1. Un equazione in cui l incognita è una funzione è detta equazione funzionale. Esempio 1.2. Si consideri l equazione F (x, y) = 0 dove F : A R 2 R è una funzione

Dettagli

Il teorema di Ascoli-Arzelà

Il teorema di Ascoli-Arzelà Il teorema di Ascoli-Arzelà Alcuni risultati sugli spazi metrici Spazi metrici (e topologici) compatti Richiamiamo le definizioni di compattezza negli spazi metrici. Sia (X, d) una spazio metrico e sia

Dettagli

Equazioni differenziali ordinarie Alcuni aspetti del problema di Cauchy

Equazioni differenziali ordinarie Alcuni aspetti del problema di Cauchy Equazioni differenziali ordinarie Alcuni aspetti del problema di Cauchy Luca Granieri Dicembre 2004 1 Introduzione Le equazioni differenziali ordinarie nacquero nel settecento come risposta diretta a vari

Dettagli

non solo otteniamo il valore cercato per la validità della (1.4), ma anche che tale valore non dipende da

non solo otteniamo il valore cercato per la validità della (1.4), ma anche che tale valore non dipende da NOTE INTEGRATIVE PER IL CORSO DI ANALISI MATEMATICA 2 ANNO ACCADEMICO 2012/13 NOTE SULLA CONTINUITÀ UNIFORME D.BARTOLUCCI, D.GUIDO Sia f(x) = x 3, x [ 1, 1]. Si ha 1. La continuità uniforme x 3 y 3 = x

Dettagli

EQUAZIONI DIFFERENZIALI Esercizi con soluzione

EQUAZIONI DIFFERENZIALI Esercizi con soluzione EQUAZIONI DIFFERENZIALI Esercizi con soluzione 1. Calcolare l integrale generale delle seguenti equazioni differenziali lineari del primo ordine: (a) y 2y = 1 (b) y + y = e x (c) y 2y = x 2 + x (d) 3y

Dettagli

Il Teorema di Mountain-Pass

Il Teorema di Mountain-Pass Capitolo 4 Il Teorema di Mountain-Pass Descriviamo ora un altro metodo per trovare soluzioni non nulle di alcuni tipi di problemi, per esempio { u = u p 1 u in u = 0 su (4.1) con p > 1, utilizzando dei

Dettagli

Il Teorema di Kakutani

Il Teorema di Kakutani Il Teorema di Kakutani Abbiamo visto, precedentemente, il seguente risultato: 1 Sia X uno spazio di Banach. Se X è separabile, la palla è debolmente compatta. B X = {x X x 1} Il Teorema di Kakutani è un

Dettagli

Analisi II, a.a Soluzioni 1. j j + 1 ; ( 1)j

Analisi II, a.a Soluzioni 1. j j + 1 ; ( 1)j Analisi II, a.a. 7-8 Soluzioni Calcolare le seguenti distanze e norme: (i d (x, y dove x = {x j } e y = {y j } sono le successioni di l definite da x j = ( j, y j = j/(j + ; (ii d (f, g dove f, g sono

Dettagli

Completezza e compattezza

Completezza e compattezza 1 Completezza e compattezza Spazi metrici completi Data una successione x : N X, j x j, una sua sottosuccessione è la composizione x ν, ove ν : N N è strettamente crescente. Data una successione (x j )

Dettagli

I teoremi della funzione inversa e della funzione implicita

I teoremi della funzione inversa e della funzione implicita I teoremi della funzione inversa e della funzione implicita Appunti per il corso di Analisi Matematica 4 G. Mauceri Indice 1 Il teorema della funzione inversa 1 Il teorema della funzione implicita 3 1

Dettagli

Alcuni complementi di teoria dell integrazione.

Alcuni complementi di teoria dell integrazione. Alcuni complementi di teoria dell integrazione. In ciò che segue si suppone di avere uno spazio di misura (,, µ) 1 Sia f una funzione misurabile su un insieme di misura positiva tale che f 0. Se fdµ =

Dettagli

AM2: Tracce delle lezioni- IX Settimana INSIEMI DI LIVELLO, MINIMI VINCOLATI PRINCIPIO DEI MOLTIPLICATORI DI LAGRANGE

AM2: Tracce delle lezioni- IX Settimana INSIEMI DI LIVELLO, MINIMI VINCOLATI PRINCIPIO DEI MOLTIPLICATORI DI LAGRANGE AM2: Tracce delle lezioni- IX Settimana INSIEMI DI LIVELLO, MINIMI VINCOLATI PRINCIPIO DEI MOLTIPLICATORI DI LAGRANGE Sia g C 1 R 2 ), c R. L insieme γ = γ c := {x, y) R 2 : gx, y) = c} si chiama insieme

Dettagli

RACCOLTA DI ESERCIZI PER IL TUTORATO

RACCOLTA DI ESERCIZI PER IL TUTORATO RACCOLTA DI ESERCIZI PER IL TUTORATO GIORGIO STEFANI Vi propongo questi esercizi per rafforzare la vostra preparazione per il corso del Professor Ricci. Se volete controllare l esattezza delle vostre soluzioni,

Dettagli

Soluzione della prova scritta di Analisi Matematica II del 15 Aprile 2009 (Ingegneria Edile e Architettura)

Soluzione della prova scritta di Analisi Matematica II del 15 Aprile 2009 (Ingegneria Edile e Architettura) Soluzione della prova scritta di Analisi Matematica II del 5 Aprile 009 Ingegneria Edile e Architettura x. Calcolare J = ds essendo γ la curva ottenuta intersecando γ + y il cilindro di equazione x + y

Dettagli

Si dimostri che la (*) possiede un unica soluzione (u n ) limitata.

Si dimostri che la (*) possiede un unica soluzione (u n ) limitata. Scuola Normale Superiore, ammissione al IV anno del corso ordinario Prova scritta di Analisi Matematica per Fisica, Informatica, Matematica 26 Agosto 2 Esercizio. Siano (a n ) e (b n ) successioni di numeri

Dettagli

19 Marzo Equazioni differenziali.

19 Marzo Equazioni differenziali. 19 Marzo 2019 Equazioni differenziali. Definizione 1. Si chiama equazione differenziale una relazione che coinvolge una o più derivate di una funzione incognita y(x), la funzione stessa, funzioni di x

Dettagli

Metodi di Iterazione Funzionale

Metodi di Iterazione Funzionale Appunti di Matematica Computazionale Lezione Metodi di Iterazione Funzionale Il problema di calcolare il valore per cui F() = si può sempre trasformare in quello di trovare il punto fisso di una funzione

Dettagli

Equazioni sub-lineari con dati regolari ed irregolari

Equazioni sub-lineari con dati regolari ed irregolari Capitolo 5 Equazioni sub-lineari con dati regolari ed irregolari In questo capitolo, ci proponiamo di affrontare un problema omogeneo differente dal problema agli autovalori; il nostro scopo, sarà quello

Dettagli

Equazioni differenziali ordinarie

Equazioni differenziali ordinarie Equazioni differenziali ordinarie Denis Nardin January 2, 2010 1 Equazioni differenziali In questa sezione considereremo le proprietà delle soluzioni del problema di Cauchy. Da adesso in poi (PC) indicherà

Dettagli

ESERCIZI DI EQUAZIONI DIFFERENZIALI - FOGLIO N. 4

ESERCIZI DI EQUAZIONI DIFFERENZIALI - FOGLIO N. 4 ESERCIZI DI EQUAZIONI DIFFERENZIALI - FOGLIO N. 4 CDL IN MATEMATICA, A.A. /3 (A. MALUSA) Esercizio. Sia f C(A, R n ), A R R n aperto. Dimostrare che le iterate di Picard relative al problema di Cauchy

Dettagli

CORSO DI ANALISI MATEMATICA 2 SOLUZIONI ESERCIZI PROPOSTI 18/03/2013

CORSO DI ANALISI MATEMATICA 2 SOLUZIONI ESERCIZI PROPOSTI 18/03/2013 CORSO DI ANALISI MATEMATICA SOLUZIONI ESERCIZI PROPOSTI 8/03/03 D.BARTOLUCCI, D.GUIDO. La continuità uniforme I ESERCIZIO: Dimostrare che la funzione f(x) = x 3, x A = (, ] non è uniformemente continua

Dettagli

Il problema di Cauchy

Il problema di Cauchy Sia I = [t 0, t 0 + T ] con 0 < T < +. Sia f (t, y) una funzione assegnata definita in I R continua rispetto ad entrambe le variabili. Si trata di determinare una funzione y C 1 (I ) soluzione di { y (t)

Dettagli

3 La curva di Peano. insieme di misura nulla in R m. Definiamo, ora,

3 La curva di Peano. insieme di misura nulla in R m. Definiamo, ora, Versione del 5/0/04 3 La curva di Peano Proposizione (a) Sia f : A R n R m con n < m. Se f è una funzione lipschitziana, allora f(a) è un insieme di misura nulla in R m. (b) Esiste una funzione ϕ C ( [0,

Dettagli

Dimostrazione. Indichiamo con α e β (finiti o infiniti) gli estremi dell intervallo I. Poniamo

Dimostrazione. Indichiamo con α e β (finiti o infiniti) gli estremi dell intervallo I. Poniamo C.6 Funzioni continue Pag. 114 Dimostrazione del Corollario 4.25 Corollario 4.25 Sia f continua in un intervallo I. Supponiamo che f ammetta, per x tendente a ciascuno degli estremi dell intervallo, iti

Dettagli

Analisi Matematica 2. Michele Campiti. Prove scritte di. Ingegneria Industriale a.a

Analisi Matematica 2. Michele Campiti. Prove scritte di. Ingegneria Industriale a.a Michele Campiti Prove scritte di Analisi Matematica 2 Ingegneria Industriale a.a. 20 202 Grafico della funzione f(x, y) := sin(2x 2 y) cos(x 2y 2 ) in [ π/2, π/2] 2 Raccolta delle tracce di Analisi Matematica

Dettagli

Funzioni implicite - Esercizi svolti

Funzioni implicite - Esercizi svolti Funzioni implicite - Esercizi svolti Esercizio. È data la funzione di due variabili F (x, y) = y(e y + x) log x. Verificare che esiste un intorno I in R del punto di ascissa x 0 = sul quale è definita

Dettagli

5.3 Alcune classi di funzioni integrabili

5.3 Alcune classi di funzioni integrabili 3. Si verifichi che per ogni f, g : [a, b] R si ha f g = g + (f g) 0, f g = f + g f g; dedurne che se f, g R(a, b) allora f g, f g R(a, b). [Traccia: si osservi che basta verificare che f 0 R(a, b), e

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Laurea in Ingegneria Gestionale Sede di Fermo Corso di 9 - EQUAZIONI DIFFERENZIALI ORDINARIE valori iniziali Valori iniziali Ci occuperemo della soluzione numerica di equazioni del prim ordine

Dettagli

Cognome: Nome: Matricola: a. Si enunci e dimostri il teorema della media integrale per funzioni continue. (5 punti)

Cognome: Nome: Matricola: a. Si enunci e dimostri il teorema della media integrale per funzioni continue. (5 punti) Analisi e Geometria Seconda Prova 3 gennaio 207 Docente: Politecnico di Milano Scuola di Ingegneria Industriale e dell Informazione Cognome: Nome: Matricola: a. Si enunci e dimostri il teorema della media

Dettagli

Convergenza di martingale - La convergenza in L p, p > 1 equivale alla limitatezza in L p : disuguaglianza per submg non negative; disuguaglianza di

Convergenza di martingale - La convergenza in L p, p > 1 equivale alla limitatezza in L p : disuguaglianza per submg non negative; disuguaglianza di 1. martedì 10 marzo Convergenza di martingale - La convergenza in L p, p > 1 equivale alla limitatezza in L p : disuguaglianza per submg non negative; disuguaglianza di Doob; una mg è L p limitata se e

Dettagli

1. Generalità sulle equazioni differenziali ordinarie

1. Generalità sulle equazioni differenziali ordinarie 1. Generalità sulle equazioni differenziali ordinarie Un equazione differenziale ordinaria è una relazione funzionale che lega fra loro la variabile indipendente x, la variabile dipendente y e le derivate

Dettagli

Analisi 2. Roberto Monti. Appunti del Corso - Versione 5 Ottobre 2012

Analisi 2. Roberto Monti. Appunti del Corso - Versione 5 Ottobre 2012 Analisi 2 Roberto Monti Appunti del Corso - Versione 5 Ottobre 212 Indice Capitolo 1. Programma 5 Capitolo 2. Convergenza uniforme 7 1. Convergenza uniforme e continuità 7 2. Criterio di Abel Dirichlet

Dettagli

Università degli Studi di Padova. Equazioni Differenziali Ordinarie

Università degli Studi di Padova. Equazioni Differenziali Ordinarie Università degli Studi di Padova Dipartimento di Matematica Corso di Laurea in Matematica Equazioni Differenziali Ordinarie Dal Teorema di Cauchy Lipschitz alle teorie di DiPerna Lions e Crippa De Lellis

Dettagli

CALCOLO NUMERICO Laurea di base in Ingegneria Elettronica e delle Comunicazioni

CALCOLO NUMERICO Laurea di base in Ingegneria Elettronica e delle Comunicazioni CALCOLO NUMERICO Laurea di base in Ingegneria Elettronica e delle Comunicazioni Prof. ssa Laura Pezza (A.A. 2017-2018) XXXII Lezione del 21.05.2018 http://www.dmmm.uniroma1.it/ laura.pezza 1 1. Metodo

Dettagli

Corso di Analisi Numerica

Corso di Analisi Numerica Corso di Laurea in Ingegneria Informatica Corso di Analisi Numerica 9 - EQUAZIONI DIFFERENZIALI ORDINARIE Lucio Demeio Dipartimento di Scienze Matematiche 1 Problemi ai Valori Iniziali: metodo di Eulero

Dettagli

Funzioni implicite e teorema del Dini

Funzioni implicite e teorema del Dini Funzioni implicite e teorema del Dini Il succo dell argomento può essere presentato così. Sia f una funzione a valori reali, definita in un aperto G del piano euclideo R 2 e sufficientemente buona; consideriamo

Dettagli

ESERCIZI DI ANALISI FUNZIONALE. T(f) = g(x)f(x)dx

ESERCIZI DI ANALISI FUNZIONALE. T(f) = g(x)f(x)dx ESERCIZI DI ANALISI FUNZIONALE.. Esercizi svolti.. Operatori lineari Esercizio.. Si consideri il funzionale T : C(,) R, dove g è la funzione g(x) = T(f) = g(x)f(x) dx, { se < x se < x < () Dimostrare che

Dettagli

Alcune nozioni di calcolo differenziale

Alcune nozioni di calcolo differenziale Alcune nozioni di calcolo differenziale G. Mastroeni, M. Pappalardo 1 Limiti per funzioni di piu variabili Supporremo noti i principali concetti algebrici e topologici relativi alla struttura dello spazio

Dettagli

Capitolo 3. Equazioni differenziali ordinarie

Capitolo 3. Equazioni differenziali ordinarie 10. problema di Cauchy: esistenza e unicità della soluzione 79 Capitolo 3. Equazioni differenziali ordinarie 10. Problema di Cauchy: esistenza e unicità della soluzione 10.1. Introduzione. Nel capitolo

Dettagli

Analisi Matematica 3/Analisi 4 - SOLUZIONI (20/01/2016)

Analisi Matematica 3/Analisi 4 - SOLUZIONI (20/01/2016) Corso di Laurea in Matematica Docente: Claudia Anedda Analisi Matematica 3/Analisi 4 - SOLUZIONI (//6) ) i) Dopo averla classificata, risolvere l equazione differenziale tẋ x = t cos(t), t >. ii) Scrivere

Dettagli

Successioni numeriche

Successioni numeriche Successioni numeriche Hynek Kovarik Università di Brescia Analisi A Hynek Kovarik (Università di Brescia) Successioni Analisi A 1 / 35 Definizione Una successione a valori reali è una funzione f : N R

Dettagli

Esercizi di riepilogo 2: soluzioni ( Verifica di analisi funzionale e serie di Fourier)

Esercizi di riepilogo 2: soluzioni ( Verifica di analisi funzionale e serie di Fourier) Esercizi di riepilogo 2: soluzioni ( Verifica di analisi funzionale e serie di Fourier) Spazi Vettoriali e Funzionali 1. Risposte: (a) Spazio vettoriale complesso. (b) Spazio vettoriale reale. (c) Non

Dettagli

Raccolta di Esercizi d esame ( di Calcolo Numerico) Prof. Laura Pezza. Equazioni non lineari

Raccolta di Esercizi d esame ( di Calcolo Numerico) Prof. Laura Pezza. Equazioni non lineari Raccolta di Esercizi d esame ( di Calcolo Numerico) Prof. Laura Pezza Equazioni non lineari ESERCIZIO 1 Data l equazione ln(e + x) = 1 (1 + 4x) + 1 2 1.1 verificare analiticamente se sono soddisfatte le

Dettagli

Sia assegnata la seguente equazione differenziale con condizione iniziale

Sia assegnata la seguente equazione differenziale con condizione iniziale Capitolo 2 METODI A UN PASSO PER ODE Sia assegnata la seguente equazione differenziale con condizione iniziale { y (t) = f(t, y(t)) y(t 0 ) = y 0 (2.1) dove y : [t 0, t f ] R, f : [t 0, t f ] R m R m e

Dettagli

FM1 - Equazioni differenziali e meccanica

FM1 - Equazioni differenziali e meccanica Corso di laurea in Matematica - Anno Accademico 2006/2007 FM1 - Equazioni differenziali e meccanica Prima prova d esonero (03-04-2006) CORREZIONE Esercizio 1. Lo spettro Σ(A) della matrice A si trova risolvendo

Dettagli

COMPATTEZZA. i) X è compatto, cioè ogni ricoprimento aperto ammette un sottoricoprimento finito.

COMPATTEZZA. i) X è compatto, cioè ogni ricoprimento aperto ammette un sottoricoprimento finito. 1 COMPATTEZZA Sia X un sottoinsieme di R. Una famiglia A di sottoinsiemi aperti di R si dice ricoprimento aperto di X se X A, cioè se X è contenuto nell unione degli elementi di A. Una sottofamiglia di

Dettagli

ESERCIZI DI ANALISI MATEMATICA II. sin(tv) v. f(v) dv = (1 + t) (e 1/t + 1)

ESERCIZI DI ANALISI MATEMATICA II. sin(tv) v. f(v) dv = (1 + t) (e 1/t + 1) ESERCIZI DI ANALISI MATEMATICA II Equazioni differenziali ED 1 Stabilire se l equazione integrale f(t) 1/2 0 sin(tv) v f(v) dv = (1 + t) (e 1/t + 1) ammette una soluzione nello spazio C([0, 1/2]). (Suggerimento:

Dettagli

Daniela Lera A.A

Daniela Lera A.A Daniela Lera Università degli Studi di Cagliari Dipartimento di Matematica e Informatica A.A. 2014-2015 Equazioni Differenziali Si consideri il seguente problema: Quali sono le curve y = f (x) del piano

Dettagli

0.1 Arco di curva regolare

0.1 Arco di curva regolare .1. ARCO DI CURVA REGOLARE 1.1 Arco di curva regolare Se RC(O, i, j, k ) è un riferimento cartesiano fissato per lo spazio euclideo E, e se v (t) = x(t) i + y(t) j + z(t) k è una funzione a valori vettoriali

Dettagli

3 Introduzione al problema semi-lineare

3 Introduzione al problema semi-lineare 3 Introduzione al problema semi-lineare 3.1 Il problema periodico Studiamo il problema (P ) { x + g(t, x) =, x() = x(t ), x () = x (T ), dove g : [, T ] R R è una funzione continua. Consideriamo lo spazio

Dettagli

AM210/ : Tracce delle lezioni- Settimana XII

AM210/ : Tracce delle lezioni- Settimana XII AM21/214-15: Tracce delle lezioni- Settimana XII SPAZI METRICI ED IL TEOREMA DELLE CONTRAZIONI Spazi metrici completi, spazi di Banach Una successione x n in uno spazio metrico (X, d) si dice di Cauchy

Dettagli

Prova scritta di Analisi Matematica III

Prova scritta di Analisi Matematica III 18 luglio 2016 f n (x) = 1 n e (x n)2 (x R, n N ). 2. Si scriva la disuguaglianza di Bessel per la funzione f, periodica di periodo 2π, tale che 0 x [ π, 0) f (x) = 2 x x [0, π). 3. Si consideri l equazione

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Laurea in Ingegneria Gestionale Sede di Fermo Corso di 8 - METODI ITERATIVI PER I SISTEMI LINEARI Norme Una norma in R n è una funzione. : R n R tale che x 0 x R n ; x = 0 x = 0; αx = α x ; x

Dettagli

Programma di Analisi Matematica 2

Programma di Analisi Matematica 2 Programma di Analisi Matematica 2 Corso di Laurea in Matematica A.A. 2017/18 1. Integrali impropri del primo tipo 2. Integrali impropri del secondo tipo 3. Teorema del confronto per gli integrali impropri

Dettagli

12. Teoria qualitativa

12. Teoria qualitativa 12. Teoria qualitativa Si esaminano le conizioni i regolarità per un campo vettoriale, che garantiscono esistenza e unicità ella soluzione per l equazione ifferenziale associata. La conizione i Lipschitz,

Dettagli

3. Successioni di insiemi.

3. Successioni di insiemi. 3. Successioni di insiemi. Per evitare incongruenze supponiamo, in questo capitolo, che tutti gli insiemi considerati siano sottoinsiemi di un dato insieme S (l insieme ambiente ). Quando occorrerà considerare

Dettagli

ANALISI 1 1 QUINTA LEZIONE

ANALISI 1 1 QUINTA LEZIONE ANALISI 1 1 QUINTA LEZIONE 1 prof. Claudio Saccon, Dipartimento di Matematica Applicata, Via F. Buonarroti 1/C email: saccon@mail.dm.unipi.it web: http://www2.ing.unipi.it/ d6081/index.html Ricevimento:

Dettagli

Principali differenze tra la ristampa 2014 e l edizione 2008

Principali differenze tra la ristampa 2014 e l edizione 2008 Principali differenze tra la ristampa 214 e l edizione 28 Di seguito sono riportate le principali modifiche apportate al testo dell edizione 28 con la ristampa riveduta e corretta del 214. Si avverte il

Dettagli

Serie e Trasformata di Fourier

Serie e Trasformata di Fourier Serie e Trasformata di Fourier Corso di Analisi Funzionale Prof. Paolo Nistri Cancelli, D Angelo, Giannetti Polinomio di Fourier Si consideri la successione costituita dalle restrizioni delle funzioni

Dettagli

Massimi e minimi assoluti vincolati: esercizi svolti

Massimi e minimi assoluti vincolati: esercizi svolti Massimi e minimi assoluti vincolati: esercizi svolti Gli esercizi contrassegnati con il simbolo * presentano un grado di difficoltà maggiore. Esercizio 1. Determinare i punti di massimo e minimo assoluti

Dettagli

9.2 Il problema di Cauchy per le equazioni differenziali del primo ordine

9.2 Il problema di Cauchy per le equazioni differenziali del primo ordine 9.2 Il problema di Cauchy per le equazioni differenziali del primo ordine 349 y = f(y, x), (9.23) allora la sostituzione z = y conduce all equazione del primo ordine z = f(z, x) nell incognita z = z(x).

Dettagli

LEZIONE 13. f + g: I R n

LEZIONE 13. f + g: I R n LEZINE 13 13.1. Funzioni a valori in R n. Ricordiamo che gli elementi R n sono le n uple ordinate ( 1,..., n ) di numeri reali. Se = ( 1,..., n ) R n e α R, poniamo + = ( 1 + 1,..., n + n ), α = (α 1,...,

Dettagli

Equazione di Laplace

Equazione di Laplace Equazione di Laplace. Introduzione Si da il nome di operatore di Laplace o laplaciano all operatore differenziale u = u xx + u yy + u zz in tre dimensioni, o agli analoghi in dimensioni diverse. L operatore

Dettagli

Sistemi di erenziali in IR N

Sistemi di erenziali in IR N Capitolo 2 Sistemi di erenziali in IR N 2.1 Il problema di Cauchy Consideriamo una regione, ovvero un aperto connesso IR N+1 ed un applicazione F 2 C 0 (, IR N ). Indichiamo con X(t) una funzione di classe

Dettagli

8. Completamento di uno spazio di misura.

8. Completamento di uno spazio di misura. 8. Completamento di uno spazio di misura. 8.1. Spazi di misura. Spazi di misura completi. Definizione 8.1.1. (Spazio misurabile). Si chiama spazio misurabile ogni coppia ordinata (Ω, A), dove Ω è un insieme

Dettagli

Analisi Matematica II

Analisi Matematica II Corso di Laurea in Matematica Analisi Matematica II Esercizi sugli spazi metrici, normati, iti e continuità Versione del 27/0/206 Esercizi di base Esercizio. (Giusti 20. Dire se le seguenti funzioni sono

Dettagli

Es. 1 Es. 2 Es. 3 Es. 4 Totale Teoria

Es. 1 Es. 2 Es. 3 Es. 4 Totale Teoria Es. Es. Es. 3 Es. 4 Totale Teoria Analisi e Geometria Docente: Politecnico di Milano Ingegneria Industriale 5 Settembre Compito A Cognome: Nome: Matricola: Punteggi degli esercizi: Es.: 6 punti; Es.: punti;

Dettagli

Politecnico di Milano Corso di Analisi e Geometria 1. Federico Lastaria Formule di Taylor Ottobre 2012

Politecnico di Milano Corso di Analisi e Geometria 1. Federico Lastaria Formule di Taylor Ottobre 2012 Politecnico di Milano Corso di Analisi e Geometria 1 Federico Lastaria federico.lastaria@polimi.it Formule di Taylor Ottobre 2012 Indice 1 Formule di Taylor 1 1.1 Il polinomio di Taylor...............................

Dettagli

Scritto d esame di Analisi Matematica

Scritto d esame di Analisi Matematica 116 Prove d Esame di Analisi Matematica Versione 2006 Pisa, 15 Gennaio 2000 x 0 sin x 4 x 4 (arctan x x) 4. 2. eterminare, al variare del parametro λ R, il numero di soluzioni dell equazione 2x 2 = λe

Dettagli

Dispense sulla distanza di Hausdorff

Dispense sulla distanza di Hausdorff Dispense sulla distanza di Hausdorff Fabio Ferri Giada Franz Federico Glaudo 23 aprile 2014 Sommario In questo documento studieremo le proprietà della distanza di Hausdorff, la naturale distanza indotta

Dettagli

DOMANDE D ESAME (tempo a disposizione per due domande: 1 ora)

DOMANDE D ESAME (tempo a disposizione per due domande: 1 ora) DOMANDE D ESAME (tempo a disposizione per due domande: 1 ora) 1. Equazione del trasporto omogenea su R: esistenza, unicità e stabilità. Si consideri il problema u t + 3u x =, u(x, ) = cos(2πx). Si ha u(x,

Dettagli

B Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica)

B Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) COGNOME NOME Matr. B Firma dello studente Tempo: ore. Prima parte: test a risposta multipla. Una ed una sola delle 4 affermazioni è corretta. Indicatela con una croce. È consentita una sola correzione

Dettagli

A Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica)

A Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) COGNOME NOME Matr. A Firma dello studente Tempo: ore. Prima parte: test a risposta multipla. Una ed una sola delle 4 affermazioni è corretta. Indicatela con una croce. È consentita una sola correzione

Dettagli

Soluzioni dello scritto di Analisi Matematica II - 10/07/09. C.L. in Matematica e Matematica per le Applicazioni

Soluzioni dello scritto di Analisi Matematica II - 10/07/09. C.L. in Matematica e Matematica per le Applicazioni Soluzioni dello scritto di Analisi Matematica II - /7/9 C.L. in Matematica e Matematica per le Applicazioni Proff. K. Payne, C. Tarsi, M. Calanchi Esercizio. a La funzione f è limitata e essendo lim fx

Dettagli

Simmetrie e reversibilità

Simmetrie e reversibilità Capitolo 6 Simmetrie e reversibilità Come nello studio del grafico di una funzione, una simmetria elementare (funzione pari, dispari o periodica) permette di ridurre l analisi ad una opportuna porzione

Dettagli

La determinazione delle radici in forma chiusa non è sempre possibile (già per polinomi di ordine 5 non è generalmente possibile).

La determinazione delle radici in forma chiusa non è sempre possibile (già per polinomi di ordine 5 non è generalmente possibile). SOLUZIONE DI EQUAZIONI NON-LINEARI Molti problemi sono espressi nella forma f(x) = 0 con f(x) funzione non lineare (es. log(x 2 + a) + b cos x = 0, x 5 + ax 3 + b = 0) La determinazione delle radici in

Dettagli

Un intervallo di numeri reali è un sottoinsieme I R tale che. è l estremità superiore. Si vede facilmente che I contiene x R ; a(i) < x < b(i)

Un intervallo di numeri reali è un sottoinsieme I R tale che. è l estremità superiore. Si vede facilmente che I contiene x R ; a(i) < x < b(i) ed è contenuto in {x R ; a(i) x b(i) }. Sulla continuità uniforma: Un intervallo di numeri reali è un sottoinsieme I R tale che Per un intervallo I I x 1 x x 2 I = x I. a(i) = inf x (appartenente a R o

Dettagli

Le derivate parziali

Le derivate parziali Sia f(x, y) una funzione definita in un insieme aperto A R 2 e sia P 0 = x 0, y 0 un punto di A. Essendo A un aperto, esiste un intorno I(P 0, δ) A. Preso un punto P(x, y) I(P 0, δ), P P 0, possiamo definire

Dettagli

Università degli Studi di Firenze Anno Accademico 2006/2007 Ingegneria per la Tutela dell Ambiente e del Territorio (Laurea Specialistica)

Università degli Studi di Firenze Anno Accademico 2006/2007 Ingegneria per la Tutela dell Ambiente e del Territorio (Laurea Specialistica) Università degli Studi di Firenze Anno Accademico 2006/2007 Ingegneria per la Tutela dell Ambiente e del Territorio (Laurea Specialistica) Corso Complementi di Analisi Matematica Docente del corso: Francesca

Dettagli

ESERCIZI DI ANALISI MATEMATICA 1

ESERCIZI DI ANALISI MATEMATICA 1 ESERCIZI DI ANALISI MATEMATICA 1 GRAZIANO CRASTA 1. SPAZI METRICI Esercizio 1.1. ([2, Ex. 2.11]) Stabilire quali fra le seguenti funzioni sono metriche in R. d 1 (x, y) = (x y) 2, d 2 (x, y) = x y, d 3

Dettagli

CALCOLO NUMERICO Laurea di base in Ingegneria Elettronica e delle Comunicazioni

CALCOLO NUMERICO Laurea di base in Ingegneria Elettronica e delle Comunicazioni CALCOLO NUMERICO Laurea di base in Ingegneria Elettronica e delle Comunicazioni Prof. ssa Laura Pezza (A.A. 2017-2018) XXVIII Lezione del 15.05.2018 http://www.dmmm.uniroma1.it/ laura.pezza 1 1. Metodo

Dettagli

ANALISI C & Complementi di Analisi Matematica di Base. Prova scritta del 23 gennaio 2007

ANALISI C & Complementi di Analisi Matematica di Base. Prova scritta del 23 gennaio 2007 Prova scritta del 23 gennaio 2007 Esercizio 1. Sia f : R R una funzione misurabile e non negativa; si consideri la successione di funzioni f n (x) = max3f(x) 2n, 0}, x R, n N. Provare che se f è integrabile

Dettagli

Funzioni vettoriali di variabile scalare

Funzioni vettoriali di variabile scalare Capitolo 11 Funzioni vettoriali di variabile scalare 11.1 Curve in R n Abbiamo visto (capitolo 2) come la posizione di un punto in uno spazio R n sia individuata mediante le n coordinate di quel punto.

Dettagli

1 Successioni di funzioni

1 Successioni di funzioni Successioni di Esercizio.. Studiare la convergenza puntuale ed uniforme della seguente successione di (.) f n (x) = n x Osserviamo che fissato x R f n(x) = + n x x R. x ( n + x ) = pertanto la successione

Dettagli

Funzioni di n variabili a valori vettoriali

Funzioni di n variabili a valori vettoriali Funzioni di n variabili a valori vettoriali Ultimo aggiornamento: 22 maggio 2018 1 Differenziale per funzioni da R n in R k Una funzione F : A R n R k può essere vista come una k-upla di funzioni scalari

Dettagli

NOTE DI ALGEBRA LINEARE v = a 1 v a n v n, w = b 1 v b n v n

NOTE DI ALGEBRA LINEARE v = a 1 v a n v n, w = b 1 v b n v n NOTE DI ALGEBRA LINEARE 2- MM 9 NOVEMBRE 2 Combinazioni lineari e generatori Sia K un campo e V uno spazio vettoriale su K Siano v,, v n vettori in V Definizione Un vettore v V si dice combinazione lineare

Dettagli

Appunti di ANALISI MATEMATICA II Corso di Laurea Triennale in Matematica

Appunti di ANALISI MATEMATICA II Corso di Laurea Triennale in Matematica Appunti di ANALISI MATEMATICA II Corso di Laurea Triennale in Matematica Umberto Massari Anno accademico 3-4 SUCCESSIONI E SERIE DI FUNZIONI. Successioni di funzioni: convergenza puntuale ed uniforme Sia

Dettagli

Università degli Studi di Udine Anno Accademico 2016/2017

Università degli Studi di Udine Anno Accademico 2016/2017 Università degli Studi di Udine Anno Accademico 2016/2017 Dipartimento di Scienze Matematiche, Informatiche e Fisiche Corso di Laurea in Matematica Programma del Analisi Matematica II primo modulo e parte

Dettagli

PROVE SCRITTE DI ANALISI MATEMATICA II (V.O.), ANNO 2002

PROVE SCRITTE DI ANALISI MATEMATICA II (V.O.), ANNO 2002 PROVE SCRITTE DI ANALISI MATEMATICA II (V.O.), ANNO 22 Prova scritta del 1/1/22 Si esamini la serie di funzioni: 1 log x (e n + n), definita per x IR. Si determini l insieme S in cui tale serie converge,

Dettagli

Dipendenza continua. A. Figà Talamanca

Dipendenza continua. A. Figà Talamanca Dipendenza continua A. Figà Talamanca 1 giugno 2005 2 Abbiamo dimostrato che, nell ipotesi che f (x, y) sia una funzione continua, limitata in valore assoluto da M, nel rettangolo x a, y y 0 b, e nell

Dettagli

Topologia, continuità, limiti in R n

Topologia, continuità, limiti in R n Topologia, continuità, limiti in R n Ultimo aggiornamento: 18 febbraio 2017 1. Preliminari Prima di iniziare lo studio delle funzioni di più variabili, in generale funzioni di k variabili e a valori in

Dettagli

CALCOLO NUMERICO Prof. L. Gori Prova d esame

CALCOLO NUMERICO Prof. L. Gori Prova d esame CALCOLO NUMERICO Prof. L. Gori Prova d esame 2-7-998 ESERCIZIO. Data la seguente formula di quadratura: f(x)dx = ( ) 3 3 2 f + Af( x) + R 6 0 (.) Determinare A e x in modo che il grado di precisione sia.

Dettagli

Si definisce equazione differenziale ordinaria del primo ordine in forma normale un espressione del tipo

Si definisce equazione differenziale ordinaria del primo ordine in forma normale un espressione del tipo Capitolo 1 EQUAZIONI DIFFERENZIALI ORDINARIE Si definisce equazione differenziale ordinaria del primo ordine in forma normale un espressione del tipo y = f(x, y) con f : D R ove D R 2. Risolvere un equazione

Dettagli