Pumping lemma per i linguaggi Context-free

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Pumping lemma per i linguaggi Context-free"

Transcript

1 Pumping lemma per i linguaggi Context-free Sia L un linguaggio context-free. E possibile determinare una costante k, dipendente da L, tale che qualunque stringa z! L con z > k si può esprimere come z= u v w x y in cui: 1. v w x! k 2. v + x > 0 3. u v i w x i y! L per i " 0 Es1: mostrare che il linguaggio L = {a n b n c n con n " 0 } non è context-free Es2: mostrare che il linguaggio L = {a m2 m " 1 } non è context-free

2 Pumping lemma per i linguaggi Context-free Per la dimostrazione del Pumping Lemma si fa uso delle grammatiche in forma normale di Chomsky, per le grammatiche in tale forma si ha che ogni nodo interno ha due figli, ad esclusione di quelli che hanno foglie come sottoalberi. Lemma - Sia w una stringa terminale prodotta dall albero sintattico se h è l altezza dell albero si ha che w! 2 h-1 Si consideri ora una grammatica G = < VN,VT,P, S > tale che L(G) = L-{#} e sia m = VN, si sceglie k= 2 m e quindi per le condizioni poste dal pumping lemma la stringa z sarà lunga almeno k. Per il lemma precedente un albero sintattico il cui cammino più lungo sia di lunghezza m, o meno, ha un prodotto di lunghezza 2 m-1 = k/2 o meno. Un tale albero sintattico non può quindi produrre la stringa z, cioé ogni albero sintattico che produce z deve essere di altezza almeno pari a m+1. Ora, essendo m = V N, si ha che nel percorso dalla radice alle foglie ci saranno almeno due simboli non terminali uguali (per il principio della piccionaia). Supponiamo che A = Ai = Aj

3 Pumping lemma per i linguaggi Context-free L albero di derivazione avrà la seguente struttura dove ciascun triangolo rappresenta il sottoalbero generante le varie parti della stringa. Essendo che A = A i = A j possiamo costruire altri alberi sintattici tramite sostituzione a partire dall albero originale. A A S A S A S A u v w x y z u v A x y w v w x u x albero di derivazione per la stringa uv 2 wx 2 y albero di derivazione per la stringa uwy

4 Proprietà di chiusura dei linguaggi Context-free Teorema: I linguaggi context-free non sono chiusi rispetto all intersezione e alla complementazione Intersezione considerato che i due linguaggi L 1 = {a n b n c m n,m" 0} e L 2 = {a m b n c n n,m" 0} sono context free, il linguaggio intersezione è costituito da {a n b n c n n,m" 0} che sappiamo non essere contextfree. Complementazione Se L 1 e L 2 sono context free allora anche L = L dovrebbe essere context free in virtù 1 # L 2 dei risultati sulla unione, ma siccome per la legge di De Morgan L= L 1 " L 2 questo equivarrebbe a dire che i linguaggi context-free sono chiusi rispetto all intersezione, contrariamente a quanto detto prima. Tuttavia L intersezione di un linguaggio Context-free ed un linguaggio regolare è ancora un linguaggio context-free

5 Determinismo e linguaggi context-free Un automa a pila è in genere non deterministico. Il non determinismo viene espresso da una o entrambe delle seguenti condizioni: 1. esistono più transizioni del tipo che iniziano con (q, a, A) 2. (q,a,a) e (q,$,a) sono entrambe definite, cioè l automa può scegliere di leggere il simbolo a $ oppure di non leggere niente. A differenza del caso delle grammatiche regolari in cui il non determinismo non aggiungeva potere computazionale all automa riconoscitore. L automa a Pila non deterministico è computazionalmente più potente dell automa deterministico. Ciò in virtù del seguente Teorema: Teorema: La famiglia dei linguaggi riconosciuta dagli automi a pila deterministici è contenuta strettamente in quella dei linguaggi context- free. Per dimostrarlo basta considerare la classe dei linguaggi inerentemente ambigui (cioé ogni grammatica equivalente è ambigua) per cui necessariamente l automa riconoscitore è non deterministico. Es. L = {a n b n c* n "0 } # {a* b n c n n "0 } è un linguaggio Context free inerentemente ambiguo e quindi non riconoscibile da un automa a pila deterministico

6 Determinismo e linguaggi context-free Si dimostra anche che esistono linguaggi non ambigui che sono non deterministici Es1: L = L # L = {a n b n n "1 } # {a n b 2n n "1} è non deterministico intuitivamente l automa dovrebbe collocare nella pila i primi n caratteri a e cominciare a disimpilare un a appena trova il primo b se la stringa! L, mentre se la stringa! L sono due i b che devono essere letti prima di disimpilare un a. Es2: il linguaggio L = {w w R } è non deterministico.

7 Proprietà di chiusura dei linguaggi deterministici La classe dei linguaggi deterministici è chiusa rispetto alla complementazione. La classe dei linguaggi deterministici non è chiusa rispetto all unione l esempio 1 della precedente slide $$ L = L # L = {a n b n n "1 } # {a n b 2n n "1} ne è un esempio, infatti a partire da due linguaggi deterministici si costruisce con la loro unione un linguaggio non deterministico. La classe dei linguaggi deterministici non è chiusa rispetto all intersezione. Es: L = L 1 " L 2 = {a n b n c* n "0 } " {a* b n c n n "0 } = {a n b n c n n "0 } dove L 1, L 2 sono certamente linguaggi deterministici

8 Analisi sintattica Obiettivi! verificare la correttezza sintattica del programma dato in ingresso! costruire l albero sintattico Strategie! top down (discendente), si parte dal simbolo distinto e si cerca di applicare in qualche! ordine le produzioni in modo da verificare se la stringa x è generabile dalla grammatica. Cioé!!! S!* x! Bottom-up, si parte dalla stringa x, si cerca una sottostringa che sia parte destra di una!! produzione e la si sostituisce con la corrispondente parte sinistra. Questa operazione viene denominata di Riduzione e viene iterata fino a quando la stringa non si riduce al simbolo distinto S.

9 Un cenno sui riconoscitori top-down Un riconoscitore sintattico top-down basato su grammatiche LL(k) implementa un automa a pila push-down che attua un riconoscimento per pila vuota. In genere gli automi che vengono impiegati fanno riferimento all uso di una marca di fine stringa $. Per ottenere il determinismo si sfrutta la conoscenza che proviene dall avere sotto considerazione la stringa in ingresso. In caso di indecisione di quale transizione attuare si considerano i prossimi k simboli che l automa dovrà leggere per prendere le opportune decisioni.

10 Derivazioni Canoniche E! E + T E - T -T T T! T * F F! F! (E) i E "* a + b*c? Derivazione canonica sinistra [sostituzione del primo simbolo non terminale a sinistra] E" E +T "T + T " F + T" i + T" i + T*F " i + F*F "i+ i*f " i +i*i Derivazione canonica a destra [sostituzione del primo simbolo non terminale a destra] E " E + T" E + T*F " E +T*i " E + F*i " E + i*i "T + i*i " F + i*i" i + i*i E E + T Albero sintattico risultante T F T * F i F i i c a b

11 Grammatiche LL(k) Per costruire riconoscitori deterministici occorre agire sulle grammatiche in due direzioni: 1. Porre dei vincoli alla grammatica sì da renderla adatta all analisi top-down. 2. Utilizzare l informazione fornita dai simboli successivi alla parte già riconosciuta per guidare l analizzatore nella scelta della parte destra con cui espandere il simbolo non terminale corrente. Grammatiche LL(K) L - indica che la stringa in ingresso è esaminata da sinistra (Left) verso destra. L - indica che viene costruita la derivazione canonica a sinistra (Left). K - indica il numero di simboli di lookahead che l analizzatore considera per scegliere la parte! destra con cui espandere il simbolo non terminale corrente.

12 Regole euristiche L approccio di traguardare un certo numero di simboli per prendere una decisione in merito alla sostituzione della parte destra impone una trasformazione della grammatica mediante regole euristiche. 1. Fattorizzazione sinistra per far sì che non si abbia un prefisso comune in due o più parti destre! di regole associate allo stesso simbolo non terminale. A! y v y w A! y A A! v w 2. Eliminazione della ricorsione sinistra per evitare la generazione di cicli infiniti di! generazione all applicazione della derivazione canonica a sinistra! E " E + T " E + T +T " E + T + T + T "...

13 Eliminazione della ricorsione sinistra E! E + T E - T -T T T! T * F F! F! (E) i Una regola del tipo Y! Yx implica necessariamente l esistenza di una regola Y!v dove Y non è un prefisso di v. Ciò per far sì che il linguaggio generato sia non vuoto. si ha allora: Y! Yx! Y! v Y! v Y Y! x Y Y! # E facile vedere come i due schemi generino lo stesso linguaggio Y " Yx "Y x x" Y x x x " v x x x Y " vy "v x Y " v x x Y " v x x x

14 Esempio Nella grammatica vista in precedenza esistono tre regole ricorsive a sinistra. Si ha perciò E! E + T! E! T!!!!!! T! T * F!!! T! F!!!!!!!E! T E!E! + T E! E! #! T! F T T! * F T! T! #! E! - T E E! - T E E!! E -T! E!!! -T! E! #!!!!!! pertanto:!! E!!! E + T E - T -T T T! T * F F! F! (E) i!! E! T E - T E E! + T E - T E #! T! F T! T! *F T # F! (E) i Si osservi come la ricorsione sinistra sia stata cambiata in ricorsione destra

15 Grammatiche LL(1) Una grammatica si dice LL(1) se la scelta per quale simbolo non terminale da espandere dipende unicamente dal prossimo simbolo della stringa da riconoscere. Per ricavare informazioni collegate ai simboli terminali che saranno presenti nelle stringhe si opera una sorta di preprocessing della grammatica calcolando una volta per tutte le informazioni necessarie. Lo scopo di questo preprocessing è quello di ricavare due insiemi di simboli terminali denominati FIRST e FOLLOW, costruite nel seguente modo. 1. Costruzione dell insieme dei FIRST - data una generica stringa X $ V* l insieme FIRST (X)! comprende tutti i simboli terminali che sono prefissi di una qualsiasi stringa derivabile da X.!! FIRST (X) = { t t $ V T e X "* t v con v $ V*} 2. Costruzione dell insieme dei FOLLOW - dato un simbolo non terminale Y l insieme dei! FOLLOW (Y) comprende tutti i simboli terminali che possono seguire immediatamente Y! FOLLOW(Y) = { t t $ V T e S" + u Y t v con u, v $ V* }

16 Definizione dell insieme dei FIRST 1. Se t! V T allora FIRST (t) = {t} 2. Se X! V N allora FIRST (X) = { t t! VT, X " + t u, con u! V* }! per cui se siamo in presenza della regola X # x 1 x 2... x n! il FIRST di X è definito come FIRST (X) = $ 1 n FIRST (xi ) 3. Se y = y 1 y 2,...,y n con y i! V (a) Se y % allora FIRST (y) = FIRST (y 1 " + ) 1 (b) Se y i " + % con i = 1,2,...k < n e y k+1 % allora FIRST (y) = $ k+1 " + 1 FIRST (yi ) (c) Se y i " + % con i= 1,...,n allora FIRST (y) = $ n 1 FIRST (yi )

17 Costruzione dell insieme dei FIRST!E! T E - T E E! + T E - T E #!T! F T T! *F T # F! (E) i L insieme dei FIRST (X) comprende tutti i simboli terminali che siano prefissi in una stringa qualsiasi che sia derivabile da X. si ha: FIRST (E) = {-, (, i }! FIRST (E ) = {+, -} FIRST (T) = { (, i } FIRST (T ) = { * } FIRST (F) = { (, i } per esempio E " - T E E " T E " F T E " ( E ) T E E " T E " F T E " i T E

18 Costruzione dell insieme dei FIRST cont. Si costruisce un grafo i cui nodi sono rappresentati da tutti i simboli terminali e non terminali della grammatica Sia X, Y, W $ VN t $ VT u, v $ V* gli archi del grafo sono costruiti secondo le seguenti due regole R1 - per ogni regola della grammatica avente la struttura X! t u % si traccia l arco X! t R2 - per ogni regola della grammatica avente la struttura X! Y u % si traccia l arco X! Y R1 R1 E - E T F R2 R2 R1 R1 ( i T ) R1 R1 + - * FIRST (E) = { -, (, i }! FIRST (E ) = { +, - } FIRST (T) = { (, i } FIRST (T ) = { * } FIRST (F) = { (, i } E! T E - T E E! + T E - T E #!T! F T T! *F T # F! (E) i Ogni nodo relativo ad un simbolo terminale raggiungibile tramite un cammino a partire da un simbolo non terminale farà parte dei FIRST di quel non terminale pertanto: 1. Si osservi come il carattere ) non fa parte di alcun FIRST non essendo raggiunto da nessun non terminale 2. Si osservi che il grafo è aciclico in quanto non sono presenti regole ricorsive a sinistra

Pumping lemma per i linguaggi Context-free

Pumping lemma per i linguaggi Context-free Pumping lemma per i linguaggi Context-free Sia L un linguaggio context-free. E possibile determinare una costante k, dipendente da L, tale che qualunque stringa z # L con z > k si può esprimere come z=

Dettagli

Linguaggi e Grammatiche Liberi da Contesto

Linguaggi e Grammatiche Liberi da Contesto N.Fanizzi-V.Carofiglio Dipartimento di Informatica Università degli Studi di Bari 22 aprile 2016 1 Linguaggi Liberi da Contesto 2 Grammatiche e Linguaggi Liberi da Contesto G = (X, V, S, P) è una grammatica

Dettagli

Costruzione dell insieme dei Follow

Costruzione dell insieme dei Follow Costruzione dell insieme dei Follow E! T E - T E E! + T E - T E " T! F T T! *F T " F! (E) i Per evitare che alcuni insiemi siano vuoti si aggiunge per default il simbolo speciale $ che demarca la fine

Dettagli

Proprietà di CFL. C. Bodei Fondamenti di Programmazione a.a. 17/18

Proprietà di CFL. C. Bodei Fondamenti di Programmazione a.a. 17/18 Proprietà di CFL Pumping Lemma per CFL: simile ai linguaggi regolari. Proprietà di chiusura: alcune delle proprietà di chiusura dei linguaggi regolari valgono anche per i CFL. Proprietà di decisione: possiamo

Dettagli

Linguaggi di Programmazione Corso C. Parte n.3 Linguaggi Liberi da Contesto e Linguaggi Contestuali. Nicola Fanizzi

Linguaggi di Programmazione Corso C. Parte n.3 Linguaggi Liberi da Contesto e Linguaggi Contestuali. Nicola Fanizzi Linguaggi di Programmazione Corso C Parte n.3 Linguaggi Liberi da Contesto e Linguaggi Contestuali Nicola Fanizzi (fanizzi@di.uniba.it) Dipartimento di Informatica Università degli Studi di Bari Grammatiche

Dettagli

LINGUAGGI CONTEXT FREE. Lezione Lezione

LINGUAGGI CONTEXT FREE. Lezione Lezione LINGUAGGI CONTEXT FREE Lezione 25-11-2010 Lezione 30-11-2010 2 INTRODUZIONE GERARCHIA DI CHOMSKY 3 4 DEFINIZIONE DEI LINGUAGGI CONTEXT FREE LINGUAGGI CF I linguaggi di tipo 2 sono detti context free (CF)

Dettagli

Proprietà dei linguaggi non contestuali

Proprietà dei linguaggi non contestuali Proprietà dei linguaggi non contestuali Argomenti della lezione Pumping lemma per i linguaggi non contestuali Proprietà di chiusura Argomenti della lezione Grammatiche non contestuali in forma ridotta

Dettagli

Proprieta dei linguaggi liberi da contesto. Proprieta dei linguaggi liberi da contesto

Proprieta dei linguaggi liberi da contesto. Proprieta dei linguaggi liberi da contesto roprieta di CFL Semplificazione di una CFG: se un linguaggio e un CFL, ha una grammatica di una forma speciale. Pumping Lemma per CFL: simile ai linguaggi regolari. Proprieta di chiusura: alcune delle

Dettagli

ESERCITAZIONE II. Linguaggi Context Free

ESERCITAZIONE II. Linguaggi Context Free ESERCITAZIONE II Linguaggi Context Free 2 INTRODUZIONE LINGUAGGI CF I linguaggi di tipo 2 sono detti context free (CF) o non contestuali. Sono GENERATI da grammatiche di tipo 2. Dati: VN insieme dei simboli

Dettagli

Proprietà dei linguaggi regolari

Proprietà dei linguaggi regolari Proprietà dei linguaggi regolari Argomenti della lezione Relazione tra automi, grammatiche ed espressioni regolari Pumping lemma per i linguaggi regolari Equivalenza di automi a stati finiti Le seguenti

Dettagli

Analisi sintattica. Analisi sintattica

Analisi sintattica. Analisi sintattica uolo dell analisi sintattica Un compilatore deve produrre codice oggetto e deve anche controllare che il programma in input sia scritto secondo le regole della sua sintassi L analisi lessicale controlla

Dettagli

Linguaggi e Traduttori: Analisi sintattica

Linguaggi e Traduttori: Analisi sintattica Linguaggi e Traduttori: Analisi sintattica Armando Tacchella Sistemi e Tecnologie per il Ragionamento Automatico (STAR-Lab) Dipartimento di Informatica Sistemistica e Telematica (DIST) Università di Genova

Dettagli

Esempio stringhe palindrome 1

Esempio stringhe palindrome 1 Esempio stringhe palindrome 1 Automa per il riconoscimento del linguaggio L = {w c w R } A = < {s,f}, {a,b,c}, {a,b},!, s, { f } > con! che contiene le transizioni: 1. (( s, a, " ), (s, a)! [ push a] 2.

Dettagli

Grammatiche libere da contesto. Grammatiche libere da contesto

Grammatiche libere da contesto. Grammatiche libere da contesto rammatiche e Linguaggi Liberi da Contesto Abbiamo visto che molti linguaggi non sono regolari. Consideriamo allora classi piu grandi di linguaggi Linguaggi Liberi da Contesto (CFL) sono stati usati nello

Dettagli

Trasformazione di un NDFA in un DFA con ε-regole

Trasformazione di un NDFA in un DFA con ε-regole Trasformazione di un NDFA in un DFA con -regole a A B D d b C E c t A B C D E a D E b D D c D,E D E D d C C a - t ( s, q i ) = -chiusura (δ (s, q j )) qj -chiusura ( qi) -Primo passo dell algoritmo modificato

Dettagli

Forme Normali. Forma normale di Chomsky. E caratterizzata da regole di due tipi. A! BC dove A, B, C $ V N A! a con a $ V T. Forma normale di Greibach

Forme Normali. Forma normale di Chomsky. E caratterizzata da regole di due tipi. A! BC dove A, B, C $ V N A! a con a $ V T. Forma normale di Greibach Forme Normali A partire da una grammatica Context-free G è sempre possibile costruire una grammatica equivalente G ovvero L(G) = L(G ) che abbiano le produzioni in forme particolari, dette forme normali.

Dettagli

Fondamenti d Informatica: Grammatiche. Barbara Re, Phd

Fondamenti d Informatica: Grammatiche. Barbara Re, Phd Fondamenti d Informatica: Grammatiche Barbara Re, Phd Grammatiche } Con il termine grammatica s intende } Un formalismo che permette di definire un insieme di stringhe mediante l imposizione di un particolare

Dettagli

Parte n.4 Linguaggi: Gerarchia ed Operazioni

Parte n.4 Linguaggi: Gerarchia ed Operazioni Linguaggi di Programmazione Corso C Parte n.4 Linguaggi: Gerarchia ed Operazioni Nicola Fanizzi (fanizzi@di.uniba.it) Dipartimento di Informatica Università degli Studi di Bari Gerarchia di Chomsky Sia

Dettagli

Grammatiche libere da contesto. Grammatiche libere da contesto

Grammatiche libere da contesto. Grammatiche libere da contesto rammatiche e Linguaggi Liberi da Contesto Abbiamo visto che molti linguaggi non sono regolari. Consideriamo allora classi piu grandi di linguaggi. Linguaggi Liberi da Contesto (CFL) sono stati usati nello

Dettagli

Costruzione di espressioni regolari 4

Costruzione di espressioni regolari 4 ostruzione di espressioni regolari 4 Indicando con d uno dei possibili digits {,, 2,,9} --possiamo esprimere il sotto linguaggio dei digits come d = ( + + 2 +.. + 9) Quale linguaggio produce l espressione:

Dettagli

Linguaggi e Traduttori: Analisi sintattica

Linguaggi e Traduttori: Analisi sintattica Linguaggi e Traduttori: Analisi sintattica Armando Tacchella Sistemi e Tecnologie per il Ragionamento Automatico (STAR-Lab) Dipartimento di Informatica Sistemistica e Telematica (DIST) Università di Genova

Dettagli

Le grammatiche formali

Le grammatiche formali Le grammatiche formali Il carattere generativo dei sistemi linguisticii i Consideriamo i la seguente frase: Un gatto rincorre il topo Non facciamo difficoltà a riconoscere che si tratta di una frase sintatticamente

Dettagli

Forma Normale di Chomsky

Forma Normale di Chomsky 2. Eliminazione delle produzioni unitarie Forma Normale di Chomsky Una produzione si dice unitaria se è della forma A! B. Le produzioni unitarie in pratica consistono in una ridenominazione di variabili,

Dettagli

Sui Linguaggi Regolari: Teorema di Kleene - Pumping Lemm

Sui Linguaggi Regolari: Teorema di Kleene - Pumping Lemm Sui Linguaggi Regolari: Teorema di Kleene - Pumping Lemma N.Fanizzi - V.Carofiglio 6 aprile 2016 1 Teorema di Kleene 2 3 o 1 o 3 o 8 Teorema di Kleene Vale la seguente equivalenza: L 3 L FSL L REG Dimostrazione.

Dettagli

Fondamenti dell Informatica a.a. 2013/14 Prova scritta 30 luglio 2014

Fondamenti dell Informatica a.a. 2013/14 Prova scritta 30 luglio 2014 Fondamenti dell Informatica a.a. 2013/14 Prova scritta 30 luglio 2014 Il compito è diviso in due parti come i compitini: 1) Automi e Linguaggi e 2) Macchine di Turing e Calcolabilità. Si può consegnare

Dettagli

Alberi. Alberi: definizioni. Alberi Binari. Esercizi su alberi binari: metodi ricorsivi. Struttura dati per alberi generici. ASD-L - Luca Tesei

Alberi. Alberi: definizioni. Alberi Binari. Esercizi su alberi binari: metodi ricorsivi. Struttura dati per alberi generici. ASD-L - Luca Tesei Alberi Alberi: definizioni Alberi Binari Esercizi su alberi binari: metodi ricorsivi Struttura dati per alberi generici 1 Alberi Gli alberi sono strutture dati naturalmente ricorsive Un albero è un particolare

Dettagli

Quiz sui linguaggi CF

Quiz sui linguaggi CF Fondamenti dell Informatica 1 semestre Quiz sui linguaggi CF Prof. Giorgio Gambosi a.a. 2018-2019 Problema 1: Si consideri la seguente grammatica context free G, dove S, NP, V P, P P, A sono i simboli

Dettagli

Fondamenti dell Informatica a.a. 2017/18 Prova scritta 11 gennaio 2018

Fondamenti dell Informatica a.a. 2017/18 Prova scritta 11 gennaio 2018 Fondamenti dell Informatica a.a. 2017/18 Prova scritta 11 gennaio 2018 Esercizio 1 (Automi a stati finiti) {a, b}. Si considerino i seguenti automi a stati finiti sull alfabeto Per ognuno degli automi,

Dettagli

Linguaggi Regolari e Linguaggi Liberi

Linguaggi Regolari e Linguaggi Liberi Linguaggi Regolari e Linguaggi Liberi Linguaggi regolari Potere espressivo degli automi Costruzione di una grammatica equivalente a un automa Grammatiche regolari Potere espressivo delle grammatiche 1

Dettagli

Linguaggi Regolari e Linguaggi Liberi. Linguaggi Regolari. Determinismo vs Non determinismo. Potere espressivo

Linguaggi Regolari e Linguaggi Liberi. Linguaggi Regolari. Determinismo vs Non determinismo. Potere espressivo e Linguaggi Liberi Linguaggi regolari Potere espressivo degli automi Costruzione di una grammatica equivalente a un automa Grammatiche regolari Potere espressivo delle Tutti i linguaggi che possono essere

Dettagli

Proprieta dei Linguaggi Regolari. Proprieta dei Linguaggi Regolari

Proprieta dei Linguaggi Regolari. Proprieta dei Linguaggi Regolari roprieta dei Linguaggi Regolari Pumping Lemma. Ogni linguaggio regolare soddisfa una proprieta ben nota, il pumping lemma. Questa tecnica fornisce uno strumento utile per dimostrare che un linguaggio non

Dettagli

PROLOG E ANALISI SINTATTICA DEI LINGUAGGI PROLOG E ANALISI SINTATTICA DEI LINGUAGGI PROLOG E ANALISI SINTATTICA DEI LINGUAGGI ESEMPIO

PROLOG E ANALISI SINTATTICA DEI LINGUAGGI PROLOG E ANALISI SINTATTICA DEI LINGUAGGI PROLOG E ANALISI SINTATTICA DEI LINGUAGGI ESEMPIO PROLOG E ANALISI SINTATTICA DEI LINGUAGGI Quando si vuole definire in modo preciso la sintassi di un linguaggio si ricorre a una grammatica Una grammatica permette di stabilire se una sequenza di simboli

Dettagli

Quiz sui linguaggi CF

Quiz sui linguaggi CF Fondamenti dell Informatica 1 semestre Quiz sui linguaggi CF Prof. Giorgio Gambosi a.a. 2014-2015 Problema 1: Si consideri la seguente grammatica context free G, dove S, NP, V P, P P, A sono i simboli

Dettagli

Dispensa 2. Data una grammatica context free esistono tre metodi diversi per costruirne la parsing table per un parser LR:

Dispensa 2. Data una grammatica context free esistono tre metodi diversi per costruirne la parsing table per un parser LR: Dispensa 2 2.1 Costruzione Parsing Table LR: generalità Come tutti i parser tabellari predittivi, anche i parser LR possono essere applicati solo a parsing table senza conflitti (ossia entrate multiple)

Dettagli

PROLOG E ANALISI SINTATTICA DEI LINGUAGGI Quando si vuole definire in modo preciso la sintassi di un linguaggio si ricorre a una grammatica G=(V n,v t

PROLOG E ANALISI SINTATTICA DEI LINGUAGGI Quando si vuole definire in modo preciso la sintassi di un linguaggio si ricorre a una grammatica G=(V n,v t PROLOG E ANALISI SINTATTICA DEI LINGUAGGI Quando si vuole definire in modo preciso la sintassi di un linguaggio si ricorre a una grammatica Una grammatica permette di stabilire se una sequenza di simboli

Dettagli

Informatica Teorica. linguaggi non contestuali

Informatica Teorica. linguaggi non contestuali Informatica Teorica linguaggi non contestuali di tipo 2 context free (CF) 1 linguaggi non contestuali molte frasi in linguaggio naturale hanno una struttura sintattica non contestuale esempio: soggetto

Dettagli

Linguaggi Regolari e Linguaggi Liberi

Linguaggi Regolari e Linguaggi Liberi Linguaggi Regolari e Linguaggi Liberi Potenza espressiva degli automi Potenza espressiva delle grammatiche 9/11/2004 Programmazione - Luca Tesei 1 Linguaggi Regolari Tutti i linguaggi che possono essere

Dettagli

Tabelle LALR. Costruzione delle tabelle di parsing LALR. Maria Rita Di Berardini

Tabelle LALR. Costruzione delle tabelle di parsing LALR. Maria Rita Di Berardini Costruzione delle tabelle di parsing LALR Dipartimento di Matematica e Informatica Università di Camerino mariarita.diberardini@unicam.it Metodo LALR Introduciamo l ultimo metodo di costruzione di tabelle

Dettagli

Linguaggi formali e compilazione

Linguaggi formali e compilazione Linguaggi formali e compilazione Corso di Laurea in Informatica A.A. 2014/2015 Linguaggi formali e compilazione quivalenza di grammatiche In Informatica (e non solo, naturalmente) esistono sempre molti

Dettagli

LINGUAGGI E TRADUTTORI - 20 giugno Prof. S. Crespi Reghizzi. Automi e espressioni regolari (40%)

LINGUAGGI E TRADUTTORI - 20 giugno Prof. S. Crespi Reghizzi. Automi e espressioni regolari (40%) LINGUAGGI E TRADUTTORI - 20 giugno 2001 - Prof. S. Crespi Reghizzi COGNOME e NOME... MATRICOLA... Tempo a disposizione: 90 minuti. Libri e appunti personali possono essere impiegati. Parte I Punti 30-esimi

Dettagli

LINGUAGGI DI ALTO LIVELLO

LINGUAGGI DI ALTO LIVELLO LINGUAGGI DI ALTO LIVELLO Si basano su una macchina virtuale le cui mosse non sono quelle della macchina hardware Linguaggi di alto livello AN - 1995 Linguaggi di alto livello AN - 1995 Evoluzione dei

Dettagli

Alberi: definizioni e dimostrazioni induttive.

Alberi: definizioni e dimostrazioni induttive. Alberi: definizioni e dimostrazioni induttive. Gennaio 2005 Iniziamo con l introdurre la nozione di albero. Con N indichiamo l insieme dei numeri naturali (zero escluso) e con N l insieme delle liste finite

Dettagli

Richiami di matematica discreta: grafi e alberi. Paolo Camurati Dip. Automatica e Informatica Politecnico di Torino

Richiami di matematica discreta: grafi e alberi. Paolo Camurati Dip. Automatica e Informatica Politecnico di Torino Richiami di matematica discreta: grafi e alberi Paolo Camurati Dip. Automatica e Informatica Politecnico di Torino Grafi Definizione: G = (V,E) V: insieme finito di vertici E: insieme finito di archi,

Dettagli

LINGUAGGI REGOLARI. Teorema (Kleene). Le seguenti classi di linguaggi sono equivalenti:

LINGUAGGI REGOLARI. Teorema (Kleene). Le seguenti classi di linguaggi sono equivalenti: LINGUAGGI REGOLARI Teorema (Kleene). Le seguenti classi di linguaggi sono equivalenti: 1 - L(GR): linguaggi generati da grammatiche di tipo 3 (anche con ε-produzioni) 2 - L(ASF): linguaggi riconosciuti

Dettagli

Grammatiche. Grammatiche libere da contesto Grammatiche regolari Potenza delle grammatiche libere e regolari Struttura di frase: Alberi di derivazione

Grammatiche. Grammatiche libere da contesto Grammatiche regolari Potenza delle grammatiche libere e regolari Struttura di frase: Alberi di derivazione Grammatiche Grammatiche libere da contesto Grammatiche regolari Potenza delle grammatiche libere e regolari Struttura di frase: Alberi di derivazione Esempio dei numeri interi Si consideri il linguaggio

Dettagli

Grammatiche libere da contesto. Grammatiche libere da contesto

Grammatiche libere da contesto. Grammatiche libere da contesto rammatiche e Linguaggi Liberi da Contesto Abbiamo visto che molti linguaggi non sono regolari. Consideriamo allora classi piu grandi di linguaggi. Linguaggi Liberi da Contesto (CFL) sono stati usati nello

Dettagli

Definizione di Grammatica

Definizione di Grammatica Corso di Linguaggi e Traduttori 1 AA 2004-05 GRAMMATICHE 1 Definizione di Grammatica Formalmente definiamo un grammatica G mediante una quadrupla ( VN, VT, P, S ) dove: V N e l insieme dei simboli non

Dettagli

La MT come riconoscitore

La MT come riconoscitore La MT come riconoscitore Sia M =

Dettagli

Linguaggi di Programmazione e Compilatori

Linguaggi di Programmazione e Compilatori Maria Rita Di Berardini Linguaggi di Programmazione e Compilatori Raccolta Esercizi 10 giugno 2009 Università di Camerino Dipartimenento di Matematica e Informatica Indice 1 Analisi Lessicale...........................................

Dettagli

Algoritmi e Principi dell'informatica Seconda Prova in Itinere - 14 Febbraio 2014

Algoritmi e Principi dell'informatica Seconda Prova in Itinere - 14 Febbraio 2014 Algoritmi e Principi dell'informatica Seconda Prova in Itinere - 14 Febbraio 2014 Nome..Cognome.Matr. Laureando Avvisi importanti Il tempo a disposizione è di 1 ora e 30 minuti. Se non verranno risolti

Dettagli

Suffix Trees. Docente: Nicolò Cesa-Bianchi versione 21 settembre 2017

Suffix Trees. Docente: Nicolò Cesa-Bianchi versione 21 settembre 2017 Complementi di Algoritmi e Strutture Dati Suffix Trees Docente: Nicolò Cesa-Bianchi versione 21 settembre 2017 In generale, possiamo trovare tutte le occorrenze di un pattern y in un testo x in tempo O(

Dettagli

Esercizi di Informatica Teorica - DFA

Esercizi di Informatica Teorica - DFA Esercizi di Informatica Teorica - DFA Esercizio Definire, se esso esiste, l automa deterministico a stati finiti A che riconosce il linguaggio L = {w w {,},w[i] =, i dispari,i > }. Dimostrare rigorosamente

Dettagli

Parte n.7 Automi a Pila e Grammatiche Libere

Parte n.7 Automi a Pila e Grammatiche Libere Linguaggi di Programmazione Corso C Parte n.7 Automi a Pila e Grammatiche Libere Nicola Fanizzi (fanizzi@di.uniba.it) Dipartimento di Informatica Università degli Studi di Bari Automi a Pila Per il teorema

Dettagli

non è lineare destro. (PUNTI 15)

non è lineare destro. (PUNTI 15) 6 Giugno 2005 (h.1.00) 1) Dimostrare formalmente che il seguente linguaggio: L = {a i b j c k : k = i+ j, i, j, k 0} non è lineare destro. 2) Progettare, commentando opportunamente, l automa a stati finiti

Dettagli

Supplemento alle dispense di Sintassi

Supplemento alle dispense di Sintassi Supplemento alle dispense di Sintassi Luca Tesei 20 ottobre 2002 1 Formalizzazione Lo scopo di questa sezione è quello di presentare in maniera formale e precisa le nozioni di Automa e di Grammatica Libera

Dettagli

Linguaggi di Programmazione Corso C. Parte n.2 Introduzione ai Linguaggi Formali. Nicola Fanizzi

Linguaggi di Programmazione Corso C. Parte n.2 Introduzione ai Linguaggi Formali. Nicola Fanizzi Linguaggi di Programmazione Corso C Parte n.2 Introduzione ai Linguaggi Formali Nicola Fanizzi (fanizzi@di.uniba.it) Dipartimento di Informatica Università degli Studi di Bari Definizioni Preliminari Un

Dettagli

Corso di Linguaggi e Traduttori 1 AA GRAMMATICHE

Corso di Linguaggi e Traduttori 1 AA GRAMMATICHE Corso di Linguaggi e Traduttori 1 AA 2004-05 GRAMMATICHE 1 Definizione di Grammatica Formalmente definiamo un grammatica G mediante una quadrupla V, V, P S ( ) N T, dove: V N e l insieme dei simboli non

Dettagli

RISOLUZIONE IN LOGICA PROPOSIZIONALE. Giovanna D Agostino Dipartimento di Matemaica e Informatica, Università di Udine

RISOLUZIONE IN LOGICA PROPOSIZIONALE. Giovanna D Agostino Dipartimento di Matemaica e Informatica, Università di Udine RISOLUZIONE IN LOGICA PROPOSIZIONALE Giovanna D Agostino Dipartimento di Matemaica e Informatica, Università di Udine 1. Risoluzione Definitione 1.1. Un letterale l è una variabile proposizionale (letterale

Dettagli

Traduttore diretto dalla sintassi (seconda parte) Giuseppe Morelli

Traduttore diretto dalla sintassi (seconda parte) Giuseppe Morelli Traduttore diretto dalla sintassi (seconda parte) Giuseppe Morelli Traduzione di linguaggi guidata da Grammatiche Context Free La traduzione diretta della sintassi avviene associando regole e/o frammenti

Dettagli

Certificati dei problemi in NP

Certificati dei problemi in NP Certificati dei problemi in NP La stringa y viene in genere denominata un certificato Un Certificato è una informazione ausiliaria che può essere utilizzata per verificare in tempo polinomiale nella dimensione

Dettagli

Esercitazioni per il corso di Logica Matematica

Esercitazioni per il corso di Logica Matematica Esercitazioni per il corso di Logica Matematica Luca Motto Ros 27 febbraio 2005 Nota importante. Queste pagine contengono appunti personali dell esercitatore e sono messe a disposizione nel caso possano

Dettagli

Alberi binari e alberi binari di ricerca

Alberi binari e alberi binari di ricerca Università degli studi di Milano Dipartimento di Informatica Laboratorio di algoritmi e strutture dati Corso di laurea in Informatica Alberi Un albero è una collezione non vuota di: nodi con nome e informazioni

Dettagli

Concetti di base sugli automi e sui linguaggi formali

Concetti di base sugli automi e sui linguaggi formali Concetti di base sugli automi e sui linguaggi formali Andrea Burattin 18 marzo 2005 Sommario Piccolo insieme di concetti sul funzionamento degli automi (a stati finiti, a pila,...), delle grammatiche libere

Dettagli

Linguaggi context free. Analizzatori sintattici e alberi di analisi

Linguaggi context free. Analizzatori sintattici e alberi di analisi Linguaggi context free Analizzatori sintattici e alberi di analisi ( ) * id + id id 2 Grammatiche Context Free Una grammatica CF ha produzioni del tipo X α con X N e α (T N)* sono libere dal contesto perché

Dettagli

Schema generale parser LR

Schema generale parser LR Schema generale parser LR Input' a 1' 8'8'8' a i' 8'8'8' a n' $' ' Pila' s m' s m81' 8'8'8 ' Programma' di'parsing' LR' ' ACTION' ' ' GOTO' ' Output' Parser diversi di eriscono per la definizione delle

Dettagli

Linguaggi formali e compilazione

Linguaggi formali e compilazione Linguaggi formali e compilazione Corso di Laurea in Informatica A.A. 2014/2015 Linguaggi formali e compilazione Generalità delle ǫ-transizioni Gli automi non deterministici, come abbiamo visto, possono

Dettagli

Note del corso di Calcolabilità e Linguaggi Formali - Lezione 3

Note del corso di Calcolabilità e Linguaggi Formali - Lezione 3 Note del corso di Calcolabilità e Linguaggi Formali - Lezione 3 Alberto Carraro 26 ottobre 2011 DAIS, Università Ca Foscari Venezia http://www.dsi.unive.it/~acarraro 1 Automi a a pila deterministici e

Dettagli

Alberi binari e alberi binari di ricerca

Alberi binari e alberi binari di ricerca Alberi binari e alberi binari di ricerca Violetta Lonati Università degli studi di Milano Dipartimento di Informatica Laboratorio di algoritmi e strutture dati Corso di laurea in Informatica giovedì 9

Dettagli

Linguaggi e Traduttori: Analisi sintattica

Linguaggi e Traduttori: Analisi sintattica Linguaggi e Traduttori: Analisi sintattica Armando Tacchella Sistemi e Tecnologie per il Ragionamento Automatico (STAR-Lab) Dipartimento di Informatica Sistemistica e Telematica (DIST) Università di Genova

Dettagli

LINGUAGGI DI ALTO LIVELLO

LINGUAGGI DI ALTO LIVELLO LINGUAGGI DI ALTO LIVELLO Si basano su una macchina virtuale le cui mosse non sono quelle della macchina hardware 1 Linguaggi di alto livello Barriera di astrazione C Fortran Modula-2 Cobol Basic Pascal

Dettagli

albero sintattico parser scanner Errori sintattici

albero sintattico parser scanner Errori sintattici albero programma scanner tokens parser sintattico rrori sintattici Un parser deve riconoscere la struttura di una stringa di ingresso, la cui struttura è fornita in termini di regole di produzione di una

Dettagli

LINGUAGGI DI ALTO LIVELLO

LINGUAGGI DI ALTO LIVELLO LINGUAGGI DI ALTO LIVELLO Si basano su una macchina virtuale le cui mosse non sono quelle della macchina hardware 1 LINGUAGGI DI ALTO LIVELLO Barriera di astrazione C Fortran Modula-2 Cobol Algol Basic

Dettagli

Riconoscitori e analizzatori sintattici. Scanning e parsing. Funzionamento di un parser: la tecnica Shift/Reduce. Esempio

Riconoscitori e analizzatori sintattici. Scanning e parsing. Funzionamento di un parser: la tecnica Shift/Reduce. Esempio POLITECNICO I TORINO Laboratorio di Compilatori Corso di Linguaggi e Traduttori mail: stefano.scanzio@polito.it sito: Riconoscitori e analizzatori sintattici ata una grammatica non ambigua ed una sequenza

Dettagli

Aumentare il potere degli FSA

Aumentare il potere degli FSA PDA 1 Aumentare il potere degli FSA Punto di vista meccanico Nastro d ingresso Dispositivo di controllo a stati finiti Nastro d uscita PDA 2 Ora arricchiamolo a Nastro d ingresso Memoria a pila (stack)

Dettagli

Linguaggi Liberi dal Contesto. Linguaggi Liberi dal Contesto

Linguaggi Liberi dal Contesto. Linguaggi Liberi dal Contesto rammatiche e Linguaggi Liberi da Contesto Data una stringa w L(G), dove G e un CGF, possono esistere diverse derivazioni di w (che tipicamente differiscono per l ordine di applicazione delle produzioni)

Dettagli

Prefazione all edizione italiana

Prefazione all edizione italiana Questo è l'indice del libro, in cui sono evidenziati i paragrafi corrispondenti agli argomenti trattati nel corso e che costituiscono il programma d'esame. Si noti che la presentazione di alcuni argomenti

Dettagli

GRAMMATICHE LIBERE DAL CONTESTO

GRAMMATICHE LIBERE DAL CONTESTO GRAMMATICHE LIBERE DAL CONTESTO Una grammatica è, intuitivamente, un insieme di regole che permettono di generare un linguaggio. Un ruolo fondamentale tra le grammatiche è costituito dalle grammatiche

Dettagli

Esercizi di Informatica Teorica

Esercizi di Informatica Teorica Esercizi di Informatica Teorica Linguaggi non contestuali: proprietàe forme normali 1 Grammatiche non contestuali richiami grammatica non contestuale (CFG o tipo 2): A β con A V N, β (V T V N )+ osservazione:

Dettagli

Proprieta dei linguaggi liberi da contesto. Proprieta dei linguaggi liberi da contesto

Proprieta dei linguaggi liberi da contesto. Proprieta dei linguaggi liberi da contesto roprieta di CFL Semplificazione di una CFG: se un linguaggio e un CFL, ha una grammatica di una forma speciale. Pumping Lemma per CFL: simile ai linguaggi regolari. Proprieta di chiusura: alcune delle

Dettagli

Parser Bottom UP. Giuseppe Morelli

Parser Bottom UP. Giuseppe Morelli Parser Bottom UP Giuseppe Morelli Parser Bottom UP Un parser Bottom Up lavora costruendo il corrispondente albero di parsing per una data stringa di input partendo dalle foglie (bottom) e risalendo via

Dettagli

Automa deterministico con prospezione 1. < {q}, Σ, Σ V, δ, q, S, Φ > δ(a, X) = α R. se a Gui(X α) senza spostamento della testina.

Automa deterministico con prospezione 1. < {q}, Σ, Σ V, δ, q, S, Φ > δ(a, X) = α R. se a Gui(X α) senza spostamento della testina. Automa deterministico con prospezione 1 < {q}, Σ, Σ V, δ, q, S, Φ > δ(a, X) = α R δ(a, a) = ε se a Gui(X α) senza spostamento della testina con spostamento della testina Grammatica 1S ( S ) 2S [ S ] 3S

Dettagli

Esempi. Albero di interi. Struttura che non è un albero!

Esempi. Albero di interi. Struttura che non è un albero! albero si dice "grafo diretto" un insieme di nodi legati "a due a due" da archi direzionati (puntatori) un albero è un grafo diretto in cui ogni nodo può avere un solo arco entrante ed un qualunque numero

Dettagli

Automi a pila. Dipartimento di Elettronica e Informazione Politecnico di Milano. 17 marzo 2017

Automi a pila. Dipartimento di Elettronica e Informazione Politecnico di Milano. 17 marzo 2017 Automi a pila Dipartimento di Elettronica e Informazione Politecnico di Milano 17 marzo 2017 Aumentiamo la potenza di un FSA Descrizione operativa dei limiti Un FSA ha un Organo di Controllo (OC) con memoria

Dettagli

Linguaggi di Programmazione Corso C. Parte n.6 Linguaggi Regolari ed Espressioni Regolari. Nicola Fanizzi

Linguaggi di Programmazione Corso C. Parte n.6 Linguaggi Regolari ed Espressioni Regolari. Nicola Fanizzi Linguaggi di Programmazione Corso C Parte n.6 Linguaggi Regolari ed Espressioni Regolari Nicola Fanizzi (fanizzi@di.uniba.it) Dipartimento di Informatica Università degli Studi di Bari Linguaggi Regolari

Dettagli

Programmazione Teoria dei linguaggi formali

Programmazione Teoria dei linguaggi formali Programmazione Teoria dei linguaggi formali Rosario Culmone rosario.culmone@unicam.it 18/11/2009 UNICAM - p. 1/42 Linguaggi Definizione di grammatica di Chomsky Derivazione di stringhe e generazione di

Dettagli

AUTOMA A STATI FINITI

AUTOMA A STATI FINITI Gli Automi Un Automa è un dispositivo, o un suo modello in forma di macchina sequenziale, creato per eseguire un particolare compito, che può trovarsi in diverse configurazioni più o meno complesse caratterizzate

Dettagli

Alberi binari e alberi binari di ricerca

Alberi binari e alberi binari di ricerca Alberi binari e alberi binari di ricerca Violetta Lonati Università degli studi di Milano Dipartimento di Scienze dell Informazione Laboratorio di algoritmi e strutture dati Corso di laurea in Informatica

Dettagli

Lezione 5. Giuditta Franco. 19 Febbraio 2008

Lezione 5. Giuditta Franco. 19 Febbraio 2008 Outline Lezione 5 Dipartimento di Informatica, Università di Verona 19 Febbraio 2008 Talk Outline Outline 1. 2. 3. Come costruire un Un esempio introduttivo L albero dei suffissi di una data stringa è

Dettagli

Corso di Linguaggi di Programmazione

Corso di Linguaggi di Programmazione Corso di Linguaggi di Programmazione Lezione 5 Chiara Braghin braghin@dti.unimi.it Dipartimento di Tecnologie dell Informazione Università degli Studi di Milano 10 Marzo 2008 Struttura di un compilatore

Dettagli

LINGUAGGI FORMALI. Introduzione

LINGUAGGI FORMALI. Introduzione LINUAI FORMALI Introduzione Alfabeto : un qualunque insieme di simboli. (Tratteremo solo alfabeti finiti). Esempio: {a,b,c,,,x,w,y,z} {0.1.2.3.4.5.6.7.8.9} {0,1} Stringa (su un alfabeto) : una sequenza

Dettagli

Informatica e Laboratorio di Programmazione Automi Alberto Ferrari. Alberto Ferrari Informatica e Laboratorio di Programmazione

Informatica e Laboratorio di Programmazione Automi Alberto Ferrari. Alberto Ferrari Informatica e Laboratorio di Programmazione Informatica e Laboratorio di Programmazione Automi Alberto Ferrari Alberto Ferrari Informatica e Laboratorio di Programmazione automa o automa: macchina astratta o realizza un certo algoritmo, secondo

Dettagli

a cura di Luca Cabibbo e Walter Didimo

a cura di Luca Cabibbo e Walter Didimo a cura di Luca Cabibbo e Walter Didimo Esercizi di Informatica teorica - Luca Cabibbo e Walter Didimo 1 calcolabilità in vari contesti riduzioni e calcolabilità dimostrazioni di decidibilità di problemi

Dettagli

Programmazione II. Lezione 3. Daniele Sgandurra 26/10/2010.

Programmazione II. Lezione 3. Daniele Sgandurra 26/10/2010. Programmazione II Lezione 3 Daniele Sgandurra daniele.sgandurra@iit.cnr.it 26/10/2010 1/35 Programmazione II Lezione 3 26/10/2010 Sommario 1 2 Semantica 2/35 Programmazione II Lezione 3 26/10/2010 Parte

Dettagli

Verificare se una grammatica e LL(1) e costruirne la tabella di parsing. Verificare se una grammatica e LR(0) e costruirne la tabele ACTION e GOTO

Verificare se una grammatica e LL(1) e costruirne la tabella di parsing. Verificare se una grammatica e LR(0) e costruirne la tabele ACTION e GOTO ANALISI SINTATTICA TIPO 1: Data un linguaggio scrivere una grammatica che lo generi TIPO 2: Verificare se una grammatica non contestuale è ambigua TiPO 3: Verificare se una grammatica e LL(1) e costruirne

Dettagli

Linguaggi formali e compilazione

Linguaggi formali e compilazione Linguaggi formali e compilazione Corso di Laurea in Informatica A.A. 2014/2015 L input per il parser Nel contesto della compilazione l input per il parser è costituito da una stringa di token (che indicheremo

Dettagli