COSTITUENTI DELLE PROTEINE: AMINOACIDI

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "COSTITUENTI DELLE PROTEINE: AMINOACIDI"

Transcript

1 2^ lezione Proteine

2 COSTITUENTI DELLE PROTEINE: AMINOACIDI Nell organismo umano ne sono presenti centinaia ma solo 20 nelle proteine. Per la sintesi di una proteina devono essere presenti tutti contemporaneamente. CLASSIFICAZIONE: Funzionale: in base alla polarità della catena R Nutrizionale: in base alla loro essenzialità.

3

4 Trascrizione Traduzione

5

6 Classificazione delle proteine In base alla funzione: ormoni, enzimi, di trasporto, di deposito, di struttura, di difesa, etc.. In base alla forma: - proteine fibrose - proteine globulari In base alla composizione chimica: - proteine semplici - proteine coniugate

7 Le proteine presentano diversi livelli di organizzazione strutturale. Le proprietà della catena aminoacidica determinano ulteriori arrangiamenti spaziali della molecola e la mettono in condizione di svolgere una certa funzione biologica. STRUTTURA PRIMARIA STRUTTURA SECONDARIA STRUTTURA TERZIARIA STRUTTURA QUATERNARIA

8 Struttura primaria E data dalla sequenza degli aminoacidi che costituiscono una catena peptidica. Ogni proteina è caratterizzata dall avere una specifica composizione in aminoacidi, e da un ben preciso ordine con cui questi si susseguono lungo la catena. La struttura primaria è determinata geneticamente: le sequenze aminoacidiche delle proteine di un individuo si trovano depositate, in codice, in altrettanti tratti del suo DNA, geni.

9

10

11 I legami peptidici sono planari legame peptidico

12 Distanze fra atomi che caratterizzano il legame peptidico

13

14

15 Struttura secondaria Lunghe catene di amminoacidi si piegano (fold) o si arricciano (curl) in una struttura regolare che si ripete. La struttura è il risultato della formazione di legami idrogeno tra gli amminoacidi della proteina. Tra le strutture secondarie comuni troviamo Le eliche alfa I foglietti beta pieghettati Queste strutture secondarie sono responsabili della rigidità delle proteine,

16 Una comune struttura secondaria Proprietà dell alfa-elica: Resistenza e solubilità in acqua Proposta nel 1951 da Pauling e Corey

17 Ogni idrogeno ammidico è coinvolto in un legame idrogeno con il carbonile di un altro amminoacido

18

19 Le principali strutture secondarie di una catena polipetidica: α elica MODELLO A PALLE E BASTONCINI a) Elica destrorsa, b) Si evidenziano i legami idrogeno c) Il passo dell elica è 5.4 Å o 3.6 residui amminoacidici

20 Strutture secondarie: l α elica MODELLO A NASTRO

21 e foglietto β

22 P. Champe, R. Harvey, D. R. Ferrier, LE BASI DELLA BIOCHIMICA, Zanichelli Editore S.p.A. Copyright 2006

23 P. Champe, R. Harvey, D. R. Ferrier, LE BASI DELLA BIOCHIMICA, Zanichelli Editore S.p.A. Copyright 2006

24 Come si orientano i legami negli amminoacidi? alfa elica beta struttura Guardate i carbonili! Nell alfa elica puntano nella stessa direzione, mentre nei foglietti pieghettati sono alternati

25 Nei foglietti pieghettati ci sono ancora dei legami ad idrogeno, ma stavolta sono tra fogli adiacenti (sheet)

26 Ad esempio la seta. Le proteine della seta sono un esempio di foglietto pieghettato Sono composte principalmente da glicina e alanina

27 I legami idrogeno si formano tra segmenti adiacenti I segmenti adiacenti possono anche essere lontani nella sequenza amminoacidica Le catene possono essere parallele o antiparallele

28 Strutture secondarie: il foglietto beta

29

30

31 Le strutture secondarie sono mantenute da legami idrogeno tra atomi di residui aminoacidici.

32 6

33 Struttura terziaria Riguarda tutte le possibili interazioni tra i gruppi R. Nessun legame covalente. Un eccezione è il ponte disolfuro tra due cisteine. La struttura terziaria è responsabile della forma della proteina nello spazio: - Globulare (enzimi, mio- e emoglobina) - Fibrosa (Fibroina, elastina, cheratina, collageno)

34

35

36 I residui di cisteina possono formare ponti disolfuro intra o extra catena

37 Sequenza dell insulina bovina

38 Classificazione generale delle strutture terziarie Proteine con predominanza di α elica Proteine miste Proteine con predominanza di β sheets

39

40

41

42

43

44

45

46 Le interazioni non covalenti che partecipano nella definizione della struttura delle biomolecole

47 Le interazioni non covalenti che partecipano nella definizione della struttura delle biomolecole

48

49

50 Emoglobina collageno

51 La struttura quaternaria delle proteine La struttura quaternaria riguarda proteine costituite da più catene polipeptidiche o da più domini strutturali (es. proteine regolatrici) Le interazioni tra le subunità consentono grandi variazioni nella funzione della proteina. Esempio: la emoglobina

52 La struttura terziaria è generata dal ripiegamento e dalla conformazione della catena polipeptidica. La struttura quaternaria è l organizzazione di polipeptidi in un unica unità funzionale che consiste di più di una subunità polipeptidica.

53 Rappresentazioni grafiche differenti della stessa proteina

54 Degradazione Proteica Regolata Sistema autofagico lisosomiale Sistema Calpaina-Calpastatina Calpastatina Sistema Ubiquitina-Proteasoma

55

56 Modificato da: La Stampa, 7 ottobre 2004 Il premio Nobel per la Chimica 2004 è stato attribuito ai tre ricercatori che più hanno contribuito alla scoperta della«catena di smontaggio» delle proteine: sono l americano Irwin Rose, Università della California, e gli israeliani Aaron Ciechanover e Avram Hershko, entrambi dell Institute of Technology di Haifa. Il ruolo chiave nella demolizione delle proteine è affidato a una molecola relativamente piccola e semplice, un polipeptide chiamato «ubiquitina» (deriva dal latino, significa «sostanza che si trova dappertutto»). Quando una proteina deve essere rottamata - spiegano i vincitori - riceve una specie di bacio mortale. A baciare la proteina da demolire è appunto l ubiquitina, la cui scoperta risale al Si tratta di un bacio molto audace, perché questa molecola si lega alla proteina da distruggere in modo indissolubile con un meccanismo del tipo chiaveserratura molto diffuso nella chimica degli organismi viventi. Ricevuto il bacio letale, la proteina da rottamare finisce nel proteosoma, il tritatutto delle cellule, che in pochissimo tempo la ridurrà in minuti pezzetti, poi eliminati o riciclati.

57 In realtà l operazione è più complessa e richiede l intervento di tre enzimi. Il primo, chiamato E1, attiva la molecola di ubiquitina, e questa reazione richiede energia, liberata da una molecola di ATP. Il secondo enzima, E2, si lega all ubiquitina attivata e il terzo, E3, individua l oggetto da demolire. Il complesso ubiquitina-e2 aderisce strettamente alla proteina ed E3 rilascia la proteina marcata con l ubiquitina. L operazione si ripete finché si apre il proteosoma, cioè il tritatutto, che staccando l ubiquitina (che sarà di nuovo disponibile per il suo lavoro), smonterà la proteina pezzo a pezzo. Il meccanismo è stato chiarito da Rose, Ciechanover ed Hershko nel 1983 con esperimenti su topi transgenici.

58 La demolizione delle proteine è fondamentale quanto la loro costruzione: la tripsina, ad esempio, nel nostro intestino spezza le proteine complesse del cibo in amminoacidi, passaggio indispensabile per farci assimilare il cibo. L eliminazione delle proteine è essenziale anche nel ciclo riproduttivo delle cellule, nella riparazione degli errori di copiatura del DNA e nelle reazioni del sistema immunitario che ci difendono dalle infezioni e dalle aggressioni dell ambiente. Anche in malattie come il cancro e la fibrosi cistica il ruolo dell ubiquitina è determinante. Processi di demolizione di proteine alterate sono all origine di queste malattie, ed è per questo motivo che le scoperte compiute dai tre ricercatori premiati con il Nobel possono aprire la strada a nuovi farmaci, in grado di curarle alla radice.

59

60

61

62

63

64 Le proteine, per svolgere la propria funzione, devono avere una CONFORMAZIONE CORRETTA MA Nell ambiente cellulare esistono condizioni che ostacolano il ripiegamento o che causano la perdita della struttura proteica

65 Se ipotizziamo che una proteina di n residui debba scegliere solo tra 3 conformazioni possibili dipendenti solo dagli angoli di torsioneφe ψ, pari a 2 n per ciascuno e che la proteina possieda solo 3 conformazioni stabili; allora valutando in sec. il tempo per assumere ogni conformazione, in una proteina con 100 residui aminoacidici, il tempo t in sec. Sarebbe: t = Pari a sec. (età dell universo pari a 20 miliardi di anni cioè sec.)

66 Conformazione delle proteine Una catena polipeptidica appena sintetizzata deve conformarsi e spesso subire modificazioni chimiche per generare la proteina finale Tutti i polipeptidi con la stessa sequenza amminoacidica assumono, in condizioni standard, la stessa conformazione (lo stato nativo), che è la più stabile conformazione che la molecola può assumere. L informazione per il folding della proteina è contenuta nella sequenza

67 Le proteine raggiungono la loro struttura nativa avvalendosi dell aiuto di tutta una serie di molecole, che prendono il nome di Sciaperoni Molecolari. Gli sciaperoni molecolari promuovono la corretta organizzazione della struttura proteica attraverso cicli di legame e rilascio del substrato, regolati dall attività di ATPasi e di vari cofattori

68 Le chaperonine assistono le proteine nella fase di folding, prevenendo il legame con ligandi inappropriati.

69

70 Folding e misfolding delle proteine Le chaperonine piccole e grandi, loro ruolo nelle patologie da misfolding Proteine "chaperone" alterate sono responsabili della patogenesi di malattie umane mutazioni in geni che codificano per proteine chaperone CHAPERONEPATIE Le patologie dovute ad alterazioni a carico di proteine chaperone in genere colpiscono numerosi organi ed apparati contemporaneamente, a dimostrazione della molteplicità di ruoli svolta da questa classe di molecole

71 Fattori che possono disturbare il processo di ripiegamento di una proteina nascente Mancata sintesi contemporanea di tutti i domini della proteina Presenza di grande quantità di macromolecole Esposizione di regioni che si ripiegano lentamente o idrofobiche

72 Sono note due patologie genetiche causate da mutazioni che colpiscono il dominio α-cristallino delle proteine αa- e αb- cristallina Mutazione (Arg)R120G(Gly) nella proteina αb-cristallina miopatia correlata con la desmina (DRM) Mutazione R116C(Cys) nella proteina αa-cristallina cataratta congenita

73 Sedi di espressione e funzione Le proteine αa- e αb- cristallina sono molto abbondanti nel cristallino, in associazione con i filamenti intermedi Funzione: stabilizzare i microtubuli e modulare l assemblaggio dei filamenti intermedi αb-cristallina è presente anche nel muscolo scheletrico e in quello cardiaco, nella pelle, nel cervello e nei reni Funzione: conferire protezione dagli stress ossidativi, termici ed osmotici (interazione con i filam. intermedi)

74 Molte malattie sono dovute al difettoso ripiegamento di una proteina Alcune patologie derivano da proteine che non sono in grado di raggiungere la loro struttura funzionale e che tendono a formare grossi aggregati (fibrille o forme amiloidi): Alzheimer, Parkinson, encefalopatia spongiforme, diabete di tipo II. In altri casi mutazioni puntiformi generano proteine che non raggiungono la loro locazione finale o che non sono più in grado di svolgere la loro funzione perché incapaci di legare i loro substrati. Fibrosi cistica: difetto nella proteina transmembrana che agisce come un canale degli ioni cloro nelle cellule epiteliali (CFTR: 1480 amminoacidi). La mutazione più comune è la delezione di un amminoacido (Phe 508) e la proteina mutata non si avvolge correttamente. Biofisica

75 Biofisica

76 Biofisica

77 Il Prione esiste in due forme. Quella normale, innocua (PrPc), può cambiare la sua forma e diventare patogena (PrPSc). La conversione da PrPc a PrPSc procede poi con una reazione a catena. Quando viene raggiunta una concentrazione sufficiente di proteine PrPSc, queste si aggregano a formare un lungo filamento che gradualmente danneggia il tessuto neuronale.

78 il suo scheletro si ripiega formando eliche (mostrate nel modello a nastro) e come cilindri nello schema con filamenti beta La proteina prionica (PrPc) è generalmente innocua. La PrPc si converte nella forma infettiva (PrPSc) quando gran parte dello scheletro si distende, formando i cosidetti filamenti beta. I siti in rosso nel modello a nastro della PrP normale evidenziano posizioni nelle quali la sostituzione di un amminoacido promuove probabilmente l'avvolgimento nella forma infettiva della molecola.

79 I peptidi ed i polipeptidi biologicamente attivi hanno dimensioni molto variabili (diverso numero di aminoacidi, diversa composizione, diversa sequenza es. - Ossitocina (9 aa) - Glucagone (29 aa), -Somatostatina (14, 28aa) -insulina con le sue due catene alfa (21aa) e beta (30aa).

80 Molte biomolecole sono di derivazione dagli aa. La glicina è un precursore dell eme. L ossido nitrico (Molecola segnale) si produce dall arginina GABA dal Glutammico Istamina dall istidina Serotonina dal triptofano Dopamina e Adrenalina dalla Tirosina Alcune poliammine derivano dall ornitina.

81 L'insulina è costituita da due catene polipeptidiche (α più piccola di 21 AA e β più grande di 30 AA), tenute insieme da ponti disolfuro che si formano tra le cisteine 7 e 20 della catena α e le cisteine 7 e 19 della catena β. L'insulina viene prodotta a partire dalla proinsulina tramite taglio proteolitico di un peptide di congiunzione di 33 aa. Questo peptide è chiamato peptide C, mentre l'enzima responsabile del taglio proteolitico è detto endopeptidasi 33aa 21aa 30aa

82 Alcuni ricercatori notarono che nell'insulina umana sono presenti delle regioni variabili, in particolare la sequenza degli aminoacidi n 28 e 29 (P ro-lys) della catena β; successivamente si scoprì che invertendo tali AA l'insulina passava direttamente allo stato monometrico, saltando quello dimerico. Nacque così la "Lys Pro" o "insulina rapida", un farmaco particolarmente utile se iniettato in prossimità di un pasto abondante.

83 La somatostatina viene prodotta, a livello ipotalamico, e anche a livello del sistema nervoso periferico a livello pancreatico e nel tratto gastrointestinale. La somatostatina influenza principalmente quattro processi: la neurotrasmissione, la secrezione ghiandolare, la contrazione della muscolatura liscia e la proliferazione cellulare. Nei mammiferi la somatostatina è codificata da un unico gene e sintetizzata come parte di un precursore più grande, la pre-pro-somatostatina, lungo 116 amminoacidi e caratterizzato all'estremità N-terminale da un peptide segnale di 24 residui. Il precursore viene, però, rapidamente trasformato in un peptide lungo 92 amminoacidi, la prosomatostatina [5, 6]. Nei mammiferi il proormone viene processato ad entrambe le estremità N- terminale e C-terminale a dare i due prodotti biologicamente attivi, la somatostatina-14 (SS-14) e la somatostatina-28 (SS-28)

84 La

85 ossitocina,: nonapeptide secreto dalla neuroipofisi, implicato nella contrattilità della muscolatura uterina nel parto e nella eiezione del latte durante l allattamento, è implicato anche nei comportamenti sociali, sessuali e materni. Gly-Leu-Pro-Cys-Cys-Asn-Gln-Ile-Tyr

86 La vasopressina, nota anche come ormone antidiuretico (ADH) o diuretina, è una sostanza di natura peptidica secreta dall'ipofisi posteriore, ma prodotta principalmente a livello ipotalamico. La vasopressina gioca un ruolo importante nella regolazione del volume plasmatico, e come tale contribuisce a mantenere costante la parte liquida del sangue, chiamata plasma. L'ormone antidiuretico, infatti, favorisce il riassorbimento di acqua a livello renale (più precisamente nei tubuli distali e nei dotti collettori dei nefroni), opponendosi alla produzione di urina (o diuresi); da qui il nome antidiuretico. Più il suo livello è alto e minore sarà la produzione di urina e viceversa. In assenza di vasopressina, malattia nota come diabete insipido, il soggetto elimina 18 litri di urina al giorno e, di conseguenza, è costretto ad assumere almeno 20 litri di liquidi con la dieta. Se l'aggettivo "antidiuretico" esprime in modo chiaro l'azione fisiologica di questo ormone, altrettanto si può dire del sinonimo "vasopressina". L'ADH, infatti, possiede una seconda, importante, azione, legata alla sua capacità vasocostrittrice. Diminuendo il calibro delle arteriole, la vasopressina è infatti capace di aumentare la pressione arteriosa, anche in maniera sensibile quando è secreta in quantità elevate. Cys-Tyr-Phe-Gln-Asn-Cys-Pro-Arg-Gly S-S

87 Il glutatione è una combinazione dei tre aminoacidi (tripeptide) cisteina, acido glutammico e glicina. γ-l-glutammil-l-cisteinil-glicina contro i radicali liberi o molecole come perossido di idrogeno, nitriti, nitrati, benzoati e altre. Svolge un'importante azione nel globulo rosso, proteggendo tali cellule da pericoli ossidativi che causerebbero l'emolisi. Elemento importante per il suo funzionamento è il NADPH. Tale molecola è un derivato della vitamina PP (acido nicotinico) e funziona da cofattore ossido-riduttivo dell'enzima glutatione reduttasi (o GSR). L'enzima rigenera il glutatione ossidato (o GSSG) attaverso gli elettroni ceduti dal NADPH, che vengono trasferiti sull GSSG rigenerando questo a gluatione ridotto (o GSH). Nei soggetti favici l'assenza dell'enzima glucosio-6-fosfato deidrogenasi (G6PD) porta ad una minor produzione di NADPH; le fave contengono sostanze ossidanti che portano in queste persone all'emolisi, in quanto il glutatione non possiede abbastanza potere riducente da poter contrastare il danno ossidativo di tali sostanze.

88

89 t

90

91 Proteine denaturare al calore, con acidi, o chimici perdono la struttura terziaria e secondaria e la funzione biologica. Il processo è reversibile

92

93 DENATURAZIONE

Le proteine sono polimeri lineari costituiti da unità base formate da oltre 40 amminoacidi. Possono assumere forme diverse a seconda della funzione

Le proteine sono polimeri lineari costituiti da unità base formate da oltre 40 amminoacidi. Possono assumere forme diverse a seconda della funzione Le proteine sono polimeri lineari costituiti da unità base formate da oltre 40 amminoacidi Hanno elevato PM Possono assumere forme diverse a seconda della funzione svolgono molteplici funzioni Tra le proteine

Dettagli

STRUTTURA E FUNZIONE DELLE PROTEINE

STRUTTURA E FUNZIONE DELLE PROTEINE STRUTTURA E FUNZIONE DELLE PROTEINE PROTEINE 50% DEL PESO SECCO DI UNA CELLULA STRUTTURA intelaiatura citoscheletrica strutture cellulari impalcatura di sostegno extracellulare FUNZIONE catalisi enzimatica

Dettagli

COMPOSTI AZOTATI. derivanti dall ammoniaca AMMINE. desinenza -INA AMMIDE

COMPOSTI AZOTATI. derivanti dall ammoniaca AMMINE. desinenza -INA AMMIDE COMPOSTI AZOTATI derivanti dall ammoniaca AMMINE desinenza -INA AMMIDE ANCORA AMMIDI RISONANZA A M M I D I Il legame ammidico ha parziale carattere di doppio legame per la seguente risonanza: Ammidi H

Dettagli

BIOMOLECOLE (PROTEINE)

BIOMOLECOLE (PROTEINE) BIOMOLECOLE (PROTEINE) Proteine: funzioni Strutturale (muscoli, scheletro, legamenti ) Contrattile (actina e miosina) Di riserva (ovoalbumina) Di difesa (anticorpi) Di trasporto (emoglobina, di membrana)

Dettagli

STRUTTURA E FUNZIONE DELLE PROTEINE

STRUTTURA E FUNZIONE DELLE PROTEINE STRUTTURA E FUNZIONE DELLE PROTEINE PROTEINE Forma e funzione Stretta correlazione fra forma e funzione delle proteine È la conformazione tridimensionale che conferisce alla proteina l'attività biologica

Dettagli

LE PROTEINE -struttura tridimensionale-

LE PROTEINE -struttura tridimensionale- LE PROTEINE -struttura tridimensionale- Struttura generale di una proteina Ceruloplasmina Cosa sono??? Sono biopolimeri con forme ben definite. composti da molteplici amminoacidi, legati con legami peptidici

Dettagli

SOSTEGNO proteine strutturali (collagene, cheratina, elastina, fibroina) CATALISI (enzimi)

SOSTEGNO proteine strutturali (collagene, cheratina, elastina, fibroina) CATALISI (enzimi) PROTEINE STRUTTURA E FUNZIONE DELLE PROTEINE Forma e funzione Stretta correlazione fra forma e funzione delle proteine È la conformazione tridimensionale che conferisce alla proteina l'attività biologica

Dettagli

La struttura delle proteine

La struttura delle proteine La struttura delle proteine Funzioni delle proteine Strutturali Contrattili Trasporto Riserva Ormonali Enzimatiche Protezione Struttura della proteina Struttura secondaria: ripiegamento locale della catena

Dettagli

Proprietà comuni. Il gruppo α-carbossilico b è un acido più forte del gruppo carbossilico degli acidi alifatici

Proprietà comuni. Il gruppo α-carbossilico b è un acido più forte del gruppo carbossilico degli acidi alifatici Gli aminoacidi Proprietà comuni Il gruppo α-carbossilico b è un acido più forte del gruppo carbossilico degli acidi alifatici paragonabili Il gruppo α-aminico è un acido più forte (o una base più debole

Dettagli

Corso di Laurea in Farmacia Insegnamento di CHIMICA BIOLOGICA. Angela Chambery Lezione 5

Corso di Laurea in Farmacia Insegnamento di CHIMICA BIOLOGICA. Angela Chambery Lezione 5 Corso di Laurea in Farmacia Insegnamento di CHIMICA BIOLOGICA Angela Chambery Lezione 5 Il legame peptidico Concetti chiave: In un polipeptide gli amminoacidi sono uniti dai legami peptidici. Il legame

Dettagli

AMMINOACIDI E PROTEINE

AMMINOACIDI E PROTEINE AMMINOACIDI E PROTEINE 1 AMMINOACIDI Gli amminoacidi sono composti organici composti da atomi di carbonio, idrogeno, ossigeno e azoto e in alcuni casi anche da altri elementi come lo zolfo. Gli amminoacidi

Dettagli

STRUTTURA E FUNZIONE DELLE PROTEINE

STRUTTURA E FUNZIONE DELLE PROTEINE STRUTTURA E FUNZIONE DELLE PROTEINE PROTEINE 50% DEL PESO SECCO DI UNA CELLULA STRUTTURA intelaiatura citoscheletrica strutture cellulari impalcatura di sostegno extracellulare FUNZIONE catalisi enzimatica

Dettagli

Le proteine. Sono polimeri di amminoacidi dispos$ in sequenza. Due amminoacidi si legano tra loro formando un legame pep-dico.

Le proteine. Sono polimeri di amminoacidi dispos$ in sequenza. Due amminoacidi si legano tra loro formando un legame pep-dico. Le proteine Sono polimeri di amminoacidi dispos$ in sequenza. Due amminoacidi si legano tra loro formando un legame pep-dico. Cur$s et al. Invito alla biologia.blu Zanichelli editore 2011 1 Struttura e

Dettagli

Formula generale di un amminoacido

Formula generale di un amminoacido Formula generale di un amminoacido Gruppo carbossilico Gruppo amminico Radicale variabile che caratterizza i singoli amminoacidi Le catene laterali R degli amminoacidi di distinguono in: Apolari o idrofobiche

Dettagli

Proteine strutturali Sostegno meccanico Cheratina: costituisce i capelli Collagene: costituisce le cartilagini Proteine di immagazzinamento

Proteine strutturali Sostegno meccanico Cheratina: costituisce i capelli Collagene: costituisce le cartilagini Proteine di immagazzinamento Tipo Funzione Esempi Enzimi Accelerano le reazioni chimiche Saccarasi: posiziona il saccarosio in modo che possa essere scisso nelle due unità di glucosio e fruttosio che lo formano Ormoni Messaggeri chimici

Dettagli

sono le unità monomeriche che costituiscono le proteine hanno tutti una struttura comune

sono le unità monomeriche che costituiscono le proteine hanno tutti una struttura comune AMINO ACIDI sono le unità monomeriche che costituiscono le proteine sono 20 hanno tutti una struttura comune sono asimmetrici La carica di un amino acido dipende dal ph Classificazione amino acidi Glicina

Dettagli

30/10/2015. Molte proteine sono. intrinsecamente disordinate. o destrutturate (IDP/IUP), cioè non hanno una struttura

30/10/2015. Molte proteine sono. intrinsecamente disordinate. o destrutturate (IDP/IUP), cioè non hanno una struttura Molte proteine sono intrinsecamente disordinate o destrutturate (IDP/IUP), cioè non hanno una struttura terziaria e/o secondaria stabile. Le IUP sono caratterizzate da - scarso contenuto in aa apolari,

Dettagli

Struttura delle Proteine

Struttura delle Proteine Chimica Biologica A.A. 2010-2011 Struttura delle Proteine Marco Nardini Dipartimento di Scienze Biomolecolari e Biotecnologie Università di Milano Macromolecole Biologiche Struttura Proteine Proteine:

Dettagli

scaricato da I peptidi risultano dall unione di due o più aminoacidi mediante un legame COVALENTE

scaricato da  I peptidi risultano dall unione di due o più aminoacidi mediante un legame COVALENTE Legame peptidico I peptidi risultano dall unione di due o più aminoacidi mediante un legame COVALENTE tra il gruppo amminico di un aminoacido ed il gruppo carbossilico di un altro. 1 Catene contenenti

Dettagli

I PROTIDI ASPETTI GENERALI

I PROTIDI ASPETTI GENERALI I PROTIDI ASPETTI GENERALI I PROTIDI O PROTEINE SONO SOSTANZE ORGANICHE AZOTATE, DI STRUTTURA MOLTO COMPLESSA, PRESENTI IN OGNI FORMA DI VITA. LE PROTEINE SONO COMPOSTI QUATERNARI, OSSIA SONO FORMATE DA

Dettagli

Schemi delle lezioni 1

Schemi delle lezioni 1 Schemi delle lezioni 1 Detti anche proteine sono i composti organici maggiormente presenti nelle cellule, dato che costituiscono circa il 50% del loro peso secco. Nell uomo adulto rappresentano circa

Dettagli

Parametri dell α-elica. residui/giro 3.6. passo dell elica

Parametri dell α-elica. residui/giro 3.6. passo dell elica GRAFICO DI RAMACHANDRAN Parametri dell α-elica residui/giro 3.6 spazio/residuo passo dell elica 1.5 Å 5.4 Å 1 L α-elica può essere destabilizzata da interazioni tra i gruppi R: repulsione/attrazione elettrostatica

Dettagli

Formazione del legame peptidico:

Formazione del legame peptidico: Formazione del legame peptidico: Planare, ha una forza intermedia tra il legame semplice ed il legame doppio. 2^ lezione N R C C O O O + R N R C O C O O N R C C N C C O Ogni piano delle unità peptidiche

Dettagli

30/10/2015 LIVELLI DI ORGANIZZAZIONE STRUTTURALE DELLE PROTEINE

30/10/2015 LIVELLI DI ORGANIZZAZIONE STRUTTURALE DELLE PROTEINE LIVELLI DI ORGANIZZAZIONE STRUTTURALE DELLE PROTEINE 1 CARATTERISTICHE DEL LEGAME PEPTIDICO lunghezza intermedia tra un legame singolo e uno doppio ibrido di risonanza per il parziale carattere di doppio

Dettagli

Funzioni delle proteine

Funzioni delle proteine Funzioni delle proteine ENZIMI Proteine di trasporto Proteine di riserva Proteine contrattili o motili Proteine strutturali Proteine di difesa Proteine regolatrici Proteine di trasporto Emoglobina Lipoproteine

Dettagli

Proteine: struttura e funzione

Proteine: struttura e funzione Proteine: struttura e funzione Prof.ssa Flavia Frabetti PROTEINE dal greco al 1 posto costituiscono il 50% circa del peso secco della maggior parte degli organismi viventi composti quaternari (C, H, O,

Dettagli

Amminoacidi Peptidi Proteine

Amminoacidi Peptidi Proteine Amminoacidi Peptidi Proteine Amminoacidi-Peptidi-Proteine Amminoacidi: Struttura generale COOH H NH 2 Centro chiralico Stereoisomeri: composti con la stessa connessione tra gli atomi, ma con una differente

Dettagli

Le macromolecole dei tessuti - 1

Le macromolecole dei tessuti - 1 Le macromolecole dei tessuti - 1 Che cosa sono le proteine? Sono macromolecole complesse ad alta informazione Sono costituite da una o più catene polipeptidiche Ogni catena peptidica è composta da centinaia

Dettagli

Aminoacidi. Struttura generale Sono 20 e formano le

Aminoacidi. Struttura generale Sono 20 e formano le Aminoacidi Struttura generale Sono 20 e formano le proteine. Oltre a questi ne esistono altri meno comuni Alcuni subiscono modificazioni dopo essere stati inseriti nelle proteine Altri stanno nell organismo

Dettagli

LE PROTEINE. SONO Polimeri formati dall unione di AMMINOACIDI (AA) Rende diversi i 20 AA l uno dall altro UN ATOMO DI C AL CENTRO

LE PROTEINE. SONO Polimeri formati dall unione di AMMINOACIDI (AA) Rende diversi i 20 AA l uno dall altro UN ATOMO DI C AL CENTRO LE PROTEINE SONO Polimeri formati dall unione di ATOMI DI C, H, N, O CHE SONO AMMINOACIDI (AA) Uniti tra loro dal Legame peptidico 20 TIPI DIVERSI MA HANNO STESSA STRUTTURA GENERALE CON Catene peptidiche

Dettagli

Amminoacidi. Struttura base di un a-amminoacido

Amminoacidi. Struttura base di un a-amminoacido Amminoacidi Struttura base di un a-amminoacido Forma non ionizzata Forma ionizzata, sale interno (zwitterione) Il carbonio α di tutti gli α-amminoacidi (tranne la glicina) è asimmetrico (=chirale) D-alanina

Dettagli

Il legame peptidico è polare

Il legame peptidico è polare Scaricato da Il legame peptidico è polare SONO FAVORITE QUELLE CONFIGURAZIONI CHE CONSENTONO IL MAGGIOR NUMERO DI INTERAZIONI TRA LE PARTI DELLA CATENA POLIPEPTIDICA. A CAUSA DELLA POLARITA' DEL LEGAME

Dettagli

LE PROTEINE: POLIMERI COSTITUITI DA 20 TIPI DI MONOMERI, I 20 AMINOACIDI

LE PROTEINE: POLIMERI COSTITUITI DA 20 TIPI DI MONOMERI, I 20 AMINOACIDI LE PROTEINE: POLIMERI OSTITUITI DA 20 TIPI DI MONOMERI, I 20 AMINOAIDI OGNI PROTEINA PUO ESSERE FORMATA DA MOLTE DEINE O ENTINAIA DI AMINOAIDI E SI LEGANO A FORMARE UNA ATENA NON RAMIFIATA La catena di

Dettagli

Formazione. di un peptide.

Formazione. di un peptide. Formazione. di un peptide. Quando due aminoacidi si uniscono si forma un legame peptidico. In questo caso il dipeptide glicilalanina (Gly-Ala) viene mostrato come se si stesse formando in seguito a eliminazione

Dettagli

PROTEINE dal greco al 1 posto costituiscono il 50% circa del peso secco della maggior parte degli organismi viventi

PROTEINE dal greco al 1 posto costituiscono il 50% circa del peso secco della maggior parte degli organismi viventi POTEINE dal greco al 1 posto costituiscono il 50% circa del peso secco della maggior parte degli organismi viventi composti quaternari (,, O, N) macromolecole organiche, molecole informazionali, polimeri

Dettagli

a) un movimento contro gradiente di concentrazione che utilizza fonti primarie di energia

a) un movimento contro gradiente di concentrazione che utilizza fonti primarie di energia 1. Quale considerazione sulla struttura primaria di una proteina è vera? a) è caratteristica delle proteine insolubili b) i ponti S-S la stabilizzano c) i ponti H la stabilizzano d) la proteina assume

Dettagli

Il legame peptidico è un ibrido di risonanza: scaricato da

Il legame peptidico è un ibrido di risonanza: scaricato da Il legame peptidico è un ibrido di risonanza: - O ha una parziale carica negativa - - la coppia di e - del legame C=O è parzialmente spostata verso O - N ha una parziale carica positiva + - la coppia di

Dettagli

su uno stesso piano, a 0

su uno stesso piano, a 0 2 lezione Gli angoli e variano da 180 (+ o -) quando i piani della proteina sono allineati su uno stesso piano, a 0 L asse di legame C -C può compiere una rotazione completa da -180 a 0 ( ) Quando gli

Dettagli

LE PROTEINE SINTESI PROTEICA. funzione delle proteine nel nostro organismo

LE PROTEINE SINTESI PROTEICA. funzione delle proteine nel nostro organismo LE PTEIE Le proteine sono sostanze organiche presenti in tutte le cellule di tutti gli organismi viventi Le proteine sono costituite da,,,, (S) Struttura delle proteine Le proteine sono macromolecole (

Dettagli

Macromolecole Biologiche. La struttura secondaria (III)

Macromolecole Biologiche. La struttura secondaria (III) La struttura secondaria (III) Reverse turn Le proteine globulari hanno una forma compatta, dovuta a numerose inversioni della direzione della catena polipeptidica che le compone. Molte di queste inversioni

Dettagli

Chimotripsina Una proteina globulare. Glicina Un amminoacido

Chimotripsina Una proteina globulare. Glicina Un amminoacido Chimotripsina Una proteina globulare Glicina Un amminoacido - In teoria un numero enorme di differenti catene polipeptidiche potrebbe essere sintetizzato con i 20 amminoacidi standard. 20 4 = 160.000 differenti

Dettagli

PROTEINE: STRUTTURA, ESEMPI E FUNZIONAMENTO TUTORATO 1 GIULIANO F. PATANÈ COLLEGIO A. VOLTA

PROTEINE: STRUTTURA, ESEMPI E FUNZIONAMENTO TUTORATO 1 GIULIANO F. PATANÈ COLLEGIO A. VOLTA PROTEINE: STRUTTURA, ESEMPI E FUNZIONAMENTO TUTORATO 1 GIULIANO F. PATANÈ COLLEGIO A. VOLTA PROTEINE Una proteina è basilarmente una catena polipeptidica (che in termini chimici può anche essere definita

Dettagli

Chimica Biologica A.A α-elica foglietto β reverse turn

Chimica Biologica A.A α-elica foglietto β reverse turn Chimica Biologica A.A. 2010-2011 α-elica foglietto β reverse turn Str. Secondaria sperimentalmente osservata: Si distinguono fondamentalmente tre tipi di strutture secondarie: α elica foglietto β reverse

Dettagli

Costituenti chimici della materia vivente

Costituenti chimici della materia vivente Costituenti chimici della materia vivente Le macromolecole biologiche Macromolecole (dal greco macros = grande) biologiche. Classi di composti biologici multifunzionali: Polisaccaridi proteine acidi

Dettagli

Fondamentali in ogni organismo, hanno molteplici ruoli:

Fondamentali in ogni organismo, hanno molteplici ruoli: Le proteine Fondamentali in ogni organismo, hanno molteplici ruoli: Componenti strutturali (collagene, tessuto connettivo, citoscheletro, pelle) Trasportatori (emoglobina, albumina) Trasmettitori di messaggi

Dettagli

COMPORTAMENTO ANFOTERO DEGLI AA

COMPORTAMENTO ANFOTERO DEGLI AA Proprietà acido-basiche degli aminoacidi FORMA NON IONICA Non esiste a nessun valore di ph FORMA ZWITTERIONICA È la forma prevalente a ph 7 COMPORTAMENTO ANFOTERO DEGLI AA CARICA NETTA +1 CARICA NETTA

Dettagli

PROTEINE DEFINIZIONE:

PROTEINE DEFINIZIONE: Cap.4 Le PROTEINE DEFINIZIONE: Macromolecole formate di AA della serie L uniti tra loro da un legame peptidico. FUNZIONI DELLE PROTEINE Enzimi Proteine di riconoscimento Proteine di trasporto Proteine

Dettagli

Le biomolecole si trovano negli organismi viventi

Le biomolecole si trovano negli organismi viventi Le biomolecole si trovano negli organismi viventi I viventi sono formati per la maggior parte da acqua e molecole, chiamate biomolecole. Le biomolecole sono sostanze contenenti carbonio. I composti del

Dettagli

CARBOIDRATI C H O ZUCCHERO SACCARIDE GLUCIDE CARBOIDRATO

CARBOIDRATI C H O ZUCCHERO SACCARIDE GLUCIDE CARBOIDRATO CARBOIDRATI ZUCCHERO SACCARIDE GLUCIDE CARBOIDRATO C H O carboidrati C n H 2n O n H C O C O Il glucosio è un monosaccaride con 6 atomi di carbonio GLUCOSIO Forma ciclica Forma lineare a ph 7 circa lo 0,0026%

Dettagli

Vittoria Patti MACROMOLECOLE BIOLOGICHE. 4. proteine

Vittoria Patti MACROMOLECOLE BIOLOGICHE. 4. proteine Vittoria Patti MACROMOLECOLE BIOLOGICHE 4. proteine 1 Funzioni principali delle proteine funzione cosa significa esempi ENZIMATICA STRUTTURALE TRASPORTO MOVIMENTO DIFESA IMMUNITARIA ORMONALE catalizzare

Dettagli

Alcol + alcol etere R-OH + R -OH R-O-R + H 2 O Aldeide + alcol emiacetale R-CHO + R -OH R-CHOH-O-R Acido + Acido anidride R-COOH + R -COOH

Alcol + alcol etere R-OH + R -OH R-O-R + H 2 O Aldeide + alcol emiacetale R-CHO + R -OH R-CHOH-O-R Acido + Acido anidride R-COOH + R -COOH Nomenclatura AMIDI Alcol + alcol etere R-OH + R -OH R-O-R + H 2 O Aldeide + alcol emiacetale R-CHO + R -OH R-CHOH-O-R Acido + Acido anidride R-COOH + R -COOH R-CO-O-CO-R + H 2 O Alcol + Acido estere R-COOH

Dettagli

MACROMOLECOLE. Polimeri (lipidi a parte)

MACROMOLECOLE. Polimeri (lipidi a parte) MACROMOLECOLE Monomeri Polimeri (lipidi a parte) Le caratteristiche strutturali e funzionali di una cellula o di un organismo sono determinate principalmente dalle sue proteine. Ad esempio: Le proteine

Dettagli

moli OH - /mole amminoacido

moli OH - /mole amminoacido ) ) Di seguito è riportata la curva di titolazione di un amminoacido. Osservando il grafico: a) stabilire il valore dei pka dell aminoacido b) calcolare il valore del pi e individuarlo sul grafico. c)

Dettagli

Struttura degli amminoacidi

Struttura degli amminoacidi AMMINOACIDI, PEPTIDI E PROTEINE AMMINOACIDI, PEPTIDI E PROTEINE AMMINOACIDI, PEPTIDI E PROTEINE Le proteine sono macromolecole costituite dall unione di un grande numero di unità elementari: gli amminoacidi

Dettagli

Percorsi di chimica organica - Soluzioni degli esercizi del testo

Percorsi di chimica organica - Soluzioni degli esercizi del testo ercorsi di chimica organica - Soluzioni degli esercizi del testo AITL 14 1. Il prefisso α negli α-amminoacidi sta ad indicare che il gruppo amminico, - 2, si trova sul carbonio alfa (carbonio legato al

Dettagli

Il carbonio è l elemento di base delle biomolecole. Una cellula batterica può contenere fino a 5000 tipi diversi di composti organici.

Il carbonio è l elemento di base delle biomolecole. Una cellula batterica può contenere fino a 5000 tipi diversi di composti organici. Il carbonio è l elemento di base delle biomolecole Una cellula batterica può contenere fino a 5000 tipi diversi di composti organici. 1 Il carbonio deve acquistare quattro elettroni per essere stabile

Dettagli

La fissazione dell azoto

La fissazione dell azoto La fissazione dell azoto Complesso della nitrogenasi N +10H + + 8e + 16ATP N 2 + 10 H + 8e + 16ATP 2NH 4+ + 16ADP + 16P + H2 Metabolismo degli aminoacidi Metabolismo degli aminoacidi Gli aminoacidi

Dettagli

Le molecole biologiche. Le proteine

Le molecole biologiche. Le proteine Le molecole biologiche Le proteine Le proteine sono macromolecole che costituiscono la maggior parte delle strutture cellulari ed extra-cellulari Così come nel caso di lipidi e carboidrati, anch esse

Dettagli

le porzioni con strutture secondarie sono avvicinate e impaccate mediante anse e curve della catena. STRUTTURA TERZIARIA

le porzioni con strutture secondarie sono avvicinate e impaccate mediante anse e curve della catena. STRUTTURA TERZIARIA STRUTTURA TERZIARIA le porzioni con strutture secondarie sono avvicinate e impaccate mediante anse e curve della catena. Le proteine globulari dopo aver organizzato il proprio scheletro polipeptidico con

Dettagli

Le molecole biologiche. Sylvia S. Mader Immagini e concetti della biologia Zanichelli editore, 2012

Le molecole biologiche. Sylvia S. Mader Immagini e concetti della biologia Zanichelli editore, 2012 Le molecole biologiche 1 Il carbonio è l elemento di base delle biomolecole Una cellula batterica può contenere fino a 5000 tipi diversi di composti organici. 2 Il carbonio deve acquistare quattro elettroni

Dettagli

Immagini e concetti della biologia

Immagini e concetti della biologia Sylvia S. Mader Immagini e concetti della biologia 2 A3 Le molecole biologiche 3 Il carbonio è l elemento di base delle biomolecole Una cellula batterica può contenere fino a 5000 tipi diversi di composti

Dettagli

STRUTTURA E FUNZIONE DELLE

STRUTTURA E FUNZIONE DELLE STRUTTURA E FUNZIONE DELLE PROTEINE Compongono la STRUTTURA della cellula ma hanno anche altre FUNZIONI intelaiatura citoscheletrica strutture cellulari (organelli) impalcatura di sostegno extracellulare

Dettagli

STRUTTURA TERZIARIA. H 3 N + COO - β-foglietto

STRUTTURA TERZIARIA. H 3 N + COO - β-foglietto STRUTTURA TERZIARIA α-eliche H 3 N + COO - β-foglietto La catena polipeptidica delle proteine GLOBULARI oltre ad organizzarsi in strutture di tipo secondario va incontro ad un ulteriore ripiegamento sino

Dettagli

IL GRUPPO EME. PROTOPORFIRINA IX: struttura organica ad anello costituita da 4 anelli pirrolici uniti da ponti metinici.

IL GRUPPO EME. PROTOPORFIRINA IX: struttura organica ad anello costituita da 4 anelli pirrolici uniti da ponti metinici. IL GRUPPO EME PROTOPORFIRINA IX: struttura organica ad anello costituita da 4 anelli pirrolici uniti da ponti metinici. L inserimento di un atomo di ferro nello stato di ossidazione ferroso (Fe 2+ ) determina

Dettagli

La chimica della vita: i composti organici. CARBOIDRATI LIPIDI PROTEINE ACIDI NUCLEICI (DNA, RNA)

La chimica della vita: i composti organici. CARBOIDRATI LIPIDI PROTEINE ACIDI NUCLEICI (DNA, RNA) La chimica della vita: i composti organici. CARBOIDRATI LIPIDI PROTEINE ACIDI NUCLEICI (DNA, RNA) L atomo del carbonio (C).. C. Atomo tetravalente. C C C C Gli idrocarburi I legami del carbonio 109.5 gradi

Dettagli

Proteine. Enzimi Fattori di Trascrizione Proteine di Membrana (trasportatori, canale, recettori di membrana)

Proteine. Enzimi Fattori di Trascrizione Proteine di Membrana (trasportatori, canale, recettori di membrana) Proteine Enzimi Fattori di Trascrizione Proteine di Membrana (trasportatori, canale, recettori di membrana) Ormoni e Fattori di crescita Anticorpi Trasporto Trasporto (emoglobina, LDL, HDL.) Fenotipo Proteine

Dettagli

Struttura degli Amminoacidi

Struttura degli Amminoacidi Amminoacidi Struttura degli Amminoacidi Amminoacido (o α-amminoacido): molecola che possiede un gruppo amminico primario (-NH 2 ) come sostituente dell atomo di carbonio α, e un gruppo carbossilico acido

Dettagli

Biochimica. studio della vita a livello molecolare

Biochimica. studio della vita a livello molecolare Biochimica studio della vita a livello molecolare studio della composizione molecolare dei sistemi viventi studio delle reazioni chimiche cui vanno incontro i sistemi viventi ALCUNI QUESITI DELLA BIOCHIMICA

Dettagli

1) Comunicazione diretta attraverso giunzioni comunicanti 2) Comunicazione tramite messaggeri chimici

1) Comunicazione diretta attraverso giunzioni comunicanti 2) Comunicazione tramite messaggeri chimici Una complessa rete di comunicazione tra cellule coordina la crescita, il differenziamento e il metabolismo in tutti gli organismi pluricellulari. Si riconoscono due tipologie di comunicazione intercellulare:

Dettagli

LIVELLI DI STRUTTURA DELLE PROTEINE

LIVELLI DI STRUTTURA DELLE PROTEINE FUNZIONI E STRUTTURA DELLE PROTEINE PROF.SSA AUSILIA ELCE Indice 1 INTRODUZIONE -------------------------------------------------------------------------------------------------------------- 3 2 LIVELLI

Dettagli

Aminoacidi. Gli α-aminoacidi sono molecole con almeno due gruppi funzionali legati al carbonio α

Aminoacidi. Gli α-aminoacidi sono molecole con almeno due gruppi funzionali legati al carbonio α Aminoacidi Gli α-aminoacidi sono molecole con almeno due gruppi funzionali legati al carbonio α 1 Isomeria ottica Tutti gli AA, esclusa la glicina, presentano almeno un atomo di carbonio asimmetrico, il

Dettagli

AMINOACIDI Struttura. Funzione. Classificazione. Proprietà

AMINOACIDI Struttura. Funzione. Classificazione. Proprietà AMINOACIDI Struttura Funzione Classificazione Proprietà 1 STRUTTURA Composti caratterizzati dalla presenza di un gruppo aminico (NH 2 ) e di un gruppo acido (COOH) legati al medesimo carbonio (C). In soluzione

Dettagli

Diagramma di Ramachandran

Diagramma di Ramachandran Chimica Biologica A.A. 2010-2011 Diagramma di Ramachandran Diagramma di Ramachandran Catena polipeptidica La formazione in successione di legami peptidici genera la cosiddetta catena principale o scheletro

Dettagli

BIOMOLECOLE LE BASI DELLA BIOCHIMICA. Capitolo 1 Dal Carbonio agli OGM PLUS

BIOMOLECOLE LE BASI DELLA BIOCHIMICA. Capitolo 1 Dal Carbonio agli OGM PLUS BIOMOLECOLE LE BASI DELLA BIOCHIMICA Capitolo 1 Dal Carbonio agli OGM PLUS BIOMOLECOLE Carboidrati Lipidi Acidi Nucleici Proteine BIOMOLECOLE Carboidrati Lipidi Acidi Nucleici - monosaccaridi - disaccaridi

Dettagli

Composti organici. I composti organici. Atomi e molecole di carbonio. Atomi e molecole di carbonio. Gruppi funzionali. Isomeri

Composti organici. I composti organici. Atomi e molecole di carbonio. Atomi e molecole di carbonio. Gruppi funzionali. Isomeri I composti organici Atomi e molecole di carbonio Carboidrati Lipidi Proteine Acidi nucleici Composti organici Materiale composto da biomolecole - Formate in buona parte da legami ed anelli di carbonio.

Dettagli

I ribosomi liberi nel citoplasma sintetizzano le proteine destinate alla via citoplasmatica, cioè quelle destinate a:

I ribosomi liberi nel citoplasma sintetizzano le proteine destinate alla via citoplasmatica, cioè quelle destinate a: I ribosomi liberi nel citoplasma sintetizzano le proteine destinate alla via citoplasmatica, cioè quelle destinate a: filmato Rimanere nel citoplasma Essere trasportate dal citoplasma al nucleo Essere

Dettagli

Protidi. Protidi 16/01/2019

Protidi. Protidi 16/01/2019 Protidi I protidi sono macromolecole costituite dall unione di amminoacidi tra loro. I protidi, a seconda del numero di amminoacidi che li costituiscono, sono distinti in: oligopeptidi, formati da pochi

Dettagli

- utilizzano esclusivamente le reattività chimiche di alcuni residui AA

- utilizzano esclusivamente le reattività chimiche di alcuni residui AA Enzimi semplici Enzimi coniugati - utilizzano esclusivamente le reattività chimiche di alcuni residui AA - richiedono la reattività chimica aggiuntiva di COFATTORI o COENZIMI gruppi prostetici COENZIMI

Dettagli

Gluconeogenesi sintesi di glucosio da precursori non glucidici

Gluconeogenesi sintesi di glucosio da precursori non glucidici GLUCONEOGENESI Gluconeogenesi sintesi di glucosio da precursori non glucidici Precursori: Lattato, ossalacetato, glicerolo Amminoacidi (scheletro carbonioso) Usa le reazioni glicolitiche in direzione

Dettagli

La struttura terziaria delle proteine

La struttura terziaria delle proteine La struttura terziaria delle proteine 1 La struttura terziaria L arrangiamento spaziale degli aminoacidi di una singola catena polipeptidica a formare la sua struttura tridimensionale a domini viene chiamata

Dettagli

La chimica della pelle

La chimica della pelle La chimica della pelle 1 Gli amminoacidi Queste unità hanno la particolare caratteristica di contenere nella stessa molecola un gruppo acido (- COOH) ed uno basico (- NH 2 ), legati tra loro attraverso

Dettagli

2) La presenza di gruppi funzionali specifici che partecipano alla catalisi (quelli delle catene laterali dei suoi residui amminoacidici e/o quelli

2) La presenza di gruppi funzionali specifici che partecipano alla catalisi (quelli delle catene laterali dei suoi residui amminoacidici e/o quelli ENZIMI Tutti gli enzimi sono PROTEINE che funzionano da catalizzatori biologici nelle reazioni cellulari (sono in grado di aumentare la velocità delle reazioni biologiche anche di 10 20 volte). Durante

Dettagli

LE PROTEINE SINTETIZZATE VENGONO SOTTOPOSTE AD UN CONTROLLO DI QUALITA

LE PROTEINE SINTETIZZATE VENGONO SOTTOPOSTE AD UN CONTROLLO DI QUALITA LE PROTEINE SINTETIZZATE VENGONO SOTTOPOSTE AD UN CONTROLLO DI QUALITA LE PROTEINE CON STRUTTURA NON NATIVA VENGONO DEGRADATE ATTRAVERSO LA VIA UBIQUITINA- PROTEASOMA IL CONTROLLO DI QUALITA GARANTISCE

Dettagli

COMPOSIZIONE: - Semplici - Coniugate: Apolipoproteine Glicoproteine Nucleoproteine Metalloproteine Cromoproteine STRUTTURA: - Fibrose forma molecolare allungata struttura II - Globulari: forma molecolare

Dettagli

I PROTIDI. Aspetti generali

I PROTIDI. Aspetti generali I PROTIDI Aspetti generali I protidi o proteine sono sostanze organiche azotate, di struttura molto complessa, presenti in ogni forma di vita. In natura esistono moltissime proteine: si calcola, ad esempio,

Dettagli

09/05/17. REGOLAZIONE ALLOSTERICA determinano cambiamenti di velocità delle vie

09/05/17. REGOLAZIONE ALLOSTERICA determinano cambiamenti di velocità delle vie 1 FASE DI ASSORBIMENTO due quattro ore successive ad un pasto a. Aumento glucosio ematico, a.a. Ed trigliceridi b. Aumento secrezione insulina diminuzione glucagone c. Aumento sintesi del glicogeno, proteine

Dettagli

Ripiegamento e stabilità delle proteine

Ripiegamento e stabilità delle proteine Ripiegamento e stabilità delle proteine Ripiegamento e stabilità delle proteine La conformazione nativa di una proteina è quella a cui si associa la sua funzione biologica. Il termine stabilità può essere

Dettagli

STRUTTURA TRIDIMENSIONALE DELLE PROTEINE

STRUTTURA TRIDIMENSIONALE DELLE PROTEINE STRUTTURA TRIDIMENSIONALE DELLE PROTEINE Biologia della Cellula Animale 2016 1 STRUTTURA PROTEINE Cooper: The Cell, a Molecular Approach, 2 nd ed. http://en.wikipedia.org/wiki/protein_structure STRUTTURA

Dettagli

SOLUZIONI DEGLI ESERCIZI

SOLUZIONI DEGLI ESERCIZI Niccolò Taddei - Biochimica apitolo 3 GLI AMMINAOIDI E LE PROTEINE DEGLI ESERIZI 1 Le proteine costituiscono una grande famiglia di biomolecole molto diffuse in natura; sono costituite da unità strutturali

Dettagli

Regolazione metabolica: ruolo degli ormoni

Regolazione metabolica: ruolo degli ormoni pag. 1 Regolazione metabolica: ruolo degli ormoni La regolazione del metabolismo avviene per azione degli ormoni L effetto degli ormoni si esplica su un numero limitato di proteine: prevalentemente enzimi

Dettagli

Amminoacidi. Struttura base di un a-amminoacido

Amminoacidi. Struttura base di un a-amminoacido Amminoacidi Struttura base di un a-amminoacido Forma non ionizzata Forma ionizzata, sale interno (zwitterione) Il carbonio α di tutti gli α-amminoacidi (tranne la glicina) è asimmetrico (=chirale) D-alanina

Dettagli

Macromolecole Biologiche. La struttura secondaria (II)

Macromolecole Biologiche. La struttura secondaria (II) La struttura secondaria (II) Nello stesso anno (1951) in cui proposero l α elica, Pauling e Corey postularono anche l esistenza di un altra struttura secondaria: il foglietto β (β-sheet). Dopo l α elica,

Dettagli

Alberts et al., L ESSENZIALE DI BIOLOGIA MOLECOLARE DELLA CELLULA, Zanichelli editore S.p.A. Copyright 2005

Alberts et al., L ESSENZIALE DI BIOLOGIA MOLECOLARE DELLA CELLULA, Zanichelli editore S.p.A. Copyright 2005 La conversione dell informazione da una forma ad un altra è il punto critico della trasmissione e prende il nome di: TRASDUZIONE DEL SEGNALE Nella comunicazione cellulare: Molecola segnale Proteina recettore

Dettagli

Modello per la struttura (presunta) di un RNA viroide: le lineette interne indicano i legami tra le basi complementari

Modello per la struttura (presunta) di un RNA viroide: le lineette interne indicano i legami tra le basi complementari Viroidi Agenti infettivi costituiti da una sola molecola di RNA circolare a singolo filamento (+ o -), ripiegato a formare regioni a doppia elica, prive di capside, sensibili a RNasi Aree a doppia elica

Dettagli

Capitolo 3 Le biomolecole

Capitolo 3 Le biomolecole apitolo 3 Le biomolecole I composti organici e i loro polimeri 3.1 La diversità molecolare della vita è basata sulle proprietà del carbonio Un atomo di carbonio può formare quattro legami covalenti. Questi

Dettagli

Le Biomolecole II parte. Lezioni d'autore di Giorgio Benedetti

Le Biomolecole II parte. Lezioni d'autore di Giorgio Benedetti Le Biomolecole II parte Lezioni d'autore di Giorgio Benedetti LA STRUTTURA TERZIARIA DI UNA PROTEINA La struttura tridimensionale adottata da una proteina è detta struttura terziaria. Essa prende in considerazione

Dettagli

amminico è legato all atomo di carbonio immediatamente adiacente al gruppo carbonilico e hanno la seguente

amminico è legato all atomo di carbonio immediatamente adiacente al gruppo carbonilico e hanno la seguente Gli amminoacidi naturali sono α-amminoacidi : il gruppo amminico è legato all atomo di carbonio immediatamente adiacente al gruppo carbonilico e hanno la seguente formula generale: gruppo funzionale carbossilico

Dettagli

ACIDI GRASSI INSATURI

ACIDI GRASSI INSATURI LIPIDI ACIDI GRASSI SATURI ACIDI GRASSI INSATURI TRIGLICERIDI TRIGLICERIDI Grassi neutri o lipidi semplici glicerolo + 1 acido grasso monogliceride glicerolo + 2 acidi grassi digliceride glicerolo + 3

Dettagli