La dissomiglianza tra due distribuzioni normali

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "La dissomiglianza tra due distribuzioni normali"

Transcript

1 Annali del Dipartimento di Scienze Statistiche Carlo Cecchi Università degli Studi di Bari Aldo Moro - Vol. X (2011): Editore CLEUP, Padova - ISBN: La dissomiglianza tra due distribuzioni normali Angela Maria D'Uggento Università degli Studi di Bari Aldo Moro, Macro Area Controllo strategico, analisi statistica e programmazione Francesco Girone Università degli Studi di Bari Aldo Moro, Dipartimento di Studi aziendali e giusprivatistici Riassunto: La presente nota si propone di illustrare il procedimento mediante il quale ottenere l espressione compatta dell indice di dissomiglianza di Gini come misura globale della distanza tra distribuzioni normali, di medie diverse e di varianze diverse. L applicazione dimostra come tale formula dell indice semplice di dissomiglianza per distribuzioni normali sia di agevolissimo calcolo. Keywords: indice di dissomiglianza, distribuzione normale I paragrafi 1 e 2 sono dovuti a F. Girone e i paragrafi 3 e 4 ad A.M. D'Uggento. Autore di riferimento: Angela M. D Uggento, Università degli studi di Bari Aldo Moro, Palazzo Ateneo, p.za Umberto I, Bari;

2

3 D Uggento A.M., Girone F. La dissomiglianza tra due distribuzioni normali PREMESSA Gini (1914) ha proposto come misura della divergenza tra due distribuzioni l indice semplice di dissomiglianza. Tale indice è pari alla media delle differenze in valore assoluto tra modalità cograduate o anche all area contenuta tra le corrispondenti funzioni di ripartizione (Girone, 2009). Nel caso di caratteri continui, pertanto, l indice di dissomiglianza è pari all integrale della differenza in valore assoluto tra le due funzioni di ripartizione. Il pregio dell'indice di dissomiglianza sta nel fatto che esso è una misura globale della divergenza tra due distribuzioni che considera la totalità degli aspetti (medie, variabilità, forma ecc.) e, come tale, può essere utilizzato per misurare la distanza tra distribuzioni, godendo delle tre proprietà della distanza. In questa nota ci proponiamo di ottenere una formula chiusa dell indice di dissomiglianza nel caso di due distribuzioni normali di medie diverse e di varianze diverse. 2. DEFINIZIONI Siano X₁ e X₂ due caratteri distribuiti normalmente con medie µ₁ e µ₂ e varianze σ₁² e σ₂² e quindi con funzioni di densità definite su tutto l asse reale ₁ σ₁² σ₁ 2π e σ ² σ 2π e funzioni di ripartizione σ₁ 2

4 46 Annali del Dipartimento di Scienze Statistiche Carlo Cecchi, Vol. X (2011) e 1 σ. L indice semplice di dissomiglianza di Gini è dato dalla seguente formula: X X Non è facile ottenere il valore di tale indice sia per la presenza di quattro parametri che per la presenza del valore assoluto. Possiamo traslare le due funzioni di ripartizione in maniera da porre uguale a 0 la media più piccola, denominando la differenza tra la più grande e la più piccola con µ= µ₂ - µ₁. Questa traslazione lascia invariato l indice di dissomiglianza. Possiamo, poi, trasformare le due variabili dividendole per lo scarto quadratico medio più piccolo, in maniera da rendere unitario tale scarto quadratico medio più piccolo e indicare semplicemente il rapporto tra lo scarto quadratico medio più grande a quello più piccolo con /. Anche tale trasformazione lascia invariato l'indice di dissomiglianza. Con le suddette trasformazioni le due variabili normali hanno medie 0 e µ e varianze 1 e σ². L indice di dissomiglianza, utilizzando le variabili trasformate, quindi, dipende solo da detti due parametri. Le funzioni di ripartizione delle variabili trasformate sono: 1 e 1 σ È facile dimostrare che esse hanno il solo punto di intersezione per = a sinistra del quale F(x) G(x) e a destra del quale F(x) G(x). L indice di dissomiglianza X X si può spezzare eliminando il valore assoluto X X.

5 D Uggento A.M., Girone F. La dissomiglianza tra due distribuzioni normali 47 Con semplici artifici di calcolo abbiamo ottenuto il risultato X X [1]. La suddetta funzione, in termini di µ e σ, è rappresentata graficamente nella Fig.1 dalla quale emerge chiaramente che l indice semplice di dissomiglianza per due distribuzioni normali cresce al crescere di µ, ossia al crescere della differenza delle medie e al crescere di σ, ossia al crescere del rapporto tra i due scarti quadratici medi. Figura 1. Indice semplice di dissomiglianza tra due distribuzioni normali di medie 0 e µ e s.q.m. 1 e σ. 3. APPLICAZIONE La formula proposta nel presente lavoro consente di calcolare l indice semplice di dissomiglianza per due distribuzioni normali. Per una sua applicazione sono stati utilizzati i dati delle stature osservate su 172 studenti universitari, di cui 94 maschi e 78 femmine (Tab.1).

6 48 Annali del Dipartimento di Scienze Statistiche Carlo Cecchi, Vol. X (2011) Tabella 1. Stature osservate su 172 studenti universitari, per sesso Stature (cm) Maschi Femmine Stature (cm) Maschi Femmine Totale Medie 178,70 165, s.q.m. 7,65 6,51 Indichiamo con N=3.666 il minimo comune multiplo tra il numero dei maschi e quello delle femmine e con e con, per i=1,2,,n, le graduatorie ampliate, ossia moltiplicate per.. 39 e 47, rispet- tivamente per i maschi e per le femmine. L indice di dissomiglianza delle due distribuzioni, calcolato utilizzando la media delle differenze in valore assoluto tra osservazioni cograduate, risulta: ,53.

7 D Uggento A.M., Girone F. La dissomiglianza tra due distribuzioni normali 49 Atteso che la distribuzione delle stature in gruppi omogenei è approssimativamente normale, abbiamo sostituito alle distribuzioni empiriche le curve normali con medie e varianze stimate rispettivamente per gli studenti e per le studentesse: 178,70, 165,17 e 7,65, 6,51. La differenza delle medie risulta 178,70 165,17 13,53, il rapporto tra gli scarti quadratici medi risulta 7,65 6,51 1,175. Possiamo applicare, pertanto, la formula [1] dell'indice di dissomiglianza tra due distribuzioni normali ricavata nel paragrafo precedente: , Figura 2. Funzioni di ripartizione empiriche e teoriche delle distribuzioni delle stature di 94 studenti e 78 studentesse universitari.

8 50 Annali del Dipartimento di Scienze Statistiche Carlo Cecchi, Vol. X (2011) L'identità dei risultati consente di fare le seguenti considerazioni: - le osservazioni delle stature per i maschi e per le femmine sono ben rappresentate dalle curve normali, la qual cosa viene confermata dalla vicinanza dalle funzioni di ripartizione empiriche e teoriche rappresentate nella Fig.2; - il calcolo dell'indice di dissomiglianza risulta più agevole laddove si utilizzi la formula [1]; - il contributo all'indice di dissomiglianza è dovuto principalmente alla differenza delle medie e non alla differenza tra gli scarti quadratici medi. 4. CONSIDERAZIONI FINALI In questa nota abbiamo ottenuto l espressione in forma compatta dell indice di dissomiglianza per due variabili normali con medie e varianze diverse. Il risultato si rivela particolarmente utile quando, in varie discipline (indagini sociali, indagini di marketing, analisi dei gruppi ecc.), occorre stratificare un collettivo senza voler privilegiare i singoli aspetti (medie, variabilità, asimmetria ecc.) ma tenendo conto della distanza globale tra le distribuzioni stesse. Può essere interessante, infatti, usare il risultato dell indice di dissomiglianza globale tra le coppie di distribuzioni normali delle variabili oggetto di studio quale criterio di selezione e aggregazione delle unità statistiche. BIBLIOGRAFIA GINI C. (1914) Di una misura della dissomiglianza tra due gruppi di quantità e delle sue applicazioni allo studio delle relazioni statistiche, Reale Istituto Veneto di Scienze, Lettere ed Arti, Venezia. GIRONE G. (2009) Statistica, Cacucci Editore, Bari.

La distribuzione Normale. La distribuzione Normale

La distribuzione Normale. La distribuzione Normale La Distribuzione Normale o Gaussiana è la distribuzione più importante ed utilizzata in tutta la statistica La curva delle frequenze della distribuzione Normale ha una forma caratteristica, simile ad una

Dettagli

STATISTICA (A-K) a.a. 2007-08 Prof.ssa Mary Fraire Test di STATISTICA DESCRITTIVA Esonero del 2007

STATISTICA (A-K) a.a. 2007-08 Prof.ssa Mary Fraire Test di STATISTICA DESCRITTIVA Esonero del 2007 A STATISTICA (A-K) a.a. 007-08 Prof.ssa Mary Fraire Test di STATISTICA DESCRITTIVA Esonero del 007 STESS N.O. RD 00 GORU N.O. RD 006 ) La distribuzione del numero degli occupati (valori x 000) in una provincia

Dettagli

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI

PROBABILITA, VALORE ATTESO E VARIANZA DELLE QUANTITÁ ALEATORIE E LORO RELAZIONE CON I DATI OSSERVATI statistica, Università Cattaneo-Liuc, AA 006-007, lezione del 08.05.07 IDICE (lezione 08.05.07 PROBABILITA, VALORE ATTESO E VARIAZA DELLE QUATITÁ ALEATORIE E LORO RELAZIOE CO I DATI OSSERVATI 3.1 Valore

Dettagli

VARIABILI ALEATORIE CONTINUE

VARIABILI ALEATORIE CONTINUE VARIABILI ALEATORIE CONTINUE Se X è una variabile aleatoria continua, la probabilità che X assuma un certo valore x fissato è in generale zero, quindi non ha senso definire una distribuzione di probabilità

Dettagli

Elementi di Statistica

Elementi di Statistica Elementi di Statistica Contenuti Contenuti di Statistica nel corso di Data Base Elementi di statistica descrittiva: media, moda, mediana, indici di dispersione Introduzione alle variabili casuali e alle

Dettagli

Accuratezza di uno strumento

Accuratezza di uno strumento Accuratezza di uno strumento Come abbiamo già accennato la volta scora, il risultato della misurazione di una grandezza fisica, qualsiasi sia lo strumento utilizzato, non è mai un valore numerico X univocamente

Dettagli

Introduzione alla Teoria degli Errori

Introduzione alla Teoria degli Errori Introduzione alla Teoria degli Errori 1 Gli errori di misura sono inevitabili Una misura non ha significato se non viene accompagnata da una ragionevole stima dell errore ( Una scienza si dice esatta non

Dettagli

Titolo della lezione. Analisi dell associazione tra due caratteri: indipendenza e dipendenza

Titolo della lezione. Analisi dell associazione tra due caratteri: indipendenza e dipendenza Titolo della lezione Analisi dell associazione tra due caratteri: indipendenza e dipendenza Introduzione Analisi univariata, bivariata, multivariata Analizzare le relazioni tra i caratteri, per cercare

Dettagli

RELAZIONE TRA VARIABILI QUANTITATIVE. Lezione 7 a. Accade spesso nella ricerca in campo biomedico, così come in altri campi della

RELAZIONE TRA VARIABILI QUANTITATIVE. Lezione 7 a. Accade spesso nella ricerca in campo biomedico, così come in altri campi della RELAZIONE TRA VARIABILI QUANTITATIVE Lezione 7 a Accade spesso nella ricerca in campo biomedico, così come in altri campi della scienza, di voler studiare come il variare di una o più variabili (variabili

Dettagli

ESERCIZI SVOLTI PER LA PROVA DI STATISTICA

ESERCIZI SVOLTI PER LA PROVA DI STATISTICA ESERCIZI SVOLTI PER LA PROVA DI STATISTICA Stefania Naddeo (anno accademico 4/5) INDICE PARTE PRIMA: STATISTICA DESCRITTIVA. DISTRIBUZIONI DI FREQUENZA E FUNZIONE DI RIPARTIZIONE. VALORI CARATTERISTICI

Dettagli

INTEGRALI DEFINITI. Tale superficie viene detta trapezoide e la misura della sua area si ottiene utilizzando il calcolo di un integrale definito.

INTEGRALI DEFINITI. Tale superficie viene detta trapezoide e la misura della sua area si ottiene utilizzando il calcolo di un integrale definito. INTEGRALI DEFINITI Sia nel campo scientifico che in quello tecnico si presentano spesso situazioni per affrontare le quali è necessario ricorrere al calcolo dell integrale definito. Vi sono infatti svariati

Dettagli

Il concetto di valore medio in generale

Il concetto di valore medio in generale Il concetto di valore medio in generale Nella statistica descrittiva si distinguono solitamente due tipi di medie: - le medie analitiche, che soddisfano ad una condizione di invarianza e si calcolano tenendo

Dettagli

LE TRASFORMAZIONI GEOMETRICHE NEL PIANO

LE TRASFORMAZIONI GEOMETRICHE NEL PIANO LE TRASFORMAZIONI GEOMETRICHE NEL PIANO Una trasformazione geometrica è una funzione che fa corrispondere a ogni punto del piano un altro punto del piano stesso Si può pensare come MOVIMENTO di punti e

Dettagli

Capitolo 9: PROPAGAZIONE DEGLI ERRORI

Capitolo 9: PROPAGAZIONE DEGLI ERRORI Capitolo 9: PROPAGAZIOE DEGLI ERRORI 9.1 Propagazione degli errori massimi ella maggior parte dei casi le grandezze fisiche vengono misurate per via indiretta. Il valore della grandezza viene cioè dedotto

Dettagli

Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità

Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità Probabilità Probabilità Gli eventi sono stati definiti come i possibili risultati di un esperimento. Ogni evento ha una probabilità Se tutti gli eventi fossero ugualmente possibili, la probabilità p(e)

Dettagli

1 Valore atteso o media

1 Valore atteso o media 1 Valore atteso o media Definizione 1.1. Sia X una v.a., si chiama valore atteso (o media o speranza matematica) il numero, che indicheremo con E[X] o con µ X, definito come E[X] = i x i f(x i ) se X è

Dettagli

LOGISTICA APPUNTI DI STATISTICA

LOGISTICA APPUNTI DI STATISTICA Cos'é la Statistica LOGISTICA APPUNTI DI STATISTICA La statistica è la disciplina che applica metodi scientifici alla raccolta di dati e informazioni per una loro classificazione, elaborazione e rappresentazione

Dettagli

RELAZIONE TRA DUE VARIABILI QUANTITATIVE

RELAZIONE TRA DUE VARIABILI QUANTITATIVE RELAZIONE TRA DUE VARIABILI QUANTITATIVE Quando si considerano due o più caratteri (variabili) si possono esaminare anche il tipo e l'intensità delle relazioni che sussistono tra loro. Nel caso in cui

Dettagli

Stima per intervalli Nei metodi di stima puntuale è sempre presente un ^ errore θ θ dovuto al fatto che la stima di θ in genere non coincide con il parametro θ. Sorge quindi l esigenza di determinare una

Dettagli

LE FUNZIONI E LE LORO PROPRIETÀ

LE FUNZIONI E LE LORO PROPRIETÀ LE FUNZIONI E LE LORO PROPRIETÀ LE FUNZIONI REALI DI VARIABILE REALE COSA SONO LE FUNZIONI Dati due sottoinsiemi A e B non vuoti di R, una FUNZIONE da A a B è una relazione che associa ad ogni numero reale

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 004 Il candidato risolva uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario. PROBLEMA 1 Sia f la funzione definita da: f

Dettagli

Dott.ssa Caterina Gurrieri

Dott.ssa Caterina Gurrieri Dott.ssa Caterina Gurrieri Le relazioni tra caratteri Data una tabella a doppia entrata, grande importanza riveste il misurare se e in che misura le variabili in essa riportata sono in qualche modo

Dettagli

(accuratezza) ovvero (esattezza)

(accuratezza) ovvero (esattezza) Capitolo n 2 2.1 - Misure ed errori In un analisi chimica si misurano dei valori chimico-fisici di svariate grandezze; tuttavia ogni misura comporta sempre una incertezza, dovuta alla presenza non eliminabile

Dettagli

2.1 DATI NAZIONALI E TERRITORIALI (AREE E Regioni)

2.1 DATI NAZIONALI E TERRITORIALI (AREE E Regioni) ANALISI TERRITORIALE DEL VALORE DEL PATRIMONIO ABITATIVO Gli immobili in Italia - 2015 ANALISI TERRITORIALE DEL VALORE DEL PATRIMONIO ABITATIVO Nel presente capitolo è analizzata la distribuzione territoriale

Dettagli

EQUAZIONI non LINEARI

EQUAZIONI non LINEARI EQUAZIONI non LINEARI Francesca Pelosi Dipartimento di Matematica, Università di Roma Tor Vergata CALCOLO NUMERICO e PROGRAMMAZIONE http://www.mat.uniroma2.it/ pelosi/ EQUAZIONI non LINEARI p.1/44 EQUAZIONI

Dettagli

Esercizi di calcolo combinatorio

Esercizi di calcolo combinatorio CORSO DI CALCOLO DELLE PROBABILITÀ E STATISTICA Esercizi di calcolo combinatorio Nota: Alcuni esercizi sono tradotti, più o meno fedelmente, dal libro A first course in probability di Sheldon Ross, quinta

Dettagli

Percorsi di matematica per il ripasso e il recupero

Percorsi di matematica per il ripasso e il recupero Giacomo Pagina Giovanna Patri Percorsi di matematica per il ripasso e il recupero 1 per la Scuola secondaria di secondo grado UNITÀ CMPIONE Edizioni del Quadrifoglio à t i n U 1 Insiemi La teoria degli

Dettagli

Funzioni in più variabili

Funzioni in più variabili Funzioni in più variabili Corso di Analisi 1 di Andrea Centomo 27 gennaio 2011 Indichiamo con R n, n 1, l insieme delle n-uple ordinate di numeri reali R n4{(x 1, x 2,,x n ), x i R, i =1,,n}. Dato X R

Dettagli

CORPO GIREVOLE ATTORNO AD UN ASSE E MOMENTI. TORNA ALL'INDICE

CORPO GIREVOLE ATTORNO AD UN ASSE E MOMENTI. TORNA ALL'INDICE CORPO GIREVOLE ATTORNO AD UN ASSE E MOMENTI. TORNA ALL'INDICE Consideriamo adesso un corpo esteso, formato da più punti, e che abbia un asse fisso, attorno a cui il corpo può ruotare. In questo caso l

Dettagli

Esercizi svolti sui numeri complessi

Esercizi svolti sui numeri complessi Francesco Daddi - ottobre 009 Esercizio 1 Risolvere l equazione z 1 + i = 1. Soluzione. Moltiplichiamo entrambi i membri per 1 + i in definitiva la soluzione è z 1 + i 1 + i = 1 1 + i z = 1 1 i. : z =

Dettagli

Statistica. Lezione 6

Statistica. Lezione 6 Università degli Studi del Piemonte Orientale Corso di Laurea in Infermieristica Corso integrato in Scienze della Prevenzione e dei Servizi sanitari Statistica Lezione 6 a.a 011-01 Dott.ssa Daniela Ferrante

Dettagli

I beni pubblici come causa del fallimento del mercato. Definizioni e caratteristiche

I beni pubblici come causa del fallimento del mercato. Definizioni e caratteristiche I beni pubblici come causa del fallimento del mercato. Definizioni e caratteristiche (versione provvisoria) Marisa Faggini Università di Salerno mfaggini@unisa.it I beni pubblici rappresentano un esempio

Dettagli

Calcolo differenziale Test di autovalutazione

Calcolo differenziale Test di autovalutazione Test di autovalutazione 1. Sia f : R R iniettiva, derivabile e tale che f(1) = 3, f (1) = 2, f (3) = 5. Allora (a) (f 1 ) (3) = 1 5 (b) (f 1 ) (3) = 1 2 (c) (f 1 ) (1) = 1 2 (d) (f 1 ) (1) = 1 3 2. Sia

Dettagli

Appunti sulle disequazioni

Appunti sulle disequazioni Premessa Istituto d Istruzione Superiore A. Tilgher Ercolano (Na) Appunti sulle disequazioni Questa breve trattazione non vuole costituire una guida completa ed esauriente sull argomento, ma vuole fornire

Dettagli

Numeri reali. Funzioni e loro grafici

Numeri reali. Funzioni e loro grafici Argomento Numeri reali. Funzioni e loro grafici Parte B - Funzioni e loro grafici Funzioni reali di variabile reale Definizioni. Supponiamo che A sia un sottoinsieme di R e che esista una legge che ad

Dettagli

LE FUNZIONI MATEMATICHE

LE FUNZIONI MATEMATICHE ALGEBRA LE FUNZIONI MATEMATICHE E IL PIANO CARTESIANO PREREQUISITI l l l l l conoscere il concetto di insieme conoscere il concetto di relazione disporre i dati in una tabella rappresentare i dati mediante

Dettagli

STUDIO DI UNA FUNZIONE

STUDIO DI UNA FUNZIONE STUDIO DI UNA FUNZIONE OBIETTIVO: Data l equazione Y = f(x) di una funzione a variabili reali (X R e Y R), studiare l andamento del suo grafico. PROCEDIMENTO 1. STUDIO DEL DOMINIO (CAMPO DI ESISTENZA)

Dettagli

La variabile casuale Binomiale

La variabile casuale Binomiale La variabile casuale Binomiale Si costruisce a partire dalla nozione di esperimento casuale Bernoulliano che consiste in un insieme di prove ripetute con le seguenti caratteristiche: i) ad ogni singola

Dettagli

VARIABILI E DISTRIBUZIONI DI FREQUENZA A.A. 2010/2011

VARIABILI E DISTRIBUZIONI DI FREQUENZA A.A. 2010/2011 VARIABILI E DISTRIBUZIONI DI FREQUENZA A.A. 2010/2011 1 RAPPRESENTARE I DATI: TABELLE E GRAFICI Un insieme di misure è detto serie statistica o serie dei dati 1) Una sua prima elementare elaborazione può

Dettagli

Servizio Nazionale di Valutazione a.s. 2013/14 Guida alla lettura Prova di Matematica Classe seconda Scuola secondaria di II grado

Servizio Nazionale di Valutazione a.s. 2013/14 Guida alla lettura Prova di Matematica Classe seconda Scuola secondaria di II grado Servizio Nazionale di Valutazione a.s. 2013/14 Guida alla lettura Prova di Matematica Classe seconda Scuola secondaria di II grado I quesiti sono distribuiti negli ambiti secondo la tabella seguente Ambito

Dettagli

Analisi statistica di dati biomedici Analysis of biologicalsignals

Analisi statistica di dati biomedici Analysis of biologicalsignals Analisi statistica di dati biomedici Analysis of biologicalsignals II Parte Verifica delle ipotesi (a) Agostino Accardo (accardo@units.it) Master in Ingegneria Clinica LM in Neuroscienze 2013-2014 e segg.

Dettagli

RIUNIONE DEL COMITATO DIDATTICO TRANSITORIO PER LA CLASSE DI TIROCINIO FORMATIVO ATTIVO A017 VERBALE DELLA SEDUTA

RIUNIONE DEL COMITATO DIDATTICO TRANSITORIO PER LA CLASSE DI TIROCINIO FORMATIVO ATTIVO A017 VERBALE DELLA SEDUTA Dipartimento di Studi Aziendali e Giusprivatistici RIUNIONE DEL COMITATO DIDATTICO TRANSITORIO PER LA CLASSE DI FORMATIVO ATTIVO A017 VERBALE DELLA SEDUTA Il giorno 23 del mese di aprile dell anno 2013,

Dettagli

4.2. IL TEST F DI FISHER O ANALISI DELLA VARIANZA (ANOVA)

4.2. IL TEST F DI FISHER O ANALISI DELLA VARIANZA (ANOVA) 4.2. IL TEST F DI FISHER O ANALISI DELLA VARIANZA (ANOVA) L analisi della varianza è un metodo sviluppato da Fisher, che è fondamentale per l interpretazione statistica di molti dati biologici ed è alla

Dettagli

Il Dipartimento per le Comunicazioni: uno studio dell età del personale. Miriam Tagliavia Marzo 2011

Il Dipartimento per le Comunicazioni: uno studio dell età del personale. Miriam Tagliavia Marzo 2011 Il Dipartimento per le Comunicazioni: uno studio dell età del personale Marzo 2011 2 Il Dipartimento per le Comunicazioni: uno studio dell età del personale Il Dipartimento per le Comunicazioni, uno dei

Dettagli

Funzioni di più variabili. Ottimizzazione libera e vincolata

Funzioni di più variabili. Ottimizzazione libera e vincolata libera e vincolata Generalità. Limiti e continuità per funzioni di 2 o Piano tangente. Derivate successive Formula di Taylor libera vincolata Lo ordinario è in corrispondenza biunivoca con i vettori di

Dettagli

Da una a più variabili: derivate

Da una a più variabili: derivate Da una a più variabili: derivate ( ) 5 gennaio 2011 Scopo di questo articolo è di evidenziare le analogie e le differenze, relativamente al calcolo differenziale, fra le funzioni di una variabile reale

Dettagli

Curve di risonanza di un circuito

Curve di risonanza di un circuito Zuccarello Francesco Laboratorio di Fisica II Curve di risonanza di un circuito I [ma] 9 8 7 6 5 4 3 0 C = 00 nf 0 5 0 5 w [KHz] RLC - Serie A.A.003-004 Indice Introduzione pag. 3 Presupposti Teorici 5

Dettagli

Quante sono le matricole?

Quante sono le matricole? Matricole fuori corso laureati i numeri dell Universita Quante sono le matricole? Sono poco più di 307 mila i giovani che nell'anno accademico 2007/08 si sono iscritti per la prima volta all università,

Dettagli

GLI INFORTUNI NELLE SCUOLE. Maria GULLO e Marilù TOMACIELLO INAIL Piemonte

GLI INFORTUNI NELLE SCUOLE. Maria GULLO e Marilù TOMACIELLO INAIL Piemonte Maria GULLO e Marilù TOMACIELLO INAIL Piemonte Perché questa particolare attenzione sugli infortuni? L'analisi degli incidenti/infortuni costituisce un momento di Art. 29 comma 3 Dlgs 81/08 fondamentale

Dettagli

γ (t), e lim γ (t) cioè esistono la tangente destra e sinistra negli estremi t j e t j+1.

γ (t), e lim γ (t) cioè esistono la tangente destra e sinistra negli estremi t j e t j+1. Capitolo 6 Integrali curvilinei In questo capitolo definiamo i concetti di integrali di campi scalari o vettoriali lungo curve. Abbiamo bisogno di precisare le curve e gli insiemi che verranno presi in

Dettagli

1 IL RISCHIO: INTRODUZIONE.2 2 LA VOLATILITA.4

1 IL RISCHIO: INTRODUZIONE.2 2 LA VOLATILITA.4 IL RISCHIO 1 IL RISCHIO: INTRODUZIONE.2 2 LA VOLATILITA.4 2.1 La volatilità storica... 4 2.2 Altri metodi di calcolo... 5 3 LA CORRELAZIONE..6 4 IL VALUE AT RISK....8 4.1 I metodi analitici... 9 4.2 La

Dettagli

Problema n. 1: CURVA NORD

Problema n. 1: CURVA NORD Problema n. 1: CURVA NORD Sei il responsabile della gestione del settore Curva Nord dell impianto sportivo della tua città e devi organizzare tutti i servizi relativi all ingresso e all uscita degli spettatori,

Dettagli

LABORATORIO di RICERCA BIBLIOGRAFICA SUI TEST

LABORATORIO di RICERCA BIBLIOGRAFICA SUI TEST LABORATORIO di RICERCA BIBLIOGRAFICA SUI TEST emanuela.canepa@unipd.it Biblioteca di psicologia Fabio Metelli Università degli Studi di Padova Materiale didattico: guida corso Casella della biblioteca

Dettagli

Consideriamo due polinomi

Consideriamo due polinomi Capitolo 3 Il luogo delle radici Consideriamo due polinomi N(z) = (z z 1 )(z z 2 )... (z z m ) D(z) = (z p 1 )(z p 2 )... (z p n ) della variabile complessa z con m < n. Nelle problematiche connesse al

Dettagli

Ministero, dell'istruzione, dell Università e della Ricerca

Ministero, dell'istruzione, dell Università e della Ricerca Prot. n. 612 Spedito il 30/3/2010 All On.le Ministro SEDE OGGETTO: Valutazione della ricerca. Adunanza del 25.03.2010 IL CONSIGLIO UNIVERSITARIO NAZIONALE APPROVA IL SEGUENTE DOCUMENTO: Introduzione Ogni

Dettagli

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2007-08. Alberto Perotti, Roberto Garello

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2007-08. Alberto Perotti, Roberto Garello Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2007-08 Alberto Perotti, Roberto Garello DELEN-DAUIN Processi casuali Sono modelli probabilistici

Dettagli

1 Definizione: lunghezza di una curva.

1 Definizione: lunghezza di una curva. Abstract Qui viene affrontato lo studio delle curve nel piano e nello spazio, con particolare interesse verso due invarianti: la curvatura e la torsione Il primo ci dice quanto la curva si allontana dall

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI 1. Esercizi Esercizio 1. Date le seguenti applicazioni lineari (1) f : R 2 R 3 definita da f(x, y) = (x 2y, x + y, x + y); (2) g : R 3 R 2 definita da g(x, y, z) = (x + y, x y); (3)

Dettagli

Esistenza di funzioni continue non differenziabili in alcun punto

Esistenza di funzioni continue non differenziabili in alcun punto UNIVERSITÀ DEGLI STUDI DI CAGLIARI FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI CORSO DI LAUREA IN MATEMATICA Esistenza di funzioni continue non differenziabili in alcun punto Relatore Prof. Andrea

Dettagli

G LI ITALIANI E LA BICICLETTA: DALLA RISCOPERTA ALLA CRESCITA MANCATA

G LI ITALIANI E LA BICICLETTA: DALLA RISCOPERTA ALLA CRESCITA MANCATA G LI ITALIANI E LA BICICLETTA: DALLA RISCOPERTA ALLA CRESCITA MANCATA AUDIMOB O SSERVATORIO SUI C OMPORTAMENTI DI M OBILITÀ DEGLI I TALIANI Maggio 2012 LE FERMATE AUDIMOB S U L L A M O B I L I T A n. 15

Dettagli

OCCUPATI E DISOCCUPATI DATI RICOSTRUITI DAL 1977

OCCUPATI E DISOCCUPATI DATI RICOSTRUITI DAL 1977 24 aprile 2013 OCCUPATI E DISOCCUPATI DATI RICOSTRUITI DAL 1977 L Istat ha ricostruito le serie storiche trimestrali e di media annua dal 1977 ad oggi, dei principali aggregati del mercato del lavoro,

Dettagli

Commenti alle Direttive concernenti la tesi di Master of Science in formazione professionale

Commenti alle Direttive concernenti la tesi di Master of Science in formazione professionale Commenti alle Direttive concernenti la tesi di Master of Science in formazione professionale 1 Oggetto 2 2 Obiettivo 2 3 Requisiti 2 3.1 Contenuto 2 3.2 Forma 2 3.3 Volume 3 3.4 Lingua 3 3.5 Lavoro individuale

Dettagli

Rapporto CESI. Cliente: Oggetto: Ordine: Contratto CESI n. 71/00056. Note: N. pagine: 13 N. pagine fuori testo: Data: 30.05.2000.

Rapporto CESI. Cliente: Oggetto: Ordine: Contratto CESI n. 71/00056. Note: N. pagine: 13 N. pagine fuori testo: Data: 30.05.2000. A0/010226 Pag.1/13 Cliente: Ricerca di Sistema Oggetto: Determinazione della tenacità di acciai eserciti - Correlazioni per stime di FATT da prove Small Punch Ordine: Contratto CESI n. 71/00056 Note: DEGRADO/GEN04/003

Dettagli

Analisi Mat. 1 - Ing. Inform. - Soluzioni del compito del 23-3-06

Analisi Mat. 1 - Ing. Inform. - Soluzioni del compito del 23-3-06 Analisi Mat. - Ing. Inform. - Soluzioni del compito del 3-3-6 Sia p il polinomio di quarto grado definito da pz = z 4. Sia S il settore circolare formato dai numeri complessi che hanno modulo minore o

Dettagli

Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 14: Analisi della varianza (ANOVA)

Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 14: Analisi della varianza (ANOVA) Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 4: Analisi della varianza (ANOVA) Analisi della varianza Analisi della varianza (ANOVA) ANOVA ad

Dettagli

Studio grafico-analitico delle funzioni reali a variabile reale

Studio grafico-analitico delle funzioni reali a variabile reale Studio grafico-analitico delle funzioni reali a variabile reale Sequenza dei passi Classificazione In pratica Classifica il tipo di funzione: Funzione razionale: intera / fratta Funzione irrazionale: intera

Dettagli

Parte II specifica Edificio RM022 - Villino A Via degli Apuli, 1-00185 Roma. Il Responsabile dell Uspp Arch. Simonetta Petrone

Parte II specifica Edificio RM022 - Villino A Via degli Apuli, 1-00185 Roma. Il Responsabile dell Uspp Arch. Simonetta Petrone PIANO DI EMERGENZA ED EVACUAZIONE (ai sensi del D.Lgs. 81/08 artt.18, 43, 46 e del D.M. 10/03/98 art. 5) Il presente documento è parte integrante del Documento di Valutazione dei Rischi di cui all art.

Dettagli

La Svizzera nel raffronto europeo. La situazione socioeconomica degli studenti delle scuole universitarie

La Svizzera nel raffronto europeo. La situazione socioeconomica degli studenti delle scuole universitarie La Svizzera nel raffronto europeo La situazione socioeconomica degli studenti delle scuole universitarie Neuchâtel, 2007 Il sistema universitario svizzero La Svizzera dispone di un sistema universitario

Dettagli

TECNICHE DI SIMULAZIONE

TECNICHE DI SIMULAZIONE TECNICHE DI SIMULAZIONE MODELLI STATISTICI NELLA SIMULAZIONE Francesca Mazzia Dipartimento di Matematica Università di Bari a.a. 2004/2005 TECNICHE DI SIMULAZIONE p. 1 Modelli statistici nella simulazione

Dettagli

Dall Unità d Italia al 2050: dinamiche demografiche e modalità evolutive della popolazione. Specificità relative alla Puglia *

Dall Unità d Italia al 2050: dinamiche demografiche e modalità evolutive della popolazione. Specificità relative alla Puglia * Annali del Dipartimento di Scienze Statistiche Carlo Cecchi Università degli Studi di Bari Aldo Moro - Vol. X (2011): 195-226 Cleup, Padova - ISBN: 978-88-6129-833-0 Dall Unità d al 2050: dinamiche demografiche

Dettagli

Kangourou Italia Gara del 19 marzo 2015 Categoria Student Per studenti di quarta e quinta della secondaria di secondo grado

Kangourou Italia Gara del 19 marzo 2015 Categoria Student Per studenti di quarta e quinta della secondaria di secondo grado Kangourou Italia Gara del 19 marzo 2015 Categoria Student Per studenti di quarta e quinta della secondaria di secondo grado I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno 1. Angela è nata nel 1997,

Dettagli

Se si insiste non si vince

Se si insiste non si vince Se si insiste non si vince Livello scolare: 2 biennio Abilità interessate Valutare la probabilità in diversi contesti problematici. Distinguere tra eventi indipendenti e non. Valutare criticamente le informazioni

Dettagli

ELEMENTI DI STATISTICA

ELEMENTI DI STATISTICA Pag 1 di 92 Francesco Sardo ELEMENTI DI STATISTICA PER VALUTATORI DI SISTEMI QUALITA AMBIENTE - SICUREZZA REV. 11 16/08/2009 Pag 2 di 92 Pag 3 di 92 0 Introduzione PARTE I 1 Statistica descrittiva 1.1

Dettagli

Sistema Qualità di Ateneo Modello di Ateneo MODELLO DI ATENEO PER L ACCREDITAMENTO INTERNO IN QUALITÀ DEI CORSI DI STUDIO UNIVERSITARI

Sistema Qualità di Ateneo Modello di Ateneo MODELLO DI ATENEO PER L ACCREDITAMENTO INTERNO IN QUALITÀ DEI CORSI DI STUDIO UNIVERSITARI MODELLO DI ATENEO PER L ACCREDITAMENTO INTERNO IN QUALITÀ DEI CORSI DI STUDIO UNIVERSITARI Requisiti di valutazione per un percorso di Ateneo finalizzato all accreditamento in qualità dei Corsi di Studio:

Dettagli

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE 1. EQUAZIONI Definizione: un equazione è un uguaglianza tra due espressioni letterali (cioè in cui compaiono numeri, lettere

Dettagli

esame di stato 2013 seconda prova scritta per il liceo scientifico di ordinamento

esame di stato 2013 seconda prova scritta per il liceo scientifico di ordinamento Archimede esame di stato seconda prova scritta per il liceo scientifico di ordinamento ARTICOLO Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMA La funzione f

Dettagli

Food Cost e gestione informatizzata della cucina. Marco Terrile 2008 ChefMaTe - Software per la Ristorazione 1

Food Cost e gestione informatizzata della cucina. Marco Terrile 2008 ChefMaTe - Software per la Ristorazione 1 Food Cost e gestione informatizzata della cucina 1 Determinazione e controllo dei costi La locuzione economie di scala è usata in economia per indicare la relazione esistente tra aumento della scala di

Dettagli

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014

Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 2014 Proposta di soluzione della prova di matematica Liceo scientifico di Ordinamento - 14 Problema 1 Punto a) Osserviamo che g (x) = f(x) e pertanto g () = f() = in quanto Γ è tangente all asse delle ascisse,

Dettagli

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE Sia I un intervallo di R e siano a = inf(i) R { } e b = sup(i) R {+ }; i punti di I diversi dagli estremi a e b, ( e quindi appartenenti all intervallo aperto

Dettagli

STUDIO DELLA DIFFUSIONE DI INTERNET IN ITALIA ATTRAVERSO

STUDIO DELLA DIFFUSIONE DI INTERNET IN ITALIA ATTRAVERSO STUDIO DELLA DIFFUSIONE DI INTERNET IN ITALIA ATTRAVERSO L USO DEI NOMI A DOMINIO di Maurizio Martinelli Responsabile dell Unità sistemi del Registro del cctld.it e Michela Serrecchia assegnista di ricerca

Dettagli

su web che riportano documentazione e software dedicati agli argomenti trattati nel libro, riportandone, alla fine dei rispettivi capitoli, gli

su web che riportano documentazione e software dedicati agli argomenti trattati nel libro, riportandone, alla fine dei rispettivi capitoli, gli Prefazione Non è facile definire che cosa è un problema inverso anche se, ogni giorno, facciamo delle operazioni mentali che sono dei metodi inversi: riconoscere i luoghi che attraversiamo quando andiamo

Dettagli

MANAGEMENT DEI BENI E DELLE ATTIVITÀ CULTURALI LIVELLO II - EDIZIONE IX A.A. 2015-2016

MANAGEMENT DEI BENI E DELLE ATTIVITÀ CULTURALI LIVELLO II - EDIZIONE IX A.A. 2015-2016 MANAGEMENT DEI BENI E DELLE ATTIVITÀ CULTURALI LIVELLO II - EDIZIONE IX A.A. 2015-2016 Presentazione L'Università Ca' Foscari Venezia e l'escp Europe hanno ideato il Doppio Master universitario in Management

Dettagli

IL MINISTRO DELL ISTRUZIONE, DELL UNIVERSITÀ E DELLA RICERCA

IL MINISTRO DELL ISTRUZIONE, DELL UNIVERSITÀ E DELLA RICERCA DECRETO 30 settembre 2011. Criteri e modalità per lo svolgimento dei corsi di formazione per il conseguimento della specializzazione per le attività di sostegno, ai sensi degli articoli 5 e 13 del decreto

Dettagli

Dai rapporti temporanei all occupazione stabile: un percorso sempre più incerto?

Dai rapporti temporanei all occupazione stabile: un percorso sempre più incerto? Dai rapporti temporanei all occupazione stabile: un percorso sempre più incerto? di Anna de Angelini La maggior flessibilità in entrata introdotta dalla normativa sui rapporti di lavoro a partire seconda

Dettagli

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento

esame di stato 2014 seconda prova scritta per i licei scientifici di ordinamento ARTICOLO Archimede 4 4 esame di stato 4 seconda prova scritta per i licei scientifici di ordinamento Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario. PROBLEMA Nella figura

Dettagli

QUARTA E QUINTA ISTITUTO TECNICO INDUSTRIALE

QUARTA E QUINTA ISTITUTO TECNICO INDUSTRIALE QUARTA E QUINTA ISTITUTO TECNICO INDUSTRIALE - Matematica - Griglie di valutazione Materia: Matematica Obiettivi disciplinari Gli obiettivi indicati si riferiscono all intero percorso della classe quarta

Dettagli

Fuoco, direttrice ed equazione di una parabola traslata. Bruna Cavallaro, Treccani scuola

Fuoco, direttrice ed equazione di una parabola traslata. Bruna Cavallaro, Treccani scuola Fuoco, direttrice ed equazione di una parabola traslata Bruna Cavallaro, Treccani scuola 1 Traslare parabole con fuoco e direttrice Su un piano Oxy disegno una parabola, con fuoco e direttrice. poi traslo

Dettagli

CORSO INTEGRATO DI GENETICA E BIOLOGIA MOLECOLARE ESERCIZI DI GENETICA

CORSO INTEGRATO DI GENETICA E BIOLOGIA MOLECOLARE ESERCIZI DI GENETICA CORSO INTEGRATO DI GENETICA E BIOLOGIA MOLECOLARE ESERCIZI DI GENETICA (1) Dato il genotipo AaBb: quali sono i geni e quali gli alleli? Disegnate schematicamente questo genotipo con i geni concatenati

Dettagli

Il luogo delle radici (ver. 1.0)

Il luogo delle radici (ver. 1.0) Il luogo delle radici (ver. 1.0) 1 Sia dato il sistema in retroazione riportato in Fig. 1.1. Il luogo delle radici è uno strumento mediante il quale è possibile valutare la posizione dei poli della funzione

Dettagli

1 Medie. la loro media aritmetica è il numero x dato dalla formula: x = x 1 + x 2 +... + x n

1 Medie. la loro media aritmetica è il numero x dato dalla formula: x = x 1 + x 2 +... + x n 1 Medie La statistica consta di un insieme di metodi atti a elaborare e a sintetizzare i dati relativi alle caratteristiche di una fissata popolazione, rilevati mediante osservazioni o esperimenti. Col

Dettagli

Università del Piemonte Orientale. Corso di laurea in biotecnologia. Corso di Statistica Medica. Analisi dei dati quantitativi :

Università del Piemonte Orientale. Corso di laurea in biotecnologia. Corso di Statistica Medica. Analisi dei dati quantitativi : Università del Piemonte Orientale Corso di laurea in biotecnologia Corso di Statistica Medica Analisi dei dati quantitativi : Confronto tra due medie Università del Piemonte Orientale Corso di laurea in

Dettagli

Prove di ingresso ai corsi di Laurea Magistrale (AREA DIDATTICA E PROMOZIONE DELLA LINGUA ITALIANA) A.A. 2014-2015

Prove di ingresso ai corsi di Laurea Magistrale (AREA DIDATTICA E PROMOZIONE DELLA LINGUA ITALIANA) A.A. 2014-2015 Prove di ingresso ai corsi di Laurea Magistrale (AREA DIDATTICA E PROMOZIONE DELLA LINGUA ITALIANA) A.A. 2014-2015 Ai sensi del D.M. n. 270/2004 gli studenti che intendono iscriversi ad un corso di laurea

Dettagli

La ricerca operativa

La ricerca operativa S.S.I.S. PUGLIA Anno Accademico 2003/2004 Laboratorio di didattica della matematica per l economia e la finanza La ricerca operativa Prof. Palmira Ronchi (palmira.ronchi@ssis.uniba.it) Gli esercizi presenti

Dettagli

approvato dalla VII Commissione permanente (Cultura, scienza e istruzione) della Camera dei deputati il 22 aprile 2015

approvato dalla VII Commissione permanente (Cultura, scienza e istruzione) della Camera dei deputati il 22 aprile 2015 Senato della Repubblica XVII LEGISLATURA N. 1892 DISEGNO DI LEGGE d iniziativa dei deputati MARIANI, GHIZZONI, ANTEZZA, BERLINGHIERI, BOSCHI, BRAGA, BRATTI, CAPOZZOLO, CARELLA, COMINELLI, DALLAI, D INCECCO,

Dettagli

LA NOTAZIONE SCIENTIFICA

LA NOTAZIONE SCIENTIFICA LA NOTAZIONE SCIENTIFICA Definizioni Ricordiamo, a proposito delle potenze del, che = =.000 =.000.000.000.000 ovvero n è uguale ad seguito da n zeri. Nel caso di potenze con esponente negativo ricordiamo

Dettagli

Funzione reale di variabile reale

Funzione reale di variabile reale Funzione reale di variabile reale Siano A e B due sottoinsiemi non vuoti di. Si chiama funzione reale di variabile reale, di A in B, una qualsiasi legge che faccia corrispondere, a ogni elemento A x A

Dettagli

LIMITARE LA CIRCOLAZIONE DELLE AUTO? PER I CITTADINI SI PUÒ FARE

LIMITARE LA CIRCOLAZIONE DELLE AUTO? PER I CITTADINI SI PUÒ FARE LIMITARE LA CIRCOLAZIONE DELLE AUTO? PER I CITTADINI SI PUÒ FARE AUDIMOB O SSERVATORIO SUI C OMPORTAMENTI DI M OBILITÀ DEGLI I TALIANI Dicembre 2007 LE FERMATE AUDIMOB S U L L A M O B I L I T A n. 3 La

Dettagli

Misure di base su una carta. Calcoli di distanze

Misure di base su una carta. Calcoli di distanze Misure di base su una carta Calcoli di distanze Per calcolare la distanza tra due punti su una carta disegnata si opera nel modo seguente: 1. Occorre identificare la scala della carta o ricorrendo alle

Dettagli

Esercitazioni di Excel

Esercitazioni di Excel Esercitazioni di Excel A cura dei proff. A. Khaleghi ed A. Piergiovanni. Queste esercitazioni hanno lo scopo di permettere agli studenti di familiarizzare con alcuni comandi specifici di Excel, che sono

Dettagli

Cristian Secchi Pag. 1

Cristian Secchi Pag. 1 CONTROLLI DIGITALI Laurea Magistrale in Ingegneria Meccatronica SISTEMI A TEMPO DISCRETO Ing. Tel. 0522 522235 e-mail: cristian.secchi@unimore.it http://www.dismi.unimo.it/members/csecchi Richiami di Controlli

Dettagli