Metodi statistici per l'analisi dei dati

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Metodi statistici per l'analisi dei dati"

Transcript

1 Metodi statistici per l aalisi dei dati due Motivazioi Obbiettivo: Cofrotare due diverse codizioi (ache defiiti ) per cui soo stati codotti gli esperimeti. Metodi tatistici per l Aalisi dei Dati due

2 Esempio itroduttivo L impasto dell esempio itroduttivo è modificato aggiugedo u additivo che dovrebbe ridure la viscosità. A tal proposito si predoo i cosiderazioe 0 misure sperimetali di viscosità del ttameto origiale (cotrollo) 0 misure sperimetali di viscosità del prodotto alimetare modificato. j Crema modificata (cp) Cotrollo (cp) y Itroduzioe Esempio Il valore medio delle misure del prodotto modificato è miore del valore medio del prodotto origiale Due possibili spiegazioi: Le due formulazioi soo realmete differeti La differeza osservata ei è dovuta alle fluttuazioi ievitabilmete preseti elle misure sperimetali, e le due formulazioi soo di fatto equivaleti Obiettivo: Cocludere che i due campioi soo realmete differeti co strumeti statistici rigorosi Metodi tatistici per l Aalisi dei Dati due

3 Cocetti di statistica di base Descrizioi grafiche della variabilità Diagramma per puti Utile per campioi di piccole dimesioi (sio a 0 osservazioi) i y i Viscosità [cp] y y y i i 7.69 Il diagramma permette di ricooscere il tred cele e la dispersioe dei dati. U ispezioe visiva (qualitativa) del diagramma rivela che i due soo verosimilmete differeti. Cocetti di statistica di base Descrizioi grafiche della variabilità Rappresetazioe dei campioi mite diagrammi a scatola ( box-plots ) Valore massimoosservatoelosservato campioe mo percetile Viscosità [cp] V Mediaa 5 mo percetile 64 Modificato No modificato Valore miimo osservato el campioe Metodi tatistici per l Aalisi dei Dati due 3

4 campioi I due diversi possoo essere visti come due livelli del fattore formulazioi Modello statistico per i dati: y ij μ i + ε ij i, j,,..., i y ij j-esima osservazioe dal livello i-esimo μ i Media della risposta al livello i-esimo ε ij Variabile aleatoria ormale associata co la j-esima osservazioe campioi Test statistici Defiizioe del problema Dal puto di vista formale, si possoo defiire le segueti ipotesi ulla H 0 e l ipotesi alterativa H : H 0 : μ μ H : μ μ Metodi tatistici per l Aalisi dei Dati due 4

5 Test statistici Esempio: t Test per il cofroto di due campioi Ricetta /4 cegliere u livello di sigificatività α del test (i geere α0.05) Calcolare il valore critico t α/ tale che: P ( t T ) α α / tα / dove T è la distribuzioe T di tudet a ( + -) gradi di libertà Test statistici Esempio: t Test per il cofroto di due campioi Ricetta /4 Distribuzioe T di studet a 8 gdl co l evidezia delle regioi critiche areaα/ areaα/ Regioe di rigetto Regioe di o rigetto Regioe di rigetto Metodi tatistici per l Aalisi dei Dati due 5

6 Test statistici Esempio: t Test per il cofroto di due campioi Ricetta 3/4 Calcolare t 0 y y P + dove P è la stima della variaza campioaria: P ( ) + ( ) + Nota: el caso di, l espressioe si riduce a t 0 y y + Test statistici Esempio: t Test per il cofroto di due campioi Ricetta 4/4 i cofrota il t 0 osservato co il valore critico t α/ t < t 0 α / o rigettiamo l ipotesi ulla H 0. No si hao evideze sperimetali tali da affermare che i due siao sigificativamete diversi t > t 0 α / i rigetta l ipotesi ulla: i due soo sigificativamete diversi i corre u «rischio» di affermare la coclusioe sbagliata pari al livello di sigificatività α del test Metodi tatistici per l Aalisi dei Dati due 6

7 Test statistici Esempio: t Test per il cofroto di due campioi Teoria La differeza delle medie dei due può essere vista come ua VA di tipo ormale: [ μ μ, σ ( )] y ~ + y N e i due proveissero dalla stessa popolazioe (ovvero μ μ, σ σ ), e la variaza σ fosse ota, la statistica: z 0 σ y y + sarebbe u valore osservato di ua Gaussiaa di tipo stadard (Z~N(0,)) t 0 è u osservazioe di ua T di studet a ( + -) gdl: Test statistici Esempio: t Test per il cofroto di due campioi Teoria Dato che la variaza è igota, si ricorre alla sua stima P, per cui la statistica t 0 : t 0 y y P + ( ) è relativa ad ua T di studet a ( + -) g.d.l. e H 0 fosse vera, ci si aspetta quidi che la probabilità per t 0 di cadere ell itervallo [-t α/, t α/ ] sia pari a 00(-α). U campioe che produce dei risultati al di fuori di questo itervallo o sarebbe usuale è quidi più plausibile che l ipotesi ulla di parteza sia sbagliata Metodi tatistici per l Aalisi dei Dati due 7

8 Test statistici Esempio: t Test per il cofroto di due campioi Applicazioe Per le emulsioi alimetari dell esempio Calcolo valore critico t α/ : α/ (da tabelle dispoibili i letteratura o, equivaletemete, co l ausilio di software) t α/.0 Calcolo statistica t 0 : ( ) + ( ) P + t y y P 9.09 Test statistici Esempio: t Test per il cofroto di due campioi Applicazioe Coclusioi: t > t 0 α / Il valore osservato t 0 è maggiore (i valore assoluto) del valore critico t α/ I due soo sigificativamete differeti co u rischio (errore di tipo I) del 5% che tale coclusioe sia sbagliata Metodi tatistici per l Aalisi dei Dati due 8

9 Test statistici Defiizioe ipotesi alterative L ipotesi alterativa presa i cosiderazioe H : μ μ cotempla l evetualità che i due presi i cosiderazioe siao solo differeti H : μ <μ oppure μ <μ Tale ipotesi prede il ome di ipotesi i alterativa twosided (valori sia maggiori che miori portao al rigetto di H 0 ). I altri casi, la atura del problema può suggerire altre espressioi per le ipotesi alterative. Test statistici Defiizioe ipotesi alterative «oe sided» H : μ <μ i arriva al rigetto dell ipotesi i ulla solo se μ è sigificativamete miore di μ areaα Regioe di rigetto Regioe di o rigetto Metodi tatistici per l Aalisi dei Dati due 9

10 Test statistici Defiizioe ipotesi alterative «oe sided» H : μ >μ i arriva al rigetto dell ipotesi ulla solo se μ è sigificativamete maggiore di μ areaα Regioe di o rigetto Regioe di rigetto Itervalli di fiducia Differeza di medie uppoiamo di essere iteressati a determiare u itervallo di fiducia al 95% per la differeza δ μ -μ delle medie. A tale scopo, si cosideri la statistica: t ( y y ) ( μ μ ) P P + essa èd distribuita secodo ua t +-. d δ + Metodi tatistici per l Aalisi dei Dati due 0

11 Itervalli di fiducia Differeza di medie Da cui: P t / ovvero: P ( y y ) ( μ μ ) + t α α / P γ ( y y ) t + ( μ μ ) ( y y ) + t + γ Per cui CONF y α / P α / P ( y ) t + ( μ μ ) ( y y ) α / P L θ + t α / P U + Itervalli di fiducia differeza di due medie Applicazioe Per l esempio itroduttivo CONF ( ) (.0).37 + ( μ μ ) ( ) + (.0) ( ) y y tα / P + ( y y ) tα / P + ovvero: CONF {.70 μ μ 3.56 } 5 μ μ Da otare che il valore μ -μ 0 o è icluso ell itervallo, cofermado ulteriormete che l ipotesi μ μ o è plausibile per il livello di sigificatività α γ5%. Metodi tatistici per l Aalisi dei Dati due

12 Test statistici Esempio: t Test per il cofroto di due campioi Estesioi σ σ Parte / I preseza di u test delle ipotesi: H 0 : μ μ H : μ μ i cui o è possibile assumere che le variaze dei campioi siao uguali, si può ricorrere alla statistica test t 0 ( y y ) + Test statistici Esempio: t Test per il cofroto di due campioi Estesioi Caso i cui σ σ Parte / essedo la statistica t be approssimata da ua t di studet a υ gradi di libertà: υ + ( ) ( ) Metodi tatistici per l Aalisi dei Dati due

13 Test statistici Esempio: Test per il cofroto di due campioi Estesioi σ e σ ote / I preseza di u test delle ipotesi: H 0 : μ μ H : μ μ i cui le variaze soo a priori ote, si può usare la statistica: z 0 ( y y ) σ e embi le popolazioi soo ormali (o le dimesioi del campioi soo gradi) la statistica z 0 ~ N(0,) + σ Test statistici Esempio: Test per il cofroto di due campioi Estesioi σ e σ ote / La regioe critica per i test delle ipotesi può essere calcolata usado la distribuzioe ormale di tipo stadard aziché la t di studet. arà ecessario calcolare il valore critico z α tale che, per esempio (caso test ipotesi two-sided): P ( z Z ) α α / zα / Metodi tatistici per l Aalisi dei Dati due 3

14 Esempio itroduttivo medie co blocco i cosideri di uovo il caso dell esempio itroduttivo. La radomizzazioe dei campioi ha portato alla selezioe casuale di: 0 campioi da modificare 0 campioi o ttati che sarao usati come cotrollo Tale politica implica ua ievitabile sorgete di variazioe: la casualità ella scelta dei campioi da destiare ai due si aggiuge alla evetuale variazioe idotta dalla differeza dei y Esempio itroduttivo medie co blocco tegia possibile per elimiare tale sorgete di icertezza:. i selezioao 0 campioi (aziché 0) o modificati. e e misura la viscosità 3. I seguito, gli stessi campioi soo modificati co l aggiuta dell additivo. 4. i ripete la misura della viscosità sui campioi modificati Metodi tatistici per l Aalisi dei Dati due 4

15 Esempio itroduttivo medie co blocco Il modello statistico per descrivere la procedura è il seguete: y ij μ i + β j + ε ij i, j,,..., i y ij j-esima osservazioe dal livello i- esimo μ i Media al livello i-esimo β j Effetto del campioe specifico ε ij Variabile aleatoria ormale associata co la j-esima osservazioe Esempio itroduttivo medie co blocco I questo modo è possibile valutare la differeza per la coppia j-ma: d j y j y j j,..., Il valore atteso di questa differeza è μ d E d E E μ μ [ j ] [ y j y j ] [ y j ] E[ y j ] + β ( μ + β ) μ j j È possibile fare ifereza sulla differeza di medie lavorado semplicemete co le differeze delle coppie Metodi tatistici per l Aalisi dei Dati due 5

16 Esempio itroduttivo medie co blocco Testare H 0 : μ μ è equivalete a testare H 0 : μ d 00 H : μ d 0 La statistica test per questa ipotesi è acora ua t a (-) gdl: d t0 d dove d d j j e d ( d d ) j j Esempio itroduttivo medie co blocco La possibilità di ua campaga sperimetale co dati accoppiati, risulta da preferire alla campaga sperimetale completamete radomizzata. i elimia ua sorgete di icertezza dovuta alle differeze evetualmete preseti i campioi (e o dovute ai ). La filosofia del blocco permette di elimiare sorgeti di icertezza preseti el campioe di dati. Metodi tatistici per l Aalisi dei Dati due 6

Metodi statistici per l analisi dei dati

Metodi statistici per l analisi dei dati Metodi statistici per l aalisi dei dati due ttameti Motivazioi ttameti Obbiettivo: Cofrotare due diverse codizioi (ache defiiti ttameti) per cui soo stati codotti gli esperimeti. due ttameti Esempio itroduttivo

Dettagli

DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE

DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE DI UN GRUPPO DI OSSERVAZIONI O DI ESPERIMENTI, SI PERVIENE A CERTE CONCLUSIONI, LA CUI VALIDITA PER UN COLLETTIVO Più AMPIO E ESPRESSA

Dettagli

Alcuni parametri statistici di base

Alcuni parametri statistici di base Alcui parametri statistici di base Misure di tedeza cetrale: media mediaa moda Misure di dispersioe: itervallo di variazioe scarto medio variaza deviazioe stadard coefficiete di variazioe Popolazioe di

Dettagli

LA VERIFICA DELLE IPOTESI SUI PARAMETRI

LA VERIFICA DELLE IPOTESI SUI PARAMETRI LA VERIFICA DELLE IPOTESI SUI PARAMETRI E u problema di ifereza per molti aspetti collegato a quello della stima. Rispode ad u esigeza di carattere pratico che spesso si preseta i molti campi dell attività

Dettagli

Analisi statistica dell Output

Analisi statistica dell Output Aalisi statistica dell Output IL Simulatore è u adeguata rappresetazioe della Realtà! E adesso? Come va iterpretato l Output? Quado le Osservazioi soo sigificative? Quati Ru del Simulatore è corretto effettuare?

Dettagli

Il test parametrico si costruisce in tre passi:

Il test parametrico si costruisce in tre passi: R. Lombardo I. Cammiatiello Dipartimeto di Ecoomia Secoda Uiversità degli studi Napoli Facoltà di Ecoomia Ifereza Statistica La Verifica delle Ipotesi Obiettivo Verifica (test) di u ipotesi statistica

Dettagli

Prova scritta di Statistica per Biotecnologie. 29 Aprile Programma Cristallo 1

Prova scritta di Statistica per Biotecnologie. 29 Aprile Programma Cristallo 1 Prova scritta di Statistica per Biotecologie 9 Aprile Programma Cristallo. Uo dei processi di purificazioe impiegati i ua certa sostaza chimica prevede di metterla i soluzioe e di filtrarla co ua resia

Dettagli

CONCETTI BASE DI STATISTICA

CONCETTI BASE DI STATISTICA CONCETTI BASE DI STATISTICA DEFINIZIONI Probabilità U umero reale compreso tra 0 e, associato a u eveto casuale. Esso può essere correlato co la frequeza relativa o col grado di credibilità co cui u eveto

Dettagli

STATISTICA 1 parte 2/2 STATISTICA INFERENZIALE

STATISTICA 1 parte 2/2 STATISTICA INFERENZIALE STATISTICA parte / U test statistico è ua regola di decisioe Effettuare u test statistico sigifica verificare IPOTESI sui parametri. STATISTICA INFERENZIALE STIMA PUNTUALE STIMA PER INTERVALLI TEST PARAMETRICI

Dettagli

Un problema! La letteratura riporta che i pazienti affetti da cancro. = mesi

Un problema! La letteratura riporta che i pazienti affetti da cancro. = mesi CONFRONTO TRA DUE MEDIE U problema! La letteratura riporta che i pazieti affetti da cacro hao ua sopravviveza media di 38.3 mesi e deviazioe stadard di 43.3 mesi: µ 38.3mesi σ 43.3mesi (la distribuzioe

Dettagli

Il confronto tra DUE campioni indipendenti

Il confronto tra DUE campioni indipendenti Il cofroto tra DUE camioi idiedeti Il cofroto tra DUE camioi idiedeti Cofroto tra due medie I questi casi siamo iteressati a cofrotare il valore medio di due camioi i cui i le osservazioi i u camioe soo

Dettagli

STATISTICA INFERENZIALE SCHEDA N. 2 INTERVALLI DI CONFIDENZA PER IL VALORE ATTESO E LA FREQUENZA

STATISTICA INFERENZIALE SCHEDA N. 2 INTERVALLI DI CONFIDENZA PER IL VALORE ATTESO E LA FREQUENZA Matematica e statistica: dai dati ai modelli alle scelte www.dima.uige/pls_statistica Resposabili scietifici M.P. Rogati e E. Sasso (Dipartimeto di Matematica Uiversità di Geova) STATISTICA INFERENZIALE

Dettagli

Corso di Laurea Magistrale in Ingegneria Informatica A.A. 2014/15. Complementi di Probabilità e Statistica. Prova scritta del del 23-02-15

Corso di Laurea Magistrale in Ingegneria Informatica A.A. 2014/15. Complementi di Probabilità e Statistica. Prova scritta del del 23-02-15 Corso di Laurea Magistrale i Igegeria Iformatica A.A. 014/15 Complemeti di Probabilità e Statistica Prova scritta del del 3-0-15 Puteggi: 1. 3+3+4;. +3 ; 3. 1.5 5 ; 4. 1 + 1 + 1 + 1 + 3.5. Totale = 30.

Dettagli

Approfondimenti di statistica e geostatistica

Approfondimenti di statistica e geostatistica Approfodimeti di statistica e geostatistica APAT Agezia per la Protezioe dell Ambiete e per i Servizi Tecici Cos è la geostatistica? Applicazioe dell aalisi di Rischio ai siti Cotamiati Geostatistica La

Dettagli

Esercitazioni di Statistica

Esercitazioni di Statistica Esercitazioi di Statistica Il modello di Regressioe Prof. Livia De Giovai statistica@dis.uiroma.it Esercizio Solitamete è accertato che aumetado il umero di uità prodotte, u idustria possa ridurre i costi

Dettagli

Le carte di controllo

Le carte di controllo Le carte di cotrollo Dott.ssa Bruella Caroleo 07 dicembre 007 Variabilità ei processi produttivi Le caratteristiche di qualsiasi processo produttivo soo caratterizzate da variabilità Le cause di variabilità

Dettagli

STATISTICA DESCRITTIVA

STATISTICA DESCRITTIVA STATISTICA DESCRITTIVA La statistica descrittiva serve per elaborare e sitetizzare dati. Tipicamete i dati si rappresetao i tabelle. Esempio. Suppoiamo di codurre u idagie per cooscere gli iscritti al

Dettagli

Statistica di base. Luca Mari, versione 31.12.13

Statistica di base. Luca Mari, versione 31.12.13 Statistica di base Luca Mari, versioe 31.12.13 Coteuti Moda...1 Distribuzioi cumulate...2 Mediaa, quartili, percetili...3 Sigificatività empirica degli idici ordiali...3 Media...4 Acora sulla media...4

Dettagli

Statistica I, Laurea triennale in Ing. Gestionale, a.a. 2011/12 Registro delle lezioni

Statistica I, Laurea triennale in Ing. Gestionale, a.a. 2011/12 Registro delle lezioni Statistica I, Laurea trieale i Ig. Gestioale, a.a. 2011/12 Registro delle lezioi Lezioe 1 (28/9, ore 11:30). Vedere la registrazioe di Barsati, dispoibile alla pagia http://users.dma.uipi.it/barsati/statistica_2011/idex.html.

Dettagli

LE MISURE DI VARIABILITÀ DI CARATTERI QUANTITATIVI

LE MISURE DI VARIABILITÀ DI CARATTERI QUANTITATIVI Apputi di Statistica Sociale Uiversità ore di Ea LE MISURE DI VARIABILITÀ DI CARATTERI QUATITATIVI La variabilità di u isieme di osservazioi attiee all attitudie delle variabili studiate ad assumere modalità

Dettagli

Campi vettoriali conservativi e solenoidali

Campi vettoriali conservativi e solenoidali Campi vettoriali coservativi e soleoidali Sia (x,y,z) u campo vettoriale defiito i ua regioe di spazio Ω, e sia u cammio, di estremi A e B, defiito i Ω. Sia r (u) ua parametrizzazioe di, fuzioe della variabile

Dettagli

8. Quale pesa di più?

8. Quale pesa di più? 8. Quale pesa di più? Negli ultimi ai hao suscitato particolare iteresse alcui problemi sulla pesatura di moete o di pallie. Il primo problema di questo tipo sembra proposto da Tartaglia el 1556. Da allora

Dettagli

Tecnica delle misurazioni applicate Esame del 4 dicembre 2007

Tecnica delle misurazioni applicate Esame del 4 dicembre 2007 Tecica delle misurazioi applicate Esame del 4 dicembre 7 Problema 1. Il propulsore Mod. WEC viee prodotto da ACME Ic. mediate u processo automatizzato: dati storici cofermao che la lavorazioe di ogi elemeto

Dettagli

Test non parametrici. sono uguali a quelle teoriche. (probabilità attesa), si calcola la. , cioè che le frequenze empiriche

Test non parametrici. sono uguali a quelle teoriche. (probabilità attesa), si calcola la. , cioè che le frequenze empiriche est o parametrici Il test di Studet per uo o per due campioi, il test F di Fisher per l'aalisi della variaza, la correlazioe, la regressioe, isieme ad altri test di statistica multivariata soo parte dei

Dettagli

1. Distribuzioni campionarie legate alla distribuzione normale. 3. Intervallo bilatero di confidenza bilatero per la frazione p di una popolazione

1. Distribuzioni campionarie legate alla distribuzione normale. 3. Intervallo bilatero di confidenza bilatero per la frazione p di una popolazione Questi esempi vi potrao essere utili come riferimeto ella ricerca di itervalli di cofideza e test di ipotesi statistiche. Per gli aggiorameti potete visitare i siti www.boch.et o www.feaor.com. Per dubbi

Dettagli

Statistica 1 A.A. 2015/2016

Statistica 1 A.A. 2015/2016 Corso di Laurea i Ecoomia e Fiaza Statistica 1 A.A. 2015/2016 (8 CFU, corrispodeti a 48 ore di lezioe frotale e 24 ore di esercitazioe) Prof. Luigi Augugliaro 1 / 19 Iterdipedeza lieare fra variabili quatitative

Dettagli

Statistica (Prof. Capitanio) Alcuni esercizi tratti da prove scritte d esame

Statistica (Prof. Capitanio) Alcuni esercizi tratti da prove scritte d esame Statistica (Prof. Capitaio) Alcui esercizi tratti da prove scritte d esame Esercizio 1 Il tempo (i miuti) che Paolo impiega, i auto, per arrivare i ufficio, può essere modellato co ua variabile casuale

Dettagli

Università degli Studi di Bergamo - Corsi di laurea in Ingegneria Edile e Tessile Indici di posizione e variabilità Esercitazione 2

Università degli Studi di Bergamo - Corsi di laurea in Ingegneria Edile e Tessile Indici di posizione e variabilità Esercitazione 2 Uiversità degli Studi di Bergamo - Corsi di laurea i Igegeria Edile e Tessile Idici di posizioe e variabilità Esercitazioe 2 1. Nella seguete tabella si riporta la distribuzioe di frequeza del cosumo i

Dettagli

1 Successioni 1 1.1 Limite di una successione... 2. 2 Serie 3 2.1 La serie armonica... 6 2.2 La serie geometrica... 6

1 Successioni 1 1.1 Limite di una successione... 2. 2 Serie 3 2.1 La serie armonica... 6 2.2 La serie geometrica... 6 SUCCESSIONI Successioi e serie Idice Successioi. Limite di ua successioe........................................... Serie 3. La serie armoica................................................ 6. La serie

Dettagli

Selezione avversa e razionamento del credito

Selezione avversa e razionamento del credito Selezioe avversa e razioameto del credito Massimo A. De Fracesco Dipartimeto di Ecoomia politica e statistica, Uiversità di Siea May 3, 013 1 Itroduzioe I questa lezioe presetiamo u semplice modello del

Dettagli

INFERENZA SU UNA O DUE MEDIE CON IL TEST

INFERENZA SU UNA O DUE MEDIE CON IL TEST CAPITOLO VI INFERENZA SU UNA O DUE MEDIE CON IL TEST t DI STUDENT 6.. Dalla popolazioe ifiita al campioe piccolo: la distribuzioe t di studet 6.. Cofroto tra ua media osservata e ua media attesa co calcolo

Dettagli

Strumenti di indagine per la valutazione psicologica

Strumenti di indagine per la valutazione psicologica Strumeti di idagie per la valutazioe psicologica 1.2 - Richiami di statistica descrittiva Davide Massidda davide.massidda@gmail.com Descrivere i dati Dovedo scegliere u esame opzioale, uo studete ha itezioe

Dettagli

ESERCIZI DI INFERENZA STATISTICA E STUDIO DELLE ASSOCIAZIONI

ESERCIZI DI INFERENZA STATISTICA E STUDIO DELLE ASSOCIAZIONI ESERCIZI DI INFERENZA STATISTICA E STUDIO DELLE ASSOCIAZIONI ES 1 I u collettivo di 40 pazieti osservati, la media dei globuli biachi era pari a.9 ( 1000/ml 3 ) e la variaza era pari a 0.336. Forire ua

Dettagli

ESEMPIO 1. Immaginiamo come si distribuirebbero le stime campionarie se l operazione di campionamento venisse ripetuta più volte.

ESEMPIO 1. Immaginiamo come si distribuirebbero le stime campionarie se l operazione di campionamento venisse ripetuta più volte. ESEMPIO Prima dell esplosioe di ua cetrale ucleare, i terrei di ua certa regioe avevao ua produzioe media di grao pari a 00 quitali co uo scarto di 5. Dopo la catastrofe si selezioao 00 uità di superficie

Dettagli

CAPITOLO SETTIMO GLI INDICI DI FORMA 1. INTRODUZIONE

CAPITOLO SETTIMO GLI INDICI DI FORMA 1. INTRODUZIONE CAPITOLO SETTIMO GLI INDICI DI FORMA SOMMARIO: 1. Itroduzioe. - 2. Asimmetria. - 3. Grafico a scatola (box plot). - 4. Curtosi. - Questioario. 1. INTRODUZIONE Dopo aver aalizzato gli idici di posizioe

Dettagli

SERIE NUMERICHE Con l introduzione delle serie vogliamo estendere l operazione algebrica di somma ad un numero infinito di addendi.

SERIE NUMERICHE Con l introduzione delle serie vogliamo estendere l operazione algebrica di somma ad un numero infinito di addendi. Serie SERIE NUMERICHE Co l itroduzioe delle serie vogliamo estedere l operazioe algebrica di somma ad u umero ifiito di addedi. Def. Data la successioe {a }, defiiamo la successioe {s } poedo s = a k.

Dettagli

IMPLICAZIONE TRA VARIABILI BINARIE: L Implicazione di Gras

IMPLICAZIONE TRA VARIABILI BINARIE: L Implicazione di Gras IMPLICAZIONE TRA VARIABILI BINARIE: L Implicazioe di Gras Date due variabili biarie a e b, i quale misura posso assicurare che i ua popolazioe da ogi osservazioe di a segue ecessariamete quella di b? E

Dettagli

DISTRIBUZIONI DOPPIE

DISTRIBUZIONI DOPPIE DISTRIBUZIONI DOPPIE Fio ad ora abbiamo visto teciche di aalisi dei dati per il solo caso i cui ci si occupi di u solo carattere rilevato su u collettivo (distribuzioi semplici). I termii formali fio ad

Dettagli

Matematica II: Calcolo delle Probabilità e Statistica Matematica

Matematica II: Calcolo delle Probabilità e Statistica Matematica Matematica II: Calcolo delle Probabilità e Statistica Matematica ELT A-Z Docete: dott. F. Zucca Esercitazioe # 4 1 Distribuzioe Espoeziale Esercizio 1 Suppoiamo che la durata della vita di ogi membro di

Dettagli

II-9 Successioni e serie

II-9 Successioni e serie SUCCESSIONI II-9 Successioi e serie Idice Successioi. Limite di ua successioe........................................... Serie 3. La serie armoica................................................ 6. La

Dettagli

Successioni. Grafico di una successione

Successioni. Grafico di una successione Successioi Ua successioe di umeri reali è semplicemete ua sequeza di ifiiti umeri reali:, 2, 3,...,,... dove co idichiamo il termie geerale della successioe. Ad esempio, discutedo il sigificato fiaziario

Dettagli

CARATTERISTICHE MECCANICHE DI PIETRE NATURALI PER FACCIATE VENTILATE. Di seguito verranno utilizzati i seguenti simboli:

CARATTERISTICHE MECCANICHE DI PIETRE NATURALI PER FACCIATE VENTILATE. Di seguito verranno utilizzati i seguenti simboli: PROPOSTA DI UN PROTOCOLLO DI PROVE PER IL CONTROLLO DELLE CARATTERISTICHE MECCANICHE DI PIETRE NATURALI PER FACCIATE VENTILATE FINALITÀ Nel campo edile l utilizzo di rivestimeti esteri da riportare sulle

Dettagli

ESERCIZI SULLE SERIE

ESERCIZI SULLE SERIE ESERCIZI SULLE SERIE Studiare la atura delle segueti serie. ) cos 4 + ; ) + si ; ) + ()! 4) ( ) 5) ( ) + + 6) ( ) + + + 7) ( log ) 8) ( ) + 9) log! 0)! Studiare al variare di x i R la atura delle segueti

Dettagli

LA GESTIONE DELLA QUALITA : IL TOTAL QUALITY MANAGEMENT

LA GESTIONE DELLA QUALITA : IL TOTAL QUALITY MANAGEMENT LA GESTIONE DELLA QUALITA : IL TOTAL QUALITY MANAGEMENT La gestioe, il cotrollo ed il migliorameto della qualità di u prodotto/servizio soo temi di grade iteresse per l azieda. Il problema della qualità

Dettagli

Introduzione all assicurazione. (Dispensa per il corso di Microeconomia)

Introduzione all assicurazione. (Dispensa per il corso di Microeconomia) Itroduzioe all assicurazioe. (Dispesa per il corso di Microecoomia) Massimo A. De Fracesco Uiversità di Siea December 18, 2013 1 ichiami su utilità attesa e avversioe al rischio Prima di cosiderare il

Dettagli

Guida pratica per la convalida, il controllo qualità e lo studio delle incertezze di un metodo di analisi enologico

Guida pratica per la convalida, il controllo qualità e lo studio delle incertezze di un metodo di analisi enologico ORGANIZZAZIONE INTERNAZIONALE DELLA VIGNA E DEL VINO Guida pratica per la covalida, il cotrollo qualità e lo studio delle icertezze di u metodo di aalisi eologico Risoluzioe OIV-OENO 418-013, adottata

Dettagli

Anno 5 Successioni numeriche

Anno 5 Successioni numeriche Ao 5 Successioi umeriche Itroduzioe I questa lezioe impareremo a descrivere e calcolare il limite di ua successioe. Ma cos è ua successioe? Come si calcola il suo limite? Al termie di questa lezioe sarai

Dettagli

Serie numeriche e serie di potenze

Serie numeriche e serie di potenze Serie umeriche e serie di poteze Sommare u umero fiito di umeri reali è seza dubbio u operazioe che o può riservare molte sorprese Cosa succede però se e sommiamo u umero ifiito? Prima di dare delle defiizioi

Dettagli

Campionamento stratificato. Esempio

Campionamento stratificato. Esempio ez. 3 8/0/05 Metodi Statiici per il Marketig - F. Bartolucci Uiversità di Urbio Campioameto ratificato Ua tecica molto diffusa per sfruttare l iformazioe coteuta i ua variabile ausiliaria (o evetualmete

Dettagli

V Tutorato 6 Novembre 2014

V Tutorato 6 Novembre 2014 1. Data la successioe V Tutorato 6 Novembre 01 determiare il lim b. Data la successioe b = a = + 1 + 1 8 6 + 1 80 + 18 se 0 se < 0 scrivere i termii a 0, a 1, a, a 0 e determiare lim a. Data la successioe

Dettagli

SUCCESSIONI E SERIE NUMERICHE

SUCCESSIONI E SERIE NUMERICHE SUCCESSIONI E SERIE NUMERICHE. Successioi umeriche a. Defiizioi: successioi aritmetiche e geometriche Cosideriamo ua sequeza di umeri quale ad esempio:,5,8,,4,7,... Tale sequeza è costituita mediate ua

Dettagli

Teorema 13. Se una sere converge assolutamente, allora converge:

Teorema 13. Se una sere converge assolutamente, allora converge: Apputi sul corso di Aalisi Matematica complemeti (a) - prof. B.Bacchelli Apputi 03: Riferimeti: R.Adams, Calcolo Differeziale.- Si cosiglia vivamete di fare gli esercizi del testo. Covergeza assoluta e

Dettagli

Calcolo della risposta di un sistema lineare viscoso a più gradi di libertà con il metodo dell Analisi Modale

Calcolo della risposta di un sistema lineare viscoso a più gradi di libertà con il metodo dell Analisi Modale Calcolo della risposta di u sistema lieare viscoso a più gradi di libertà co il metodo dell Aalisi Modale Lezioe 2/2 Prof. Adolfo Satii - Diamica delle Strutture 1 La risposta a carichi variabili co la

Dettagli

CAPITOLO 5 TEORIA DELLA SIMILITUDINE

CAPITOLO 5 TEORIA DELLA SIMILITUDINE CAPITOLO 5 TEORIA DELLA SIMILITUDINE 5.. Itroduzioe La Teoria della Similitudie ha pricipalmete due utilizzi: Estedere i risultati otteuti testado ua sigola macchia ad altre codizioi operative o a ua famiglia

Dettagli

Introduzione alla Statistica descrittiva. Definizioni preliminari. Definizioni preliminari. Fasi di un indagine statistica. Tabelle statistiche

Introduzione alla Statistica descrittiva. Definizioni preliminari. Definizioni preliminari. Fasi di un indagine statistica. Tabelle statistiche Itroduzioe alla Statistica descrittiva Defiizioi prelimiari È la scieza che studia i feomei collettivi o di massa. U feomeo è detto collettivo o di massa quado è determiato solo attraverso ua molteplicità

Dettagli

Serie numeriche: esercizi svolti

Serie numeriche: esercizi svolti Serie umeriche: esercizi svolti Gli esercizi cotrassegati co il simbolo * presetao u grado di difficoltà maggiore. Esercizio. Dopo aver verificato la covergeza, calcolare la somma delle segueti serie:

Dettagli

PARTE QUARTA Teoria algebrica dei numeri

PARTE QUARTA Teoria algebrica dei numeri Prerequisiti: Aelli Spazi vettoriali Sia A u aello commutativo uitario PARTE QUARTA Teoria algebrica dei umeri Lezioe 7 Cei sui moduli Defiizioe 7 Si dice modulo (siistro) su A (o semplicemete, A-modulo)

Dettagli

5 ln n + ln. 4 ln n + ln. 6 ln n + ln

5 ln n + ln. 4 ln n + ln. 6 ln n + ln DOMINIO FUNZIONE Determiare il domiio della fuzioe f = l e e + e + e Deve essere e e + e + e >, posto e = t si ha t e + t + e = per t = e e per t = / Il campo di esisteza è:, l, + Determiare il domiio

Dettagli

Verifica d Ipotesi. Se invece che chiederci quale è il valore di una media in una popolazione (stima. o falsa? o falsa?

Verifica d Ipotesi. Se invece che chiederci quale è il valore di una media in una popolazione (stima. o falsa? o falsa? Verifica d Iotesi Se ivece che chiederci quale è il valore ua mea i ua oolazioe (stima utuale Se ivece e itervallo che chiederci cofideza) quale è il avessimo valore u idea ua mea su quello i ua che oolazioe

Dettagli

Soluzioni esercizi Capitolo 7

Soluzioni esercizi Capitolo 7 Soluzioi esercizi Capitolo 7 Quado si valuta la relazioe fra due variabili, occorre prestare particolare attezioe al fatto che i modelli statistici specifici per ogi scala di misura siao applicabili: i

Dettagli

ESERCIZI DI STATISTICA DESCRITTIVA ALCUNI TRATTI DA PROVE D ESAME DA REALIZZARE ANCHE CON L AUSILIO DI UN FOGLIO DI CALCOLO. Angela Donatiello 1

ESERCIZI DI STATISTICA DESCRITTIVA ALCUNI TRATTI DA PROVE D ESAME DA REALIZZARE ANCHE CON L AUSILIO DI UN FOGLIO DI CALCOLO. Angela Donatiello 1 ESERCIZI DI STATISTICA DESCRITTIVA ALCUNI TRATTI DA PROVE D ESAME DA REALIZZARE ANCHE CON L AUSILIO DI UN FOGLIO DI CALCOLO Agela Doatiello 1 Esercizio. E stato tabulato il peso di ua certa popolazioe

Dettagli

METODO DELLE PIOGGE PER IL CALCOLO DEI VOLUMI DI INVASO PER L INVARIANZA IDRAULICA

METODO DELLE PIOGGE PER IL CALCOLO DEI VOLUMI DI INVASO PER L INVARIANZA IDRAULICA METODO DELLE PIOGGE PER IL CALCOLO DEI OLUMI DI INASO PER L INARIANZA IDRAULICA 1. Premessa I queste brevi ote si preseta il metodo semplificato delle piogge illustradoe l implemetazioe i u foglio di calcolo

Dettagli

Navigazione tramite numeri e divertimento

Navigazione tramite numeri e divertimento 60 Chapter 6 Navigazioe tramite umeri e divertimeto Vladimir Georgiev Itroduzioe La ovità pricipale el ostro approccio e l avviciameto del lavoro dei ostri Lab ai problemi della vita reale tramite la parte

Dettagli

Introduzione all assicurazione. (Dispensa per il corso di Microeconomia per manager. Prima versione, marzo 2013; versione aggiornata, marzo 2014)

Introduzione all assicurazione. (Dispensa per il corso di Microeconomia per manager. Prima versione, marzo 2013; versione aggiornata, marzo 2014) Itroduzioe all assicurazioe. (Dispesa per il corso di Microecoomia per maager. Prima versioe, marzo 2013; versioe aggiorata, marzo 2014) Massimo A. De Fracesco Uiversità di Siea March 14, 2014 1 Prezzo

Dettagli

Percorsi di matematica per il ripasso e il recupero

Percorsi di matematica per il ripasso e il recupero Giacomo Pagia Giovaa Patri Percorsi di matematica per il ripasso e il recupero 2 per la Scuola secodaria di secodo grado UNITÀ CAMPIONE Edizioi del Quadrifoglio à t i U 2 Radicali I questa Uità affrotiamo

Dettagli

Dispense di probabilità e statistica *

Dispense di probabilità e statistica * IFORMATICA E STATISTICA PER OTTICA E OPTOMETRIA Dispese di probabilità e statistica * Daiele Motaio Uiversità degli Studi del Saleto e-mail: daiele.motaio@le.if.it web: http://www.le.if.it/~motai/ Questa

Dettagli

SUCCESSIONI NUMERICHE

SUCCESSIONI NUMERICHE SUCCESSIONI NUMERICHE LORENZO BRASCO. Teoremi di Cesaro Teorema di Stolz-Cesaro. Siao {a } N e {b } N due successioi umeriche, co {b } N strettamete positiva, strettamete crescete e ilitata. Se esiste

Dettagli

DISPENSE DI MATEMATICA FINANZIARIA

DISPENSE DI MATEMATICA FINANZIARIA SPENSE MATEMATA FNANZAA 3 Piai di ammortameto. 3. osiderazioi geerali. U piao di ammortameto cosiste ella restituzioe di u importo preso a prestito mediate il versameto d'importi distribuiti el tempo.

Dettagli

1 Metodo della massima verosimiglianza

1 Metodo della massima verosimiglianza Metodo della massima verosimigliaza Estraedo u campioe costituito da variabili casuali X i i.i.d. da ua popolazioe X co fuzioe di probabilità/desità f(x, θ), si costruisce la fuzioe di verosimigliaza che

Dettagli

Successioni. Capitolo 2. 2.1 Definizione

Successioni. Capitolo 2. 2.1 Definizione Capitolo 2 Successioi 2.1 Defiizioe Ua prima descrizioe, più ituitiva che rigorosa, di quel che itediamo per successioe cosiste i: Ua successioe è ua lista ordiata di oggetti, avete u primo ma o u ultimo

Dettagli

1 Limiti di successioni

1 Limiti di successioni Esercitazioi di matematica Corso di Istituzioi di Matematica B Facoltà di Architettura Ao Accademico 005/006 Aa Scaramuzza 4 Novembre 005 Limiti di successioi Esercizio.. Servedosi della defiizioe di ite

Dettagli

Esercitazione 2 Progetto e realizzazione di un semplice sintetizzatore musicale basato su FPGA

Esercitazione 2 Progetto e realizzazione di un semplice sintetizzatore musicale basato su FPGA Architetture dei sistemi itegrati digitali Alessadro Bogliolo Esercitazioe 2 Progetto e realizzazioe di u semplice sitetizzatore musicale basato su FPGA (A) Defiizioe della specifica ed esperimeti prelimiari

Dettagli

Distribuzione di un carattere

Distribuzione di un carattere Distribuzioe di u carattere Dopo le fasi di acquisizioe e di registrazioe dei dati, si passa al loro cotrollo e quidi alle loro elaborazioe. Si defiisce distribuzioe uitaria semplice di u carattere l elecazioe

Dettagli

INVENTORY CONTROL. Ing. Lorenzo Tiacci

INVENTORY CONTROL. Ing. Lorenzo Tiacci INVENTORY CONTRO Ig. orezo Tiacci Testo di riferimeto: Ivetory Maagemet ad Productio Plaig ad Cotrol - Third Ed. E.A. Silver, D.F. Pyke, R. Peterso Wiley, 998 Idice. POITICA (s, ) (order poit, order quatity)

Dettagli

Foglio di esercizi N. 1 - Soluzioni

Foglio di esercizi N. 1 - Soluzioni Foglio di esercizi N. - Soluzioi. Determiare il domiio della fuzioe f) = log 3 + log 3 3)). Deve essere + log 3 3) > 0, ovvero log 3 3) >, ovvero prededo l espoeziale i base 3 di etrambi i membri) 3 >

Dettagli

Esercizi riguardanti limiti di successioni

Esercizi riguardanti limiti di successioni Esercizi riguardati iti di successioi Davide Boscaii Queste soo le ote da cui ho tratto le esercitazioi del gioro 27 Ottobre 20. Come tali soo be lugi dall essere eseti da errori, ivito quidi chi e trovasse

Dettagli

5. Le serie numeriche

5. Le serie numeriche 5. Le serie umeriche Ricordiamo che ua successioe reale è ua fuzioe defiita da N, evetualmete privato di u umero fiito di elemeti, a R. Solitamete si idica ua successioe co la lista dei suoi valori: (a

Dettagli

Statistica descrittiva

Statistica descrittiva Statistica descrittiva idici idici (o misure) di posizioe media campioaria di osservazioi x, x,..., x x i x= per campioi x ì ripetuti ciascuo co frequeza f i x= x i f i Posto y i =a x i b : y=a x mediaa

Dettagli

Io domani. La tutela del minore e la genitorialità attraverso progetti integrati. Il congegno pensante

Io domani. La tutela del minore e la genitorialità attraverso progetti integrati. Il congegno pensante Io domai. La tutela del miore e la geitorialità attraverso progetti itegrati Il cogego pesate equipe: T. Toscai G. Fracii G. Mote Istituto Terapia Familiare di Bologa Alle Radici del Dao I bambii che restao

Dettagli

4. Metodo semiprobabilistico agli stati limite

4. Metodo semiprobabilistico agli stati limite 4. Metodo seiprobabilistico agli stati liite Tale etodo cosiste el verificare che le gradezze che ifluiscoo i seso positivo sulla, valutate i odo da avere ua piccolissia probabilità di o essere superate,

Dettagli

Esercitazioni del corso: ANALISI MULTIVARIATA

Esercitazioni del corso: ANALISI MULTIVARIATA A. A. 9 1 Esercitazioi del corso: ANALISI MULTIVARIATA Isabella Romeo: i.romeo@campus.uimib.it Sommario Esercitazioe 4: Verifica d Ipotesi Test Z e test T Test d Idipedeza Aalisi Multivariata a. a. 9-1

Dettagli

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del 5.02.2013 TEMA 1. f(x) = arcsin 1 2 log 2 x.

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del 5.02.2013 TEMA 1. f(x) = arcsin 1 2 log 2 x. ANALISI MATEMATICA Area dell Igegeria dell Iformazioe Appello del 5.0.0 TEMA Esercizio Si cosideri la fuzioe f(x = arcsi log x. Determiare il domiio di f e discutere il sego. Discutere brevemete la cotiuità

Dettagli

Indagini sui coregoni del Lago Maggiore: Analisi sui pesci catturati nel 2010

Indagini sui coregoni del Lago Maggiore: Analisi sui pesci catturati nel 2010 Idagii sui coregoi del Lago Maggiore: Aalisi sui pesci catturati el 1 Rapporto commissioato dal Dipartimeto del territorio, Ufficio della caccia e della pesca, Via Stefao Frascii 17 51 Bellizoa Aprile

Dettagli

STIMA DEI DANNI 1) Che cosa si intende per danno economico?

STIMA DEI DANNI 1) Che cosa si intende per danno economico? STIMA DEI DANNI 1) Che cosa si itede per dao ecoomico? Per dao ecoomico si itede la perdita o la dimiuzioe di valore che u bee subisce a seguito di u siistro ( eveto o prevedibile) o da u fatto doloso

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2006

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2006 ESAME DI STAT DI LICE SCIENTIFIC CRS DI RDINAMENT 006 Il cadidato risolva uo dei due problemi e 5 dei 0 quesiti i cui si articola il questioario. PRBLEMA U filo metallico di lughezza l viee utilizzato

Dettagli

Capitolo Decimo SERIE DI FUNZIONI

Capitolo Decimo SERIE DI FUNZIONI Capitolo Decimo SERIE DI FUNZIONI SUCCESSIONI DI FUNZIONI I cocetti di successioe e di serie possoo essere estesi i modo molto aturale al caso delle fuzioi DEFINIZIONE Sia E u sottoisieme di  e, per ogi

Dettagli

TEORIA DEI VALORI ESTREMI E APPLICAZIONI AL CALCOLO DEL VALUE AT RISK

TEORIA DEI VALORI ESTREMI E APPLICAZIONI AL CALCOLO DEL VALUE AT RISK UNIVERSITA DI URBINO FACOLTA DI ECONOMIA TEORIA DEI VALORI ESTREMI E APPLICAZIONI AL CALCOLO DEL VALUE AT RISK Giaa Figà-Talamaca Uiversità della Calabria Vale at Risk 1 Il Vale at Risk (Valore a Rischio

Dettagli

SERIE NUMERICHE. (Cosimo De Mitri) 1. Definizione, esempi e primi risultati... pag. 1. 2. Criteri per serie a termini positivi... pag.

SERIE NUMERICHE. (Cosimo De Mitri) 1. Definizione, esempi e primi risultati... pag. 1. 2. Criteri per serie a termini positivi... pag. SERIE NUMERICHE (Cosimo De Mitri. Defiizioe, esempi e primi risultati... pag.. Criteri per serie a termii positivi... pag. 4 3. Covergeza assoluta e criteri per serie a termii di sego qualsiasi... pag.

Dettagli

Capitolo uno STATISTICA DESCRITTIVA BIVARIATA

Capitolo uno STATISTICA DESCRITTIVA BIVARIATA Capitolo uo STATISTICA DESCRITTIVA BIVARIATA La statistica bidimesioale o bivariata si occupa dello studio del grado di dipedeza di due caratteri distiti della stessa uità statistica. E possibile, ad esempio,

Dettagli

INTRODUZIONE ALLA STATISTICA

INTRODUZIONE ALLA STATISTICA Liceo Scietifico -Idirizzo giuridico ecoomico aziedale -Idirizzo operatore turistico Via Rossi/Casacampora, 3-80056 Ercolao (Na) Tel. (+39)08 7396340 (+39)08 7774666 - Fax (+39) 08739669 Cod. Mecc NAISO00G

Dettagli

Distribuzioni di probabilità Unità 79

Distribuzioni di probabilità Unità 79 Prerequisiti: - Primi elemeti di probabilità e statistica. - Nozioi di calcolo combiatorio. - Rappresetazioe di puti e rette i u piao cartesiao. Questa uità iteressa tutte le scuole ad eccezioe del Liceo

Dettagli

STIME E LORO AFFIDABILITA

STIME E LORO AFFIDABILITA TIME E LORO AFFIDABILITA L idea chiave su cui si basa l aalisi statistica è che si ossoo eseguire osservaioi su u camioe di soggetti e che da questo si ossoo comiere iferee sulla oolaioe raresetata da

Dettagli

Capitolo 27. Elementi di calcolo finanziario EEE 2015-2016

Capitolo 27. Elementi di calcolo finanziario EEE 2015-2016 Capitolo 27 Elemeti di calcolo fiaziario EEE 205-206 27. Le diverse forme dell iteresse Si defiisce capitale (C) uo stock di moeta dispoibile i u determiato mometo. Si defiisce iteresse (I) il prezzo d

Dettagli

CAPITOLO UNDICESIMO VARIABILI CASUALI 1. INTRODUZIONE

CAPITOLO UNDICESIMO VARIABILI CASUALI 1. INTRODUZIONE CAPITOLO UNDICESIMO VARIABILI CASUALI SOMMARIO:. Itroduzioe. -. Variabili casuali discrete. - 3. La variabile casuale di Beroulli. - 4. La variabile casuale biomiale. -. La variabile casuale di Poisso.

Dettagli

Corsi di Laurea in Ingegneria Edile e Architettura Prova scritta di Analisi Matematica 1 del 6/02/2010. sin( x) log((1 + x 2 ) 1/2 ) = 1 3.

Corsi di Laurea in Ingegneria Edile e Architettura Prova scritta di Analisi Matematica 1 del 6/02/2010. sin( x) log((1 + x 2 ) 1/2 ) = 1 3. Corsi di Laurea i Igegeria Edile e Architettura Prova scritta di Aalisi Matematica del 6// ) Mostrare che + si( ) cos () si( ) log(( + ) / ) = 3. Possibile soluzioe: Cosiderado dapprima il deomiatore otiamo

Dettagli

Random walk classico. Simulazione di un random walk

Random walk classico. Simulazione di un random walk Radom walk classico Il radom walk classico) è il processo stocastico defiito da co prob. S = S0 X k, co X k = k= co prob. e le X soo tra di loro idipedeti. k Si tratta di u processo a icremeti idipedeti

Dettagli

ESERCIZI DI INFERENZA STATISTICA SVOLTI IN AULA DAL DOTT. CLAUDIO CONVERSANO

ESERCIZI DI INFERENZA STATISTICA SVOLTI IN AULA DAL DOTT. CLAUDIO CONVERSANO ESERCIZI DI INFERENZA STATISTICA SVOLTI IN AULA DAL DOTT. CLAUDIO CONVERSANO ARGOMENTI TRATTATI: VARIABILI CASUALI DISCRETE VARIABILI CASUALI CONTINUE DISEGUAGLIANZA DI TCHEBYCHEFF TEOREMA DEL LIMITE CENTRALE

Dettagli

2.1. CONSIDERAZIONI GENERALI SULLA TEORIA DEL METODO AGLI ELEMENTI FINITI PER LA SIMULAZIONE DEI PROCESSI DI LAMIERA

2.1. CONSIDERAZIONI GENERALI SULLA TEORIA DEL METODO AGLI ELEMENTI FINITI PER LA SIMULAZIONE DEI PROCESSI DI LAMIERA Politecico di Torio Sistemi di Produzioe... CONSIDERAZIONI GENERALI SULLA TEORIA DEL METODO AGLI ELEMENTI FINITI PER LA SIMULAZIONE DEI PROCESSI DI LAMIERA... Equazioe di govero Negli ultimi ai il metodo

Dettagli

Risposte. f v = φ dove φ(x,y) = e x2. f(x) = e x2 /2. +const. Soluzione. (i) Scriviamo v = (u,w). Se f(x) è la funzione richiesta, si deve avere

Risposte. f v = φ dove φ(x,y) = e x2. f(x) = e x2 /2. +const. Soluzione. (i) Scriviamo v = (u,w). Se f(x) è la funzione richiesta, si deve avere Eserciio 1 7 puti. Dato il campo vettoriale v, + 1,, i si determii ua fuioe f > i modo tale che il campo vettoriale f v sia irrotaioale, cioè abbia le derivate icrociate uguali; ii si spieghi se i risultati

Dettagli

Analisi Fattoriale Discriminante

Analisi Fattoriale Discriminante Aalisi Fattoriale Discrimiate Bibliografia Lucidi (materiale reperibile via Iteret) Lauro C.N. Uiversità di Napoli Gherghi M. Uiversità di Napoli D Ambra L. Uiversità di Napoli Keeth M. Portier Uiversity

Dettagli