Esercitazioni di Analisi e Simulazione dei Processi Chimici

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Esercitazioni di Analisi e Simulazione dei Processi Chimici"

Transcript

1 Esercitazioni di Analisi e Simulazione dei Processi Chimici Metodi numerici per la risoluzione di sistemi di equazioni differenziali ordinarie Antonio Brasiello abrasiel@unina.it Tel

2 Introduzione In questa lezione considereremo il problema dell integrazione numerica di un sistema di ODEs del primo ordine. In cui f è una funzione non lineare di y e t. t y f y, t y y 0 0 2

3 Introduzione Analizzeremo metodi per la risoluzione di sistemi di ODEs del primo ordine o equivalentemente di equazioni di ordine m. È possibile dimostrare infatti che un equazione differenziale di ordine m può essere riscritta come un sistema di m equazioni differenziali del primo ordine. Es. Pendolo semplice M l M g sin Posto y g y sin si ha: l y 3

4 Introduzione: alcune definizioni Algoritmo one step: algoritmo che per calcolare il valore di y n+1 utilizza solo i valori di y e y calcolati a t n. Algoritmo multi step: algoritmo che per calcolare il valore di y n+1 utilizza i valori di y e y calcolati a t n ed istanti precedenti (es. t n-1 ). y y h f y t n1 n n, n y 1 y 12 h f y, t n n n n Algoritmo esplicito: algoritmo che non richiede il calcolo del campo vettoriale f in corrispondenza di y n+1 e t n+1. Algoritmo implicito: algoritmo che richiede il calcolo del campo vettoriale f in corrispondenza di y n+1 e t n+1. Vedi sopra y y h f y, t n1 n n1 n1 4

5 ..ancora definizioni Un sistema si dice autonomo se le equazioni differenziali non dipendono esplicitamente dalla variabile indipendente t (tempo). y f y y È sempre possibile trasformare un sistema non autonomo in uno autonomo mediante l aggiunta di una variabile dipendente y e di un equazione differenziale: y m1 m1 0 t 0 y 0 1 t0 y t y 5

6 Condizionamento del problema Un sistema di equazioni è ben condizionato se una piccola perturbazione della funzione e/o della condizione iniziale genera una soluzione che si discosta poco da quella teorica del precedente problema ES. y 9y 10e y(0) 1 t t 9t y e c e c 0 Affinchè un equazione sia bene condizionata è necessario che f y <0 6

7 Metodo di Eulero I metodi numerici permettono di ottenere la soluzione approssimata del sistema in corrispondenza di alcuni valori della variabile indipendente t0 t1 t2 t n,,,...,,... Consideriamo la seguente equazione differenziale ordinaria: dc dt C A A (0) 0.1 k C 1 1 kc 2 A A 2 k k Dobbiamo cercare una funzione che passi per (t 0, y 0 ) e che in ogni punto (t, y(t)) abbia pendenza pari a f(t, y(t)). 7

8 Metodo di Eulero Calcoliamo la retta nel punto (t 0, y 0 ) che abbia pendenza pari a y (t 0, y 0 )., y y f y t t t Essa approssima la soluzione nell intorno di (t 0, y 0 ) ed è possibile utilizzarla per predire il valore di y(t 1 ). y y h f y, t La pendenza della y in t 1 è nota quindi la procedura può essere iterata. 8

9 Metodo di Eulero La forma generale dell algoritmo di Eulero è la seguente: In cui h è il passo di integrazione. y y h f y t n 1 n n, n Il metodo di Eulero presentato è un metodo esplicito e one step. ESERCIZIO Scrivere un m-file che risolva l equazione del reattore batch riportata in precedenza con l algoritmo di Eulero esplicito. Trovare per tentativi il massimo passo di integrazione utilizzabile 9

10 Metodo di Eulero: esercizio Definire il passo d integrazione e le condizioni iniziali. Costruire la function campo vettoriale. Ciclo while con controllo del numero massimo di passi d integrazione. I punti (t,y) calcolati saranno salvati in due vettori (ad es. tvett e yvett) Visualizzare il diagramma. 10

11 Metodo di Eulero: esercizio % Metodo di Eulero esplicito clc clear all % Definizione del passo di integrazione h=4; tmax=200; nmax=floor(tmax/h); n=1; %Condizioni iniziali told=0; yold=0.1; ynew(1)=yold; tnew(1)=told; while n < nmax ynew(n+1)=yold+h*campvett(yold); tnew(n+1)=told+h; told=tnew(n+1); yold=ynew(n+1); n=n+1; end plot(tnew,ynew,'b') zoom on grid on function f=campvett(y) k1=1; k2=10; f=-k1*y/((1+k2*y)^2); 11

12 Stabilità dell algoritmo di Eulero Qual è il passo massimo d integrazione utilizzabile nell algoritmo di Eulero esplicito? y n 1 y n h f yn, tn y t y t y t t t n n n 2 y tn 1 yn 1 y tn yn hn f y tn, tn f yn, tn hn y 2 n * f t y t y y n n EG h f EG h 2 n1 1 n y n n y 2 n 12

13 Stabilità dell algoritmo di Eulero L algoritmo di Eulero esplicito risulterà stabile se: Ovvero se: 1 h f 1 h n n y 2 f y N.B. f y varia nel corso dell integrazione Proviamo a calcolare il passo massimo d integrazione iniziale per l esercizio precedente. 13

14 Metodo di Eulero implicito Daremo ora qualche accenno al metodo di Eulero implicito e ai metodi impliciti in generale. Il metodo di Eulero implicito si basa sulla relazione seguente: y y h f y, t n1 n n1 n1 Per ottenere un passo con il metodo di Eulero implicito è necessario risolvere un sistema di equazioni non lineari. I metodi impliciti possono però presentare dei vantaggi che li rendono più convenienti in alcuni casi. 14

15 Sistemi stiff I metodi impliciti sono decisamente preferibili rispetto a quelli espliciti nell integrazione di sistemi stiff. Ma cos è un sistema stiff? Risolviamo analiticamente il seguente sistema: y 10y y 0 y(0) 10 y(0) 20 y C e C e 9.9t 0.1t 1 2 AUTOVALORI

16 Sistemi stiff Supponendo di voler risolvere il problema con il metodo di Eulero esplicito possiamo calcolare il passo d integrazione massimo utilizzabile: h max 2 max Il passo massimo dipende dall autovalore relativo ad un termine della soluzione che diventa rapidamente trascurabile. 0.2 L algoritmo di Eulero implicito ha un fattore di amplificazione pari a 1 1 h e risulta stabile per qualunque valore di h. 16

17 Implementazione dei metodi numerici con MatLab MatLab possiede diverse funzione per l integrazione di sistemi di ODEs. La sintassi è la seguente: [T,Y] = ode23(odefun,tspan,y0) Variabili di output: Variabili di input. Vettore Tempo discretizzato Vettore valori che assume Y in corrispondenza di T Secondi membri del sistema di equazioni differenziali scritte in forma di function Intervallo temporale in cui si intende integrare numericamen te il sistema di ODE Vettore condizioni iniziali 17

18 Implementazione dei metodi numerici con MatLab I metodi implementati in MatLab sono i seguenti: ode45 Metodi di Runge-Kutta 4 e 5 espliciti ode23 Metodi di Runge-Kutta 2 e 3 espliciti (anche per problemi di moderatamente stiff) ode113 metodo predittore-correttore multistep di Adams- Moulton ( è più efficiente di ode45 nei casi in cui f è complicata) Se gli algoritmi qui presentati risultano lenti forse siamo di fronte a problemi stiff.. 18

19 Implementazione dei metodi numerici con MatLab..e pertanto sarà necessario utilizzare una delle seguenti funzioni: ode15s metodi multistep impliciti ode23s Metodi di Rosenbrock (Runge-Kutta impliciti) ode23t Formula del trapezio ode23tb Utilizza una combinazione del metodo del trapezio e altri metodi impliciti. Se si vogliono cambiare le opzioni di default si utilizza il comando odeset. 19

20 Esercizio Scrivere un m-file per l integrazione del seguente sistema di equazioni differenziali utilizzando ode45. Diagrammare la soluzione. d Da 1 exp dt d B Da 1 exp dt Da = 0.01 = 9.0 B=

21 Esercizio plot(t,y(:,1),'b',t,y(:,2),'r') zoom on function fun=cstrfun(t,vet) x=vet(1); y=vet(2); Da=0.01; gamma=9.0; B=22.0; a(1)=-x+da*(1-x)*exp(y/(1+y/gamma)); a(2)=-y+b*da*(1-x)*exp(y/(1+y/gamma)); fun=a'; 21

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 11 - Metodi numerici per equazioni differenziali ordinarie

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 11 - Metodi numerici per equazioni differenziali ordinarie Complementi di Matematica e Calcolo Numerico A.A. 2010-2011 Laboratorio 11 - Metodi numerici per equazioni differenziali ordinarie Cosideriamo il seguente Problema di Cauchy: Trovare una funzione y : I

Dettagli

Esercitazione 03 Risoluzione numerica di ODE

Esercitazione 03 Risoluzione numerica di ODE 1 Esercitazione 03 Risoluzione numerica di ODE Corso di Strumentazione e Controllo di Impianti Chimici Prof. Davide Manca Tutor: Giuseppe Pesenti Metodi di Eulero Esplicito e implicito 2 yyy(tt) = ff tt,

Dettagli

Dinamica e Controllo dei Processi Energetici. AA 2009/2010 Pier Luca Maffettone. Elementi di Matlab

Dinamica e Controllo dei Processi Energetici. AA 2009/2010 Pier Luca Maffettone. Elementi di Matlab Dinamica e Controllo dei Processi Energetici AA 2009/ Pier Luca Maffettone Elementi di Sommario Introduzione Variabili Manipolazione di elementi Creazione di vettori/matrici Operazioni elementari Funzioni

Dettagli

Soluzione di equazioni differenziali ordinarie

Soluzione di equazioni differenziali ordinarie Soluzione di equazioni differenziali ordinarie Come riferimento consideriamo una singola equazione differenziale del primo ordine Considereremo i seguenti metodi: Eulero esplicito Eulero implicito Runge-Kutta

Dettagli

Sommario. Parte I: ODEs e functions del MATLAB. Parte II: PDEs e applicazione in un problema alle differenze finite

Sommario. Parte I: ODEs e functions del MATLAB. Parte II: PDEs e applicazione in un problema alle differenze finite Sommario Parte I: ODEs e functions del MATLAB Parte II: PDEs e applicazione in un problema alle differenze finite 1 Parte I: ODEs e functions del MATLAB Consideriamo un problema a valori iniziali per un

Dettagli

METODO DI EULERO ESPLICITO

METODO DI EULERO ESPLICITO METODO DI EULERO ESPLICITO { u0 dato u n+1 = u n + hf (t n, u n ) 0 n N h 1 (1) Scrivere una function [tn,un]=eulero esp(odefun,tspan,y0,nh) INPUT: odefun: espressione della f tspan=[t0,t]: vettore di

Dettagli

METODI NUMERICI PER IL CONTROLLO

METODI NUMERICI PER IL CONTROLLO METODI NUMERICI PER IL CONTROLLO Relazione 4: Equazioni differenziali ESERCIZIO 1 Risolvere il problema ai valori iniziali 3 x& = 1x + t x(0) = 0 1t + 6t 3 1 nell intervallo [0 1] con passo h=0.1 usando

Dettagli

Equazioni Differenziali.

Equazioni Differenziali. 1 Equazioni Differenziali. Consideriamo il sistema di equazioni differenziali: con condizione iniziale: y = f(t, y) (1) y(t 0 ) = y 0, e supponiamo che la funzione f : [t 0, T ] R s R s sia continua nelle

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Prof. L. Brandolini Corso di Calcolo Numerico Dott.ssa N. Franchina Laboratorio 6 Equazioni differenziali ordinarie: metodi impliciti 3 Novembre 26 Esercizi di implementazione Un equazione differenziale

Dettagli

Esercitazione 1 Sistemi e Equazioni Differenziali

Esercitazione 1 Sistemi e Equazioni Differenziali 1 Esercitazione 1 Sistemi e Equazioni Differenziali Corso di Strumentazione e Controllo di Impianti Chimici Prof. Davide Manca Tutor: Giuseppe Pesenti Funzioni definite all interno di file 2 Definire e

Dettagli

Metodi Numerici con Laboratorio di Informatica - A.A Esercizi Laboratorio n 4 - Metodo di Newton e Metodi di punto fisso

Metodi Numerici con Laboratorio di Informatica - A.A Esercizi Laboratorio n 4 - Metodo di Newton e Metodi di punto fisso Metodi Numerici con Laboratorio di Informatica - A.A. 2015-2016 Esercizi Laboratorio n 4 - Metodo di Newton e Metodi di punto fisso Metodi numerici per le equazioni differenziali ordinarie Consideriamo

Dettagli

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 11 - Metodi numerici per equazioni differenziali ordinarie

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 11 - Metodi numerici per equazioni differenziali ordinarie Complementi di Matematica e Calcolo Numerico A.A. 2013-2014 Laboratorio 11 - Metodi numerici per equazioni differenziali ordinarie Cosideriamo il Problema di Cauchy: y (t) = f(t,y(t)) t I, y(t 0 ) = y

Dettagli

ESERCITAZIONE Implementare i metodi di Eulero, di Heun e di Runge-Kutta del quarto ordine per integrare il problema di Cauchy:

ESERCITAZIONE Implementare i metodi di Eulero, di Heun e di Runge-Kutta del quarto ordine per integrare il problema di Cauchy: ESERCITAZIONE 5 1. Implementare i metodi di Eulero, di Heun e di Runge-Kutta del quarto ordine per integrare il problema di Cauchy: { y (x) = f(x, y(x)) y(x 0 ) = y 0 con passo h = x N x 0, ove x N N e

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Prof. L. Brandolini Corso di Calcolo Numerico Dott.ssa N. Franchina Laboratorio 5 Equazioni differenziali ordinarie: metodi espliciti 25 Novembre 215 Esercizi di implementazione Un equazione differenziale

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Laurea in Ingegneria Gestionale Sede di Fermo Corso di 9 - EQUAZIONI DIFFERENZIALI ORDINARIE valori iniziali Valori iniziali Ci occuperemo della soluzione numerica di equazioni del prim ordine

Dettagli

ISTRUZIONI PER LA CONSEGNA DEI FILE MATLAB

ISTRUZIONI PER LA CONSEGNA DEI FILE MATLAB Calcolo Numerico ed Elementi di Analisi - Allievi AEROSPAZIALI Proff. S. Micheletti, S. Perotto A.A. 20/202, Appello 28 Gennaio 203 NOME... COGNOME... MATRICOLA... DOCENTE... AULA... PC... Ver.A I seguenti

Dettagli

con λ -d(f(x,y))/d(y)=12.

con λ -d(f(x,y))/d(y)=12. Quarta relazione Si risolverà il problema prima con il metodo di Eulero esplicito e poi con il metodo di Crank-Nicolson. Per ogni algoritmo si ha xn=x0+h*n 1)Risoluzione con Eulero esplicito Si osserva

Dettagli

Equazioni differenziali. Gabriella Puppo

Equazioni differenziali. Gabriella Puppo Equazioni differenziali Gabriella Puppo Equazioni differenziali Metodi Runge-Kutta Sistemi di equazioni differenziali Equazioni differenziali in Matlab Metodi Runge-Kutta Una function che implementa un

Dettagli

Equazioni differenziali

Equazioni differenziali Equazioni differenziali Comandi Commenti Vediamo come si può risolvere il problema di Cauchy: Esempio 1: function z=funzione(t,y) z=t Consideriamo il seguente caso banale: La soluzione cercata è Per risolvere

Dettagli

Corso di Analisi Numerica

Corso di Analisi Numerica Corso di Laurea in Ingegneria Informatica Corso di Analisi Numerica 9 - EQUAZIONI DIFFERENZIALI ORDINARIE Lucio Demeio Dipartimento di Scienze Matematiche 1 Problemi ai Valori Iniziali: metodo di Eulero

Dettagli

Metodi per l Analisi dei Dati : Progetto n 1

Metodi per l Analisi dei Dati : Progetto n 1 Andrea Massa Filippo Pintus Simone Rizzardini Metodi per l Analisi dei Dati : Progetto n 8/03/200 Premessa Uno degli obiettivi di questo progetto è quello di individuare con una ricerca nei manuali e in

Dettagli

Lezione 7 Equazioni Differenziali Ordinarie.

Lezione 7 Equazioni Differenziali Ordinarie. Lezione 7 Equazioni Differenziali Ordinarie http://idefix.mi.infn.it/~palombo/didattica/lab-tnds/corsolab/lezionifrontali Fernando Palombo Equazioni Differenziali Ordinarie Descrizione dell evolversi spazio-temporale

Dettagli

Analisi Numerica. Debora Botturi ALTAIR. Debora Botturi. Laboratorio di Sistemi e Segnali

Analisi Numerica. Debora Botturi ALTAIR.  Debora Botturi. Laboratorio di Sistemi e Segnali Analisi Numerica ALTAIR http://metropolis.sci.univr.it Argomenti Argomenti Argomenti Rappresentazione di sistemi con variabili di stato; Tecniche di integrazione numerica Obiettivo: risolvere sistemi di

Dettagli

Capitolo 2. non lineari. 2.1 Metodo di Newton per sistemi di equazioni. Consideriamo il sistema di equazioni non lineari. f N (x 1,x 2,...

Capitolo 2. non lineari. 2.1 Metodo di Newton per sistemi di equazioni. Consideriamo il sistema di equazioni non lineari. f N (x 1,x 2,... Capitolo ODEs non lineari Metodo di Newton per sistemi di equazioni non lineari Consideriamo il sistema di equazioni non lineari f (x,x,,x N ) = f (x,x,,x N ) = f N (x,x,,x N ) = che può essere riscritto,

Dettagli

1 Integrazione numerica

1 Integrazione numerica 1 Integrazione numerica ESERCITAZIONE MATLAB 7 1. I metodi dei trapezi e di Simpson compositi per la approssimazione di I(f) = b a f(x)dx (1) sono dati, rispettivamente, da I (N) 1 (f) = h [ ( N 1 ) ]

Dettagli

Introduzione. Esercizio n 1. Metodo di Eulero Esplicito. Risolvere il problema ai valori iniziali: 3 2

Introduzione. Esercizio n 1. Metodo di Eulero Esplicito. Risolvere il problema ai valori iniziali: 3 2 Introduzione Nella seguente esercitazione si vogliono risolvere numericamente equazioni differenziali di diverso ordine, utilizzando metodi basati sulla discretizzazione delle stesse, ovvero sull approssimazione

Dettagli

Assoluta stabilità e metodi multipasso. Assoluta stabilità

Assoluta stabilità e metodi multipasso. Assoluta stabilità Assoluta stabilità e metodi multipasso Elena Loli Piccolomini-metodi multipasso p.1/33 Assoluta stabilità La convergenza è un concetto fondamentale: non avrebbe senso un metodo non convergente. la convergenza

Dettagli

METODI NUMERICI - II canale (A.A )

METODI NUMERICI - II canale (A.A ) METODI NUMERICI - II canale (A.A. 2007-2008) Cosa èilcalcolo NUMERICO? Prof. F. Pitolli Appunti della prima lezione È quella branca della matematica che fornisce mezzi e metodi per risolvere numericamente,

Dettagli

Equazioni differenziali ordinarie

Equazioni differenziali ordinarie Equazioni differenziali ordinarie Lucia Gastaldi DICATAM - Sez. di Matematica, http://lucia-gastaldi.unibs.it Indice 1 Il problema di Cauchy Esistenza, unicità e dipendenza continua dai dati 2 Metodi numerici

Dettagli

Il problema di Cauchy

Il problema di Cauchy Sia I = [t 0, t 0 + T ] con 0 < T < +. Sia f (t, y) una funzione assegnata definita in I R continua rispetto ad entrambe le variabili. Si trata di determinare una funzione y C 1 (I ) soluzione di { y (t)

Dettagli

Equazioni differenziali ordinarie

Equazioni differenziali ordinarie Equazioni differenziali ordinarie Lucia Gastaldi DICATAM - Sez. di Matematica, http://lucia-gastaldi.unibs.it Indice 1 Il problema di Cauchy Esistenza, unicità e dipendenza continua dai dati 2 Metodi numerici

Dettagli

Metodi numerici per la risoluzione di equazioni differenziali ordinarie

Metodi numerici per la risoluzione di equazioni differenziali ordinarie Metodi numerici per la risoluzione di equazioni differenziali ordinarie Lucia Gastaldi Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ 15 ottobre 2007 Outline 1 Il problema di Cauchy Il problema

Dettagli

Metodi numerici per la risoluzione di equazioni. Equazioni differenziali ordinarie

Metodi numerici per la risoluzione di equazioni. Equazioni differenziali ordinarie Metodi numerici per la risoluzione di equazioni differenziali ordinarie Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ Lezione 5-31 ottobre 2005 Outline 1 Il problema di Cauchy Il problema

Dettagli

Analisi Numerica: Introduzione

Analisi Numerica: Introduzione Analisi Numerica: Introduzione S. Maset Dipartimento di Matematica e Geoscienze, Università di Trieste Analisi numerica e calcolo numerico Analisi numerica e calcolo numerico La matematica del continuo

Dettagli

Equazioni differenziali ordinarie

Equazioni differenziali ordinarie Equazioni differenziali ordinarie Matlab possiede diverse funzioni per la risoluzione di equazioni differenziali. Cominciamo a vedere come procedere nel caso di un problema di Cauchy per una singola equazione

Dettagli

Laboratorio di Calcolo Numerico Laboratorio 3: Algoritmi stabili e instabili, Bisezione

Laboratorio di Calcolo Numerico Laboratorio 3: Algoritmi stabili e instabili, Bisezione Laboratorio di Calcolo Numerico Laboratorio 3: Algoritmi stabili e instabili, Bisezione Claudia Zoccarato E-mail: claudia.zoccarato@unipd.it Dispense: Moodle Dipartimento ICEA 22 Marzo 2017 Vettori in

Dettagli

Quale delle seguenti rappresentazioni del numero reale è in virgola mobile normalizzata?

Quale delle seguenti rappresentazioni del numero reale è in virgola mobile normalizzata? Quale delle seguenti istruzioni MATLAB esegue il calcolo del raggio spettrale di una matrice quadrata A? a. max(eig(abs(a))) b. max(abs(eig(a))) c. abs(max(eig(a))) d. max(abs(eig(a *A))) Il raggio spettrale

Dettagli

Algoritmi stabili e instabili

Algoritmi stabili e instabili Algoritmi stabili e instabili Laboratorio di Calcolo Numerico 13 Marzo 2018 Vettori in MATLAB Finora abbiamo pensato alle variabili utilizzate come semplici valori numerici (variabili scalari). In realtà,

Dettagli

Dispense del corso Metodi Numerici per le Equazioni Differenziali

Dispense del corso Metodi Numerici per le Equazioni Differenziali Dispense del corso Metodi Numerici per le Equazioni Differenziali Dott. Marco Caliari a.a. 2010/11 Questi appunti non hanno nessuna pretesa di completezza. Sono solo alcune note ed esercizi che affiancano

Dettagli

Raccolta di esercizi di Calcolo Numerico Prof. Michela Redivo Zaglia

Raccolta di esercizi di Calcolo Numerico Prof. Michela Redivo Zaglia Raccolta di esercizi di Calcolo Numerico Prof. Michela Redivo Zaglia Nota Bene: Gli esercizi di questa raccolta sono solo degli esempi. Non sono stati svolti né verificati e servono unicamente da spunto

Dettagli

Introduzione al Calcolo Scientifico - A.A Lab. 4

Introduzione al Calcolo Scientifico - A.A Lab. 4 Introduzione al Calcolo Scientifico - A.A. 2009-2010 Lab. 4 Dinamica di una popolazione di castori Siano X e Y le densità di popolazione di castori in aree adiacenti. Modelliamo la loro evoluzione temporale

Dettagli

Prof. Davide Manca Politecnico di Milano. Dinamica e Controllo dei Processi Chimici. Soluzione Esercitazione #1. Dinamica di sistemi

Prof. Davide Manca Politecnico di Milano. Dinamica e Controllo dei Processi Chimici. Soluzione Esercitazione #1. Dinamica di sistemi SE1 Prof. Davide Manca Politecnico di Milano Dinamica e Controllo dei Processi Chimici Soluzione Esercitazione #1 Dinamica di sistemi ing. Sara Brambilla SE1 E1 - Dinamica di un sistema biologico Un processo

Dettagli

Francesca Mazzia Dipartimento di Matematica Università di Bari. Equazioni Differenziali

Francesca Mazzia Dipartimento di Matematica Università di Bari. Equazioni Differenziali 1 Francesca Mazzia Dipartimento di Matematica Università di Bari Equazioni Differenziali 2 Consideriamo il sistema di equazioni differenziali: con condizione iniziale: y = f(t, y) (6.1) y(t 0 ) = y 0,

Dettagli

Introduzione al Simulink

Introduzione al Simulink Sommario Descrizione generale dell ambiente Simulink di Matlab. Principi di funzionamento. Ambiente di simulazione. Esempi: realizzazione di modelli matematici di sistemi dinamici facendo uso di Simulink

Dettagli

Soluzione di Equazioni non lineari

Soluzione di Equazioni non lineari Soluzione di Equazioni non lineari Corso di Calcolo Numerico 20 Marzo 2018 Function in MATLAB Lo scopo di una funzione è quello di prendere in input un certo numero di valori, fare alcune operazioni con

Dettagli

Esercitazione 2 Esercizi con Equazioni Differenziali

Esercitazione 2 Esercizi con Equazioni Differenziali 1 Esercitazione 2 Esercizi con Equazioni Differenziali Corso di Strumentazione e Controllo di Impianti Chimici Prof. Davide Manca Tutor: Giuseppe Pesenti Esercizio 1.2 Problema 2 Esempio: Esercizio 1.2

Dettagli

Metodi a più passi. Esempi

Metodi a più passi. Esempi . Esempi Metodo del punto medio y(t n+1 ) = y(t n 1 ) + t n+1 t n 1 f (t, y(t)) dt = y(t n 1 ) + 2hf (t n, y(t n )) + O(h 3 ) u n+1 = u n 1 + 2hf (t n, u n ) Metodo di Simpson y(t n+1 ) = y(t n 1 ) + t

Dettagli

Sistemi di Elaborazione dell Informazione 170. Caso Non Separabile

Sistemi di Elaborazione dell Informazione 170. Caso Non Separabile Sistemi di Elaborazione dell Informazione 170 Caso Non Separabile La soluzione vista in precedenza per esempi non-linearmente separabili non garantisce usualmente buone prestazioni perchè un iperpiano

Dettagli

Equazioni e sistemi non lineari

Equazioni e sistemi non lineari Equazioni e sistemi non lineari Lucia Gastaldi DICATAM - Sezione di Matematica, http://lucia-gastaldi.unibs.it Indice 1 Ricerca degli zeri di una funzione Problema e definizioni Metodo di Newton-Raphson

Dettagli

Modellistica e Simulazione a.a IL PENDOLO MAGNETICO: ANALISI DI STABILITA E SIMULAZIONI. Chiara Mocenni

Modellistica e Simulazione a.a IL PENDOLO MAGNETICO: ANALISI DI STABILITA E SIMULAZIONI. Chiara Mocenni Modellistica e Simulazione a.a. 2007-2008 IL PENDOLO MAGNETICO: ANALISI DI STABILITA E SIMULAZIONI Chiara Mocenni Il Sistema fisico Sang-Yoon Kim, Seung-Ho Shin, Jaichul Yi e Chi-Woong Jang hanno analizzato

Dettagli

1. Calcolo dell indice di condizionamento di una matrice

1. Calcolo dell indice di condizionamento di una matrice 1 Esercizi sul condizionamento con matlab laboratorio di Calcolo Scientifico per Geofisici Prof. A. Murli a.a. 2006/07 1. Calcolo dell indice di condizionamento di una matrice Determinare una function

Dettagli

Eq. differenziali ordinarie: modello matematico. METODI NUMERICI - II canale (A.A )

Eq. differenziali ordinarie: modello matematico. METODI NUMERICI - II canale (A.A ) METODI NUMERICI - II canale A.A. 007-008) Prof. Francesca Pitolli Eq. differenziali ordinarie: modello matematico Il moto di una particella di massa m attaccata all estremità di una molla di costante elastica

Dettagli

Corso di Matematica per la Chimica

Corso di Matematica per la Chimica Corso di Matematica per la Chimica Dott.ssa Maria Carmela De Bonis Dipartimento di Matematica, Informatica e Economia Università della Basilicata a.a. 2014-15 Propagazione degli errori introdotti nei dati

Dettagli

Equazioni e sistemi non lineari

Equazioni e sistemi non lineari Equazioni e sistemi non lineari Lucia Gastaldi DICATAM - Sezione di Matematica, http://lucia-gastaldi.unibs.it Indice 1 Ricerca degli zeri di una funzione Problema e definizioni Metodo di Newton-Raphson

Dettagli

La soluzione approssimata consiste nella soluzione di un problema pi u facile che approssima quello dato. Nella tecnica di rilassamento l'approssimazi

La soluzione approssimata consiste nella soluzione di un problema pi u facile che approssima quello dato. Nella tecnica di rilassamento l'approssimazi Tecniche di soluzione di sistemi di equazioni non-lineari Le tecniche di rilassamento riguardano principalmente la soluzione per via numerica di sistemi di equazioni. Risultano particolarmente semplici

Dettagli

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 12 - Sistemi di equazioni differenziali ordinarie

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 12 - Sistemi di equazioni differenziali ordinarie Complementi di Matematica e Calcolo Numerico A.A. 2015-2016 Laboratorio 12 - Sistemi di equazioni differenziali ordinarie Consideriamo un sistema di equazioni differenziali ordinarie del primo ordine con

Dettagli

Università degli Studi di Ferrara Corso di Laurea in Chimica - A.A

Università degli Studi di Ferrara Corso di Laurea in Chimica - A.A Università degli Studi di Ferrara Corso di Laurea in Chimica - A.A. 2018-2019 Programmazione Lezione 12A Esercizi in MATLAB Docente: Lorenzo Caruso lorenzo.caruso@unife.it Nelle lezioni precedenti Matlab:

Dettagli

Elementi di Calcolo Scientifico per l Ingegneria A.A

Elementi di Calcolo Scientifico per l Ingegneria A.A Elementi di Calcolo Scientifico per l Ingegneria A.A. 2017-2018 Ottobre 2017 (2 16) Indice 1 2 3 4 Rappresentazione dei numeri reali nel calcolatore l insieme dei numeri reali, R, contiene un numero infinito

Dettagli

Analisi Numerica Corso di Laurea in Ingegneria Elettrotecnica

Analisi Numerica Corso di Laurea in Ingegneria Elettrotecnica Analisi Numerica Corso di Laurea in Ingegneria Elettrotecnica (A.A. 2016-2017) Prof.ssa Silvia Tozza Integrazione numerica 6 Dicembre 2016 Silvia Tozza Email: tozza@mat.uniroma1.it Ricevimento: Su appuntamento

Dettagli

Alcuni esercizi in preparazione all appello scritto di Calcolo Numerico

Alcuni esercizi in preparazione all appello scritto di Calcolo Numerico Alcuni esercizi in preparazione all appello scritto di Calcolo Numerico Esercizio 1 Si consideri il sistema lineare Ax = b con 4 3 2 1 3 4 3 2 A = 2 3 4 3,b = 1 2 3 4 1 1 1 1. (1) 1. Prima di risolvere

Dettagli

Programmare con MATLAB c Parte 5 Cicli: for e while

Programmare con MATLAB c Parte 5 Cicli: for e while Programmare con MATLAB c Parte 5 Cicli: for e while Lucia Gastaldi DICATAM - Sezione di Matematica, http://lucia-gastaldi.unibs.it Indice 1 La notazione due punti 2 Ciclo: for 3 Ciclo con controllo: while

Dettagli

Sistemi differenziali ordinari. Davide Manca Calcoli di Processo dell Ingegneria Chimica Politecnico di Milano

Sistemi differenziali ordinari. Davide Manca Calcoli di Processo dell Ingegneria Chimica Politecnico di Milano E8 Sistemi differenziali ordinari E8 Costruzione di un modello E8. Il sistema Predatore-Preda Si desidera studiare l evoluzione dinamica di un ecosistema costituito da due specie: preda e predatore (ad

Dettagli

Esercitazione: 16 novembre 2009 SOLUZIONI

Esercitazione: 16 novembre 2009 SOLUZIONI Esercitazione: 16 novembre 009 SOLUZIONI Esercizio 1 Scrivere [ ] equazione vettoriale, parametrica [ ] e cartesiana della retta passante 1 per il punto P = e avente direzione d =. 1 x 1 Soluzione: Equazione

Dettagli

CALCOLO NUMERICO. Francesca Mazzia. Calcolo degli autovalori. Dipartimento Interuniversitario di Matematica. Università di Bari

CALCOLO NUMERICO. Francesca Mazzia. Calcolo degli autovalori. Dipartimento Interuniversitario di Matematica. Università di Bari CALCOLO NUMERICO Francesca Mazzia Dipartimento Interuniversitario di Matematica Università di Bari Calcolo degli autovalori 1 Calcolo degli autovalori Gli autovalore e gli autovettore di una matrice quadrata

Dettagli

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 4-23/3/2015

Complementi di Matematica e Calcolo Numerico A.A Laboratorio 4-23/3/2015 Complementi di Matematica e Calcolo Numerico A.A. 2014-2015 Laboratorio 4-23/3/2015 Equazioni non lineari (fzero) Sia f : R R una funzione che ammette una radice α, ovvero t.c. f(α) = 0. Possiamo utilizzare

Dettagli

f(x) = x e x, prendere come intervallo iniziale [0, 1] e fissare come precisione ε = 10 8.

f(x) = x e x, prendere come intervallo iniziale [0, 1] e fissare come precisione ε = 10 8. Esercitazione 7 Argomento: Il metodo delle successive bisezioni Scopo: Implementare il metodo delle successive bisezioni per la soluzione di equazioni non lineari. function [alfa,iter]=bisez(f,a,b,epsilon)

Dettagli

Metodi di Quadratura in Matlab

Metodi di Quadratura in Matlab Elementi di Informatica e Applicazioni Numeriche Metodi di Quadratura in Matlab Metodi di Quadratura in Matlab Matlab offre due funzioni principali per effetturare integrazione: function Q = integral(f,xmin,xmax)

Dettagli

IL CRITERIO DELLA MASSIMA VEROSIMIGLIANZA

IL CRITERIO DELLA MASSIMA VEROSIMIGLIANZA Metodi per l Analisi dei Dati Sperimentali AA009/010 IL CRITERIO DELLA MASSIMA VEROSIMIGLIANZA Sommario Massima Verosimiglianza Introduzione La Massima Verosimiglianza Esempio 1: una sola misura sperimentale

Dettagli

Aritmetica di macchina

Aritmetica di macchina Aritmetica di macchina Esercizio (valutazione di una successione) Sappiamo che ( e = lim 1 + 1 ) n. n n È sensato approssimare e con ( 1 + 1 n) n al calcolatore, prendendo n molto elevato? (Utilizzare

Dettagli

Laboratorio di Informatica

Laboratorio di Informatica Laboratorio di Informatica Seconda lezione a Python Dottore Paolo Parisen Toldin - parisent@cs.unibo.it Dottoressa Sara Zuppiroli - sara.zuppiroli@unibo.it L'importanza di capire Perché non dobbiamo dichiarare

Dettagli

Cenni sull integrazione numerica delle equazioni differenziali. Corso di Dinamica e Simulazione dei Sistemi Meccanici

Cenni sull integrazione numerica delle equazioni differenziali. Corso di Dinamica e Simulazione dei Sistemi Meccanici Cenni sull integrazione numerica delle equazioni differenziali Corso di Dinamica e Simulazione dei Sistemi Meccanici 9 ottobre 009 Introduzione La soluzione analitica dell integrale di moto di sistemi

Dettagli

Trasmissione del calore con applicazioni numeriche: informatica applicata a.a. 15/16

Trasmissione del calore con applicazioni numeriche: informatica applicata a.a. 15/16 Corso di Laurea in Ingegneria Meccanica Trasmissione del calore con applicazioni numeriche: informatica applicata a.a. 15/16 Parte IV Prof. Nicola Forgione Dipartimento di Ingegneria Civile e Industriale

Dettagli

Analisi cinematica di meccanismi articolati

Analisi cinematica di meccanismi articolati Analisi cinematica di meccanismi articolati metodo dei numeri complessi rev 10 1 Il quadrilatero articolato b β a c α d γ Posizione a + b = c + d a e iα + b e iβ = c e iγ + d a cos α + b cos β = c cos

Dettagli

Equazioni e sistemi differenziali ordinari con condizioni iniziali. Davide Manca Calcoli di Processo dell Ingegneria Chimica Politecnico di Milano

Equazioni e sistemi differenziali ordinari con condizioni iniziali. Davide Manca Calcoli di Processo dell Ingegneria Chimica Politecnico di Milano L8 Equazioni e sistemi differenziali ordinari con condizioni iniziali L8 Introduzione Nella presente trattazione si considera il problema dell integrazione di un sistema di equazioni differenziali ordinarie,

Dettagli

Calcolo Numerico - Prova Matlab 19 luglio 2013

Calcolo Numerico - Prova Matlab 19 luglio 2013 9 luglio 0 () tempo a disposizione per completare la prova: ora; () lo svolgimento della prova deve essere salvato in file denominati cognomenome#m; () è fatto assoluto divieto di aprire applicazioni diverse

Dettagli

n +1 determinanti (D i, i =1,...,n e det A) n! prodotti per ciascun determinante n 1 moltiplicazioni per ciascun prodotto

n +1 determinanti (D i, i =1,...,n e det A) n! prodotti per ciascun determinante n 1 moltiplicazioni per ciascun prodotto METODI NUMERICI (A.A. 2007-2008) Prof. F.Pitolli Appunti delle lezioni sui sistemi lineari: metodi diretti; condizionamento Metodi diretti per la soluzione di sistemi lineari Metodi diretti Sono basati

Dettagli

Laboratorio di Calcolo Numerico

Laboratorio di Calcolo Numerico Laboratorio di Calcolo Numerico Lezione 3 Padova, April 4th 2016 F. Piazzon Department of Mathematics. Doctoral School in Mathematical Sciences, Applied Mathematics Area Outline Lab. 3-2 of 16 1 Costrutti

Dettagli

Equazioni Differenziali Ordinarie in MatLab

Equazioni Differenziali Ordinarie in MatLab Equazioni Differenziali Ordinarie in MatLab Manolo Venturin Università degli Studi di Padova Dip. Matematica Pura ed Applicata 2008 Problema scalare Obiettivo Risoluzione del problema di Cauchy { y = f

Dettagli

Tutorial. Introduzione a Matlab

Tutorial. Introduzione a Matlab Prof. Davide Manca Politecnico di Milano Strumentazione e Controllo di Impianti Chimici Tutorial Introduzione a Matlab PSE-Lab PSE-Lab Esercitazioni di Strumentazione e Controllo di Impianti Chimici Politecnico

Dettagli

FREEFEM++ Marcello Bellomi. 18 Aprile Università di Verona FREEFEM++

FREEFEM++ Marcello Bellomi. 18 Aprile Università di Verona FREEFEM++ 18 Aprile 2013 Indice 1) Introduzione 2) Esempio base 3) Sintassi 4) Esempio Part I Indroduzione Dettagli iniziali Risolve problemi in 2D e 3D, creato principalmente per risolvere problemi variazionali

Dettagli

Complementi di Matematica A.A Laboratorio 10

Complementi di Matematica A.A Laboratorio 10 Complementi di Matematica A.A. 2016-2017 Laboratorio 10 Equazioni non lineari (fzero) Sia f : R R una funzione che ammette una radice α, ovvero t.c. f(α) = 0. Possiamo utilizzare la funzione predefinita

Dettagli

Daniela Lera A.A

Daniela Lera A.A Daniela Lera Università degli Studi di Cagliari Dipartimento di Matematica e Informatica A.A. 2014-2015 Equazioni Differenziali Si consideri il seguente problema: Quali sono le curve y = f (x) del piano

Dettagli

Metodi di Iterazione Funzionale

Metodi di Iterazione Funzionale Appunti di Matematica Computazionale Lezione Metodi di Iterazione Funzionale Il problema di calcolare il valore per cui F() = si può sempre trasformare in quello di trovare il punto fisso di una funzione

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Calcolo Numerico Dott.ssa M.C. De Bonis Università degli Studi della Basilicata, Potenza Facoltà di Ingegneria Corso di Laurea in Ingegneria Meccanica Risoluzione di Equazioni Algebriche Le equazioni

Dettagli

Introduzione. Laboratorio di programmazione e calolo CdL in Chimica. Pierluigi Amodio

Introduzione. Laboratorio di programmazione e calolo CdL in Chimica. Pierluigi Amodio Introduzione Laboratorio di programmazione e calolo CdL in Chimica Pierluigi Amodio Dipartimento di Matematica Università di Bari pierluigi.amodio@uniba.it http://dm.uniba.it/ amodio A.A. 2015/16 P. Amodio

Dettagli

Laboratorio di Calcolo Numerico A.A Laboratorio 4 Risoluzione di sistemi non lineari Metodo di punto fisso

Laboratorio di Calcolo Numerico A.A Laboratorio 4 Risoluzione di sistemi non lineari Metodo di punto fisso Laboratorio di Calcolo Numerico A.A. 2007-2008 Laboratorio 4 Risoluzione di sistemi non lineari Metodo di punto fisso Esercizio 1. Risoluzione di sistemi non lineari Si consideri il seguente sistema non

Dettagli

1. Mercoledì 27/09/2017, ore: 2(2) Introduzione al corso: problemi ben posti, condizionamento, stabilità, complessità

1. Mercoledì 27/09/2017, ore: 2(2) Introduzione al corso: problemi ben posti, condizionamento, stabilità, complessità Registro delle lezioni di MATEMATICA APPLICATA Corsi di Laurea in Chimica e Meccanica 6 CFU - A.A. 2017/2018 docente: Dott.ssa Luisa Fermo ultimo aggiornamento: 15 dicembre 2017 1. Mercoledì 27/09/2017,

Dettagli

CALCOLO NUMERICO Prof. L. Gori Prova d esame

CALCOLO NUMERICO Prof. L. Gori Prova d esame CALCOLO NUMERICO Prof. L. Gori Prova d esame 2-7-998 ESERCIZIO. Data la seguente formula di quadratura: f(x)dx = ( ) 3 3 2 f + Af( x) + R 6 0 (.) Determinare A e x in modo che il grado di precisione sia.

Dettagli

Esercitazione #0. Introduzione a MatLab

Esercitazione #0. Introduzione a MatLab Prof. Davide Manca Politecnico di Milano Dinamica e Controllo dei Processi Chimici Esercitazione #0 Introduzione a MatLab ing. Sara Brambilla L0 DATI DI INPUT PROGRAMMA DATI DI OUTPUT L0 2 Concetti fondamentali

Dettagli

Registro di Matematica Applicata /18 - Dott.ssa L. Fermo 2

Registro di Matematica Applicata /18 - Dott.ssa L. Fermo 2 Registro delle lezioni di MATEMATICA APPLICATA Corsi di Laurea in Biomedica 6 CFU - A.A. 2018/2019 docente: Dott.ssa Luisa Fermo ultimo aggiornamento: 19 dicembre 2018 1. Mercoledì 26/09/2018, 15 17. ore:

Dettagli

Corso di Matematica per la Chimica

Corso di Matematica per la Chimica Dott.ssa Maria Carmela De Bonis a.a. 2013-14 Risoluzione di Equazioni Algebriche Le equazioni algebriche sono equazioni del tipo P(x) = 0 dove P è un polinomio di grado n cioé P(x) = a 1 x n + a 2 x n

Dettagli

Rette e piani in R 3

Rette e piani in R 3 Rette e piani in R 3 In questa dispensa vogliamo introdurre in modo elementare rette e piani nello spazio R 3 (si faccia riferimento anche al testo Algebra Lineare di S. Lang). 1 Rette in R 3 Vogliamo

Dettagli

Integrazione numerica. Gabriella Puppo

Integrazione numerica. Gabriella Puppo Integrazione numerica Gabriella Puppo Integrazione numerica Formula dei trapezi Formula composta di Simpson Funzioni di quadratura di Matlab Esempi Formula dei trapezi Per costruire una function che applichi

Dettagli

Principi di Programmazione Prova del 10/6/2008 (ore 10.30)

Principi di Programmazione Prova del 10/6/2008 (ore 10.30) Prova del 10/6/2008 (ore 10.30) Scrivere (commentandole) le linee di codice Matlab per costruire i seguenti vettori (5x1): e il vettore di numeri complessi C tali che il singolo elemento c k ha come parte

Dettagli

Esercizi Svolti di Analisi Numerica

Esercizi Svolti di Analisi Numerica Esercizi Svolti di nalisi Numerica Esercizi Svolti di nalisi Numerica Gli esercizi che proponiamo qui di seguito si riferiscono ai contenuti del libro. M. Perdon, Elementi di nalisi Numerica, Pitagora

Dettagli