Esercizi su Autovalori e Autovettori

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Esercizi su Autovalori e Autovettori"

Transcript

1 Esercizi su Autovalori e Autovettori Esercizio n.1 5 A = 5, Esercizio n.6 A =, Esercizio n A = 2 1 8, Esercizio n A = 6 3 6, Esercizio n.3 A = , Esercizio n.8 A = , 4 2 Esercizio n.4 1 A = 1, 1 Esercizio n A = 4 3 8, 5 Esercizio n A = 2, 2 2 Esercizio n A = 5, 2 4 1

2 Esercizio n A = 8 9 8, 5 Esercizio n.16 A = 7 2 5, Esercizio n A = 2, 4 4 Esercizio n.17 4 A = 5 1 5, 4 Esercizio n.13 1 A = 1, Esercizio n A = 6 2 5, Esercizio n A = 5 8, 9 7 Esercizio n A = 3, 3 Esercizio n.15 2 A = 4 6, 2 Esercizio n A = 9 1 1,

3 Esercizio n.21 A = 3 3, 3 Esercizio n A = 2 4 6, Esercizio n A = 2, Esercizio n A = 4 5 2, 4 7 Esercizio n A = 6 6 4, Esercizio n A = 4 8, 4 Esercizio n.24 4 A = 4, 8 4 Esercizio n A = 1 1, 1 Esercizio n A = 3 1 3, Esercizio n A = 4,

4 Esercizio n.31 A = 4 2, 4 6 Esercizio n A = 2 7 3, Esercizio n A = 9 7 5, Esercizio n A = 7 4 7, 2 Esercizio n A = 5 2 8, Esercizio n A = 8 6 8, 2 Esercizio n A = 4 7 2, Esercizio n A = 4, 6 8 Esercizio n A = 4 7 8, Esercizio n A = 1 2 4,

5 Esercizio n.41 A = , Esercizio n.46 A = , 6 3 Esercizio n A = 1 5 1, 5 Esercizio n A = 1 5, 6 3 Esercizio n.43 5 A = 5, 5 Esercizio n A = 5, 4 9 Esercizio n A = 1 1, Esercizio n A = 1 4, 3 Esercizio n A = 4, 5 Esercizio n.5 3 A = 2,

6 Esercizio n.51 A = , 2 2 Esercizio n.56 A = , Esercizio n A = 2 2, Esercizio n A = 3 1 3, 3 2 Esercizio n A = 1 1, 1 3 Esercizio n A = 3 4 1, 1 1 Esercizio n A = 4 7, 8 7 Esercizio n.59 2 A = 6 4 3, Esercizio n A = 5, 8 1 Esercizio n A = 1 3 6, 4 6

7 Esercizio n.61 A = , 7 3 Esercizio n.66 A = , 5 Esercizio n.62 2 A = 6 1 6, Esercizio n A = 2 1 8, Esercizio n A = 3, 6 3 Esercizio n A = 4 3, 1 Esercizio n A = 6 3 6, Esercizio n.69 4 A = 3 4, Esercizio n A = 3, 3 Esercizio n A = 2 3,

8 Esercizio n.71 A = 2 1 3, Esercizio n.76 A = 5 2 5, 5 Esercizio n A = 5 3, 2 Esercizio n A = 4 1 4, Esercizio n A = 2 4 2, 2 2 Esercizio n.78 4 A = 5 9, 4 Esercizio n.74 4 A = 4, 4 Esercizio n A = 4 1 3, Esercizio n A = 4, 5 1 Esercizio n.8 1 A = 1 3 1, 1 2 8

9 Esercizio n.81 A = 5 5 8, 3 Esercizio n.86 A = , 1 6 Esercizio n A = 3 6 3, 2 2 Esercizio n A = 3 3 6, Esercizio n A = 2 5 4, Esercizio n.88 2 A = 4 2, 4 2 Esercizio n A = 4, Esercizio n A = 4 9, 1 4 Esercizio n A = 2, 2 Esercizio n A = 2 3 1, 2 2 9

10 Esercizio n A = 1 2 1, Esercizio n A = 3 4, 8 9 Esercizio n A = 3, 8 5 Esercizio n A = 6 7 5, 4 Esercizio n.93 4 A = 1 3, 6 2 Esercizio n A = 2 5 5, Esercizio n A = 3 8 2, Esercizio n.99 A = 3 3, Esercizio n A = 8 3 4, 5 Esercizio n.1 A = ,

11 Soluzioni Soluzione Esercizio n.1 λ 1 =, m a = 1, m g = 1 u 1 = ( 1,, 1 ) λ 2 = 5, m a = 2, m g = 2 u 2 = (,, 1 ) u 3 = ( 1, 1, ) Soluzione Esercizio n.2 λ 1 =, m a = 1, m g = 1 u 1 = ( 1, 2, ) Soluzione Esercizio n.7 λ 1 = 3, m a = 3, m g = 2 u 1 = ( 1,, 1 ) u 2 = ( 1, 1, ) Soluzione Esercizio n.8 u 1 = (, 1, ) λ 2 = 2, m a = 2, m g = 1 u 2 = (, 1, 1 ) Soluzione Esercizio n.3 λ 1 = 4, m a = 1, m g = 1 u 1 = ( 1, 1, ) Soluzione Esercizio n.4 λ 1 = 1, m a = 3, m g = 3 u 1 = (,, 1 ) u 2 = (, 1, ) u 3 = ( 1,, ) Soluzione Esercizio n.5 λ 1 = 3, m a = 1, m g = 1 u 1 = ( 1,, ) λ 2 = 2, m a = 2, m g = 1 u 2 = ( 1,, 1 ) Soluzione Esercizio n.6 λ 1 =, m a = 3, m g = 3 u 1 = (,, 1 ) u 2 = (, 1, ) u 3 = ( 1,, ) Soluzione Esercizio n.9 u 1 = ( 1, 2, 1 ) λ 2 = 1, m a = 1, m g = 1 u 2 = ( 1, 2, ) λ 3 = 1, m a = 1, m g = 1 u 3 = ( 1, 1, ) Soluzione Esercizio n.1 λ 1 = 2, m a = 1, m g = 1 u 1 = ( 1,, ) λ 2 = 4, m a = 1, m g = 1 u 2 = (,, 1 ) λ 3 = 5, m a = 1, m g = 1 u 3 = ( 1, 1, 2 ) Soluzione Esercizio n.11 u 1 = ( 1,, 1 ) λ 2 = 1, m a = 1, m g = 1 u 2 = ( 1, 1, ) λ 3 = 5, m a = 1, m g = 1 u 3 = ( 1, 2, ) 11

12 Soluzione Esercizio n.12 Soluzione Esercizio n.17 u 1 = ( 2,, 1 ) λ 2 = 2, m a = 2, m g = 2 u 2 = (, 1, 2 ) u 3 = ( 1,, ) λ 1 = 1, m a = 1, m g = 1 u 1 = (, 1, ) λ 2 = 4, m a = 2, m g = 2 u 2 = ( 1,, 1 ) u 3 = ( 1, 1, ) Soluzione Esercizio n.13 u 1 = (,, 1 ) λ 2 =, m a = 1, m g = 1 u 2 = ( 1,, 1 ) λ 3 = 1, m a = 1, m g = 1 u 3 = ( 1, 1, 2 ) Soluzione Esercizio n.18 u 1 = ( 1, 1, ) λ 2 = 1, m a = 1, m g = 1 u 2 = ( 1, 1, 1 ) λ 3 = 4, m a = 1, m g = 1 u 3 = ( 1, 2, 2 ) Soluzione Esercizio n.14 u 1 = ( 1,, ) Soluzione Esercizio n.15 u 1 = (, 1, ) λ 2 = 2, m a = 2, m g = 2 u 2 = (, 1, 1 ) u 3 = ( 1,, ) Soluzione Esercizio n.16 Soluzione Esercizio n.19 λ 1 = 1, m a = 1, m g = 1 u 1 = ( 1,, ) λ 2 =, m a = 1, m g = 1 u 2 = (, 1, ) λ 3 = 3, m a = 1, m g = 1 u 3 = ( 1, 1, 1 ) Soluzione Esercizio n.2 λ 1 =, m a = 1, m g = 1 u 1 = (, 1, 1 ) u 1 = ( 1, 1, 1 ) λ 2 = 1, m a = 1, m g = 1 u 2 = ( 2,, 1 ) λ 3 = 2, m a = 1, m g = 1 u 3 = ( 1,, 1 ) Soluzione Esercizio n.21 λ 1 = 3, m a = 3, m g = 3 u 1 = (,, 1 ) u 2 = (, 1, ) u 3 = ( 1,, ) 12

13 Soluzione Esercizio n.22 λ 1 = 2, m a = 2, m g = 2 u 1 = (,, 1 ) u 2 = ( 1, 1, ) λ 2 = 4, m a = 1, m g = 1 u 3 = ( 1,, 1 ) Soluzione Esercizio n.27 λ 1 = 3, m a = 2, m g = 1 u 1 = ( 1, 1, 1 ) λ 2 = 5, m a = 1, m g = 1 u 2 = ( 1, 1, 2 ) Soluzione Esercizio n.23 u 1 = ( 1, 2, 1 ) λ 2 = 2, m a = 1, m g = 1 u 2 = ( 2, 2, 1 ) λ 3 =, m a = 1, m g = 1 u 3 = ( 1, 1, ) Soluzione Esercizio n.28 u 1 = ( 1, 1, ) λ 2 = 4, m a = 2, m g = 2 u 2 = (, 1, 1 ) u 3 = ( 1,, ) Soluzione Esercizio n.24 λ 1 = 4, m a = 2, m g = 2 u 1 = ( 1,, 1 ) u 2 = (, 1, ) λ 2 = 4, m a = 1, m g = 1 u 3 = (,, 1 ) Soluzione Esercizio n.29 λ 1 = 1, m a = 3, m g = 2 u 1 = ( 1,, 1 ) u 2 = ( 1, 1, ) Soluzione Esercizio n.25 Soluzione Esercizio n.3 λ 1 = 2, m a = 1, m g = 1 u 1 = ( 2, 1, 1 ) λ 2 = 1, m a = 2, m g = 1 u 2 = ( 1,, 1 ) λ 1 = 4, m a = 1, m g = 1 u 1 = ( 1, 1, ) Soluzione Esercizio n.26 λ 1 = 2, m a = 1, m g = 1 u 1 = ( 1, 1, ) λ 2 =, m a = 1, m g = 1 u 2 = ( 1, 2, 1 ) λ 3 = 3, m a = 1, m g = 1 u 3 = ( 1, 2, 2 ) Soluzione Esercizio n.31 u 1 = ( 1,, ) λ 2 = 2, m a = 1, m g = 1 u 2 = (, 1, 1 ) λ 3 = 4, m a = 1, m g = 1 u 3 = (, 1, 2 ) 13

14 Soluzione Esercizio n.32 u 1 = ( 1, 2, 1 ) λ 2 = 3, m a = 1, m g = 1 u 2 = ( 1, 1, 1 ) λ 3 = 2, m a = 1, m g = 1 u 3 = ( 1, 1, ) Soluzione Esercizio n.37 λ 1 = 3, m a = 1, m g = 1 u 1 = ( 1, 1, ) λ 2 = 2, m a = 1, m g = 1 u 2 = ( 1,, 1 ) λ 3 = 4, m a = 1, m g = 1 u 3 = (, 1, ) Soluzione Esercizio n.33 λ 1 = 3, m a = 1, m g = 1 u 1 = ( 1, 1, ) Soluzione Esercizio n.38 λ 1 = 2, m a = 3, m g = 2 u 1 = ( 1,, 1 ) u 2 = ( 1, 2, ) Soluzione Esercizio n.34 λ 1 = 3, m a = 2, m g = 1 u 1 = ( 1, 1, ) λ 2 = 2, m a = 1, m g = 1 u 2 = ( 1,, 2 ) Soluzione Esercizio n.35 u 1 = ( 2,, 1 ) λ 2 = 1, m a = 1, m g = 1 u 2 = ( 1, 2, 2 ) λ 3 = 1, m a = 1, m g = 1 u 3 = (, 1, 1 ) Soluzione Esercizio n.39 u 1 = (, 1, ) λ 2 = 2, m a = 1, m g = 1 u 2 = ( 1,, 1 ) λ 3 = 5, m a = 1, m g = 1 u 3 = ( 1,, 2 ) Soluzione Esercizio n.4 λ 1 = 2, m a = 1, m g = 1 u 1 = (, 1, 1 ) λ 2 = 3, m a = 2, m g = 1 u 2 = ( 2, 2, 1 ) Soluzione Esercizio n.36 λ 1 =, m a = 1, m g = 1 u 1 = ( 2, 1, 1 ) λ 2 = 5, m a = 2, m g = 1 u 2 = ( 1, 1, ) Soluzione Esercizio n.41 λ 1 = 2, m a = 1, m g = 1 u 1 = ( 1, 1, ) 14

15 Soluzione Esercizio n.42 λ 1 = 5, m a = 2, m g = 2 u 1 = ( 1,, 1 ) u 2 = (, 1, ) λ 2 = 4, m a = 1, m g = 1 u 3 = ( 1, 1, ) Soluzione Esercizio n.43 λ 1 = 5, m a = 3, m g = 3 u 1 = (,, 1 ) u 2 = (, 1, ) u 3 = ( 1,, ) Soluzione Esercizio n.44 λ 1 = 1, m a = 1, m g = 1 u 1 = ( 2, 1, ) λ 2 =, m a = 2, m g = 2 u 2 = (,, 1 ) u 3 = ( 1, 1, ) Soluzione Esercizio n.47 λ 1 = 1, m a = 1, m g = 1 u 1 = ( 1, 2, ) Soluzione Esercizio n.48 λ 1 = 5, m a = 2, m g = 1 u 1 = ( 1,, 1 ) λ 2 = 5, m a = 1, m g = 1 u 2 = (, 1, ) Soluzione Esercizio n.49 λ 1 = 1, m a = 1, m g = 1 u 1 = (, 1, ) λ 2 = 3, m a = 1, m g = 1 u 2 = ( 2, 1, 1 ) λ 3 = 5, m a = 1, m g = 1 u 3 = ( 1,, ) Soluzione Esercizio n.45 λ 1 = 5, m a = 2, m g = 1 u 1 = ( 1,, ) λ 2 = 4, m a = 1, m g = 1 u 2 = ( 1, 1, ) Soluzione Esercizio n.46 λ 1 = 3, m a = 1, m g = 1 u 1 = (,, 1 ) Soluzione Esercizio n.5 λ 1 = 2, m a = 1, m g = 1 u 1 = (, 1, 2 ) λ 2 = 1, m a = 1, m g = 1 u 2 = (,, 1 ) λ 3 = 3, m a = 1, m g = 1 u 3 = ( 1,, 1 ) Soluzione Esercizio n.51 λ 1 =, m a = 3, m g = 2 u 1 = (,, 1 ) u 2 = ( 1, 1, ) 15

16 Soluzione Esercizio n.52 u 1 = ( 2, 2, 1 ) λ 2 = 2, m a = 1, m g = 1 u 2 = (, 1, 1 ) λ 3 =, m a = 1, m g = 1 u 3 = ( 1, 1, 1 ) Soluzione Esercizio n.57 λ 1 = 1, m a = 3, m g = 2 u 1 = ( 1,, 1 ) u 2 = (, 1, ) Soluzione Esercizio n.53 λ 1 = 2, m a = 2, m g = 1 u 1 = ( 1, 1, 1 ) λ 2 = 1, m a = 1, m g = 1 u 2 = (, 2, 1 ) Soluzione Esercizio n.54 u 1 = ( 1,, ) Soluzione Esercizio n.58 u 1 = (, 1, ) Soluzione Esercizio n.59 λ 1 = 2, m a = 2, m g = 2 u 1 = ( 1,, 2 ) u 2 = ( 1, 1, ) λ 2 = 1, m a = 1, m g = 1 u 3 = (, 1, 1 ) Soluzione Esercizio n.55 λ 1 = 1, m a = 2, m g = 2 u 1 = (,, 1 ) u 2 = ( 1,, ) λ 2 = 5, m a = 1, m g = 1 u 3 = ( 2, 1, 2 ) Soluzione Esercizio n.56 λ 1 = 1, m a = 1, m g = 1 u 1 = ( 2, 1, 2 ) λ 2 = 2, m a = 2, m g = 2 u 2 = ( 1,, 1 ) u 3 = ( 1, 2, ) Soluzione Esercizio n.6 u 1 = ( 1, 1, 1 ) λ 2 = 2, m a = 2, m g = 1 u 2 = ( 1, 1, ) Soluzione Esercizio n.61 λ 1 = 4, m a = 2, m g = 2 u 1 = ( 1,, 1 ) u 2 = (, 1, ) λ 2 = 3, m a = 1, m g = 1 u 3 = (, 1, 1 ) 16

17 Soluzione Esercizio n.62 Soluzione Esercizio n.66 u 1 = (, 1, 1 ) λ 2 = 2, m a = 2, m g = 2 u 2 = ( 1,, 1 ) u 3 = ( 1, 2, ) λ 1 = 2, m a = 1, m g = 1 u 1 = ( 2, 1, ) λ 2 = 2, m a = 1, m g = 1 u 2 = ( 1,, ) λ 3 = 5, m a = 1, m g = 1 u 3 = ( 2,, 1 ) Soluzione Esercizio n.63 Soluzione Esercizio n.67 λ 1 = 3, m a = 1, m g = 1 u 1 = ( 1, 1, 1 ) λ 2 = 3, m a = 2, m g = 1 u 2 = ( 1,, ) λ 1 = 1, m a = 1, m g = 1 u 1 = ( 2, 2, 1 ) λ 2 = 3, m a = 1, m g = 1 u 2 = ( 2, 1, 1 ) λ 3 = 5, m a = 1, m g = 1 u 3 = ( 1, 1, 1 ) Soluzione Esercizio n.64 λ 1 = 3, m a = 2, m g = 1 u 1 = ( 1,, 1 ) λ 2 = 3, m a = 1, m g = 1 u 2 = ( 1, 1, ) Soluzione Esercizio n.68 u 1 = ( 1, 1, ) λ 2 = 1, m a = 2, m g = 2 u 2 = (, 1, 1 ) u 3 = ( 1,, ) Soluzione Esercizio n.65 λ 1 = 3, m a = 1, m g = 1 u 1 = ( 1,, 1 ) λ 2 = 3, m a = 1, m g = 1 u 2 = ( 1, 1, ) λ 3 = 5, m a = 1, m g = 1 u 3 = ( 1,, ) Soluzione Esercizio n.69 λ 1 = 4, m a = 2, m g = 1 u 1 = (, 1, 1 ) λ 2 = 3, m a = 1, m g = 1 u 2 = (,, 1 ) 17

18 Soluzione Esercizio n.7 λ 1 = 4, m a = 1, m g = 1 u 1 = ( 1, 2, 1 ) λ 2 = 5, m a = 2, m g = 2 u 2 = (,, 1 ) u 3 = ( 1, 1, ) Soluzione Esercizio n.75 λ 1 = 4, m a = 2, m g = 2 u 1 = (, 1, 1 ) u 2 = ( 1,, ) λ 2 = 1, m a = 1, m g = 1 u 3 = ( 1,, 1 ) Soluzione Esercizio n.71 λ 1 = 3, m a = 1, m g = 1 u 1 = (, 1, 2 ) λ 2 = 2, m a = 2, m g = 2 u 2 = (,, 1 ) u 3 = ( 1, 1, ) Soluzione Esercizio n.76 λ 1 = 5, m a = 3, m g = 2 u 1 = (, 1, ) u 2 = ( 1,, ) Soluzione Esercizio n.72 λ 1 = 2, m a = 2, m g = 2 u 1 = (, 1, 1 ) u 2 = ( 1,, ) λ 2 = 5, m a = 1, m g = 1 u 3 = ( 1, 1, ) Soluzione Esercizio n.77 λ 1 = 1, m a = 1, m g = 1 u 1 = ( 2, 2, 1 ) λ 2 = 3, m a = 2, m g = 2 u 2 = ( 1,, 1 ) u 3 = ( 1, 1, ) Soluzione Esercizio n.73 λ 1 = 4, m a = 2, m g = 2 u 1 = ( 1,, 1 ) u 2 = (, 1, ) λ 2 = 3, m a = 1, m g = 1 u 3 = ( 1, 2, 2 ) Soluzione Esercizio n.78 u 1 = (, 1, ) λ 2 = 4, m a = 2, m g = 2 u 2 = (, 1, 1 ) u 3 = ( 1,, ) Soluzione Esercizio n.74 λ 1 = 4, m a = 3, m g = 3 u 1 = (,, 1 ) u 2 = (, 1, ) u 3 = ( 1,, ) Soluzione Esercizio n.79 λ 1 = 2, m a = 3, m g = 1 u 1 = (, 1, 1 ) 18

19 Soluzione Esercizio n.8 λ 1 = 1, m a = 2, m g = 2 u 1 = ( 1,, 1 ) u 2 = ( 2, 1, ) λ 2 = 2, m a = 1, m g = 1 u 3 = (, 1, 1 ) Soluzione Esercizio n.84 λ 1 = 3, m a = 1, m g = 1 u 1 = ( 1,, 2 ) λ 2 = 1, m a = 1, m g = 1 u 2 = (,, 1 ) λ 3 = 4, m a = 1, m g = 1 u 3 = ( 1, 1, ) Soluzione Esercizio n.81 λ 1 = 3, m a = 1, m g = 1 u 1 = (, 1, 1 ) λ 2 = 5, m a = 2, m g = 2 u 2 = (, 1, ) u 3 = ( 1,, ) Soluzione Esercizio n.82 u 1 = ( 1,, 1 ) λ 2 = 3, m a = 1, m g = 1 u 2 = ( 1, 1, 2 ) λ 3 =, m a = 1, m g = 1 u 3 = ( 1, 1, 1 ) Soluzione Esercizio n.85 λ 1 = 2, m a = 3, m g = 2 u 1 = (, 1, 1 ) u 2 = ( 1,, ) Soluzione Esercizio n.86 λ 1 = 5, m a = 1, m g = 1 u 1 = (, 1, ) Soluzione Esercizio n.87 λ 1 =, m a = 1, m g = 1 u 1 = ( 1, 1, 1 ) λ 2 = 2, m a = 1, m g = 1 u 2 = ( 2,, 1 ) λ 3 = 3, m a = 1, m g = 1 u 3 = (, 1, 1 ) Soluzione Esercizio n.83 λ 1 = 1, m a = 2, m g = 1 u 1 = ( 2, 2, 1 ) λ 2 = 4, m a = 1, m g = 1 u 2 = ( 1, 2, ) Soluzione Esercizio n.88 λ 1 = 2, m a = 3, m g = 2 u 1 = (,, 1 ) u 2 = (, 1, ) 19

20 Soluzione Esercizio n.89 λ 1 = 2, m a = 1, m g = 1 u 1 = ( 1,, ) Soluzione Esercizio n.9 λ 1 =, m a = 2, m g = 1 u 1 = ( 1, 1, 1 ) λ 2 = 3, m a = 1, m g = 1 u 2 = ( 1, 1, 2 ) Soluzione Esercizio n.94 λ 1 = 5, m a = 2, m g = 1 u 1 = ( 1, 1, ) λ 2 =, m a = 1, m g = 1 u 2 = ( 2, 1, 1 ) Soluzione Esercizio n.95 Soluzione Esercizio n.91 λ 1 = 2, m a = 1, m g = 1 u 1 = ( 1,, 1 ) λ 2 = 2, m a = 1, m g = 1 u 2 = ( 1, 1, 1 ) λ 3 = 3, m a = 1, m g = 1 u 3 = ( 2, 1, 1 ) u 1 = ( 1, 1, ) λ 2 = 1, m a = 1, m g = 1 u 2 = ( 1, 2, ) λ 3 = 5, m a = 1, m g = 1 u 3 = (, 2, 1 ) Soluzione Esercizio n.96 Soluzione Esercizio n.92 λ 1 = 3, m a = 2, m g = 2 u 1 = (, 1, 1 ) u 2 = ( 1,, ) λ 2 = 5, m a = 1, m g = 1 u 3 = ( 1,, 1 ) λ 1 = 1, m a = 1, m g = 1 u 1 = ( 1, 1, 1 ) λ 2 = 2, m a = 1, m g = 1 u 2 = ( 1,, ) λ 3 = 5, m a = 1, m g = 1 u 3 = ( 1, 1, 2 ) Soluzione Esercizio n.93 u 1 = ( 1, 1, 1 ) λ 2 = 3, m a = 1, m g = 1 u 2 = (, 1, ) λ 3 = 2, m a = 1, m g = 1 u 3 = (,, 1 ) Soluzione Esercizio n.97 u 1 = ( 1, 1, 1 ) λ 2 = 1, m a = 1, m g = 1 u 2 = ( 1, 1, ) λ 3 = 4, m a = 1, m g = 1 u 3 = ( 1, 2, ) 2

21 Soluzione Esercizio n.98 λ 1 = 1, m a = 1, m g = 1 u 1 = ( 2, 1, 2 ) λ 2 =, m a = 1, m g = 1 u 2 = (, 1, 1 ) λ 3 = 3, m a = 1, m g = 1 u 3 = ( 1, 1, ) Soluzione Esercizio n.99 λ 1 = 3, m a = 2, m g = 2 u 1 = ( 1,, 1 ) u 2 = ( 1, 1, ) λ 2 = 5, m a = 1, m g = 1 u 3 = (,, 1 ) Soluzione Esercizio n.1 u 1 = (, 1, 1 ) λ 2 = 2, m a = 2, m g = 2 u 2 = ( 2,, 3 ) u 3 = ( 1, 3, ) 21

Esercizi su risposta libera e modi naturali nel dominio del tempo

Esercizi su risposta libera e modi naturali nel dominio del tempo Esercizi su risposta libera e modi naturali nel dominio del tempo. Effettuare l analisi modale del sistema µ ẋ (t) x (t) y (t) x (t) per µ x () Soluzione. Il polinomio caratteristico è µ µ µ det λ µ λ

Dettagli

Algebra lineare con R

Algebra lineare con R Università di Napoli Federico II cristina.tortora@unina.it Standardizzare una variabile Standardizzazione Data una variabile X distribuita secondo una media µ e una varianza σ 2 la standardizzazione permette

Dettagli

Sistemi differenziali: esercizi svolti. 1 Sistemi lineari 2 2... 2 2 Sistemi lineari 3 3... 10

Sistemi differenziali: esercizi svolti. 1 Sistemi lineari 2 2... 2 2 Sistemi lineari 3 3... 10 Sistemi differenziali: esercizi svolti Sistemi lineari 2 2 2 2 Sistemi lineari 3 3 2 Sistemi differenziali: esercizi svolti Sistemi lineari 2 2 Gli esercizi contrassegnati con il simbolo * presentano un

Dettagli

Matematica Finanziaria 11 luglio 2001

Matematica Finanziaria 11 luglio 2001 Matematica Finanziaria 11 luglio 2001 Prova Generale. ESERCIZIO 1: Algebra Lineare ² Enunciare il Teorema di Rouchè-Capelli. ² Dato il seguente sistema che descrive la dinamica del fatturato di due imprese

Dettagli

Sistemi differenziali 2 2: esercizi svolti. 1 Sistemi lineari Stabilità nei sistemi lineari

Sistemi differenziali 2 2: esercizi svolti. 1 Sistemi lineari Stabilità nei sistemi lineari Sistemi differenziali : esercizi svolti 1 Sistemi lineari Stabilità nei sistemi lineari 14 1 Sistemi differenziali : esercizi svolti 1 Sistemi lineari Gli esercizi contrassegnati con il simbolo * presentano

Dettagli

Corso di Algebra lineare - a.a Prova scritta del Compito A

Corso di Algebra lineare - a.a Prova scritta del Compito A Prova scritta del 23.02.2009 Compito A Esercizio 1. Sia Oxyz un sistema di riferimento ortonormale in uno spazio euclideo di dimensione 3. Siano inoltre P 1, P 2 e Q i punti di coordinate rispettivamente

Dettagli

(c) Stabilire per quali valori di h is sistema ammette un unica soluzione:

(c) Stabilire per quali valori di h is sistema ammette un unica soluzione: ognome e Nome: orso di Laurea: 4 settembre 3. Sia L: R 3! R 3 l applicazione lineare x x y + z L @ ya = @ x + y +za. z x y z (a) Scrivere la matrice A che rappresenta L nella base canonica di R 3 : (b)

Dettagli

Soluzione. (a) L insieme F 1 e linearmente indipendente; gli insiemi F 2 ed F 3 sono linearmente

Soluzione. (a) L insieme F 1 e linearmente indipendente; gli insiemi F 2 ed F 3 sono linearmente 1. Insiemi di generatori, lineare indipendenza, basi, dimensione. Consideriamo nello spazio vettoriale R 3 i seguenti vettori: v 1 = (0, 1, ), v = (1, 1, 1), v 3 = (, 1, 0), v 4 = (3, 3, ). Siano poi F

Dettagli

Autovalori e Autovettori

Autovalori e Autovettori Daniela Lera Università degli Studi di Cagliari Dipartimento di Matematica e Informatica A.A. 2008-2009 Autovalori e Autovettori Definizione Siano A C nxn, λ C, e x C n, x 0, tali che Ax = λx. (1) Allora

Dettagli

Prova scritta di Meccanica Quantistica II COMPITO 1

Prova scritta di Meccanica Quantistica II COMPITO 1 Prova scritta di Meccanica Quantistica II Corso di Laurea in Fisica 3 APRILE 008 COMPITO 1 < S z >= 0, S z = h. Suggerimento : calcolare < S z > e < S z > su un ket generico, sviluppato b) La dinamica

Dettagli

LEZIONE 23. Esempio 23.1.3. Si consideri la matrice (si veda l Esempio 22.2.5) A = 1 2 2 3 3 0

LEZIONE 23. Esempio 23.1.3. Si consideri la matrice (si veda l Esempio 22.2.5) A = 1 2 2 3 3 0 LEZIONE 23 231 Diagonalizzazione di matrici Abbiamo visto nella precedente lezione che, in generale, non è immediato che, data una matrice A k n,n con k = R, C, esista sempre una base costituita da suoi

Dettagli

POTENZE DI MATRICI QUADRATE

POTENZE DI MATRICI QUADRATE POTENZE DI MATRICI QUADRATE In alcune applicazioni pratiche, quali lo studio di sistemi dinamici discreti, può essere necessario calcolare le potenze A k, per k N\{0}, di una matrice quadrata A M n n (R)

Dettagli

CORSO DI LAUREA INF TWM ANNO DI IMMATRICOLAZIONE MATRICOLA

CORSO DI LAUREA INF TWM ANNO DI IMMATRICOLAZIONE MATRICOLA COGNOME NOME CORSO DI LAUREA INF TWM ANNO DI IMMATRICOLAZIONE MATRICOLA SIMULAZIONE SCRITTO DI MATEMATICA DISCRETA, SECONDA PARTE Per ottenere la sufficienza bisogna rispondere in modo corretto ad almeno

Dettagli

Università degli Studi di Roma Tor Vergata. Corso di Laurea in Ingegneria Meccanica

Università degli Studi di Roma Tor Vergata. Corso di Laurea in Ingegneria Meccanica Università degli Studi di Roma Tor Vergata. Corso di Laurea in Ingegneria Meccanica Esame di Geometria (Prof. F. Tovena) Argomenti: Proprietà di nucleo e immagine di una applicazione lineare. dim V = dim

Dettagli

2) Sul piano coordinato z = 0 studiare il fascio Φ di coniche di equazione. determinando in particolare le sue coniche spezzate ed i suoi punti base.

2) Sul piano coordinato z = 0 studiare il fascio Φ di coniche di equazione. determinando in particolare le sue coniche spezzate ed i suoi punti base. DPARTMENTO D MATEMATCA E NFORMATCA Corso di Laurea in ngegneria Telematica Prova scritta di Elementi di Algebra e Geometria assegnata il 18/7/02 È assegnato l endomorfismo f : R 3 R 3 definito dalle relazioni

Dettagli

Corso di Matematica II Anno Accademico Esercizi di Algebra Lineare. Calcolo di autovalori ed autovettori

Corso di Matematica II Anno Accademico Esercizi di Algebra Lineare. Calcolo di autovalori ed autovettori Esercizio 1 Corso di Matematica II Anno Accademico 29 21. Esercizi di Algebra Lineare. Calcolo di autovalori ed autovettori May 7, 21 Commenti e correzioni sono benvenuti. Mi scuso se ci fosse qualche

Dettagli

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria Elettronica

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria Elettronica Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria Elettronica Terzo Appello del corso di Geometria e Algebra II Parte - Docente F. Flamini, Roma, 7/09/2007 SVOLGIMENTO COMPITO III APPELLO

Dettagli

Elementi di Algebra Lineare. Spazio Vettoriale (lineare)

Elementi di Algebra Lineare. Spazio Vettoriale (lineare) Elementi di Algebra Lineare Spazio Vettoriale (lineare) Uno spazio vettoriale su un corpo F è una quadrupla (X, F, +, ) costituita da: un insieme di elementi X, detti vettori, un corpo F, i cui elementi

Dettagli

Laboratorio di Matematica Computazionale

Laboratorio di Matematica Computazionale Laboratorio di Matematica Computazionale Dipartimento di Informatica, Università di Pisa, Italy delcorso@di.unipi.it A chi è rivolto A Studenti della Laurea Magistrale in Informatica A coloro che hanno

Dettagli

Diagonalizzazione di matrici e applicazioni lineari

Diagonalizzazione di matrici e applicazioni lineari CAPITOLO 9 Diagonalizzazione di matrici e applicazioni lineari Esercizio 9.1. Verificare che v = (1, 0, 0, 1) è autovettore dell applicazione lineare T così definita T(x 1,x 2,x 3,x 4 ) = (2x 1 2x 3, x

Dettagli

Definizioni e operazioni fondamentali

Definizioni e operazioni fondamentali MATRICI Definizioni e operazioni fondamentali Autovalori e autovettori Potenza Esponenziale Limiti, derivate e integrali Illustrazioni dal Testo di Riferimento per gentile concessione degli Autori 1 DEFINIZIONI

Dettagli

Esercizi di GEOMETRIA I - Algebra Lineare B = , calcolare A A t A + I

Esercizi di GEOMETRIA I - Algebra Lineare B = , calcolare A A t A + I Esercizi di GEOMETRIA I - Algebra Lineare. Tra le seguenti matrici, eseguire tutti i prodotti possibili: 2 ( ) A = 0 3 4 B = 2 0 0 2 D = ( 0 ) E = ( ) 4 4 2 C = 2 0 5 F = 4 2 6 2. Data la matrice A = 0

Dettagli

Tempo a disposizione: 150 minuti. 1 È dato l endomorfismo f : R 3 R 3 definito dalle relazioni

Tempo a disposizione: 150 minuti. 1 È dato l endomorfismo f : R 3 R 3 definito dalle relazioni Università degli Studi di Catania Anno Accademico 2014-2015 Corso di Laurea in Informatica Prova in itinere di Matematica Discreta (12 CFU) 17 Aprile 2015 Prova completa Tempo a disposizione: 150 minuti

Dettagli

Federico Lastaria. Analisi e Geometria 2. Matrici simmetriche. Il teorema spettrale. 1/24

Federico Lastaria. Analisi e Geometria 2. Matrici simmetriche. Il teorema spettrale. 1/24 Contenuto Endomorfismi auto-aggiunti. Matrici simmetriche. Il teorema spettrale Gli autovalori di una matrice simmetrica sono tutti reali. (Dimostrazione fatta usando i numeri complessi). Dimostrazione

Dettagli

Esercizio 2 Si consideri la funzione f definita dalle seguenti condizioni: e x. per x 1 f(x) = α x + e 1 per 1 < x

Esercizio 2 Si consideri la funzione f definita dalle seguenti condizioni: e x. per x 1 f(x) = α x + e 1 per 1 < x FUNZIONI Esercizio 1 Studiare la funzione f(x) = ln ( ) x e disegnarne il grafico. x 1 Esercizio 2 Si consideri la funzione f definita dalle seguenti condizioni: { e x per x 1 f(x) = α x + e 1 per 1

Dettagli

Analisi Matematica e Geometria 1

Analisi Matematica e Geometria 1 Michele Campiti Prove scritte di Analisi Matematica e Geometria 1 Ingegneria Industriale aa 2015 2016 y f 1 g 0 La funzione seno e la funzione esponenziale Raccolta delle tracce di Analisi Matematica e

Dettagli

Caso di A non regolare

Caso di A non regolare Caso di A non regolare December 2, 2 Una matrice A è regolare quando è quadrata e in corrispondenza di ogni autovalore di molteplicità algebrica m si ha una caduta di rango pari proprio a m Ovvero: rk

Dettagli

ELEMENTI DI ALGEBRA LINEARE E GEOMETRIA Corso di Laurea Ingegneria Edile-Architettura

ELEMENTI DI ALGEBRA LINEARE E GEOMETRIA Corso di Laurea Ingegneria Edile-Architettura Cognome Nome Matricola ELEMENTI DI ALGEBRA LINEARE E GEOMETRIA Corso di Laurea Ingegneria Edile-Architettura (Primo appello/ii prova parziale 15/6/15 - Chiarellotto-Urbinati) Per la II prova: solo esercizi

Dettagli

Tutorato di GE110. Universitá degli Studi Roma Tre - Corso di Laurea in Matematica

Tutorato di GE110. Universitá degli Studi Roma Tre - Corso di Laurea in Matematica Universitá degli Studi Roma Tre - Corso di Laurea in Matematica Tutorato di GE110 A.A. 2014-2015 - Docente: Prof. Angelo Felice Lopez Tutori: Federico Campanini e Giulia Salustri Soluzioni Tutorato 13

Dettagli

Esame di Geometria - 9 CFU (Appello del 14 gennaio A)

Esame di Geometria - 9 CFU (Appello del 14 gennaio A) Esame di Geometria - 9 CFU (Appello del 4 gennaio 24 - A) Cognome: Nome: Nr.matricola: Corso di laurea: Esercizio. Si considerino le rette s : { x x 2 2x 3 = 2 3x x 2 =, { x + x s 2 : 2 x 3 = x 2 =.. Stabilire

Dettagli

Applicazioni lineari e diagonalizzazione pagina 1 di 5

Applicazioni lineari e diagonalizzazione pagina 1 di 5 pplicazioni lineari e diagonalizzazione pagina 1 di 5 PPLIZIONI LINERI 01. Dire quali delle seguenti applicazioni tra IR-spazi vettoriali sono lineari a. f :IR 2 IR 3 f(x y =(x y πy b. f :IR 3 IR 3 f(x

Dettagli

Metodi di calcolo nella dinamica delle strutture

Metodi di calcolo nella dinamica delle strutture FRANCESCO CESARI Metodi di calcolo nella dinamica delle strutture PITAGOR~ EDITRICE BOLOGN~ ellunl AAlE --"-- -- ---~!'. di Architettura ersitano lstitito Unt~ E N E Z I A ostr B 769 BIBLIOTECA CENTRALE

Dettagli

3. Vettori, Spazi Vettoriali e Matrici

3. Vettori, Spazi Vettoriali e Matrici 3. Vettori, Spazi Vettoriali e Matrici Vettori e Spazi Vettoriali Operazioni tra vettori Basi Trasformazioni ed Operatori Operazioni tra Matrici Autovalori ed autovettori Forme quadratiche, quadriche e

Dettagli

Analisi della correlazione canonica

Analisi della correlazione canonica Analisi della correlazione canonica Su un collettivo di unità statistiche si osservano due gruppi di k ed m variabili L analisi della correlazione canonica ha per obiettivo lo studio delle relazioni di

Dettagli

Indice Elementi di analisi delle matrici I fondamenti della matematica numerica

Indice Elementi di analisi delle matrici I fondamenti della matematica numerica Indice 1. Elementi di analisi delle matrici 1 1.1 Spazivettoriali... 1 1.2 Matrici... 3 1.3 Operazionisumatrici... 4 1.3.1 Inversadiunamatrice... 6 1.3.2 Matricietrasformazionilineari... 7 1.4 Tracciaedeterminante...

Dettagli

METODI MATEMATICI PER LA FISICA

METODI MATEMATICI PER LA FISICA Si svolgano cortesemente i seguenti esercizi ESERCIZIO (6 PUNTI) METODI MATEMATICI PER LA FISICA PROVA SCRITTA - 2 GENNAIO 25 Una volta identificato, nel piano complesso α, il dominio di convergenza della

Dettagli

RICHIAMI SULLE MATRICI. Una matrice di m righe e n colonne è rappresentata come

RICHIAMI SULLE MATRICI. Una matrice di m righe e n colonne è rappresentata come RICHIAMI SULLE MATRICI Una matrice di m righe e n colonne è rappresentata come A = a 11 a 12... a 1n a 21 a 22... a 2n............ a m1 a m2... a mn dove m ed n sono le dimensioni di A. La matrice A può

Dettagli

Esercitazione di Geometria I 13 dicembre Esercizio 1. Esercizio 2. Esercizio 3

Esercitazione di Geometria I 13 dicembre Esercizio 1. Esercizio 2. Esercizio 3 Esercitazione di Geometria I 13 dicembre 2008 a. Completa la seguente definizione: i vettori v 1, v 2,..., v n del K-spazio vettoriale V si dicono linearmente dipendenti se... b. Siano w 1, w 2, w 3 vettori

Dettagli

Corso di Geometria Ing. Informatica e Automatica Test 1: soluzioni

Corso di Geometria Ing. Informatica e Automatica Test 1: soluzioni Corso di Geometria Ing. Informatica e Automatica Test : soluzioni k Esercizio Data la matrice A = k dipendente dal parametro k, si consideri il k sistema lineare omogeneo AX =, con X = x x. Determinare

Dettagli

Sicurezza degli Impianti Industriali

Sicurezza degli Impianti Industriali Sicurezza degli Impianti Industriali Esempio di analisi dei rischi Metodo HP nno ccademico 006-0 / La macchina presa ad esempio esegue prove su sistema ruota-strada : è costituita essenzialmente da un

Dettagli

Esercizi di MATEMATICA PER RCHITETTURA prima parte: Algebra Lineare e Geometria

Esercizi di MATEMATICA PER RCHITETTURA prima parte: Algebra Lineare e Geometria Esercizi di MATEMATICA PER RCHITETTURA prima parte: Algebra Lineare e Geometria Avvertenze In quanto segue tutti i vettori hanno il medesimo punto d origine O l origine dello spazio cartesiano. Possiamo

Dettagli

TEMA 1. 1. Della seguente matrice, calcolare i complementi algebrici e il determinante: a + b 1 a 2 S = a + b + 3 a + 2b. x = t. f = x 2 + 2xy 3y 2,

TEMA 1. 1. Della seguente matrice, calcolare i complementi algebrici e il determinante: a + b 1 a 2 S = a + b + 3 a + 2b. x = t. f = x 2 + 2xy 3y 2, Prova scritta di MATEMATICA B1 Vicenza, 17 marzo 008 TEMA 1 1 1 A = 1 0 1. 3 0 1. Stabilire se il seguente sottoinsieme di M(, R): {( ) a + b 1 a S = a, b R}, a + b + 3 a + b è un sottospazio di M(, R).

Dettagli

microonde Circuiti a microonde Circuito

microonde Circuiti a microonde Circuito Circuiti a microonde 1 N Circuito a microonde 3 Sezioni di riferimento (Bocche) 5 4 Un circuito a microonde è costituito dall interconnessione di elementi distribuiti e concentrati; l interazione con il

Dettagli

APPUNTI ED ESERCIZI DI MATEMATICA

APPUNTI ED ESERCIZI DI MATEMATICA APPUNTI ED ESERCIZI DI MATEMATICA Per Scienze Naturali e Biologiche S.Console - M.Roggero - D.Romagnoli A.A. 2005/2006 Indice Capitolo 1 - Nozioni introduttive e notazioni 6 Gli insiemi...................................

Dettagli

Tecniche di analisi multivariata

Tecniche di analisi multivariata Tecniche di analisi multivariata Metodi che fanno riferimento ad un modello distributivo assunto per le osservazioni e alla base degli sviluppi inferenziali - tecniche collegate allo studio della dipendenza

Dettagli

DIAGONALIZZAZIONE. M(f) =

DIAGONALIZZAZIONE. M(f) = DIAGONALIZZAZIONE Esercizi Esercizio 1. Sia f End(R 3 ) associato alla matrice M(f) = 0 1 2 0. 2 (1) Determinare gli autovalori di f e le relative molteplicità. (2) Determinare gli autospazi di f e trovare,

Dettagli

ii 1.20 Rango di una matrice Studio dei sistemi lineari Teoremi di Cramer e Rouché-Capelli......

ii 1.20 Rango di una matrice Studio dei sistemi lineari Teoremi di Cramer e Rouché-Capelli...... Indice Prefazione vii 1 Matrici e sistemi lineari 1 1.1 Le matrici di numeri reali................. 1 1.2 Nomenclatura in uso per le matrici............ 3 1.3 Matrici ridotte per righe e matrici ridotte

Dettagli

Matematica Finanziaria 13 settembre 2001

Matematica Finanziaria 13 settembre 2001 Matematica Finanziaria 3 settembre 00 Prova Generale. ESERCIZIO : Algebra Lineare ² Dire se le seguenti applicazioni sono lineari e in caso a ermativo indicarne la matrice associata A: a)f : R >R : b)f

Dettagli

Esercitazione ENS su processi casuali (13 e 14 Maggio 2008)

Esercitazione ENS su processi casuali (13 e 14 Maggio 2008) Esercitazione ES su processi casuali ( e 4 Maggio 2008) D. Donno Esercizio : Calcolo di autovalori e autovettori Si consideri un processo x n somma di un segnale e un disturbo: x n = Ae π 2 n + w n, n

Dettagli

Metodi Computazionali

Metodi Computazionali Metodi Computazionali Elisabetta Fersini fersini@disco.unimib.it A.A. 2009/2010 Catene di Markov Applicazioni: Fisica dinamica dei sistemi Web simulazione del comportamento utente Biologia evoluzione delle

Dettagli

Lezione 9: Cambio di base

Lezione 9: Cambio di base Lezione 9: Cambio di base In questa lezione vogliamo affrontare uno degli argomenti piu ostici per lo studente e cioè il cambio di base all interno di uno spazio vettoriale, inoltre cercheremo di capire

Dettagli

La matrice delle correlazioni è la seguente:

La matrice delle correlazioni è la seguente: Calcolo delle componenti principali tramite un esempio numerico Questo esempio numerico puó essere utile per chiarire il calcolo delle componenti principali e per introdurre il programma SPAD. IL PROBLEMA

Dettagli

(P x) (P y) = x P t (P y) = x (P t P )y = x y.

(P x) (P y) = x P t (P y) = x (P t P )y = x y. Matrici ortogonali Se P è una matrice reale n n, allora (P x) y x (P t y) per ogni x,y R n (colonne) Dim (P x) y (P x) t y (x t P t )y x t (P t y) x (P t y), CVD Ulteriori caratterizzazioni delle matrici

Dettagli

Indice 1 Spazi a dimensione finita... 1 1.1 Primi esempi di strutture vettoriali... 1 1.2 Spazi vettoriali (a dimensione finita)...... 3 1.3 Matrici come trasformazioni lineari...... 5 1.4 Cambiamenti

Dettagli

Università degli Studi di Bergamo Matematica II (5 e 7,5 crediti) 18 febbraio 2010 Tema A

Università degli Studi di Bergamo Matematica II (5 e 7,5 crediti) 18 febbraio 2010 Tema A Università degli Studi di Bergamo Matematica II (5 e 7,5 crediti) 18 febbraio 21 Tema A Tempo a disposizione: 2 ore. Calcolatrici, libri e appunti non sono ammessi. Ogni esercizio va iniziato all inizio

Dettagli

Corso di Laurea in Ingegneria Informatica Analisi Numerica

Corso di Laurea in Ingegneria Informatica Analisi Numerica Corso di Laurea in Ingegneria Informatica Lucio Demeio Dipartimento di Scienze Matematiche 1 2 Analisi degli errori Informazioni generali Libro di testo: J. D. Faires, R. Burden, Numerical Analysis, Brooks/Cole,

Dettagli

Algebra Lineare e Geometria

Algebra Lineare e Geometria Algebra Lineare e Geometria Corso di Laurea in Ingegneria Elettronica A.A. 2013-2014 Prova d esame del 16/06/2014. 1) a) Determinare la matrice associata all applicazione lineare T : R 3 R 4 definita da

Dettagli

REGISTRO DELLE LEZIONI

REGISTRO DELLE LEZIONI UNIVERSITA DEGLI STUDI DI GENOVA FACOLTA DI SCIENZE MATEMATICHE, FISICHE E NATURALI REGISTRO DELLE LEZIONI del Corso UFFICIALE di GEOMETRIA B tenute dal prof. Domenico AREZZO nell anno accademico 2006/2007

Dettagli

Antonio De Blasiis Modelli matematici per l ingegneria nucleare

Antonio De Blasiis Modelli matematici per l ingegneria nucleare A09 Antonio De Blasiis Modelli matematici per l ingegneria nucleare Copyright MMXIII ARACNE editrice S.r.l. www.aracneeditrice.it info@aracneeditrice.it via Raffaele Garofalo, 133/A B 00173 Roma (06)

Dettagli

inanellati; nel sito s 2 vengono ricatturati 260 fagiani di cui 34 sono inanellati;

inanellati; nel sito s 2 vengono ricatturati 260 fagiani di cui 34 sono inanellati; 1 Esercizi su alcuni modelli che utilizzano matrici: cattura ricattura, catena trofica, modello di Leslie Esercitatori: Dott Alessandro Ottazzi e Dottssa Maria Vallarino Esercizio 1 Nel Parco Naturale

Dettagli

Principal. component analysis. Dai volti agli spettri di galassie

Principal. component analysis. Dai volti agli spettri di galassie Principal component analysis Dai volti agli spettri di galassie SCOPO: PCA for beginners Ridurre il numero di variabili all interno di una collezione di oggetti per descriverli piu facilmente, sulla base

Dettagli

Esercizio geometria delle aree

Esercizio geometria delle aree Salvatore Trotta Università degli Studi di Napoli - Federico II 15 aprile 2014 Consideriamo la seguente figura asimmetrica: Suddivisa la figura in tre rettangoli e fissato un sistema di riferimento arbitrario

Dettagli

Corso di Laurea in Scienze e Tecnologie Biomolecolari. NOME COGNOME N. Matr.

Corso di Laurea in Scienze e Tecnologie Biomolecolari. NOME COGNOME N. Matr. Corso di Laurea in Scienze e Tecnologie Biomolecolari Matematica e Statistica II Prova di esame del 13/1/2011 NOME COGNOME N. Matr. Rispondere alle domande nel modo più completo possibile, cercando di

Dettagli

Equazioni di Stato: soluzione tramite la matrice esponenziale

Equazioni di Stato: soluzione tramite la matrice esponenziale Equazioni di Stato: soluzione tramite la matrice esponenziale A. Laudani November 15, 016 Un po di Sistemi Consideriamo il problema di Cauchy legato allo stato della nostra rete elettrica {Ẋ(t) = A X(t)

Dettagli

Prova scritta di Complementi di Probabilità e Statistica. 7 Dicembre 2012

Prova scritta di Complementi di Probabilità e Statistica. 7 Dicembre 2012 Prova scritta di Complementi di Probabilità e Statistica 7 Dicembre. Un ingegnere vuole investigare se le caratteristiche di una superficie metallica sono influenzate dal tipo di pittura usata e dal tempo

Dettagli

METODI MATEMATICI PER LA FISICA

METODI MATEMATICI PER LA FISICA METODI MATEMATICI PER LA FISICA SECONDO ESONERO - 5 GIUGNO 6 Si svolgano cortesemente i seguenti Problemi. PRIMO PROBLEMA (PUNTEGGIO: 3/3) Dati due operatori hermitiani  and ˆB in uno spazio di Hilbert

Dettagli

Applicazioni lineari e diagonalizzazione. Esercizi svolti

Applicazioni lineari e diagonalizzazione. Esercizi svolti . Applicazioni lineari Esercizi svolti. Si consideri l applicazione f : K -> K definita da f(x,y) = x + y e si stabilisca se è lineare. Non è lineare. Possibile verifica: f(,) = 4; f(,4) = 6; quindi f(,4)

Dettagli

Appendice 1. Spazi vettoriali

Appendice 1. Spazi vettoriali Appendice. Spazi vettoriali Indice Spazi vettoriali 2 2 Dipendenza lineare 2 3 Basi 3 4 Prodotto scalare 3 5 Applicazioni lineari 4 6 Applicazione lineare trasposta 5 7 Tensori 5 8 Decomposizione spettrale

Dettagli

Di testi ed immagini

Di testi ed immagini Università Cattolica del Sacro Cuore - Brescia 23/5/2005 Parte I: Richiami di algebra lineare Parte II: Applicazioni Sommario della Parte I 1 Diagonalizzabilità di una matrice Autovalori ed autovettori

Dettagli

ANALISI DEI DATI PER IL MARKETING 2014

ANALISI DEI DATI PER IL MARKETING 2014 ANALISI DEI DATI PER IL MARKETING 2014 Marco Riani mriani@unipr.it http://www.riani.it RIPASSO SULLE MATRICI 1 Addizione tra matrici Moltiplicazione Matrice diagonale Matrice identità Matrice trasposta

Dettagli

Esercizi Svolti di Analisi Numerica

Esercizi Svolti di Analisi Numerica Esercizi Svolti di nalisi Numerica Esercizi Svolti di nalisi Numerica Gli esercizi che proponiamo qui di seguito si riferiscono ai contenuti del libro. M. Perdon, Elementi di nalisi Numerica, Pitagora

Dettagli

appuntiofficinastudenti.com 1. Strutture algebriche e polinomi

appuntiofficinastudenti.com 1. Strutture algebriche e polinomi 1. Strutture algebriche e polinomi Cenni su linguaggio di Teoria degli Insiemi: appartenenza, variabili, quantificatori, negazione, implicazione, equivalenza, unione, intersezione, prodotto cartesiano,

Dettagli

Alcuni esercizi sulla diagonalizzazione di matrici. campo dei reali. Se lo è calcolare una base spettrale e la relativa forma diagonale di A.

Alcuni esercizi sulla diagonalizzazione di matrici. campo dei reali. Se lo è calcolare una base spettrale e la relativa forma diagonale di A. Alcuni esercii sulla diagonaliaione di matrici Eserciio Dire se la matrice A 4 8 è diagonaliabile sul 3 3 campo dei reali Se lo è calcolare una base spettrale e la relativa forma diagonale di A Svolgimento

Dettagli

Le catene di Markov come metodologia utilizzata dai motori di ricerca per classificare le pagine web su internet.

Le catene di Markov come metodologia utilizzata dai motori di ricerca per classificare le pagine web su internet. Università degli Studi di Palermo Facoltà di Economia Dipartimento di Scienze Statistiche e Matematiche S. Vianelli Dottorato di Ricerca in Statistica e Finanza Quantitativa - XXI Ciclo Sergio Salvino

Dettagli

1 Convessità olomorfa

1 Convessità olomorfa 1 Convessità olomorfa Esercizio 1 Sia f O(C n ) e sia X = {f = 0}; dimostrare che, per ogni K compatto di X, l inviluppo K O(Cn ) è contenuto in X. Esercizio 2 Fissato un reale δ (0, 2π), consideriamo

Dettagli

Model reduction. Gramiano di controllabilità. (materiale. di approfondimento) dove R è la matrice di raggiungibilità della coppia (A,B)

Model reduction. Gramiano di controllabilità. (materiale. di approfondimento) dove R è la matrice di raggiungibilità della coppia (A,B) Model reduction (materiale di approfondimento) Gramiano di controllabilità Gramiano di controllabilità per sistemi a tempo discreto Teorema: W c (k) è non singolare per qualche k< rank R=n, dove R è la

Dettagli

Esercizi per Geometria II Geometria euclidea e proiettiva

Esercizi per Geometria II Geometria euclidea e proiettiva Esercizi per Geometria II Geometria euclidea e proiettiva Filippo F. Favale 8 aprile 014 Esercizio 1 Si consideri E dotato di un riferimento cartesiano ortonormale di coordinate (x, y) e origine O. Si

Dettagli

L offerta economicamente più vantaggiosa. Alessandro Simonetta Consulenza per l Innovazione Tecnologica alessandro.simonetta@gmail.

L offerta economicamente più vantaggiosa. Alessandro Simonetta Consulenza per l Innovazione Tecnologica alessandro.simonetta@gmail. L offerta economicamente più vantaggiosa Alessandro Simonetta Consulenza per l Innovazione Tecnologica alessandro.simonetta@gmail.com 1 Quadro Legislativo D.P.R. n.544/99 D.Lgs n.163/06 e s.m.i. D. Lgs

Dettagli

Sistemi di Controllo Multivariabile

Sistemi di Controllo Multivariabile Sistemi di Controllo Multivariabile Controllo in retroazione di stato di un robot manipolatore PUMA Carmine Dario Bellicoso M58/028 Andrea Gerardo Barbato M58/036 Processo implementato Robot PUMA Riferimento

Dettagli

ESERCIZI SUI SISTEMI LINEARI

ESERCIZI SUI SISTEMI LINEARI ESERCIZI SUI SISTEMI LINEARI Consideriamo ora il sistema lineare omogeneo a coefficienti costanti associato alla matrice A M n n, cioè SLO Vale il seguente = A. Teorema. Sia v R n \ } e sia λ C. Condizione

Dettagli

LEZIONI DI ALGEBRA LINEARE PER LE APPLICAZIONI FINANZIARIE

LEZIONI DI ALGEBRA LINEARE PER LE APPLICAZIONI FINANZIARIE LEZIONI DI ALGEBRA LINEARE PER LE APPLICAZIONI FINANZIARIE FLAVIO ANGELINI Sommario Queste note hanno lo scopo di indicare a studenti di Economia interessati alla finanza quantitativa i concetti essenziali

Dettagli

G. C. Barozzi - C. Corradi Matematica ( per le scienze economiche e statistiche. il Mulino

G. C. Barozzi - C. Corradi Matematica ( per le scienze economiche e statistiche. il Mulino G. C. Barozzi - C. Corradi Matematica ( per le scienze economiche e statistiche il Mulino ---- - Giulio Cesare Barozzi - Corrado Corradi V... o ; _,~? - - - ~ u. - ] 1 0 e CA j L 11;~..?..$["_! - - --

Dettagli

INTRODUZIONE A MATLAB Matrix Laboratory

INTRODUZIONE A MATLAB Matrix Laboratory INTRODUZIONE A MATLAB Matrix Laboratory Introduzione Linguaggio di programmazione per applicazioni scientifiche e numeriche Vasto set di funzioni predefininte Interprete di comandi Possibilità di scrivere

Dettagli

(prezzo di chiusura del Venerdi' - prezzo di chiusura del Venerdi' precedente)/(prezzo di chiusura del Venerdi' precedente)

(prezzo di chiusura del Venerdi' - prezzo di chiusura del Venerdi' precedente)/(prezzo di chiusura del Venerdi' precedente) Vediamo ora alcuni esempi. Esempio1 (titoli) Consideriamo alcuni dati riguardanti il tasso settimanale di ritorno di cinque titoli della borsa di New York, registrati da Gennaio 1975 a Dicembre 1976. Il

Dettagli

Forma canonica di Jordan

Forma canonica di Jordan Capitolo INTRODUZIONE Forma canonica di Jordan Siano λ i, per i =,, h, gli autovalori distinti della matrice A e siano r i i corrispondenti gradi di molteplicità all interno del polinomio caratteristico:

Dettagli

SciPy. Programmazione Orientata agli Oggetti e Scripting in Python

SciPy. Programmazione Orientata agli Oggetti e Scripting in Python SciPy Programmazione Orientata agli Oggetti e Scripting in Python SciPy: Informazioni di Base Libreria di algoritmi e strumenti matematici Fornisce: moduli per l'ottimizzazione, per l'algebra lineare,

Dettagli

Appello di Meccanica Quantistica I

Appello di Meccanica Quantistica I Appello di Meccanica Quantistica I Facoltà di Scienze M.F.N. Università degli Studi di Pisa gennaio 007 (A.A. 06/07) Tempo a disposizione: 3 ore. Problemi e per il recupero Compitino I; problemi e 3 per

Dettagli

ANALISI MULTIDIMENSIONALE DEI DATI (AMD)

ANALISI MULTIDIMENSIONALE DEI DATI (AMD) ANALISI MULTIDIMENSIONALE DEI DATI (AMD) L Analisi Multidimensionale dei Dati (AMD) è una famiglia di tecniche il cui obiettivo principale è la visualizzazione, la classificazione e l interpretazione della

Dettagli

Ingegneria Civile. Compito di Geometria del 06/09/05. E assegnato l endomorfismo f : R 3 R 3 mediante le relazioni

Ingegneria Civile. Compito di Geometria del 06/09/05. E assegnato l endomorfismo f : R 3 R 3 mediante le relazioni Ingegneria Civile. Compito di Geometria del 06/09/05 E assegnato l endomorfismo f : R 3 R 3 mediante le relazioni I f(,, 0) = (h +,h+, ) f(,, ) = (h,h, h) f(0,, ) = (,h, h) con h parametro reale. ) Studiare

Dettagli

Endomorfismi e matrici simmetriche

Endomorfismi e matrici simmetriche CAPITOLO Endomorfismi e matrici simmetriche Esercizio.. [Esercizio 5) cap. 9 del testo Geometria e algebra lineare di Manara, Perotti, Scapellato] Calcolare una base ortonormale di R 3 formata da autovettori

Dettagli

Matrice rappresent. Base ker e img. Rappresentazione cartesiana ker(f) + im(f).

Matrice rappresent. Base ker e img. Rappresentazione cartesiana ker(f) + im(f). Due Matrici A,B. Ker f = ker g. 1- Ridurre a scala A e B e faccio il sistema. 2 Se Vengono gli stessi valori allora, i ker sono uguali. Cauchy 1 autovalore, 1- Metto a matrice x1(0),x2(0),x3(0) e la chiamo

Dettagli

Esercizi sulle affinità - aprile 2009

Esercizi sulle affinità - aprile 2009 Esercizi sulle affinità - aprile 009 Ingegneria meccanica 008/009 Esercizio Sono assegnate nel piano le sei rette r : =, s : =, t : =, r : =, s : =, t : = determinare l affinità che trasforma ordinatamente

Dettagli

iv Indice c

iv Indice c Indice Prefazione ix 1 Numeri 1 1 Insiemi e logica 1 1.1 Concetti di base sugli insiemi 1 1.2 Un po di logica elementare 9 2 Sommatorie e coefficienti binomiali 13 2.1 Il simbolo di sommatoria 13 2.2 Fattoriale

Dettagli

2/4 OPERATORI NEGLI SPAZI DI HILBERT INFINITODIMENSIONALI 08/09 1 INTRODUZIONE

2/4 OPERATORI NEGLI SPAZI DI HILBERT INFINITODIMENSIONALI 08/09 1 INTRODUZIONE 2/4 OPERATORI NEGLI SPAZI DI HILBERT INFINITODIMENSIONALI 08/09 INTRODUZIONE Il problema agli autovalori di un operatore La trattazione del problema agli autovalori di un operatore fatta negli spazi finitodimensionali

Dettagli

Diario delle lezioni di Calcolo e Biostatistica (O-Z) - a.a. 2013/14 A. Teta

Diario delle lezioni di Calcolo e Biostatistica (O-Z) - a.a. 2013/14 A. Teta Diario delle lezioni di Calcolo e Biostatistica (O-Z) - a.a. 2013/14 A. Teta 1. (1/10 Lu.) Generalità sugli insiemi, operazioni di unione, intersezione e prodotto cartesiano. Insiemi numerici: naturali,

Dettagli

Esami a. a Analisi Matematica Svolgere i seguenti esercizi motivando tutte le risposte.

Esami a. a Analisi Matematica Svolgere i seguenti esercizi motivando tutte le risposte. Esami a. a. 2006-07 Perugia, 7 giugno 2007 1. Automobili. Due automobili da corsa A, B accelerano da ferme fino a raggiungere le seguenti velocità t secondi dopo la partenza v A (t) = 40t, v B (t) = 40t

Dettagli

L analisi fattoriale

L analisi fattoriale L analisi fattoriale Scopo dell analisi fattoriale e quello di identificare alcune variabili latenti (fattori) in grado di spiegare i legami, le interrelazioni e le dipendenze tra le variabili statistiche

Dettagli

(5 sin x + 4 cos x)dx [9]

(5 sin x + 4 cos x)dx [9] FACOLTÀ DI SCIENZE MM. FF. NN. CORSO DI LAUREA IN SCIENZE NATURALI II Modulo di Matematica con elementi di statistica. Esercitazioni A.A. 009.00. Tutor: Mauro Soro, p.soro@tin.it Integrali definiti Risolvere

Dettagli

Metodi basati sugli autovettori per il Web Information Retrieval

Metodi basati sugli autovettori per il Web Information Retrieval Metodi basati sugli autovettori per il Web Information Retrieval HITS, PageRank e il metodo delle potenze LSI e SVD LSI è diventato famoso per la sua abilità nel permettere di manipolare i termini (all

Dettagli