Alberi di copertura minimi

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Alberi di copertura minimi"

Transcript

1 Albr d coprtur mnm

2 Sommro Albr d coprtur mnm pr grf pst Algortmo d Kruskl Algortmo d Prm

3 Albro d coprtur mnmo Un problm d notvol mportnz consst nl dtrmnr com ntrconnttr fr d loro dvrs lmnt mnmzzndo crt vncol sull connsson Un smpo clssco è qullo dll progttzon d crcut lttronc dov s vuol mnmzzr l qunttà d flo lttrco pr collgr fr loro morstt d dvrs componnt

4 Albro d coprtur mnmo Il problm può ssr modllto con un grfo non orntto connsso n cu l ntrconnsson sono rch pst (u,v) dov l pso spcfc l costo pr connttr u con v L soluzon dl problm consst nll dtrmnzon d un sottogrfo cclco T E ch conntt tutt vrtc n modo d mnmzzr l pso totl w(t)=σ (u,v) T w(u,v) Dto ch T è cclco collg tutt vrtc dv ssr un lbro Tl lbro è chmto lbro d coprtur mnmo o mnmum spnnng tr MST

5 Esmpo

6 Unctà L lbro d coprtur mnmo non è unco Ad smpo s possono dr du lbro d coprtur mnm pr l grfo n sm

7 Algortmo gnrco Vrrnno llustrt du lgortm d tpo grdy o golos: Algortmo d Kruskl Algortmo d Prm L pprocco grdy consst nllo scglr fr pù ltrntv qull pù convnnt sul momnto Not: n gnrl non è dtto ch n ogn tpo d problm qusto port d un soluzon globlmnt ottm. Pr l soluzon dl problm dll lbro d coprtur mnm un soluzon grdy concd con un soluzon globlmnt ottm

8 Arco scuro L d è d ccrscr un sottonsm A d rch d un lbro d coprtur ggungndo un rco ll volt Ad ogn psso s dtrmn un rco ch può ssr ggunto d A mntnndo l proprtà pr A d ssr un sottonsm d rch d un lbro d coprtur Un rco d qusto tpo è dtto rco scuro

9 Psudocodc Gnrc-MST(G,w) A whl A non form un lbro d coprtur 3 do trov un rco scuro (u,v) A A {(u,v)} 5 rturn A

10 Algortm concrt Pr potr mplmntr l lgortmo gnrco bbmo bsogno d dtrmnr gl rch scur Pr crttrzzr gl rch scur dobbmo ntrodurr lcun dfnzon: un tglo (S,V-S) d un grfo non orntto G=(V,E) è un prtzon d V un rco ttrvrs l tglo s uno d suo strm è n S l ltro è n V-S un tglo rsptt un nsm d rch A s nssun rco d A ttrvrs l tglo un rco lggro è un rco con pso mnmo

11 Vsulzzzon d conctt Arco lggro ch ttrvrs l tglo Tglo Insm A: rch n grgo l tglo rsptt A

12 Arch scur L rgol pr rconoscr gl rch scur è dt dl sgunt: Torm: S G=(V,E) un grfo non orntto connsso con un funzon pso w vlor rl dfnt su E. S A un sottonsm d E contnuto n un qulch lbro d coprtur mnmo pr G. S (S,V-S) un qulunqu tglo ch rsptt A. S (u,v) un rco lggro ch ttrvrs l tglo. Allor l rco (u,v) è scuro pr A

13 Vsulzzzon rco non scuro prché tglo non rsptt Arco scuro Arco non scuro

14 Vsulzzzon rco non scuro prché non lggro Arco non scuro Arco scuro

15 Arch scur Dmostrzon: s T l lbro d coprtur mnmo ch contn A l rco (u,v) o pprtn T, qund è scuro pr A oppur non pprtn T: n qusto cso frmo vdr ch sosttundo un rco (x,y)n T con l nuovo rco (u,v) ottnmo un T ch è smpr un lbro d coprtur mnmo, nftt: dv ssrc un ltro rco (x,y) d T ch ttrvrs l tglo prché T è un nsm connsso su tutt vrtc (un qulss tglo non rsptt T) qund dv ssrc un prcorso fr u v ch sono d prt oppost dl tglo noltr (x,y) non è n A prché l tglo rsptt A s costrusco T com T-(x,y)+(u,v) ho crto un nsm connsso con costo complssvo d T ch copr tutt vrtc ch h costo mnmo qund dv ssr un lbro d coprtur mnmo n prtc (u,v) dv ssr un rco con costo quvlnt (x,y)

16 Arch scur cos' bbmo ftto vdr ch (u,v) ' scuro pr un sottonsm d T', m no voglmo fr vdr ch (u,v) ' scuro pr A n T non n T', m... s T è un lbro d coprtur mnmo llor dto ch A è comprso n T ch (x,y) non r n A llor A è nch comprso n T nftt l unco cmbmnto d T n T è stto solo pr l rco (x,y) (u,v) ch non sono n A, gl ltr rch sono rmst nltrt d consgunz ggungr (u,v) d A mntn A un sottonsm dll lbro d coprtur (T qust volt) dunqu è un rco scuro pr A

17 Arch scur Corollro: S G=(V,E) un grfo non orntto connsso con un funzon pso w vlor rl dfnt su E. S A un sottonsm d E contnuto n un lbro d coprtur mnmo pr G S C un componnt connss (un lbro) nll forst G A =(V,A) S (u,v) è un rco lggro ch conntt C qulch ltr componnt n G A llor (u,v) è scuro pr A Dmostrzon: l tglo (C,V-C) rsptt A: qund l rco lggro (u,v) è un rco scuro pr A pr l torm prcdnt

18 Algortmo d Kruskl L d dll lgortmo d Kruskl è d ngrndr sottonsm dsgunt dll lbro d coprtur mnmo connttndol fr d loro fno d vr l lbro complssvo In prtcolr s ndvdu un rco scuro d ggungr ll forst scglndo un rco (u,v) d pso mnmo tr tutt gl rch ch connttono du dstnt lbr (componnt connss) dll forst L lgortmo è grdy prché d ogn psso s ggung ll forst un rco con l pso mnor possbl

19 Algortmo d Kruskl L d è ch, com rchsto dll lgortmo strtto: ogn componnt connss n A pprtn ll lbro d coprtur unndo componnt connss trmt rch lggr (pr l corollro) s stnno ggungndo rch scur d ogn fuson d componnt connss stmo spndndo A s può contnur fno qundo non s sono cqust tutt vrtc dl grfo

20 Implmntzon L lgortmo prsntto è sml qullo usto pr clcolr l componnt connss S us un struttur dt pr nsm dsgunt Ogn nsm contn vrtc d un lbro dll forst corrnt S può dtrmnr s du vrtc pprtngono llo stsso lbro vrfcndo l'guglnz dgl lmnt rpprsntnt rsttut d Fnd-St S fondono du lbr trmt l Unon

21 Psudocodc Kruskl MST-Kruskl(G,w) A for ll v n V[G] 3 do Mk-St(v) ordn gl rch d E pr pso w non dcrscnt 5 for ll (u,v) n E n ordn d pso non dcrscnt do f Fnd-St(u) Fnd-St(v) thn A A {(u,v)} Unon(u,v) rturn A

22 Spgzon dllo psudocodc L ln -3 nzlzzno l nsm A con l nsm vuoto crno V lbr, uno pr ogn vrtc l ln ordn gl rch pr pso nll ln 5- l cclo for controll ch vrtc d ogn rco pprtngno d lbr dvrs n cso ffrmtvo l rco vn ggunto d A l ln fond du lbr n un unco nsm Not: s vrtc pprtnssro llo stsso lbro collghrmmo du vrtc d un lbro ottnndo un cclo, fcndo vnr mno l condzon d cclctà dl sottogrfo d rcoprmnto

23 Vsulzzzon

24 Vsulzzzon

25 Vsulzzzon

26 Vsulzzzon

27 Anls Il tmpo d scuzon pr l lgortmo d Kruskl dpnd dll rlzzzon dll struttur dt pr nsm dsgunt S s utlzz l rlzzzon con forst con l urstch dl rngo dll comprsson d cmmn: l nzlzzzon rchd O(V) l tmpo ncssro pr ordnr gl rch è O(E lg E) n totl s fnno O(E) oprzon sull forst d nsm dsgunt (O(E) fnd-st O(E) unon), ovvro complssvmnt un tmpo O(E) In totl l tmpo d scuzon dll lgortmo d Kruskl è O(V+E lg E + E)=O(E lg E)

28 Algortmo d Prm L lgortmo d Prm procd mntnndo n A un sngolo lbro (un sngol componnt connss) L lbro prt d un vrtc rbtrro r (l rdc) crsc fno qundo non rcopr tutt vrtc Ad ogn psso vn ggunto un rco lggro ch collg un vrtc n A con un vrtc n V-A Pr l corollro qust rch sono scur pr A qund qundo l lgortmo trmn, n A v è un lbro d coprtur mnmo Anch qusto lgortmo è grdy poché l lbro vn stso d ogn psso scglndo l rco d pso mnmo tr qull possbl

29 Algortmo d Prm In qusto cso A h un unc componnt connss ch è l ntro lbro d coprtur ch st crscndo Il tglo (A, V-A) rsptt A.. qund pr l corollro qulss rco lggro ch ttrvrs l tglo è un rco scuro

30 Algortmo d Prm Pr vr un lgortmo ffcnt s dv prstr ttnzon com rndr fcl l sclt d un nuovo rco d ggungr d A Qusto vn ftto mmorzzndo tutt vrtc ch non sono nll lbro n costruzon n un cod con prortà Q Pr ogn nodo l prortà è bst su un cmpo ky[v] ch contn l mnmo tr ps dgl rch ch collgno v d un qulunqu vrtc dll lbro n costruzon Pr ogn nodo s ntroduc un cmpo prnt p[x] ch srv pr potr rcostrur l lbro

31 Algortmo d Prm L nsm A è mntnuto mplctmnt com A={(v,p[v]) : v n V - {r} - Q} Qundo l lgortmo trmn Q è vuot l lbro d coprtur n A è dunqu: A={(v,p[v]) : v n V - {r}}

32 Psudocodc Prm MST-Prm(G,w,r) Q V[G] for ll u n Q 3 do ky[u] ky[r] 0 5 p[r] NIL whl Q do u Extrct-Mn(Q) for ll v n Adj[u] do f v n Q nd w(u,v)<ky[v] thn p[v] u ky[v] w(u,v)

33 Spgzon psudocodc L ln - nzlzzno l cod Q con tutt vrtc pongono l ttrbuto ky pr ogn vrtc d cczon dl vrtc r pr l qul ky[r]=0 n modo d strrr r com lmnto mnmo nll fs nzl durnt l'lgortmo A ' mplctmnt costtuto dgl rch (v,p[v]) con v nll nsm V-Q, co' l'lbro d coprtur n costruzon h vrtc n V-Q l ln dntfc un vrtc u ncdnt su d un rco lggro ch ttrvrs l tglo (V-Q,Q) s lmn u d Q lo s ggung vrtc dll lbro

34 Spgzon psudocodc L ln - ggornno cmp ky p d ogn vrtc v dcnt u ch non pprtn ncor ll lbro durnt l'scuzon dll'lgortmo l cmpo ky[v] rpprsnt smpr l costo mnmo tr ps dgl rch ch collgno v d un qulunqu vrtc dll lbro n costruzon qust proprt' è prsrvt prché s s trov un rco ch collg v con l lbro d costo nfror, s ggorn ky l nuovo vlor mnmo durnt l'scuzon dll'lgortmo s ggorn l vlor ky d nod dcnt l nodo sotto sm ch vrrà nsrto nll lbro d coprtur

35 Spgzon dllo psudocodc Al cclo succssvo s smnrà l cod Q s trovrà ch uno d v smnt prcdntmnt è dmnuto tnto d ssr l vrtc con chv pù pccol llor s ggungrà mplctmnt v ll lbro, fssndo l rlzon pdr-fglo mglor trovt s procdrà d spndr l frontr d vrtc dcnt v, stblndo nuov potnzl rlzon pdr-fglo

36 Vsulzzzon ky= ky= ky= ky= ky= ky= ky= ky= ky= ky= ky= ky=

37 Vsulzzzon ky= ky= ky= ky= ky= ky= ky= ky= ky= ky=

38 Vsulzzzon

39 Anls L ffcnz dll lgortmo d Prm dpnd d com vn rlzzt l cod con prortà Q s Q vn rlzzt con uno hp bnro: s us Buld-Hp pr l nzlzzzon n tmpo O(V) l cclo ll ln vn sguto V volt d ogn oprzon Extrct-Mn è O(lg V) pr un totl d O(V lg V) l cclo ll ln vn sguto n tutto O(E) volt prch' l somm dll lunghzz d tutt l lst d dcnz ' E l controllo d pprtnnz ll ln può ssr sguto n O() usndo un mtodo d ndrzzmnto drtto l ssgnzon ll ln mplc un oprzon d Dcrs-Ky mplct sullo hp ch cost O(lg V) Il tmpo totl è prtnto un O(V+V lg V + E lg V) = O(E lg V) sntotcmnt gul qullo pr l lgortmo d Kruskl

Studio di funzione. Pertanto nello studio di tali funzioni si esamino:

Studio di funzione. Pertanto nello studio di tali funzioni si esamino: Prof. Emnul ANDRISANI Studio di funzion Funzioni rzionli intr n n o... n n Crttristich: sono funzioni continu drivbili in tutto il cmpo rl D R quindi non sistono sintoti vrticli D R quindi non sistono

Dettagli

Corso di ordinamento - Sessione suppletiva - a.s. 2009-2010

Corso di ordinamento - Sessione suppletiva - a.s. 2009-2010 Corso di ordinmnto - Sssion suppltiv -.s. 9- PROBLEMA ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE SUPPLETIA Tm di: MATEMATICA. s. 9- Dt un circonrnz di cntro O rggio unitrio, si prndno

Dettagli

L ELLISSOIDE TERRESTRE

L ELLISSOIDE TERRESTRE L ELLISSOIDE TERRESTRE Fin dll scond mtà dl XVII scolo (su propost di Nwton) l suprfici più dtt ssr ssunt com suprfici di rifrimnto pr l Trr è stt individut in un ELLISSOIDE DI ROTAZIONE. E l suprfici

Dettagli

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito.

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito. Integrli de niti. Il problem di clcolre l re di un regione pin delimitt d gr ci di funzioni si può risolvere usndo l integrle de nito. L integrle de nito st l problem del clcolo di ree come l equzione

Dettagli

I vettori. a b. 180 α B A. Un segmento orientato è un segmento su cui è stato fissato un verso. di percorrenza, da verso oppure da verso.

I vettori. a b. 180 α B A. Un segmento orientato è un segmento su cui è stato fissato un verso. di percorrenza, da verso oppure da verso. I vettor B Un segmento orentto è un segmento su cu è stto fssto un verso B d percorrenz, d verso oppure d verso. A A Il segmento orentto d verso è ndcto con l smolo. Due segment orentt che hnno l stess

Dettagli

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma INTEGRALI IMPROPRI. Integrli impropri su intervlli itti Dt un funzione f() continu in [, b), ponimo ε f() = f() ε + qundo il ite esiste. Se tle ite esiste finito, l integrle improprio si dice convergente

Dettagli

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x Appunti elorti dll prof.ss Biondin Gldi Funzione integrle Si y = f() un funzione continu in un intervllo [; ] e si 0 [; ]; l integrle 0 f()d si definisce Funzione Integrle; si chim funzione integrle in

Dettagli

Esercizi sullo studio di funzione

Esercizi sullo studio di funzione Esrcizi sullo studio di funzion Prima part Pr potr dscrivr una curva, data la sua quazion cartsiana splicita f () occorr procdr scondo l ordin sgunt: 1) Dtrminar l insim di sistnza dlla f () ) Dtrminar

Dettagli

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) =

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) = Note ed esercizi di Anlisi Mtemtic - (Fosci) Ingegneri dell Informzione - 28-29. Lezione del 7 novembre 28. Questi esercizi sono reperibili dll pgin web del corso ttp://utenti.unife.it/dmino.fosci/didttic/mii89.tml

Dettagli

3. Funzioni iniettive, suriettive e biiettive (Ref p.14)

3. Funzioni iniettive, suriettive e biiettive (Ref p.14) . Funzioni iniettive, suriettive e iiettive (Ref p.4) Dll definizione di funzione si ricv che, not un funzione y f( ), comunque preso un vlore di pprtenente l dominio di f( ) esiste un solo vlore di y

Dettagli

- Radioattività - - 1 - 1 Ci = 3,7 1010 dis / s. ln 2 T 2T = e ln 2 2 = e 2ln 2 = 1 4

- Radioattività - - 1 - 1 Ci = 3,7 1010 dis / s. ln 2 T 2T = e ln 2 2 = e 2ln 2 = 1 4 Radioattività - Radioattività - - - Un prparato radioattivo ha un attività A 0 48 04 dis / s. A quanti μci (microcuri) si riduc l attività dl prparato dopo du tmpi di dimzzamnto? Sapndo ch: ch un microcuri

Dettagli

Le politiche per l equilibrio della bilancia dei pagamenti

Le politiche per l equilibrio della bilancia dei pagamenti L politich pr l quilibrio dlla bilancia di pagamnti Politich pr ottnr l quilibrio dlla bilancia di pagamnti (BP = + MK = 0) nl lungo priodo BP 0 non è sostnibil prchè In cambi fissi S BP0 si sauriscono

Dettagli

ANALISI REALE E COMPLESSA a.a. 2007-2008

ANALISI REALE E COMPLESSA a.a. 2007-2008 ANALISI REALE E COMPLESSA.. 2007-2008 1 Successioni e serie di funzioni 1.1 Introduzione In questo cpitolo studimo l convergenz di successioni del tipo n f n, dove le f n sono tutte funzioni vlori reli

Dettagli

Il volume del cilindro è dato dal prodotto della superficie di base per l altezza, quindi

Il volume del cilindro è dato dal prodotto della superficie di base per l altezza, quindi Mtemtic per l nuov mturità scientific A. Bernrdo M. Pedone 3 Questionrio Quesito 1 Provre che un sfer è equivlente i /3 del cilindro circoscritto. r 4 3 Il volume dell sfer è 3 r Il volume del cilindro

Dettagli

PROGETTAZIONE DIDATTICA PER COMPETENZE

PROGETTAZIONE DIDATTICA PER COMPETENZE ISTITUTO TECNICO INDUSTRIALE STATALE G. M. MONTANI CONVITTO ANNESSO AZIENDA AGRARIA 63900 FERMO Via Montani n. 7 - Tl. 0734-622632 Fax 0734-622912 www.istitutomontani.it -mail aptf010002@istruzion.it Coc

Dettagli

Provvedimento di Predisposizione del Programma Annuale dell'esercizio finanziario 2014. Il Dsga

Provvedimento di Predisposizione del Programma Annuale dell'esercizio finanziario 2014. Il Dsga Provvdimnto di Prdisposizion dl Programma Annual dll'srcizio finanziario 2014 Il Dsga Visto Il Rgolamnto crnnt l istruzioni gnrali sulla gstion amministrativotabil dll Istituzioni scolastich Dcrto 01 Fbbraio

Dettagli

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n.

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n. AUTOVALORI ED AUTOVETTORI Si V uno spzio vettorile di dimensione finit n. Dicesi endomorfismo di V ogni ppliczione linere f : V V dello spzio vettorile in sé. Se f è un endomorfismo di V in V, considert

Dettagli

13. EQUAZIONI ALGEBRICHE

13. EQUAZIONI ALGEBRICHE G. Smmito, A. Bernrdo, Formulrio di mtemti Equzioni lgerihe F. Cimolin, L. Brlett, L. Lussrdi. EQUAZIONI ALGEBRICHE. Prinipi di equivlenz Si die identità un'uguglinz tr due espressioni ontenenti un o più

Dettagli

Minimo sottografo ricoprente. Minimo sottografo ricoprente. Minimo albero ricoprente. Minimo albero ricoprente

Minimo sottografo ricoprente. Minimo sottografo ricoprente. Minimo albero ricoprente. Minimo albero ricoprente Minimo sottografo ricoprente Minimo sottografo ricoprente Dato un grafo connesso G = (V, E) con costi positivi sugli archi c e, un minimo sottografo ricoprente è un insieme di archi E E tale che: G = (V,

Dettagli

Problemi di massimo e minimo in Geometria Solida Problemi su poliedri. Indice dei problemi risolti

Problemi di massimo e minimo in Geometria Solida Problemi su poliedri. Indice dei problemi risolti Problemi di mssimo e minimo in Geometri olid Problemi su poliedri Indice dei problemi risolti In generle, un problem si riferisce un figur con crtteristice specifice (p.es., il numero dei lti dell bse)

Dettagli

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione 1 La Regressone Lneare (Semplce) Relazone funzonale e statstca tra due varabl Modello d regressone lneare semplce Stma puntuale de coeffcent d regressone Decomposzone della varanza Coeffcente d determnazone

Dettagli

Strutture deformabili torsionalmente: analisi in FaTA-E

Strutture deformabili torsionalmente: analisi in FaTA-E Strutture deformabl torsonalmente: anals n FaTA-E Il comportamento dsspatvo deale è negatvamente nfluenzato nel caso d strutture deformabl torsonalmente. Nelle Norme Tecnche cò vene consderato rducendo

Dettagli

Titolazione Acido Debole Base Forte. La reazione che avviene nella titolazione di un acido debole HA con una base forte NaOH è:

Titolazione Acido Debole Base Forte. La reazione che avviene nella titolazione di un acido debole HA con una base forte NaOH è: Titolzione Acido Debole Bse Forte L rezione che vviene nell titolzione di un cido debole HA con un bse forte NOH è: HA(q) NOH(q) N (q) A (q) HO Per quest rezione l costnte di equilibrio è: 1 = = >>1 w

Dettagli

REPORT DELLA VALUTAZIONE COLLETTIVA

REPORT DELLA VALUTAZIONE COLLETTIVA CONCORSO DI PROGETTAZIONE UNA NUOVA VIVIBILITA PER IL CENTRO DI NONANTOLA PROCESSO PARTECIPATIVO INTEGRATO CENTRO ANCH IO! REPORT DELLA VALUTAZIONE COLLETTIVA ESITO DELLE VOTAZIONI RACCOLTE DURANTE LE

Dettagli

Comunità Europea (CE) International Accounting Standards, n. 36. Riduzione durevole di valore delle attività

Comunità Europea (CE) International Accounting Standards, n. 36. Riduzione durevole di valore delle attività Scopo contnuto dl documnto Comunità Europa (CE) Intrnational Accounting Standards, n. 36 Riduzion durvol di valor dll attività Riduzion durvol di valor dll attività SOMMARIO Finalità 1 Ambito di applicazion

Dettagli

METODO VOLTAMPEROMETRICO

METODO VOLTAMPEROMETRICO METODO OLTAMPEOMETCO Tle etodo consente di isrre indirettente n resistenz elettric ed ipieg l definizione stess di resistenz : doe rppresent l tensione i cpi dell resistenz e l corrente che l ttrers coe

Dettagli

SOMMARIO. I Motori in Corrente Continua

SOMMARIO. I Motori in Corrente Continua SOMMARIO Gralità sull Macchi i Corrt Cotiua...2 quazio dlla forza lttromotric...2 Circuito quivalt...2 Carattristica di ccitazio...3 quazio dlla vlocità...3 quazio dlla Coppia rsa all'albro motor:...3

Dettagli

Corso di Analisi Matematica Calcolo integrale per funzioni di una variabile

Corso di Analisi Matematica Calcolo integrale per funzioni di una variabile Corso di Anlisi Mtemtic Clcolo integrle per funzioni di un vribile Lure in Informtic e Comuniczione Digitle A.A. 2013/2014 Università di Bri ICD (Bri) Anlisi Mtemtic 1 / 40 1 L integrle come limite di

Dettagli

VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE

VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE Soluzioni di quesiti e prolemi trtti dl Corso Bse Blu di Mtemti volume 5 [] (Es. n. 8 pg. 9 V) Dell prol f ( ) si hnno le seguenti informzioni, tutte

Dettagli

La rappresentazione dei numeri. La rappresentazione dei numeri. Aritmetica dei calcolatori. La rappresentazione dei numeri

La rappresentazione dei numeri. La rappresentazione dei numeri. Aritmetica dei calcolatori. La rappresentazione dei numeri Artmetca de calcolator Rappresentazone de numer natural e relatv Addzone e sommator: : a propagazone d rporto, veloce, con segno Moltplcazone e moltplcator: senza segno, con segno e algortmo d Booth Rappresentazone

Dettagli

Progetto Lauree Scientifiche. La corrente elettrica

Progetto Lauree Scientifiche. La corrente elettrica Progetto Lauree Scentfche La corrente elettrca Conoscenze d base Forza elettromotrce Corrente Elettrca esstenza e resstvtà Legge d Ohm Crcut 2 Una spra d rame n equlbro elettrostatco In un crcuto semplce

Dettagli

MINISTERO DELL ISTRUZIONE, DELL UNIVERSITÁ E DELLA RICERCA UFFICIO SCOLASTICO PROVINCIALE DI SALERNO PIANO EDUCATIVO INDIVIDUALIZZATO

MINISTERO DELL ISTRUZIONE, DELL UNIVERSITÁ E DELLA RICERCA UFFICIO SCOLASTICO PROVINCIALE DI SALERNO PIANO EDUCATIVO INDIVIDUALIZZATO Distrtto Scolastico N 53 Nocra Infrior (SA) SCUOLA MEDIA STATALE Frsa- Pascoli Vial Europa ~ 84015 NOCERA SUPERIORE (SA) Tl. 081 933111-081 931395- fax: 081 936230 C.F.: 94041550651 Cod: Mcc.: SAMM28800N

Dettagli

2.1 Proprietà fondamentali dei numeri reali. 1. Elenchiamo separatamente le proprietà dell addizione, moltiplicazione e relazione d ordine.

2.1 Proprietà fondamentali dei numeri reali. 1. Elenchiamo separatamente le proprietà dell addizione, moltiplicazione e relazione d ordine. Capitolo 2 Numri rali In qusto capitolo ci occuprmo dll insim di numri rali ch indichrmo con il simbolo R: lfunzionidfinitsutaliinsimiavaloriralisonol oggttodistudiodll analisi matmatica in una variabil.

Dettagli

LA COMPATIBILITA tra due misure:

LA COMPATIBILITA tra due misure: LA COMPATIBILITA tra due msure: 0.4 Due msure, supposte affette da error casual, s dcono tra loro compatbl quando la loro dfferenza può essere rcondotta ad una pura fluttuazone statstca attorno al valore

Dettagli

Corrente elettrica e circuiti

Corrente elettrica e circuiti Corrente elettrca e crcut Generator d forza elettromotrce Intenstà d corrente Legg d Ohm esstenza e resstvtà esstenze n sere e n parallelo Effetto termco della corrente Legg d Krchhoff Corrente elettrca

Dettagli

CIRCOLARE n.148. Al Personale Docente. Sede

CIRCOLARE n.148. Al Personale Docente. Sede 1 I.C. Slvo Pllco Portoplo Cpo Pssro 1 ISTITUTO COMPRENSIVO STATALE S. PELLICO V Crnnà 4 c..p. 96018 - PACHINO (SR) Tl. 0931/801226-0931597094 ml :src853002q@struzon.t www.pllcopchno.t Coc Fscl 83001430897.

Dettagli

Anno 2013 Tipologia Istituzione U - UNITA' SANITARIE LOCALI. Istituzione 9565 - ASL VENEZIA - MESTRE 12 Contratto SSNA - SERVIZIO SANITARIO NAZIONALE

Anno 2013 Tipologia Istituzione U - UNITA' SANITARIE LOCALI. Istituzione 9565 - ASL VENEZIA - MESTRE 12 Contratto SSNA - SERVIZIO SANITARIO NAZIONALE nno 213 Tipologia Istituzione U - UNIT' SNIT LCLI Istituzione 9565 - SL VNZI - MSTR 12 Contratto SSN - SRVIZI SNIT NZINL Fase/Stato Rilevazione: pprovazione/ttiva Data Creazione Stampa: 19/6/215 14:15:25

Dettagli

George Frideric Handel. Reduction. From the Deutsche Händelgesellschaft Edition Edited by Frideric Chrysander

George Frideric Handel. Reduction. From the Deutsche Händelgesellschaft Edition Edited by Frideric Chrysander Gorg Fdc Hndl GIULIO CESARE 1724 Rduction From th Dutsch Händlgsllschft Etion Etd by Fdc Chrysndr Copyght 2001-2008 Nis Scux. Licnsd undr th Ctiv Commons Attbution 3.0 Licns 2 3 INDICE 0-1 OUVERTURE 5

Dettagli

Art. 1. - Campo di applicazione e definizioni Art. 2. - Classificazione di reazione al fuoco

Art. 1. - Campo di applicazione e definizioni Art. 2. - Classificazione di reazione al fuoco DM 10 marzo 2005 Classi di razion al fuoco pr i prodotti da costruzion da impigarsi nll opr pr l quali ' prscritto il rquisito dlla sicurzza in caso d'incndio. (GU n. 73 dl 30-3-2005) IL MINISTRO DELL'INTERNO

Dettagli

Esercizi sulle serie di Fourier

Esercizi sulle serie di Fourier Esercizi sulle serie di Fourier Corso di Fisic Mtemtic,.. 3- Diprtimento di Mtemtic, Università di Milno Novembre 3 Sviluppo in serie di Fourier (esponenzile) In questi esercizi, si richiede di sviluppre

Dettagli

YOGURT. Dosi per. 150 più secondo il. fermenti. eccezionalee. il nostroo lavorare. intestino. forma. Alla fine

YOGURT. Dosi per. 150 più secondo il. fermenti. eccezionalee. il nostroo lavorare. intestino. forma. Alla fine YOGURT FATTO IN CASAA CON YOGURTIERA Lo yogurt ftto in cs è senz ltro un modoo sno per crere un limento eccezionlee per l nostr slute. Ricco di ltticii iut intestino fermenti il nostroo lvorre meglioo

Dettagli

Ing. Alessandro Pochì

Ing. Alessandro Pochì Dispense di Mtemtic clsse quint -Gli integrli Quest oper è distriuit con: Licenz Cretive Commons Attriuzione - Non commercile - Non opere derivte. Itli Ing. Alessndro Pochì Appunti di lezione svolti ll

Dettagli

LINGUAGGI'CREATIVITA 'ESPRESSIONE' '

LINGUAGGI'CREATIVITA 'ESPRESSIONE' ' LINGUAGGICREATIVITA ESPRESSIONE 3 4ANNI 5ANNI Mniplrmtrilidivritipin finlizzt. Fmilirizzrindivrtntcnil cmputr Ricnsclmntidl mnd/rtificilcglindn diffrnzprfrmmtrili Distingugliggttinturlidqulli rtificili.

Dettagli

JOHANN SEBASTIAN BACH Invenzioni a due voci

JOHANN SEBASTIAN BACH Invenzioni a due voci JOH EBTI BCH Invnzon a u voc BWV 772 7 cura Lug Catal trascrzon ttuata con UP htt//ckngmuscarchvorg/ c 200 Lug Catal (lucatal@ntrrt) Ths ag s ntntonally lt ut urchtg nltung Wormt nn Lbhabrn s Clavrs, bsonrs

Dettagli

LA TRASFORMATA DI LAPLACE

LA TRASFORMATA DI LAPLACE LA RASFORMAA DI LAPLACE Pr dcrivr l voluzion di un itma in rgim tranitorio, oia durant il paaggio dll ucit da un rgim tazionario ad un altro, è ncario ricorrr ad un modllo più gnral riptto al modllo tatico,

Dettagli

La scelta di equilibrio del consumatore. Integrazione del Cap. 21 del testo di Mankiw 1

La scelta di equilibrio del consumatore. Integrazione del Cap. 21 del testo di Mankiw 1 M.Blconi e R.Fontn, Disense di conomi: 3) quilirio del consumtore L scelt di equilirio del consumtore ntegrzione del C. 21 del testo di Mnkiw 1 Prte 1 l vincolo di ilncio Suonimo che il reddito di un consumtore

Dettagli

La rappresentazione per elencazione consiste nell elencare tutte le coppie ordinate che verificano la relazione

La rappresentazione per elencazione consiste nell elencare tutte le coppie ordinate che verificano la relazione RELAZIONI E FUNZIONI Relzioni inrie Dti ue insiemi non vuoti e (he possono eventulmente oiniere), si ie relzione tr e un qulsisi legge he ssoi elementi elementi. L insieme A è etto insieme i prtenz. L

Dettagli

Relazioni tra variabili: Correlazione e regressione lineare

Relazioni tra variabili: Correlazione e regressione lineare Dott. Raffaele Casa - Dpartmento d Produzone Vegetale Modulo d Metodologa Spermentale Febbrao 003 Relazon tra varabl: Correlazone e regressone lneare Anals d relazon tra varabl 6 Produzone d granella (kg

Dettagli

Parcheggi e altre rendite aeroportuali

Parcheggi e altre rendite aeroportuali Argomnti Parchggi altr rndit aroportuali Marco Ponti Elna Scopl La rgolamntazion dl sistma aroportual italiano fino al 2007 non ha vitato la formazion di rndit ingiustificat. In particolar l attività non-aviation,

Dettagli

5. Il lavoro di un gas perfetto

5. Il lavoro di un gas perfetto 5. Il lavoro d un gas perfetto ome s esprme l energa nterna d un gas perfetto? Un gas perfetto è l sstema pù semplce che possamo mmagnare: le nterazon a dstanza fra le molecole sono così debol da essere

Dettagli

1. LA STRUTTURA DI RELAZIONI TRA MANIFATTURA E SERVIZI ALLE IMPRESE IN UN CONTESTO EUROPEO

1. LA STRUTTURA DI RELAZIONI TRA MANIFATTURA E SERVIZI ALLE IMPRESE IN UN CONTESTO EUROPEO 1. La struttura di rlazioni tra manifattura srvizi all imprs in un contsto uropo 11 1. LA STRUTTURA DI RELAZIONI TRA MANIFATTURA E SERVIZI ALLE IMPRESE IN UN CONTESTO EUROPEO La quota di srvizi sul commrcio

Dettagli

Laboratorio di Algoritmi e Strutture Dati

Laboratorio di Algoritmi e Strutture Dati Laboraorio di Algorimi e Sruure Dai Aniello Murano hp://people.na.infn.i people.na.infn.i/ ~murano/ 1 Algorimi per il calcolo di percori minimi u un grafo 1 Un emplice problema Pr oblema: Supponiamo che

Dettagli

Appunti di Analisi matematica 1. Paolo Acquistapace

Appunti di Analisi matematica 1. Paolo Acquistapace Appunti di Anlisi mtemtic Polo Acquistpce 23 febbrio 205 Indice Numeri 4. Alfbeto greco................................. 4.2 Insiemi..................................... 4.3 Funzioni....................................

Dettagli

Unità Didattica N 25. La corrente elettrica

Unità Didattica N 25. La corrente elettrica Untà Ddattca N 5 : La corrente elettrca 1 Untà Ddattca N 5 La corrente elettrca 01) Il problema dell elettrocnetca 0) La corrente elettrca ne conduttor metallc 03) Crcuto elettrco elementare 04) La prma

Dettagli

CORSO. FIM Via. associazione geometri liberi professionisti. della provincia di Modena. Sede. Costi. Colleg. 2 Pia. rispettivi tecnica.

CORSO. FIM Via. associazione geometri liberi professionisti. della provincia di Modena. Sede. Costi. Colleg. 2 Pia. rispettivi tecnica. CORSO MASTER associazion gomtri libri profssionisti dlla provincia Modna novmbr, cmbr 2014 gnnaio, fbbraio PERCORSO FORMATIVO DI 48 ORE Sd Il corsoo è organizzato prsso la sala convgni dl Collg io Gomm

Dettagli

Esempio Data la matrice E estraiamo due minori di ordine 3 differenti:

Esempio Data la matrice E estraiamo due minori di ordine 3 differenti: Minori di un mtrice Si A K m,n, si definisce minore di ordine p con p N, p

Dettagli

a Crediamo nel concetto di cucina a chilometro zero e nei prodotti di stagione, crediamo nel rispetto dell ambiente e delle tradizioni.

a Crediamo nel concetto di cucina a chilometro zero e nei prodotti di stagione, crediamo nel rispetto dell ambiente e delle tradizioni. Credimo nel concetto di cucin chilometro zero e nei prodotti di stgione, credimo nel rispetto dell mbiente e delle trdizioni. L nostr propost enogstronomic è bst sull riscopert delle ricette più semplici

Dettagli

Definizioni fondamentali

Definizioni fondamentali Definizioni fondmentli Sistem scisse su un rett 1 Un rett si ce orientt qundo su ess è fissto un verso percorrenz Dti due punti qulsisi A e B un rett orientt r, il segmento AB che può essere percorso d

Dettagli

LE IRRESISTIBILI DOLCI TENTAZIONI DEL MOMENTO, SCEGLI LA TUA BASE SCATENA LA TUA FANTASIA CONQUISTA TANTI NUOVI CLIENTI!

LE IRRESISTIBILI DOLCI TENTAZIONI DEL MOMENTO, SCEGLI LA TUA BASE SCATENA LA TUA FANTASIA CONQUISTA TANTI NUOVI CLIENTI! Le ALL ITALIANA CREA LA TUA ALL ITALIANA Decidi di essere oriin le, cre tivo e diverso d i tuoi concorrenti : Cre le tue person lissime cup c kes ll it li n, LE IRRESISTIBILI DOLCI TENTAZIONI DEL MOMENTO,

Dettagli

I radicali 1. Claudio CANCELLI (www.claudiocancelli.it)

I radicali 1. Claudio CANCELLI (www.claudiocancelli.it) I rdicli Cludio CANCELLI (www.cludioccelli.it) Ed..0 www.cludioccelli.it Dec. 0 I rdicli INDICE DEI CONTENUTI. I RADICALI... INDICE DI RADICE PARI...4 INDICE DI RADICE DISPARI...5 RADICALI SIMILI...6 PROPRIETA

Dettagli

Corso di laurea in Ingegneria Meccatronica. DINAMICI CA - 04 ModiStabilita

Corso di laurea in Ingegneria Meccatronica. DINAMICI CA - 04 ModiStabilita Automaton Robotcs and System CONTROL Unverstà degl Stud d Modena e Reggo Emla Corso d laurea n Ingegnera Meccatronca MODI E STABILITA DEI SISTEMI DINAMICI CA - 04 ModStablta Cesare Fantuzz (cesare.fantuzz@unmore.t)

Dettagli

Fatturiamo. Versione 5. Manuale per l utente. Active Software Corso Italia 149-34170 Gorizia email info@activeweb.it

Fatturiamo. Versione 5. Manuale per l utente. Active Software Corso Italia 149-34170 Gorizia email info@activeweb.it Ftturimo Versione 5 Mnule per l utente Active Softwre Corso Itli 149-34170 Gorizi emil info@ctiveweb.it Se questo documento ppre nell finestr del vostro browser Internet di defult, richimte il comndo Registr

Dettagli

Metodi d integrazione di Montecarlo

Metodi d integrazione di Montecarlo Metodi d itegrzioe di Motecrlo Simulzioe l termie simulzioe ell su ccezioe scietific h u sigificto diverso dll ccezioe correte. Nell uso ordirio è sioimo si fizioe; ell uso scietifico è sioimo di imitzioe,

Dettagli

Alberto Montresor Università di Trento

Alberto Montresor Università di Trento !! Algoritmi e Strutture Dati! Capitolo 1 - Greedy!!! Alberto Montresor Università di Trento!! This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License. To view a copy

Dettagli

Guida allʼesecuzione di prove con risultati qualitativi

Guida allʼesecuzione di prove con risultati qualitativi TitoloTitl Guida allʼscuzion di prov con risultati qualitativi Guid to prform tsts with qualitativ rsults SiglaRfrnc DT-07-DLDS RvisionRvision 00 DataDat 0602203 Rdazion pprovazion utorizzazion allʼmission

Dettagli

v999999999 Italià (més grans de 25 anys) Aferrau una etiqueta identificativa Convocatòri a 2015 de codi de barres Model 1

v999999999 Italià (més grans de 25 anys) Aferrau una etiqueta identificativa Convocatòri a 2015 de codi de barres Model 1 Aferru un etiquet identifictiv v999999999 de codi de brres Itlià (més grns de 25 nys) Model 1 Not 1ª Not 2ª Aferru l cpçler d exmen un cop cbt l exercici Puntució: preguntes vertder/fls: 1 punt; preguntes

Dettagli

Leggere i dati da file

Leggere i dati da file Esempo %soluzon d una equazone d secondo grado dsp('soluzon d a^+b+c') anput('damm l coeffcente a '); bnput('damm l coeffcente b '); cnput('damm l coeffcente c '); deltab^-4*a*c; f delta0 dsp('soluzon

Dettagli

Comparazione delle performance di 6 cloni di Gamay ad altitudine elevata

Comparazione delle performance di 6 cloni di Gamay ad altitudine elevata Comprzione delle performnce di 6 cloni di Gmy d ltitudine elevt 1 / 46 Motivzioni Selezione clonle IAR-4 Lo IAR-4 è stto selezionto in mbiente montno d un prticolre popolzione di mterile stndrd, dll qule

Dettagli

Variazioni di sviluppo del lobo frontale nell'uomo

Variazioni di sviluppo del lobo frontale nell'uomo Istituto di Antropologi dell Regi Università di Rom Vrizioni di sviluppo del lobo frontle nell'uomo pel Dott. SERGIO SERGI Libero docente ed iuto ll cttedr di Antropologi. Il problem dei rpporti di sviluppo

Dettagli

Progetto I CARE Progetto CO.L.O.R.

Progetto I CARE Progetto CO.L.O.R. Attori in rt pr la mobilità di risultati dll apprndimnto Dirtta WEB, 6 dicmbr 2011 Progtto I CARE Progtto CO.L.O.R. Elmnti distintivi complmntarità Michla Vcchia Fondazion CEFASS gli obittivi Facilitar

Dettagli

VERIFICA DI UN CIRCUITO RESISTIVO CONTENENTE PIÙ GENERATORI CON UN TERMINALE COMUNE E SENZA TERMINALE COMUNE.

VERIFICA DI UN CIRCUITO RESISTIVO CONTENENTE PIÙ GENERATORI CON UN TERMINALE COMUNE E SENZA TERMINALE COMUNE. FCA D UN CCUTO SSTO CONTNNT PÙ GNATO CON UN TMNAL COMUN SNZA TMNAL COMUN. Si verifino quttro iruiti on due genertori: genertori on polrità onorde e un terminle omune genertori on polrità disorde e un terminle

Dettagli

Argomenti. Misure di corrente elettrica continua, di differenza di potenziale e di resistenza elettrica.

Argomenti. Misure di corrente elettrica continua, di differenza di potenziale e di resistenza elettrica. ppunt per l corso d Laboratoro d Fsca per le Scuole Superor rgoent Msure d corrente elettrca contnua, d dfferenza d potenzale e d resstenza elettrca. Struent d sura: prncp d funzonaento. Coe s effettuano

Dettagli

Domanda di pagamento dei ratei di pensione maturati e non riscossi - 1/7

Domanda di pagamento dei ratei di pensione maturati e non riscossi - 1/7 Istituto Nazionale Previdenza Sociale PR O TOC OL L O COD. P23 maturati e non riscossi - 1/7 Questi moduli vanno utilizzati da tutti gli eredi di un pensionato, in assenza del coniuge. Se esistono più

Dettagli

ELABORAZIONE DI SEGNALI E IMMAGINI

ELABORAZIONE DI SEGNALI E IMMAGINI Fltraggo d un segnale EABORAZIOE DI SEGAI E IAGII. Bertero P. Boccacc bertero@ds.unge.t boccacc@ds.unge.t Al ne d glorare la qualtà d un segnale dgtale una tecnca d prara portanza è l ltraggo. Con l quale

Dettagli

ilzzeíír : giugno Numero ISS Sabato, Le pagine destinate per Ic inserzioni, agli effetti del

ilzzeíír : giugno Numero ISS Sabato, Le pagine destinate per Ic inserzioni, agli effetti del Arrtrt: Mnstr Avvs SO ZZÍÍR ÍtÍRÍ8 DEL RE Gl\TO E ITALIA Ann 93 Bm Sbt : gugn Numr ISS Atbnrnnt Ann Sm Trm dmc d n In Rut sn prss l'ammnstrzn ch L tutt Rgn 65 86 30 All'str (Ps dll' Unn pstl) 50» 0 Un

Dettagli

Esercizi della 8 lezione sulla Geomeria Linere ESERCIZI SULLA CIRCONFERENZA ESERCIZI SULLA PARABOLA ESERCIZI SULL' ELLISSE ERCIZI SULL' IPERBOLE

Esercizi della 8 lezione sulla Geomeria Linere ESERCIZI SULLA CIRCONFERENZA ESERCIZI SULLA PARABOLA ESERCIZI SULL' ELLISSE ERCIZI SULL' IPERBOLE Eserizi dell lezione sull Geomeri Linere ESERCIZI SULLA CIRCONFERENZA ESERCIZI SULLA PARABOLA ESERCIZI SULL' ELLISSE ES ERCIZI SULL' IPERBOLE ESERCIZI SULLA CIRCONFERENZA. Determinre l equzione dell ironferenz

Dettagli

Numeri razionali COGNOME... NOME... Classe... Data...

Numeri razionali COGNOME... NOME... Classe... Data... I numeri rzionli Cpitolo Numeri rzionli Verifi per l lsse prim COGNOME............................... NOME............................. Clsse.................................... Dt...............................

Dettagli

1. L'INSIEME DEI NUMERI REALI

1. L'INSIEME DEI NUMERI REALI . L'INSIEME DEI NUMERI REALI. I pricipli isiemi di umeri Ripredimo i pricipli isiemi umerici N, l'isieme dei umeri turli 0; ; ; ; ;... L'ide ituitiv di umero turle è ssocit l prolem di cotre e ordire gli

Dettagli

1. Integrazione di funzioni razionali fratte

1. Integrazione di funzioni razionali fratte . Integazone d fnzon azonal fatte P S songa d vole calcolae n ntegale del to: d Q ove P e Q sono olno nell ndetenata d gado assegnato. Sonao ce: P a n n a n n a a Q b b b b oleent s etod d ntegazone I

Dettagli

EQUILIBRI IN SOLUZIONE ACQUOSA

EQUILIBRI IN SOLUZIONE ACQUOSA Dispense CHIMICA GENERALE E ORGANICA (STAL) 010/11 Prof. P. Crloni EQUILIBRI IN SOLUZIONE ACQUOSA Qundo si prl di rezioni di equilirio dei composti inorgnici, un considerzione prticolre viene rivolt lle

Dettagli

Vietata la pubblicazione, la riproduzione e la divulgazione a scopo di lucro.

Vietata la pubblicazione, la riproduzione e la divulgazione a scopo di lucro. Viett l pubbliczione, l riprouzione e l ivulgzione scopo i lucro. GA00001 Qul è l mpiezz ell ngolo che si ottiene ) 95 b) 275 c) 265 ) 5 b sottreno 85 un ngolo giro? GA00002 Due ngoli ll circonferenz che

Dettagli

07 GUIDA ALLA PROGETTAZIONE. Guida alla progettazione

07 GUIDA ALLA PROGETTAZIONE. Guida alla progettazione 07 Guid ll progettzione Scelt tubzioni e giunti 2 tubi di misur [mm] Dimetro tubzioni unità esterne (A) Giunti 12Hp 1Hp 1Hp Selezionre il dimetro delle unità esterne dll seguente tbell Giunto Y tr unità

Dettagli

Esercizi e Problemi di Termodinamica.

Esercizi e Problemi di Termodinamica. Esercizi e Problemi di Termodinamica. Dr. Yves Gaspar March 18, 2009 1 Problemi sulla termologia e sull equilibrio termico. Problema 1. Un pezzetto di ghiaccio di massa m e alla temperatura di = 250K viene

Dettagli

Z>,n zorrr Reg. Gen. IL CAPO AREA AA.GG

Z>,n zorrr Reg. Gen. IL CAPO AREA AA.GG Piazza Toselli n. 1-96010 Buccheri (SR) Tel. 0931880359 - Fax 0931880559 DETERMINA DEL CAPO AREA AFFARI GENERATI DETERMINAN,/UóDEL Z>,n zorrr Reg. Gen. Oggetto: Liquidazione fatîure a ll'associazio ne

Dettagli

Stim e puntuali. Vocabolario. Cambiando campione casuale, cambia l istogramma e cambiano gli indici

Stim e puntuali. Vocabolario. Cambiando campione casuale, cambia l istogramma e cambiano gli indici Stm e putual Probabltà e Statstca I - a.a. 04/05 - Stmator Vocabolaro Popolazoe: u seme d oggett sul quale s desdera avere Iformazo. Parametro: ua caratterstca umerca della popolazoe. E u Numero fssato,

Dettagli

Soluzioni Esercitazione VIII. p(t)dt = R

Soluzioni Esercitazione VIII. p(t)dt = R S. a Si ha Soluioni Esercitaione VIII PT > + ptt ptt perché pt per t u + perché

Dettagli

TRASFORMAZIONI GEOMETRICHE Una trasformazione geometrica del piano in sé è una corrispondenza biunivoca tra i punti del piano: ( ) , :,

TRASFORMAZIONI GEOMETRICHE Una trasformazione geometrica del piano in sé è una corrispondenza biunivoca tra i punti del piano: ( ) , :, TRASFORMAZIONI GEOMETRICHE Un rsforzione geoeric del pino in sé è un corrispondenz iunivoc r i puni del pino P P, P P P è l igine di P rispeo ll rsforzione. Ad ogni puno P(,) corrisponde uno ed un solo

Dettagli

Il modello relazionale. Il Modello Relazionale. Il modello relazionale. Relazione. Dominio. Esempio

Il modello relazionale. Il Modello Relazionale. Il modello relazionale. Relazione. Dominio. Esempio Il Moello elzionle Proposto E. F. o nel 1970 per vorire l inipenenz ei ti e reso isponiile ome moello logio in DM reli nel 1981 si s sul onetto mtemtio i relzione, questo ornise l moello un se teori he

Dettagli

PROCESSI CASUALI. Segnali deterministici e casuali

PROCESSI CASUALI. Segnali deterministici e casuali POCESSI CASUALI POCESSI CASUALI Segnal deermnsc e casual Un segnale () s dce DEEMIISICO se è una funzone noa d, coè se, fssao un qualunque sane d empo o, l valore ( o ) assuno dal segnale è noo con esaezza

Dettagli

Il presente Regolamento Particolare di Gara. è stato approvato in data con numero di approvazione RM / CR /2015.

Il presente Regolamento Particolare di Gara. è stato approvato in data con numero di approvazione RM / CR /2015. Vrsion 5 3 Agosto Valità 2015 la Manifstazion : Campionato Italiano Rally Assoluto Campionato Italiano Rally Junior Campionato Italiano Rally Costruttori Coppa ACI-SPORT Rally CIR Equipaggi Inpndnti Coppa

Dettagli

Liste di specie e misure di diversità

Liste di specie e misure di diversità Lte d pece e mure d dvertà Carattertche delle lte d pece I dat ono par, coè hanno molt valor null (a volte la maggoranza!) La gran parte delle pece preent è rara. I fattor ambental che nfluenzano la dtrbuzone

Dettagli

IL LIBRO DI MORMON UN ALTRO TESTAMENTO DI GESÙ CRISTO

IL LIBRO DI MORMON UN ALTRO TESTAMENTO DI GESÙ CRISTO IL LIBRO DI MORMON UN ALTRO TESTAMENTO DI GESÙ CRISTO IL LIBRO DI MORMON UN ALTRO TESTAMENTO DI GESÙ CRISTO IL Libro di Mormon RACCONTO SCRITTO SU TAVOLE PER MANO DI MORMON TRATTO DALLE TAVOLE DI NEFI

Dettagli

Codici bifissi ed insiemi Sturmiani

Codici bifissi ed insiemi Sturmiani Università degli Studi di Plermo Fcoltà di Scienze MM. FF. NN. Corso di Lure Specilistic in Mtemtic Codici ifissi ed insiemi Sturmini Studente Frncesco Dolce Reltore Prof. Antonio Restivo Anno Accdemico

Dettagli

Quando A e B coincidono una coppia ordinata é determinata anche dalla loro posizione.

Quando A e B coincidono una coppia ordinata é determinata anche dalla loro posizione. Grafi ed Alberi Pag. /26 Grafi ed Alberi In questo capitolo richiameremo i principali concetti di due ADT che ricorreranno puntualmente nel corso della nostra trattazione: i grafi e gli alberi. Naturale

Dettagli

Alberi binari. Ilaria Castelli castelli@dii.unisi.it A.A. 2009/2010. Università degli Studi di Siena Dipartimento di Ingegneria dell Informazione

Alberi binari. Ilaria Castelli castelli@dii.unisi.it A.A. 2009/2010. Università degli Studi di Siena Dipartimento di Ingegneria dell Informazione Alberi binari Ilaria Castelli castelli@dii.unisi.it Università degli Studi di Siena Dipartimento di Ingegneria dell Informazione A.A. 2009/2010 I. Castelli Alberi binari, A.A. 2009/2010 1/20 Alberi binari

Dettagli

LE INTERSEZIONI Dispense didattiche di TOPOGRAFIA

LE INTERSEZIONI Dispense didattiche di TOPOGRAFIA lsse qurt Docente: In. Ntt MODULO I: IL RILIEVO TOOGRFIO UD I: L INQUDRMENTO ON LE RETI - INTERSEZIONI LE INTERSEZIONI Dispense didttiche di TOOGRFI r M unto di ollins O s θ 00 O d O d 00 θ θ ω ' ω θ c'

Dettagli

Lo strato limite PARTE 11. Indice

Lo strato limite PARTE 11. Indice PARTE 11 a11-stralim-rv1.doc Rl. /5/1 Lo strato limit Indic 1. Drivazion dll qazioni indfinit di Prandtl pr lo strato limit sottil pag. 3. Intgrazion nmrica dll qazioni indfinit di Prandtl. 11 3. Lo strato

Dettagli

REQUISITI DI SICUREZZA DEGLI IMPIANTI ELETTRICI R. Paciucci E. Ragno Servizio sicurezza e protezione - CNR

REQUISITI DI SICUREZZA DEGLI IMPIANTI ELETTRICI R. Paciucci E. Ragno Servizio sicurezza e protezione - CNR REQUISITI DI SICUREZZA DEGLI IMPIANTI ELETTRICI R. P E. R Svz szz pz - CNR L f sh s s mp pph ; p è pps pm pssbà p sss è ss vs, s s mp mq sz, ; s (, svh.) pss ss s z. I sh ss s spsv è sfvm fz m pph s p:

Dettagli

34. CILINDRI IN PRESSIONE

34. CILINDRI IN PRESSIONE G. Ptucc Lzon d Costuzon d Macchn 34. CILINDRI IN PRSSION quazon d obma astco In qusto catoo è sosto obma astco atvo a sod gomtcnt assasmmtc d oma cndca, ssso h costant, soggtt a cach agnt aant a ano otogona

Dettagli