Alberi di copertura minimi

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Alberi di copertura minimi"

Transcript

1 Albr d coprtur mnm

2 Sommro Albr d coprtur mnm pr grf pst Algortmo d Kruskl Algortmo d Prm

3 Albro d coprtur mnmo Un problm d notvol mportnz consst nl dtrmnr com ntrconnttr fr d loro dvrs lmnt mnmzzndo crt vncol sull connsson Un smpo clssco è qullo dll progttzon d crcut lttronc dov s vuol mnmzzr l qunttà d flo lttrco pr collgr fr loro morstt d dvrs componnt

4 Albro d coprtur mnmo Il problm può ssr modllto con un grfo non orntto connsso n cu l ntrconnsson sono rch pst (u,v) dov l pso spcfc l costo pr connttr u con v L soluzon dl problm consst nll dtrmnzon d un sottogrfo cclco T E ch conntt tutt vrtc n modo d mnmzzr l pso totl w(t)=σ (u,v) T w(u,v) Dto ch T è cclco collg tutt vrtc dv ssr un lbro Tl lbro è chmto lbro d coprtur mnmo o mnmum spnnng tr MST

5 Esmpo

6 Unctà L lbro d coprtur mnmo non è unco Ad smpo s possono dr du lbro d coprtur mnm pr l grfo n sm

7 Algortmo gnrco Vrrnno llustrt du lgortm d tpo grdy o golos: Algortmo d Kruskl Algortmo d Prm L pprocco grdy consst nllo scglr fr pù ltrntv qull pù convnnt sul momnto Not: n gnrl non è dtto ch n ogn tpo d problm qusto port d un soluzon globlmnt ottm. Pr l soluzon dl problm dll lbro d coprtur mnm un soluzon grdy concd con un soluzon globlmnt ottm

8 Arco scuro L d è d ccrscr un sottonsm A d rch d un lbro d coprtur ggungndo un rco ll volt Ad ogn psso s dtrmn un rco ch può ssr ggunto d A mntnndo l proprtà pr A d ssr un sottonsm d rch d un lbro d coprtur Un rco d qusto tpo è dtto rco scuro

9 Psudocodc Gnrc-MST(G,w) A whl A non form un lbro d coprtur 3 do trov un rco scuro (u,v) A A {(u,v)} 5 rturn A

10 Algortm concrt Pr potr mplmntr l lgortmo gnrco bbmo bsogno d dtrmnr gl rch scur Pr crttrzzr gl rch scur dobbmo ntrodurr lcun dfnzon: un tglo (S,V-S) d un grfo non orntto G=(V,E) è un prtzon d V un rco ttrvrs l tglo s uno d suo strm è n S l ltro è n V-S un tglo rsptt un nsm d rch A s nssun rco d A ttrvrs l tglo un rco lggro è un rco con pso mnmo

11 Vsulzzzon d conctt Arco lggro ch ttrvrs l tglo Tglo Insm A: rch n grgo l tglo rsptt A

12 Arch scur L rgol pr rconoscr gl rch scur è dt dl sgunt: Torm: S G=(V,E) un grfo non orntto connsso con un funzon pso w vlor rl dfnt su E. S A un sottonsm d E contnuto n un qulch lbro d coprtur mnmo pr G. S (S,V-S) un qulunqu tglo ch rsptt A. S (u,v) un rco lggro ch ttrvrs l tglo. Allor l rco (u,v) è scuro pr A

13 Vsulzzzon rco non scuro prché tglo non rsptt Arco scuro Arco non scuro

14 Vsulzzzon rco non scuro prché non lggro Arco non scuro Arco scuro

15 Arch scur Dmostrzon: s T l lbro d coprtur mnmo ch contn A l rco (u,v) o pprtn T, qund è scuro pr A oppur non pprtn T: n qusto cso frmo vdr ch sosttundo un rco (x,y)n T con l nuovo rco (u,v) ottnmo un T ch è smpr un lbro d coprtur mnmo, nftt: dv ssrc un ltro rco (x,y) d T ch ttrvrs l tglo prché T è un nsm connsso su tutt vrtc (un qulss tglo non rsptt T) qund dv ssrc un prcorso fr u v ch sono d prt oppost dl tglo noltr (x,y) non è n A prché l tglo rsptt A s costrusco T com T-(x,y)+(u,v) ho crto un nsm connsso con costo complssvo d T ch copr tutt vrtc ch h costo mnmo qund dv ssr un lbro d coprtur mnmo n prtc (u,v) dv ssr un rco con costo quvlnt (x,y)

16 Arch scur cos' bbmo ftto vdr ch (u,v) ' scuro pr un sottonsm d T', m no voglmo fr vdr ch (u,v) ' scuro pr A n T non n T', m... s T è un lbro d coprtur mnmo llor dto ch A è comprso n T ch (x,y) non r n A llor A è nch comprso n T nftt l unco cmbmnto d T n T è stto solo pr l rco (x,y) (u,v) ch non sono n A, gl ltr rch sono rmst nltrt d consgunz ggungr (u,v) d A mntn A un sottonsm dll lbro d coprtur (T qust volt) dunqu è un rco scuro pr A

17 Arch scur Corollro: S G=(V,E) un grfo non orntto connsso con un funzon pso w vlor rl dfnt su E. S A un sottonsm d E contnuto n un lbro d coprtur mnmo pr G S C un componnt connss (un lbro) nll forst G A =(V,A) S (u,v) è un rco lggro ch conntt C qulch ltr componnt n G A llor (u,v) è scuro pr A Dmostrzon: l tglo (C,V-C) rsptt A: qund l rco lggro (u,v) è un rco scuro pr A pr l torm prcdnt

18 Algortmo d Kruskl L d dll lgortmo d Kruskl è d ngrndr sottonsm dsgunt dll lbro d coprtur mnmo connttndol fr d loro fno d vr l lbro complssvo In prtcolr s ndvdu un rco scuro d ggungr ll forst scglndo un rco (u,v) d pso mnmo tr tutt gl rch ch connttono du dstnt lbr (componnt connss) dll forst L lgortmo è grdy prché d ogn psso s ggung ll forst un rco con l pso mnor possbl

19 Algortmo d Kruskl L d è ch, com rchsto dll lgortmo strtto: ogn componnt connss n A pprtn ll lbro d coprtur unndo componnt connss trmt rch lggr (pr l corollro) s stnno ggungndo rch scur d ogn fuson d componnt connss stmo spndndo A s può contnur fno qundo non s sono cqust tutt vrtc dl grfo

20 Implmntzon L lgortmo prsntto è sml qullo usto pr clcolr l componnt connss S us un struttur dt pr nsm dsgunt Ogn nsm contn vrtc d un lbro dll forst corrnt S può dtrmnr s du vrtc pprtngono llo stsso lbro vrfcndo l'guglnz dgl lmnt rpprsntnt rsttut d Fnd-St S fondono du lbr trmt l Unon

21 Psudocodc Kruskl MST-Kruskl(G,w) A for ll v n V[G] 3 do Mk-St(v) ordn gl rch d E pr pso w non dcrscnt 5 for ll (u,v) n E n ordn d pso non dcrscnt do f Fnd-St(u) Fnd-St(v) thn A A {(u,v)} Unon(u,v) rturn A

22 Spgzon dllo psudocodc L ln -3 nzlzzno l nsm A con l nsm vuoto crno V lbr, uno pr ogn vrtc l ln ordn gl rch pr pso nll ln 5- l cclo for controll ch vrtc d ogn rco pprtngno d lbr dvrs n cso ffrmtvo l rco vn ggunto d A l ln fond du lbr n un unco nsm Not: s vrtc pprtnssro llo stsso lbro collghrmmo du vrtc d un lbro ottnndo un cclo, fcndo vnr mno l condzon d cclctà dl sottogrfo d rcoprmnto

23 Vsulzzzon

24 Vsulzzzon

25 Vsulzzzon

26 Vsulzzzon

27 Anls Il tmpo d scuzon pr l lgortmo d Kruskl dpnd dll rlzzzon dll struttur dt pr nsm dsgunt S s utlzz l rlzzzon con forst con l urstch dl rngo dll comprsson d cmmn: l nzlzzzon rchd O(V) l tmpo ncssro pr ordnr gl rch è O(E lg E) n totl s fnno O(E) oprzon sull forst d nsm dsgunt (O(E) fnd-st O(E) unon), ovvro complssvmnt un tmpo O(E) In totl l tmpo d scuzon dll lgortmo d Kruskl è O(V+E lg E + E)=O(E lg E)

28 Algortmo d Prm L lgortmo d Prm procd mntnndo n A un sngolo lbro (un sngol componnt connss) L lbro prt d un vrtc rbtrro r (l rdc) crsc fno qundo non rcopr tutt vrtc Ad ogn psso vn ggunto un rco lggro ch collg un vrtc n A con un vrtc n V-A Pr l corollro qust rch sono scur pr A qund qundo l lgortmo trmn, n A v è un lbro d coprtur mnmo Anch qusto lgortmo è grdy poché l lbro vn stso d ogn psso scglndo l rco d pso mnmo tr qull possbl

29 Algortmo d Prm In qusto cso A h un unc componnt connss ch è l ntro lbro d coprtur ch st crscndo Il tglo (A, V-A) rsptt A.. qund pr l corollro qulss rco lggro ch ttrvrs l tglo è un rco scuro

30 Algortmo d Prm Pr vr un lgortmo ffcnt s dv prstr ttnzon com rndr fcl l sclt d un nuovo rco d ggungr d A Qusto vn ftto mmorzzndo tutt vrtc ch non sono nll lbro n costruzon n un cod con prortà Q Pr ogn nodo l prortà è bst su un cmpo ky[v] ch contn l mnmo tr ps dgl rch ch collgno v d un qulunqu vrtc dll lbro n costruzon Pr ogn nodo s ntroduc un cmpo prnt p[x] ch srv pr potr rcostrur l lbro

31 Algortmo d Prm L nsm A è mntnuto mplctmnt com A={(v,p[v]) : v n V - {r} - Q} Qundo l lgortmo trmn Q è vuot l lbro d coprtur n A è dunqu: A={(v,p[v]) : v n V - {r}}

32 Psudocodc Prm MST-Prm(G,w,r) Q V[G] for ll u n Q 3 do ky[u] ky[r] 0 5 p[r] NIL whl Q do u Extrct-Mn(Q) for ll v n Adj[u] do f v n Q nd w(u,v)<ky[v] thn p[v] u ky[v] w(u,v)

33 Spgzon psudocodc L ln - nzlzzno l cod Q con tutt vrtc pongono l ttrbuto ky pr ogn vrtc d cczon dl vrtc r pr l qul ky[r]=0 n modo d strrr r com lmnto mnmo nll fs nzl durnt l'lgortmo A ' mplctmnt costtuto dgl rch (v,p[v]) con v nll nsm V-Q, co' l'lbro d coprtur n costruzon h vrtc n V-Q l ln dntfc un vrtc u ncdnt su d un rco lggro ch ttrvrs l tglo (V-Q,Q) s lmn u d Q lo s ggung vrtc dll lbro

34 Spgzon psudocodc L ln - ggornno cmp ky p d ogn vrtc v dcnt u ch non pprtn ncor ll lbro durnt l'scuzon dll'lgortmo l cmpo ky[v] rpprsnt smpr l costo mnmo tr ps dgl rch ch collgno v d un qulunqu vrtc dll lbro n costruzon qust proprt' è prsrvt prché s s trov un rco ch collg v con l lbro d costo nfror, s ggorn ky l nuovo vlor mnmo durnt l'scuzon dll'lgortmo s ggorn l vlor ky d nod dcnt l nodo sotto sm ch vrrà nsrto nll lbro d coprtur

35 Spgzon dllo psudocodc Al cclo succssvo s smnrà l cod Q s trovrà ch uno d v smnt prcdntmnt è dmnuto tnto d ssr l vrtc con chv pù pccol llor s ggungrà mplctmnt v ll lbro, fssndo l rlzon pdr-fglo mglor trovt s procdrà d spndr l frontr d vrtc dcnt v, stblndo nuov potnzl rlzon pdr-fglo

36 Vsulzzzon ky= ky= ky= ky= ky= ky= ky= ky= ky= ky= ky= ky=

37 Vsulzzzon ky= ky= ky= ky= ky= ky= ky= ky= ky= ky=

38 Vsulzzzon

39 Anls L ffcnz dll lgortmo d Prm dpnd d com vn rlzzt l cod con prortà Q s Q vn rlzzt con uno hp bnro: s us Buld-Hp pr l nzlzzzon n tmpo O(V) l cclo ll ln vn sguto V volt d ogn oprzon Extrct-Mn è O(lg V) pr un totl d O(V lg V) l cclo ll ln vn sguto n tutto O(E) volt prch' l somm dll lunghzz d tutt l lst d dcnz ' E l controllo d pprtnnz ll ln può ssr sguto n O() usndo un mtodo d ndrzzmnto drtto l ssgnzon ll ln mplc un oprzon d Dcrs-Ky mplct sullo hp ch cost O(lg V) Il tmpo totl è prtnto un O(V+V lg V + E lg V) = O(E lg V) sntotcmnt gul qullo pr l lgortmo d Kruskl

Modelli equivalenti del BJT

Modelli equivalenti del BJT Modll ulnt dl JT Pr lo studo dll pplczon crcutl dl JT, s è rso opportuno formulr d modll ulnt dl dsposto ch srssro rpprsntr n modo connnt l suo comportmnto ll ntrno d crcut. A scond dl tpo d pplczon (mplfczon

Dettagli

Principi ed applicazioni del metodo degli elementi finiti. Formulazione base con approccio agli spostamenti

Principi ed applicazioni del metodo degli elementi finiti. Formulazione base con approccio agli spostamenti Prncp d applcazon dl mtodo dgl lmnt fnt Formulazon bas con approcco agl spostamnt PRINCIPIO DEI LAVORI VIRTALI Data una crta statca: sforz σ j, forz d volum F forz d suprfc f j ; s dmostra ch mporr la

Dettagli

S O L U Z I O N I + 100

S O L U Z I O N I + 100 S O L U Z I O N I Nl 00 un farmaco vnva vnduto a 70 a) Nll pots ch ogn anno l przzo aumnt dl 3% rsptto all anno prcdnt quanto vrrbb a costar lo stsso farmaco nl 0? b) Supponamo ch l przzo dl farmaco nl

Dettagli

La contabilizzazione dei derivati: alcune problematiche

La contabilizzazione dei derivati: alcune problematiche Luc Frncsco Frncsch Dottor Commrcst Docnt Fnnz Aznd (Unvrstà Cttolc Mno) L contbzzzon d drvt: cun problmtch 12 mrzo 2009 Anno 2009 Strumnt fnnzr drvt -1- Agnd Crs d mrct fnnzr: problm dll modtà contbzzzon

Dettagli

Esercitazioni di Elettrotecnica: circuiti in regime stazionario

Esercitazioni di Elettrotecnica: circuiti in regime stazionario Maffucc: rcut n rgm stazonaro r- Unrstà dgl Stud d assno srctazon d lttrotcnca: crcut n rgm stazonaro ntono Maffucc r sttmbr Maffucc: rcut n rgm stazonaro r- Sr paralllo parttor S alcolar la rsstnza qualnt

Dettagli

GUIDA alle Prestazioni Sanitarie di:

GUIDA alle Prestazioni Sanitarie di: GUIDA ll Prstzon Sntr d: FISIOTERAPIA AGOPUNTURA MANU MEDICA PRESIDI E AUSILI MEDICI ORTOPEDICI All ntrno l Novtà 2011 Sttor Trzro, Tursmo, Frmc Spcl, Ortofrutt A prtr dl 1 Aprl 2010 l prstzon offrt dl

Dettagli

Alberi di copertura minimi

Alberi di copertura minimi Albri di coprtura minimi Albro di coprtura (spanning tr) Dato un grafo G=(V, E, w) non orintato, connsso psato, un albro di coprtura di G è un sottografo X=(V, T) tal ch X è un albro (quindi connsso) T

Dettagli

Albero di supporto di costo minimo

Albero di supporto di costo minimo Algortm Struttur Dat II Alro supporto osto mnmo Nl prolma lla struzon ll nrga lttra sono vrs as h vono rvr nrga a una ntral lttra. Pr rvr nrga, ogn asa v ssr ollgata alla ntral attravrso un ammno fatto

Dettagli

Macchine non completamente specificate. Sintesi Sequenziale Sincrona Sintesi Comportamentale di Reti Sequenziali Sincrone

Macchine non completamente specificate. Sintesi Sequenziale Sincrona Sintesi Comportamentale di Reti Sequenziali Sincrone Mhin non ompltmnt spifit Sintsi Squnzil Sinron Sintsi Comportmntl i Rti Squnzili Sinron Riuzion l numro gli stti pr Mhin Non Compltmnt Spifit Comptiilità Vrsion l 5/12/02 Sono mhin in ui pr lun onfigurzioni

Dettagli

Tekla Structures Guida di riferimento per le opzioni avanzate. Versione del prodotto 21.1 agosto 2015. 2015 Tekla Corporation

Tekla Structures Guida di riferimento per le opzioni avanzate. Versione del prodotto 21.1 agosto 2015. 2015 Tekla Corporation Tkla Structurs Guda d rfrmnto pr l opzon avanzat Vrson dl prodotto 21.1 agosto 2015 2015 Tkla Corporaton Indc 1 Guda d rfrmnto pr l opzon avanzat... 17 1.1 Catgor nlla fnstra d dalogo Opzon avanzat...

Dettagli

Totti, 37 anni da leggenda. Un monumento vivente. Scritto da Redazione Venerdì 27 Settembre 2013 08:39 - VALERIA META

Totti, 37 anni da leggenda. Un monumento vivente. Scritto da Redazione Venerdì 27 Settembre 2013 08:39 - VALERIA META 37 nni d lggnd Un monumnto vivnt Scritto d Rdzion VALERIA META Scrivrlo sull fccit Sn Pitro potv ffttivmnt smbrr irrivrnt pr qunto l omonimo inquino dl Vticno si si mostrto prson ll mno Così gli uguri

Dettagli

Studio di funzione. Pertanto nello studio di tali funzioni si esamino:

Studio di funzione. Pertanto nello studio di tali funzioni si esamino: Prof. Emnul ANDRISANI Studio di funzion Funzioni rzionli intr n n o... n n Crttristich: sono funzioni continu drivbili in tutto il cmpo rl D R quindi non sistono sintoti vrticli D R quindi non sistono

Dettagli

Biennio CLEM - Prof. B. Quintieri. Anno Accademico 2012-2013, I Semestre. (Tratto da: Feenstra-Taylor: International Economics)

Biennio CLEM - Prof. B. Quintieri. Anno Accademico 2012-2013, I Semestre. (Tratto da: Feenstra-Taylor: International Economics) CONOMIA INTRNAZIONAL Bnno CLM - Prof. B. Quntr IL TASSO DI CAMBIO Anno Accadmco 2012-2013, I Smstr (Tratto da: Fnstra-Taylor: Intrnatonal conomcs) S propon, d sguto, una brv rassgna d prncp fondamntal

Dettagli

Circuiti Sequenziali Macchine Non Completamente Specificate

Circuiti Sequenziali Macchine Non Completamente Specificate CEFRIEL Consorzio pr l Formzion l Rir in Inggnri ll Informzion Politnio i Milno Ciruiti Squnzili Mhin Non Compltmnt Spifit Introuzion Comptiilità Riuzion l numro gli stti Mtoo gnrl FSM non ompltmnt spifit

Dettagli

CHIARA ZUCCHELLI. Florenzi, arriva il premio: contratto fino al 2016 e stipendio aumentato. Scritto da Redazione Giovedì 04 Ottobre 2012 07:31 -

CHIARA ZUCCHELLI. Florenzi, arriva il premio: contratto fino al 2016 e stipendio aumentato. Scritto da Redazione Giovedì 04 Ottobre 2012 07:31 - Flornzi rriv il prmio: contrtto fino l 2016 stipno umntto CHIARA ZUCCHELLI Il prmio più mritto rrivto Com nnuncito si d Sbtini si dl suo gnt Alssndro Lucci rrivto il rinnovo dl contrtto Alssndro Flornzi

Dettagli

Alessandro Ottola matr. 208003 lezione del 11/3/2010 ora 10:30-13:30. Parete omogenea sottoposta a differenze termiche e diffusione

Alessandro Ottola matr. 208003 lezione del 11/3/2010 ora 10:30-13:30. Parete omogenea sottoposta a differenze termiche e diffusione Alssandro Ottola matr. 0800 lzon dl //00 ora 0:0-:0 Indc Dagramma d Glasr... Part omogna sottoosta a dffrnz trmch dffuson... Dagramma d Glasr r art omogna... 4 Dagramma d Glasr r art multstrato... 5 Esrczo

Dettagli

Costruiamo un aquilone SLED

Costruiamo un aquilone SLED Costruimo un quon SLED Sgnr sul sgmnto cod du rifrimnti 3 cm dgli spigoli (vrso l'trno) poi sul bordo ntrior dll du li 11 cm dgli spigoli (vrso l'strno); qusto punto si dvono pplicr l du mnich sul bordo

Dettagli

Successioni numeriche

Successioni numeriche 08//05 uccssioi umrich uccssioi umrich Dfiizio U succssio è u fuzio ch d ogi umro turl ssoci u umro rl 0 : 0 : Es. 08//05 uccssioi umrich Dfiizio Il it dll succssio ch ch covrg d ) si idic è il umro rl

Dettagli

Norma UNI EN ISO 13788

Norma UNI EN ISO 13788 UNI EN ISO 13788 (2003: PRESTAZIONE IGROTERMICA DEI COMPONENTI E DEGLI ELEMENTI PER EDILIZIA TEMPERATURA SUPERFICIALE INTERNA PER EVITARE L'UMIDITA' SUPERFICIALE CRITICA E CONDENSAZIONE INTERSTIZIALE METODO

Dettagli

1 Derivate parziali 1. 2 Regole di derivazione 5. 3 Derivabilità e continuità 7. 4 Differenziabilità 7. 5 Derivate seconde e teorema di Schwarz 8

1 Derivate parziali 1. 2 Regole di derivazione 5. 3 Derivabilità e continuità 7. 4 Differenziabilità 7. 5 Derivate seconde e teorema di Schwarz 8 UNIVR Facoltà di Economia Sd di Vicnza Corso di Matmatica Drivat dll funzioni di più variabili Indic Drivat parziali Rgol di drivazion 5 3 Drivabilità continuità 7 4 Diffrnziabilità 7 5 Drivat scond torma

Dettagli

Capgemini Italia Spa. Ingegneria del Software. Roma, 11 Dicembre 2009

Capgemini Italia Spa. Ingegneria del Software. Roma, 11 Dicembre 2009 Capgmn Ita Spa Inggnra dl Softwar Roma, 11 Dcmbr 2009 Soc Ntwork Gorfrnzato su Mobl Fzon Rzzar soc ntwork (tpo facbook o lnkn) n cu è possbl aggornar nl propro proflo propra poszon attu (tt longt) rndr

Dettagli

Teoremi su correnti e tensioni

Teoremi su correnti e tensioni Teorem su corrent e tenson 1) ombnzone lnere efnzone: n un crcuto, ogn corrente e tensone è dt un combnzone lnere d genertor: V = K 1 $ g 1 K 2 $ g 2 K 3 $ g 3... I = K 1 $ g 1 K 2 $ g 2 K 3 $ g 3... oe

Dettagli

MATEMATICA FINANZIARIA 5. VALUTAZIONE DI PROGETTI ECONOMICO-FINANZIARI

MATEMATICA FINANZIARIA 5. VALUTAZIONE DI PROGETTI ECONOMICO-FINANZIARI MATEMATICA FINANZIARIA Pro. Andre Berrd 999 5. VALUTAZIONE DI PROGETTI ECONOMICO-FINANZIARI Corso d Mtemtc Fnnzr 999 d Andre Berrd Sezone 5 PROGETTO ECONOMICO-FINANZIARIO Un progetto economco-nnzro è un

Dettagli

Azionamenti con motore in corrente continua

Azionamenti con motore in corrente continua Azonmnt Elttr I M.Zglotto Azonmnt on motor n orrnt ontnu. - Struttur dll'zonmnto. - L struttur d prnpo d un zonmnto on motor orrnt ontnu d tzon ndpndnt, pr l qul s prvd s l ontrollo d rmtur h qullo d mpo,

Dettagli

Tecniche per la ricerca delle primitive delle funzioni continue

Tecniche per la ricerca delle primitive delle funzioni continue Capitolo 4 Tcnich pr la ricrca dll primitiv dll funzioni continu Nl paragrafo.7 abbiamo dato la dfinizion di primitiva di una funzion f avnt pr dominio un intrvallo I; abbiamo visto ch s F 0 è una primitiva

Dettagli

Corso di ordinamento - Sessione suppletiva - a.s. 2009-2010

Corso di ordinamento - Sessione suppletiva - a.s. 2009-2010 Corso di ordinmnto - Sssion suppltiv -.s. 9- PROBLEMA ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO SESSIONE SUPPLETIA Tm di: MATEMATICA. s. 9- Dt un circonrnz di cntro O rggio unitrio, si prndno

Dettagli

Caratteristiche, funzioni e modalità di determinazione del prezzo. Alessandro Scopelliti

Caratteristiche, funzioni e modalità di determinazione del prezzo. Alessandro Scopelliti Carattrstch, funzon modaltà d dtrmnazon dl przzo Alssandro Scopllt Unvrstà d Rggo Calabra Unvrsty of Warwck alssandro.scopllt@unrc.t Gl strumnt fnanzar Gl strumnt fnanzar sono contratt d natura fnanzara

Dettagli

RETI DI IMPRESE Posizionamento e distintività di UniCredit

RETI DI IMPRESE Posizionamento e distintività di UniCredit RETI DI IMPRESE Poszonmnto sttvtà UnCrt ll prsnt documnto è d sdrrs strttmnt rsrvto fdnz. Non costtusc sollctzon trrr o ssunzon d prt dl Bnc obblgh tl snso. Mo, Mrzo 203 Logch tsto L crs fnzr d mrct, volut

Dettagli

Teoria dell integrazione secondo Riemann per funzioni. reali di una variabile reale.

Teoria dell integrazione secondo Riemann per funzioni. reali di una variabile reale. Capitolo 2 Toria dll intgrazion scondo Rimann pr funzioni rali di una variabil ral Esistono vari tori dll intgrazion; tutt hanno com comun antnato il mtodo di saustion utilizzato dai Grci pr calcolar l

Dettagli

L ELLISSOIDE TERRESTRE

L ELLISSOIDE TERRESTRE L ELLISSOIDE TERRESTRE Fin dll scond mtà dl XVII scolo (su propost di Nwton) l suprfici più dtt ssr ssunt com suprfici di rifrimnto pr l Trr è stt individut in un ELLISSOIDE DI ROTAZIONE. E l suprfici

Dettagli

CONVENZIONE. Tra. 3 e la di Cislago Via EnricoMattei IMPRESEALTO MILAN'ESE,

CONVENZIONE. Tra. 3 e la di Cislago Via EnricoMattei IMPRESEALTO MILAN'ESE, ,/ CONVENZONE Tr DALMAS.R.L.- Gtroéncon sd Solro- V GtnoDonztt, 3 l d Cslgo V EnrcoMtt succursl, 12 P.lVA,00731240966 C.F. prson dl proprodrttor, sg.cstlnovo 02201810153n Dvd; MPRESEALTO MLAN'ESE, con

Dettagli

ANTON FILIPPO FERRARI

ANTON FILIPPO FERRARI ANTON FILIPPO FERRARI L Rom lo h prticmnt prso C è un ccordo mssim vnno dfiniti i dttgli in pr tic l controprtit tcnich Ngli ultimi du nni molti tifosi itlini in prticolr qulli dll Uns lo hnno conosciuto

Dettagli

Q = Le + U* + Ec + Eg + Ecf. Si ha inoltre:

Q = Le + U* + Ec + Eg + Ecf. Si ha inoltre: Esm d lzon dl mo no dll tmodnm n fom sostnzl Clolo tmtu d so Dtmn l tmtu md T sf d gs st d un moto ltntvo T (vnt szo moto tsubl), not l ondzon d sson tmtu ll'ntno dll m d ombuston l tmn dll fs/os d snson,

Dettagli

RISUONATORE FABRY-PEROT: PRINCIPIO DI FUNZIONAMENTO, CRITERI DI PROGETTO ED APPLICAZIONI

RISUONATORE FABRY-PEROT: PRINCIPIO DI FUNZIONAMENTO, CRITERI DI PROGETTO ED APPLICAZIONI ISUONO FY-PO: PINCIPIO DI FUNZIONMNO, CII DI POGO D PPLICZIONI Confronto fra rsuonator ottc a mcroond La dffrnza sostanzal fra rsuonator ottc qull a mcroond è ch l dmnson d qust ultm sono n gnr dllo stsso

Dettagli

Errori a regime per controlli in retroazione unitaria

Errori a regime per controlli in retroazione unitaria Appunt d ontoll Autoatc Eo a g n sst n toazon Eo a g p contoll n toazon untaa... Eo a g nlla sposta al gadno (o d poszon)... Eo a g nlla sposta alla apa (o d vloctà)...3 Eo a g nlla sposta alla paabola

Dettagli

CARATTERISTICHE DELL INVOLUCRO EDILIZIO

CARATTERISTICHE DELL INVOLUCRO EDILIZIO CAATTEISTICHE DELL INVOLUCO EDILIZIO Lvo d Santol, Francsco Mancn Unvrstà La Sapnza d oma lvo.dsantol@unroma1.t francsco.mancn@unroma1.t www.plus.t www.ngnrga.t Trasmttanza d una part opaca 2 La trasmttanza

Dettagli

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6.

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6. Corso di laura: BIOLOGIA Tutor: Floris Marta PRECORSI DI MATEMATICA PROPORZIONI Ossrvar l sgunti figur: Cosa possiamo dir di ss? Ch la suprfici dlla figura A sta alla suprfici dlla figura B com sta a 6.

Dettagli

INTEGRALI. 1. Integrali indefiniti

INTEGRALI. 1. Integrali indefiniti INTEGRALI. Intgrli indiniti Si un unzion ontinu in [, ]. Un unzion F dinit ontinu in [, ], drivil in ], [, disi primitiv di in [, ] s F, ], [. Tormi. S F è un primitiv di in [, ] llor nh G F, on R, è un

Dettagli

Esercizio 1. Costruire un esempio di variabili casuali X ed Y tali che Cov(x,y) = 0, ma X ed Y siano dipendenti.

Esercizio 1. Costruire un esempio di variabili casuali X ed Y tali che Cov(x,y) = 0, ma X ed Y siano dipendenti. srcz d conomtra: sr srczo Costrur un smpo d varabl casual d tal ch Cov(,), ma d sano dpndnt. Soluzon Dobbamo vrcar l sgunt condzon: σ [ ] [ ] [ ] covaranza nulla ) ( ) ( ) dpndnza non lnar Prma cosa da

Dettagli

LA DOMANDA DI TRASPORTO CARATTERIZZAZIONE E MODELLI (Capitolo 2)

LA DOMANDA DI TRASPORTO CARATTERIZZAZIONE E MODELLI (Capitolo 2) Fcolà d Inggnr - Unvrsà d Bologn nno ccdmco: 00/ TECNIC ED ECONOMI DEI TSPOTI Docn: Mrno Lup L DOMND DI TSPOTO CTTEIZZZIONE E MODELLI (Cpolo Modll d domnd - Modllo d domnd dscrvo (o non compormnl: non

Dettagli

LA NOSTRA AVVENTURA NEL CREARE UN LIBRO

LA NOSTRA AVVENTURA NEL CREARE UN LIBRO LA NOSTRA AVVENTURA NEL CREARE UN LIBRO Abbiamo iniziato a lggr in class Nonno Tano la casa dll strgh. Lo scopo ra ascoltar comprndr. Sguir la mastra ch dava sprssività alla lttura imparar da lla a lggr.

Dettagli

Minimizzazione degli Stati in una Rete Sequenziale Sincrona

Minimizzazione degli Stati in una Rete Sequenziale Sincrona Minimizzzion gli Stti in un Rt Squnzil Sinron Murizio Plsi Murizio Plsi 1 Sintsi i Rti Squnzili Sinron Il proimnto gnrl i sintsi si svolg ni sgunti pssi: 1. Rlizzzion l igrmm gli stti prtir ll spifih l

Dettagli

De Rossi, profumo di primavera Sabato 23 Marzo 2013 10:49 - DANIELE GIANNINI

De Rossi, profumo di primavera Sabato 23 Marzo 2013 10:49 - DANIELE GIANNINI DANIELE GIANNINI Frsco com un fior sboccia nl primo giorno primavra Il gol Danil D Rossi al Brasil ha s gnato simbolicamnt la fin dll invrno Il risvglio dlla natura qullo dlla Nazional stava prdndo immritatamnt

Dettagli

Compito di Fisica Generale I (Mod. A) Corsi di studio in Fisica ed Astronomia 4 aprile 2011

Compito di Fisica Generale I (Mod. A) Corsi di studio in Fisica ed Astronomia 4 aprile 2011 Compito di Fisica Gnral I (Mod A) Corsi di studio in Fisica d Astronomia 4 april 2011 Problma 1 Du blocchi A B di massa rispttivamnt m A d m B poggiano su un piano orizzontal scabro sono uniti da un filo

Dettagli

SPERIMENTAZIONE PROGETTO TELELAVORO CUSTOMER SERVICES

SPERIMENTAZIONE PROGETTO TELELAVORO CUSTOMER SERVICES 1 SPERIMENTAZIONE PROGETTO TELELAVORO CUSTOMER SERVICES 21 Luglio 2008 2 SPERIMENTAZIONE TELELAVORO Contct Cntr coinvolti: Rom (2 prson) Npoli (8 prson) Srvizi gstiti in tllvoro: 186 Rom Off Lin Npoli

Dettagli

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito.

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito. Integrli de niti. Il problem di clcolre l re di un regione pin delimitt d gr ci di funzioni si può risolvere usndo l integrle de nito. L integrle de nito st l problem del clcolo di ree come l equzione

Dettagli

GUIDA alle Prestazioni Sanitarie di:

GUIDA alle Prestazioni Sanitarie di: GUIDA ll Prstzon Sntr d: FISIOTERAPIA AGOPUNTURA MANU MEDICA PRESIDI E AUSILI MEDICI ORTOPEDICI Sttor Trzro, Tursmo, Frmc Spcl, Ortofrutt A prtr dl 1 Aprl 2010 l prstzon offrt dl Fondo Est s sono rrccht.

Dettagli

0 < a < 1 a > 1. In entrambi i casi la funzione y = a x si può studiare per punti e constatare che essa presenta i seguenti andamenti y.

0 < a < 1 a > 1. In entrambi i casi la funzione y = a x si può studiare per punti e constatare che essa presenta i seguenti andamenti y. INTRODUZIONE Ossrviamo, in primo luogo, ch l funzioni sponnziali sono dlla forma a con a costant positiva divrsa da (il caso a è banal pr cui non sarà oggtto dl nostro studio). Si possono allora vrificar

Dettagli

6) Nel 1991 Carl Lewis ha stabilito il record del mondo dei 100 m percorrendoli in 9,86 s. Qual è la velocità media in km/h?

6) Nel 1991 Carl Lewis ha stabilito il record del mondo dei 100 m percorrendoli in 9,86 s. Qual è la velocità media in km/h? 1) L unità l SI pr l tmprtur l mss sono, rispttivmnt gri grmmi klvin kilogrmmi Clsius milligrmmi Clsius kilogrmmi klvin grmmi 2) Qul mtril ffon nll olio ( = 0,94 g/m 3 )? ghiio ( = 0,92 g/m 3 ) sughro

Dettagli

Capitolo 7 - Predizione lineare

Capitolo 7 - Predizione lineare Appunti di lborzion numric di sgnli Cpitolo 7 - Prdizion linr Introduzion... rror mdio di prvision...3 Ossrvzion: prdizion linr com sbinctor dll squnz di ingrsso 5 Ortogonlità tr dti d rror...6 Vlor minimo

Dettagli

UNIVERSITÀ DEGLI STUDI DI BERGAMO. Facoltà di Ingegneria. Istituzioni di Economia Laurea Triennale in Ingegneria Gestionale

UNIVERSITÀ DEGLI STUDI DI BERGAMO. Facoltà di Ingegneria. Istituzioni di Economia Laurea Triennale in Ingegneria Gestionale Gnmr Mrtn UNIVERSITÀ DEGLI STUDI DI BERGAMO Fcoltà d Ingegner Isttuzon d Econom Lure Trennle n Ingegner Gestonle Lezone 9 Domnd del mercto Prof. Gnmr Mrtn Unverstà degl Stud d Bergmo Fcoltà d Ingegner

Dettagli

13 - LA PROGRAMMAZIONE DELL'ALLENAMENTO

13 - LA PROGRAMMAZIONE DELL'ALLENAMENTO 132 13 - LA PROGRAMMAZIONE DELL'ALLENAMENTO La prparazion complta dl calciator si ralizza sottoponndo il suo organismo, la sua prsonalità la sua potnzialità motoria, ad una gran quantità di stimoli ch

Dettagli

Scrivere 2.1 cm implica dire che la misura sia compresa nell intervallo mm

Scrivere 2.1 cm implica dire che la misura sia compresa nell intervallo mm Il lto d un ddo è pr. cm. Usndo le cfre sgnfctve per stmre l errore clcolre l volume del cuo. Supponendo che l devzone stndrd nell msur del lto s d mm clcolre l devzone stndrd che ssoct ll msur del volume.

Dettagli

1) La probabilità di ciascun evento elementare è non negativa. 2) La somma delle probabilità di tutti gli eventi elementari vale 1.

1) La probabilità di ciascun evento elementare è non negativa. 2) La somma delle probabilità di tutti gli eventi elementari vale 1. CAPITOLO SECONDO CALCOLO DELLE PROBABILITÀ Spazi di probabilità, vnti smplici d vnti composti Indichiamo con S lo spazio dgli vnti. Esso è un insim, i cui lmnti sono dtti vnti. Nl lancio di un dado, lo

Dettagli

Esempi di Cinematica Diretta/Inversa. Massimo Cavallari. Corso di Robotica Prof.ssa Giuseppina Gini 2007/2008

Esempi di Cinematica Diretta/Inversa. Massimo Cavallari. Corso di Robotica Prof.ssa Giuseppina Gini 2007/2008 Eemp Cnemt Drett/Inver Mmo Cvllr Coro Robot rof. Gueppn Gn 7/8 Cnemt nver oone e Orentmento ell EnEffetor oone e Gunt Obettvo ell nemt nver è l rer elle relon per l lolo elle vrbl gunto, te l poone e l'orentmento

Dettagli

Politiche riassicurative: la convenienza ai diversi trattati di riassicurazione

Politiche riassicurative: la convenienza ai diversi trattati di riassicurazione UNIVESIÀ DEGLI SUDI DI FIENZE F O L À D I E O N O M I OSO DI LUE IN SIENZE SISIHE ED UILI ESI DI LUE IN SISI SSIUIV oltch rsscurtv: l convnnz dvrs trttt d rsscurzon ltor: hr.mo rof. Lu Vnnucc s d lur d:

Dettagli

ELETTROTECNICA Ingegneria Industriale

ELETTROTECNICA Ingegneria Industriale LTTOTCNCA nggnra ndutral MTOD D ANALS TASFOMATO DAL MUTU NDUTTANZ Stfano Pator Dpartmnto d nggnra Archtttura Coro d lttrotcnca (04N) a.a. 0-4 Torma d Thnn Condramo un bpolo L collgato al rto dl crcuto

Dettagli

Diagrammi di Influenza (Influence Diagrams: ID)

Diagrammi di Influenza (Influence Diagrams: ID) Digrmmi di Influnz (Influnc Digrms: ID) Linguggio pr l rpprsntzion grfic di prolmi dcisionli Crttristich vntggi prmttono un rpprsntzion dll struttur gnrl dl prolm, st su un pproccio visul prmttono di formlizzr

Dettagli

www.master-cesma.it MASTER di II LIVELLO in I EDIZIONE

www.master-cesma.it MASTER di II LIVELLO in I EDIZIONE www.mstr-csm.t MASTER d II LIVELLO n I EDIZIONE 13 gnno 2014-13 gnno 2015 Mstr II Lvllo IL MASTER RILEVANZA/PREMESSA Crsc l domnd nl sttor prvto n qullo pubblco d sprt ltmnt qulfct con comptnz spcfch ch

Dettagli

Corso di Fisica Tecnica (ING-IND/11). 1 anno laurea specialistica in architettura: indirizzo città Docente: Antonio Carbonari

Corso di Fisica Tecnica (ING-IND/11). 1 anno laurea specialistica in architettura: indirizzo città Docente: Antonio Carbonari Corso di Fisic cnic (ING-IND/). nno lur spcilistic in rchitttur: indirizzo città Docnt: Antonio Crbonri Cpitolo I Il sistm città l uso pproprito dll nrgi.. Introduzion Un insdimnto urbno è un sistm strmmnt

Dettagli

Processi di separazione

Processi di separazione 6. Procss d sparazon 6.. Carattrstch d procss d sparazon La sparazon d soluzon mscl n loro sngol componnt costtusc un oprazon d grand mportanza pr l ndustra chmca, ptrolchmca ptrolfra. Quas tutt procss

Dettagli

RIFLETTOMETRIA NEL DOMINIO DEL TEMPO (TDR)

RIFLETTOMETRIA NEL DOMINIO DEL TEMPO (TDR) RFLETTOMETRA NEL DOMNO DEL TEMPO (TDR) Scopo dll srctaon La rflttomtra nl domno dl tmpo è una tcnca frquntmnt utlata, mpgando prncp dll co, pr carattrar ln d comuncaon, localar guast sa nll ln d trasmsson

Dettagli

La popolazione in età da 0 a 2 anni residente nel comune di Bologna

La popolazione in età da 0 a 2 anni residente nel comune di Bologna Sttor Programmazion, Controlli La popolazion in tà da 0 a 2 anni rsidnt nl comun di Bologna Maggio 2007 La prsnt nota è stata ralizzata da un gruppo di dirignti funzionari dl Sttor Programmazion, Controlli

Dettagli

INTRODUZIONE. T e. abbiamo indicato la temperatura finale raggiunta dai due corpi a contatto (temperatura di equilibrio).

INTRODUZIONE. T e. abbiamo indicato la temperatura finale raggiunta dai due corpi a contatto (temperatura di equilibrio). INRODUZIONE Pr la coprnson d olt fatt sprntal ch sporro n sguto, è d fondantal portanza l acquszon dl conctto d qulbro trco. S l bulbo d un trotro vn sso n contatto trco con un corpo qualsas, la poszon

Dettagli

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6.

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6. Corso di laura: BIOLOGIA Tutor: Floris Marta PRECORSI DI MATEMATICA PROPORZIONI Ossrvar l sgunti figur: Cosa possiamo dir di ss? Ch la suprfici dlla figura A sta alla suprfici dlla figura B com sta a 6.

Dettagli

Lettera 32. Lettera 32. Sistema Ufficio. Sistema Ufficio

Lettera 32. Lettera 32. Sistema Ufficio. Sistema Ufficio Lttra 32 Sistma Ufficio INDUSTRIE VALENTINI SPA via Rigoltto 27-47900 Rimini Tl. +39 0541 368888 - Fax +39 0541 774233 www.valntini.com Lttra 32 Sistma Ufficio L 2 3 a r t t inif, l nzia nano s s bi gn

Dettagli

ACCORDO DI COLLABORAZIONE TRA LA REGIONE VENETO E L UNIVERSITA DEGLI STUDI DI PADOVA, L UNIVERSITA DEGLI

ACCORDO DI COLLABORAZIONE TRA LA REGIONE VENETO E L UNIVERSITA DEGLI STUDI DI PADOVA, L UNIVERSITA DEGLI ACCORDO DI COLLABORAZIONE TRA LA REGIONE VENETO E L UNIVERSITA DEGLI STUDI DI PADOVA, L UNIVERSITA DEGLI STUDI DI VERONA, L UNIVERSITA IUAV DI VENEZIA, L UNIVERSITA CA FOSCARI E L AZIENDA REGIONALE PER

Dettagli

Università di Napoli Parthenope Facoltà di Ingegneria

Università di Napoli Parthenope Facoltà di Ingegneria Unverstà d Npol Prthenope Fcoltà d Ingegner Corso d Trsmssone Numerc docente: Prof. Vto Psczo 3 Lezone: /0/004 4 Lezone: /0/004 Sommro Quntzzzone sclre (unforme e non unforme) Quntzzzone vettorle (VQ)

Dettagli

Corso di Laurea in Ingegneria Metodi di Rappresentazione Tecnica

Corso di Laurea in Ingegneria Metodi di Rappresentazione Tecnica Coro d Lur n Inggnr Mtod d Rpprntzon Tcnc rctzon 1. Clcolr l mmo d l mnmo goco/ntrfrnz dgl ccoppmnt gunt 50 H7/p6 80 7/h6 30 H8/7 50 H8/t7 6 N7/7 6 N7/j6 6 N7/f6 22 P7/h6 15 7/h8 25 H8/g7 30 H7/p6 2. Dgnr

Dettagli

REGIONE DEL VENETO DELIBERAZIONE OGGETTO

REGIONE DEL VENETO DELIBERAZIONE OGGETTO REGIONE DEL VENETO AZIENDA UNITA LOCALE SOCIOSANITARIA N. 6 VICENZA DELIBERAZIONE n. 259 dl 08/04/20 14 OGGETTO Isttuzon dl Gruppo Intrzndl Sclros Multp dl Provnc Vcnz. Proponnt: Srvzo Afftr Lgl Ammnstrtv

Dettagli

0.1. CIRCONFERENZA 1. La 0.1.1, espressa mediante la formula per la distanza tra due punti, diviene:

0.1. CIRCONFERENZA 1. La 0.1.1, espressa mediante la formula per la distanza tra due punti, diviene: 0.1. CIRCONFERENZA 1 0.1 Circonfrnza Considriamo una circonfrnza di cntro P 0 (x 0, y 0 ) raggio r, cioè il luogo di punti dl piano P (x, y) pr i quali si vrifica la rlazion: 0.1.1. P 0 P = r. La 0.1.1,

Dettagli

Aspettative, produzione e politica economica

Aspettative, produzione e politica economica Lzion 18 (BAG cap. 17) Aspttativ, produzion politica conomica Corso di Macroconomia Prof. Guido Ascari, Univrsità di Pavia 2 1 L aspttativ la curva IS Dividiamo il tmpo in du priodi: 1. un priodo corrnt

Dettagli

Matematica 15 settembre 2009

Matematica 15 settembre 2009 Nom: Mtriol: Mtmti 5 sttmbr 2009 Non sono mmss loltrii. Pr l domnd rispost multipl, rispondr brrndo o rhindo hirmnt un un sol lttr. Pr l ltr domnd srivr l soluzion on svolgimnto ngli spzi prdisposti..

Dettagli

Lezione 3. F. Previdi - Automatica - Lez. 3 1

Lezione 3. F. Previdi - Automatica - Lez. 3 1 Lzon 3. Movmno Equlbro F. Prv - Auomaca - Lz. 3 1 Schma lla lzon 1. Movmno ll usca un ssma LTI SISO. Movmno lbro movmno forzao 3. Equlbro un ssma LTI SISO 4. Guaagno saco un ssma LTI SISO F. Prv - Auomaca

Dettagli

Studio di funzione. R.Argiolas

Studio di funzione. R.Argiolas Studio di unzion R.Argiolas Introduzion Prsntiamo lo studio dl graico di alcun unzioni svolt durant l srcitazioni dl corso di analisi matmatica I assgnat nll prov scritt. Ringrazio anticipatamnt tutti

Dettagli

Comunità Europea (CE) International Accounting Standards, n. 17

Comunità Europea (CE) International Accounting Standards, n. 17 Scopo contnuto dl documnto Comunità Europa (CE) Intrnational Accounting Standards, n. 17 Lasing Lasing Finalità SOMMARIO Paragrafi 1 Ambito di applicazion 2-3 Dfinizioni 4-6 Classificazion dll oprazioni

Dettagli

Giornale della Scuola Primaria Pisacane e Poerio A. S. 2014/2015 n. 1

Giornale della Scuola Primaria Pisacane e Poerio A. S. 2014/2015 n. 1 Gornl dll Scuol Prmr Pscn Poro A. S. 2014/2015 n. 1 Sgu smpr l 3 R : Rsptto pr t stsso. Rsptto pr gl ltr. Rsponsbltà pr l tu zon. Dl Lm Il smntor, Vn Gogh Clss 1^ C Du pccon, Chgll Clss 1^ E L 4^ A ncontr

Dettagli

Esercizio 1. Cov(X,Y)=E(X,Y)- E(X)E(Y).

Esercizio 1. Cov(X,Y)=E(X,Y)- E(X)E(Y). Esrcizi di conomtria: sri 4 Esrcizio Siano, Z variabili casuali distribuit scondo la lgg multinomial di paramtri n, p, p, p p p.. Calcolar la Covarianza tra l variabili d. Soluzion Dat du variabili dinit

Dettagli

SCUOLA DELL'INFANZIA DI VILLA STRADA. a.s. 2013/2014 SEZIONE DEI BAMBINI DI 5 ANNI

SCUOLA DELL'INFANZIA DI VILLA STRADA. a.s. 2013/2014 SEZIONE DEI BAMBINI DI 5 ANNI SCUOLA DELL'INFANZIA DI VILLA STRADA a.s. 2013/2014 "LA FESTA DEI NONNI" SEZIONE DEI BAMBINI DI 5 ANNI " Inzam l'ann sclastc fstggand nstr NONNI pr rcrdar quant sn przs pr n bambn. Pnsam ch l md pù bll

Dettagli

INTRODUZIONE ALLO STUDIO DELLE MACCHINE ELETTRICHE ROTANTI

INTRODUZIONE ALLO STUDIO DELLE MACCHINE ELETTRICHE ROTANTI Gnralità INTRODUZIONE ALLO STUDIO DELLE MACCHINE ELETTRICHE ROTANTI Una acchina lttrica rotant è un convrtitor di nrgia ccanica in lttrica (gnrator) o, vicvrsa, di nrgia lttrica in ccanica (otor). Il fnono

Dettagli

Il Progress Test nei Corsi di Laurea delle Professioni Sanitarie

Il Progress Test nei Corsi di Laurea delle Professioni Sanitarie Il Pgss Tst n Cs d Lu dll Pfssn Snt Pl Pllstn (Psdnt C.d.L. n Fstp) Luc Btzz (Cdnt C.d.L. n Fstp) Unvstà d Blgn 1 Pgss Tst Infm Fstpst PROFESSIONI CHE HANNO PARTECIPATO Osttch (ch hnn sgut un pcdu plll)

Dettagli

la mente cosciente... oltre i neuroni?

la mente cosciente... oltre i neuroni? la mnt coscint... oltr i nuroni? smbra ch ci sia un problma insolubil pr la scinza! com puo il mondo fisico produrr qualcosa con l carattristich dlla mnt coscint? un problma cosi difficil ch qualcuno lo

Dettagli

DIPARTIMENTO DELL'AMMINISTRAZIONE PENITENZIARIA Direzione Generale del Personale e della Formazione Ufficio 11- Sezione Il

DIPARTIMENTO DELL'AMMINISTRAZIONE PENITENZIARIA Direzione Generale del Personale e della Formazione Ufficio 11- Sezione Il DIPARTIMENTO DELL'AMMINISTRAZIONE PENITENZIARIA Drzon Gnral dl Prsonal dlla Formazon Uffco 11- Szon Il Prot. 11. LETTERA CIRCOLARE A Sgnor Provvdtor Rgonal dl'ammnstrazon Pntnzara A Sgnor Drttor dgl Isttut

Dettagli

Come Vendere AdWords. Programma Agenzie QUalificate AdWords

Come Vendere AdWords. Programma Agenzie QUalificate AdWords Cm Vndr Prgrmm Agnz QUlfct 1 Pt frz PERTINENZA PERTINENZA Rggg Rggg clt clt nl nl mmnt mmnt tt tt mstr mstr gl gl nnc nnc ptnzl ptnzl clt clt mntr mntr stnn stnn ttvmnt ttvmnt crcnd crcnd 'ttvtà 'ttvtà

Dettagli

Documento tratto da La banca dati del Commercialista

Documento tratto da La banca dati del Commercialista Documnto tratto da La banca dati dl Commrcialista Intrnational Accounting Standards Board Intrnational Accounting Standards, n. 17 SCOPO E CONTENUTO DEL DOCUMENTO Lasing Il prsnt Principio sostituisc lo

Dettagli

Trasformatore. Parte 2 Trasformatori trifase www.die.ing.unibo.it/pers/mastri/didattica.htm (versione del 16-11-2012) Trasformatore trifase (1)

Trasformatore. Parte 2 Trasformatori trifase www.die.ing.unibo.it/pers/mastri/didattica.htm (versione del 16-11-2012) Trasformatore trifase (1) Trasformator Part Trasformator trfas www.d.ng.unbo.t/prs/mastr/ddattca.htm (vrson dl 1-11-01) Trasformator trfas Pr trasfrr nrga lttrca tra du rt trfas s possono utlzzar tr trasformator monofas, ugual

Dettagli

1 Il concetto di funzione 1. 2 Funzione composta 4. 3 Funzione inversa 6. 4 Restrizione e prolungamento di una funzione 8

1 Il concetto di funzione 1. 2 Funzione composta 4. 3 Funzione inversa 6. 4 Restrizione e prolungamento di una funzione 8 UNIVR Facoltà di Economia Sd di Vicnza Corso di Matmatica 1 Funzioni Indic 1 Il conctto di funzion 1 Funzion composta 4 3 Funzion invrsa 6 4 Rstrizion prolungamnto di una funzion 8 5 Soluzioni dgli srcizi

Dettagli

L insieme N e l insieme Z Le cifre e i numeri Le quattro operazioni e le potenze in N Le espressioni La misura e i problemi

L insieme N e l insieme Z Le cifre e i numeri Le quattro operazioni e le potenze in N Le espressioni La misura e i problemi L nsm N l nsm Z L r numr L quttro oprzon l potnz n N L sprsson L msur prolm L r numr 1 Stls s l sunt rmzon sono vr o ls. SEZ. A l m n o p q 39 è un numro spr. 112 è un numro pr. In 79, 9 è un r. 10 è un

Dettagli

Matematica. Indice lezione. (Esercitazioni) dott. Francesco Giannino dott. Valeria Monetti. Funzione esponenziale

Matematica. Indice lezione. (Esercitazioni) dott. Francesco Giannino dott. Valeria Monetti. Funzione esponenziale Mtmtic (Esrcitzioni) Equzioni Disquzioni sponnzili - ritmich dott. Frncsco Ginnino dott. Vlri Montti Indic lzion Funzion sponnzil Equzioni disquzioni sponnzili Funzion ritmo Equzioni disquzioni ritmich

Dettagli

Moduli e-learning ABB Istruzioni per la frequenza ai corsi. Sommario

Moduli e-learning ABB Istruzioni per la frequenza ai corsi. Sommario Moduli -larning ABB Istruzioni pr la frqunza ai corsi Il prsnt documnto ha lo scopo di dscrivr l principali carattristich di corsi -larning: com rgistrarsi d accdr al sistma, iscrivrsi ad un corso, frquntarlo

Dettagli

SPOSTAMENTO E RETTIFICA DI CONFINE

SPOSTAMENTO E RETTIFICA DI CONFINE SPOSEO E REIFI I OFIE Lo SPOSEO si qundo un confin ià rttilino vin sostituito con un ltro smpr rttilino L REIFI si qundo un confin polionl o curvilino vin sostituito con un ltro rttilino. SPOSEO REIFI

Dettagli

Appunti sulle disequazioni frazionarie

Appunti sulle disequazioni frazionarie ppunti sull disquazioni frazionari Sono utili l sgunti dfinizioni Una disquazion fratta o frazionaria è una disquazion nlla qual l incognita compar in qualch suo dnominator. Una disquazion razional è una

Dettagli

Integrazione e Integratori delle Informazioni

Integrazione e Integratori delle Informazioni SC.S.I. A.S.O. Ordin Mauriziano Workshop intrrgional sui sistmi informativi pr la gstion la valutazion dll rti oncologich Torino 24-25 maggio 2007 Intgratori dll Andra Bo - A.S.O. Ordin Mauriziano - S.C.

Dettagli

I vettori. a b. 180 α B A. Un segmento orientato è un segmento su cui è stato fissato un verso. di percorrenza, da verso oppure da verso.

I vettori. a b. 180 α B A. Un segmento orientato è un segmento su cui è stato fissato un verso. di percorrenza, da verso oppure da verso. I vettor B Un segmento orentto è un segmento su cu è stto fssto un verso B d percorrenz, d verso oppure d verso. A A Il segmento orentto d verso è ndcto con l smolo. Due segment orentt che hnno l stess

Dettagli

Corso di Laurea in Economia Matematica per le applicazioni economiche e finanziarie. Esercizi 4

Corso di Laurea in Economia Matematica per le applicazioni economiche e finanziarie. Esercizi 4 Corso di Laura in Economia Matmatica pr l applicazioni conomich finanziari Esrcizi 4 Vrificar s l sgunti funzioni, nll intrvallo chiuso indicato, soddisfano l ipotsi dl torma di Roll, in caso affrmativo,

Dettagli

Limiti di successioni - svolgimenti

Limiti di successioni - svolgimenti Limiti di succssioi - svolgimti Scrivrmo a b quado a b =. Calcoliamo qusto it, raccoglido il fattor al umrator al domiator. Si ha 2 + 2 4 = + 2 2 3! 4 3!. Iazitutto, ricordiamo ch Ioltr, si ha utilizzado

Dettagli

Decoder per locomotive MX61 model 2000 e MX62

Decoder per locomotive MX61 model 2000 e MX62 ZIMO Manual istruzioni dl Dcodr pr locomotiv MX61 modl 2000 MX62 pr il formato di dati NMRA-DCC nll vrsioni MX61R (con connttor mdio) MX61F (connttor piccolo) MX62W (con 7 cavtti snza connttor) MX62R (

Dettagli

RENDICONTO PROGETTO/ATTIVITA' Esercizio finanziario 2014

RENDICONTO PROGETTO/ATTIVITA' Esercizio finanziario 2014 Mnstro ll'istruzon, ll'unvrstà ll Rcrc Esrczo fnnzro 2014 Progtto/ttvtà A 1 Funzonmnto mmnstrtvo gnrl Pgn n. 1 Tpo Dscrzon Progrm Vrzon Progrm fntv c = + mpgnt pgt rmst (1) rsu 01 Prsonl 0,00 121,43 121,43

Dettagli

L incentivazione economica nei problemi di agenzia: Il caso dell Azienda Sanitaria Pubblica

L incentivazione economica nei problemi di agenzia: Il caso dell Azienda Sanitaria Pubblica Dpartmnto d Poltch Pubblch Sclt Collttv POIS Dpartmnt of Publc Polcy and Publc Choc POIS Workng papr n. 9 Jun 28 ncntvazon conomca n problm d agnza: Il caso dll Aznda Santara Pubblca Robrto Ippolt UNIVERSITA

Dettagli

c r e a t i v i t à O G G I

c r e a t i v i t à O G G I 9 c mp us l pnso co p l succsso dll pop znd o dll pop ognzzzon To d Cy Tody d. Byb R. Vullngs UNA MENTE CREATVA ESERCTATE LE VSTRE ABLTA CREATVE! Esmn com un l, l pnso co d f sczo p mnn l popo cllo n fom.

Dettagli