Parallelogrammi 1 Parallelogrammi Nome: classe: data:

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Parallelogrammi 1 Parallelogrammi Nome: classe: data:"

Transcript

1 Parallelogrammi 1 Parallelogrammi Nome: classe: data: 1. Quali tra le seguenti sono proprietà del parallelogramma?. ciascuna diagonale lo divide in due triangoli uguali. gli angoli opposti sono uguali. tutti i lati sono uguali. le diagonali sono perpendicolari E. due lati opposti sono paralleli e congruenti 1. RISPOST:,, E 2. Quale delle seguenti affermazioni è falsa per un parallelogramma qualsiasi?. i lati opposti sono uguali. gli angoli adiacenti sono supplementari. gli angoli opposti sono supplementari. le diagonali si dimezzano reciprocamente E. i lati opposti sono paralleli 2. RISPOST: OMMENTO: Gli angoli opposti sono congruenti 3. Quali delle seguenti affermazioni relative ai trapezi sono vere?. Un quadrilatero che ha una sola coppia di lati opposti uguali è un trapezio. Gli angoli adiacenti alla base maggiore di un trapezio rettangolo sono uno retto e uno acuto. In un trapezio isoscele gli angoli adiacenti alla base minore sono ottusi. Un quadrilatero che ha due lati opposti paralleli è un trapezio E. Il trapezio è un particolare parallelogramma 3. RISPOST:,, 4. Quali delle seguenti affermazioni sui parallelogrammi particolari sono vere?. Il rombo è anche rettangolo. Il rombo è anche quadrato. Il rettangolo è anche parallelogramma. Il quadrato è anche rombo E. Il quadrato è anche rettangolo 4. RISPOST:,, E 5. Quale delle seguenti condizioni è sufficiente affinché un quadrilatero sia un rettangolo?. I lati opposti siano uguali e un angolo sia retto. Le diagonali si dividano a metà. I lati opposti siano paralleli. Le diagonali siano uguali e un angolo sia retto 5. RISPOST: OMMENTO: Le diagonali si dividano a metà può essere un semplice parallelogramma; i lati opposti siano paralleli individua un semplice parallelogramma; un angolo retto e diagonali uguali non è sufficiente per individuare un rettangolo basta partire da un triangolo rettangolo e tracciare una diagonale che sia congruente all ipotenusa per ottenere un quadrilatero che soddisfa le condizioni richieste ma non è un rettangolo. 6. Quale dei seguenti parallelogrammi ha le diagonali che sono bisettrici, congruenti e perpendicolari?. trapezio. rettangolo. quadrato. rombo E. trapezio isoscele

2 Parallelogrammi 2 6. RISPOST: 7. In un parallelogramma, le bisettrici di due angoli adiacenti a un lato sono. perpendicolari. parallele. diagonali. congruenti 7. RISPOST: OMMENTO: Il triangolo formato dalle bisettrici e dal lato comune ha gli angoli alla base che sono metà angolo piatto, in quanto gli angoli adiacenti sono supplementari, pertanto anche l angolo al vertice sarà retto. 8. Una diagonale di un rettangolo divide il rettangolo in due triangoli. scaleni. isosceli. rettangoli. equilateri 8. RISPOST: 9. Quali delle seguenti affermazioni relativa a un rombo è falsa?. Ha tutti gli angoli uguali. Le diagonali sono bisettrici degli angoli. Le diagonali sono perpendicolari. I lati opposti sono uguali E. I lati opposti sono paralleli 9. RISPOST: OMMENTO: Il rombo ha i lati uguali ma gli angoli possono essere diversi; il parallelogramma con gli angoli uguali è il rettangolo. 10. Se, P, Q, R,, T sono rispettivamente dei quarilateri, Parallelogrammi, Quadrati, Rettangoli, romi, Trapezi, quali delle seguenti intersezioni sono corrette?. P T=T. Q R=Q. R =Q. T=T E. P R= 10. RISPOST:,, 11. Quale coppia di parole completa correttamente la frase: Unendo i punti medi dei lati di un si ottiene un. rettangolo, quadrato. rombo, quadrato. quadrilatero, parallelogramma. quadrato, rombo ma non quadrato 11. RISPOST: OMMENTO: Unendo i punti medi di un quadrilatero qualsiasi si ottiene sempre un parallelogramma. Infatti, unendo per esempio i punti medi M e N rispettivamente dei lati e per il teorema di Talete MN è parallela alla diagonale ; analogamente unendo i punti medi Q e P si ottiene una parallela alla diagonale e quindi QP è parallela a MN.

3 Parallelogrammi 3 Q N P M 12. Quali affermazioni sono false?. Ogni rettangolo è anche rombo. Ogni rettangolo è anche parallelogramma. ogni quadrato è anche rombo. ogni quadrato è anche rettangolo E. Ogni trapezio è anche parallelogramma 12. RISPOST:, E 13. Quali tra le seguenti sono condizioni necessarie ma non sufficienti affinché un quadrilatero sia la figura specificata?. i lati congruenti è condizione necessaria ma non sufficiente affinché sia un quadrato. gli angoli congruenti è condizione necessaria ma non sufficiente affinché sia un rettangolo. le diagonali siano perpendicolari è condizione necessaria ma non sufficiente affinché sia un rombo?. le diagonali siano congruenti è condizione necessaria ma non sufficiente affinché sia un quadrato. E. i lati opposti paralleli è condizione necessaria ma non sufficiente affinché sia un parallelogramma 13. RISPOST:,, 14. Quali delle seguenti sono condizioni necessarie e sufficienti affinché un quadrilatero sia un parallelogramma. Gli angoli adiacenti allo stesso lato siano supplementari. Le diagonali siano congruenti. Gli angoli opposti siano congruenti. Le diagonali siano bisettrici degli angoli RISPOST:, 15. è un triangolo isoscele di base, si prendono due punti P e Q rispettivamente su e in modo che P=Q. llora il quadrilatero PQ è. parallelogramma. trapezio. rettangolo. rombo E. quadrato 14. RISPOST: 16. Nel parallelogramma il segmento O rappresenta per il triangolo O. l altezza. la mediana

4 Parallelogrammi 4. la bisettrice. l asse 15. RISPOST: OMMENTO: In un parallelogramma le diagonali si dividono scambievolmente per metà, quindi O è punto medio di e O è la mediana. 17. In figura, è un rettangolo, E, F, G, H sono congruenti, allora HG e FE G H F E. Sono congruenti per il secondo criterio di congruenza dei triangoli in quanto per ipotesi hanno un lato e due angoli congruenti. Sono congruenti per il primo criterio di congruenza perché per ipotesi hanno due lati e l angolo tra essi compreso congruenti. Sono congruenti per il terzo criterio di congruenza in quanto per ipotesi hanno tutti e tre i lati congruenti. Non sono congruenti. 16. RISPOST: 18. In figura, è un parallelogramma e H è altezza relativa alla base. Si prolunghi H di un segmento HL congruente a H. llora. L è un parallelogramma. L è un trapezio isoscele. L è un rettangolo E. L è un trapezio ma non è isoscele 17. RISPOST: 19. In figura, è un rombo con l angolo in congruente all angolo in. Quale delle seguenti affermazioni è falsa? H. è un triangolo isoscele. è anche quadrato. è congruente a. e sono perpendicolari

5 Parallelogrammi 5 E. è congruente ad 18. RISPOST: 20. Quanto misurano gli angoli e del parallelogramma in figura? , , , , 145 E. 65, 115 F. 45, RISPOST: 65

Principali Definizioni e Teoremi di Geometria

Principali Definizioni e Teoremi di Geometria Principali Definizioni e Teoremi di Geometria Segmento (definizione) Si dice segmento di estremi A e B l insieme costituito dai punti A e B e da tutti i punti della retta AB compresi tra A e B. Angolo

Dettagli

Dato un triangolo ABC, è il segmento che partendo dal vertice opposto al lato, incontra il lato stesso formando due angoli retti.

Dato un triangolo ABC, è il segmento che partendo dal vertice opposto al lato, incontra il lato stesso formando due angoli retti. Anno 2014 1 Sommario Altezze, mediane, bisettrici dei triangoli... 2 Altezze relativa a un vertice... 2 Mediane relative a un lato... 2 Bisettrici relativi a un lato... 2 Rette perpendicolari... 3 Teorema

Dettagli

GEOMETRIA. Congruenza, angoli e segmenti

GEOMETRIA. Congruenza, angoli e segmenti GEOMETRIA Per affermare che un triangolo è isoscele o rettangolo oppure che un quadrilatero è un parallelogramma o un rettangolo o un rombo o un quadrato o un trapezio o un trapezio isoscele, c è sempre

Dettagli

Unità Didattica N 25 Quadrilateri particolari

Unità Didattica N 25 Quadrilateri particolari Unità idattica N 25 Quadrilateri particolari 41 Unità idattica N 25 Quadrilateri particolari 01) efinizione di quadrilatero 02) efinizione di parallelogrammo 03) Teoremi diretti sul parallelogrammo 04)

Dettagli

I TRIANGOLI. Esistono vari tipi di triangoli che vengono classificati in base ai lati e agli angoli.

I TRIANGOLI. Esistono vari tipi di triangoli che vengono classificati in base ai lati e agli angoli. I TRIANGOLI Il triangolo è un poligono formato da tre angoli o vertici e da tre lati. Il triangolo è la forma geometrica con il minor numero di lati perché tre è il numero minimo di lati con cui si può

Dettagli

Le caratteristiche dei poligoni. La relazione tra i lati e gli angoli di un poligono. Definizioni

Le caratteristiche dei poligoni. La relazione tra i lati e gli angoli di un poligono. Definizioni Le caratteristiche dei poligoni 1. Si dice poligono la parte del piano delimitata da una spezzata chiusa. 2. Il perimetro di un poligono è la somma delle misure del suoi lati, si indica cm 2p. 3. Un poligono

Dettagli

In un triangolo altezza mediana bisettrice asse Proprietà di angoli e lati di un triangolo

In un triangolo altezza mediana bisettrice asse Proprietà di angoli e lati di un triangolo In un triangolo si dice altezza relativa a un lato il segmento di perpendicolare al lato condotta dal vertice opposto. Si dice mediana relativa a un lato il segmento che unisce il punto medio del lato

Dettagli

Proprietà dei triangoli e criteri di congruenza

Proprietà dei triangoli e criteri di congruenza www.matematicamente.it Proprietà dei triangoli 1 Proprietà dei triangoli e criteri di congruenza Nome: classe: data: 1. Relativamente al triangolo ABC in figura, quali affermazioni sono vere? A. AH è altezza

Dettagli

Le caratteristiche generali di un quadrilatero

Le caratteristiche generali di un quadrilatero 1 Le caratteristiche generali di un quadrilatero Nel quadrilatero (poligono di quattro lati) si distinguono:! i vertici,,, ;! gli angoli α, β, γ, δ;! i lati,,, ;! le diagonali e. EFINIZIONE. ue angoli

Dettagli

C6. Quadrilateri - Esercizi

C6. Quadrilateri - Esercizi C6. Quadrilateri - Esercizi DEFINIZIONI E COSTRUZIONI 1) Dato il seguente quadrilatero completa al posto dei puntini. I lati AB e BC sono I lati AB e CD sono I lati AD e sono consecutivi I lati AD e sono

Dettagli

MATEMATICA: Compiti delle vacanze Estate 2015

MATEMATICA: Compiti delle vacanze Estate 2015 MATEMATICA: Compiti delle vacanze Estate 2015 Classe II a PRIMA PARTE Ecco una raccolta degli esercizi sugli argomenti svolti quest anno: risolvili sul tuo quaderno! Per algebra ho inserito anche una piccola

Dettagli

LA CIRCONFERENZA DEFINIZIONI. Una circonferenza è l insieme dei punti del piano che hanno distanza assegnata da un punto, detto centro.

LA CIRCONFERENZA DEFINIZIONI. Una circonferenza è l insieme dei punti del piano che hanno distanza assegnata da un punto, detto centro. LA CIRCONFERENZA DEFINIZIONI Una circonferenza è l insieme dei punti del piano che hanno distanza assegnata da un punto, detto centro. Un cerchio è una figura piana formata dai punti di una circonferenza

Dettagli

Problemi di geometria

Problemi di geometria 1 2 6 7 9 Calcola la misura dell ipotenusa di un triangolo rettangolo i cui cateti misurano 11,2 cm e 1 cm. [1,7 cm] In un triangolo rettangolo l ipotenusa misura cm, un cateto è dell ipotenusa. Calcola

Dettagli

24/03/2012 APPUNTI DI GEOMETRIA EUCLIDEA LEZIONE 2-3. definizione 26-29/3/2012

24/03/2012 APPUNTI DI GEOMETRIA EUCLIDEA LEZIONE 2-3. definizione 26-29/3/2012 PPUNTI DI GEOMETRI EULIDE LEZIONE 2-3 26-29/3/2012 definizione un triangolo è un insieme di punti del piano costituito da una poligonale chiusa di tre lati e dai suoi punti interni un triangolo è un l

Dettagli

Poligoni inscritti e circoscritti ad una circonferenza

Poligoni inscritti e circoscritti ad una circonferenza Poligoni inscritti e circoscritti ad una circonferenza Def: 1. Un poligono si dice inscritto in una circonferenza se tutti i suoi vertici sono punti della La circonferenza si dice circoscritta al poligono.

Dettagli

Costruzioni geometriche. (Teoria pag , esercizi )

Costruzioni geometriche. (Teoria pag , esercizi ) Costruzioni geometriche. (Teoria pag. 81-96, esercizi 141-153 ) 1) Costruzione con squadra e riga. a) Rette parallele. Ricorda: due rette sono parallele quando.... oppure quando hanno la stessa. Matematicamente

Dettagli

GEOMETRIA EUCLIDEA. segno lasciato dalla punta di una matita appena appoggiata sul foglio. P

GEOMETRIA EUCLIDEA. segno lasciato dalla punta di una matita appena appoggiata sul foglio. P GEOMETRIA EUCLIDEA 1) GLI ENTI FONDAMENTALI: PUNTO, RETTA E PIANO Il punto, la retta e il piano sono gli ELEMENTI ( o ENTI ) GEOMETRICI FONDAMENTALI della geometria euclidea; come enti fondamentali non

Dettagli

Applicazioni dei teoremi di Pitagora ed Euclide

Applicazioni dei teoremi di Pitagora ed Euclide Utilizzando le misure di segmenti e superfici si possono riscrivere i teoremi di Pitagora ed Euclide per il triangolo rettangolo: Teorema di Pitagora: 1 + c i c = 1 Teorema di Euclide: c p i 1 = 1 c =

Dettagli

Problemi di geometria

Problemi di geometria 1 2 3 applicazioni al triangolo rettangolo Calcola il perimetro e l area di un triangolo rettangolo sapendo che l ipotenusa e l altezza ad essa relativa sono lunghe rispettivamente 3 cm e 16,8 cm. [8 cm;

Dettagli

I PARALLELOGRAMMI E I TRAPEZI

I PARALLELOGRAMMI E I TRAPEZI I PARALLELOGRAMMI E I TRAPEZI 1. Il parallelogramma ESERCIZI 1 A Disegna un parallelogramma ABCD, la diagonale BD e i segmenti AK e CH, perpendicolari a BD. Dimostra che il quadrilatero AHCK è un parallelogramma.

Dettagli

Problemi di geometria

Problemi di geometria 1 3 4 5 6 7 8 9 Un triangolo rettangolo ha un angolo acuto di 30, il cateto minore misura 6 m. Calcola il perimetro e l area del triangolo. [8,39 m; 31,18 m ] Un triangolo rettangolo ha un angolo acuto

Dettagli

POLIGONI. A= bxh. 2p=2(b+h) RETTANGOLO. Il rettangolo è un parallelogramma che ha gli angoli congruenti. Ha le diagonali congruenti

POLIGONI. A= bxh. 2p=2(b+h) RETTANGOLO. Il rettangolo è un parallelogramma che ha gli angoli congruenti. Ha le diagonali congruenti POLIGONI RETTANGOLO Il rettangolo è un parallelogramma che ha gli angoli congruenti. Ha le diagonali congruenti Pertanto ogni parallelogramma che ha gli angoli congruenti e le diagonali congruenti è un

Dettagli

Progetto Matematica in Rete - Geometria euclidea - Quadrilateri. I quadrilateri. Il parallelogramma

Progetto Matematica in Rete - Geometria euclidea - Quadrilateri. I quadrilateri. Il parallelogramma I quadrilateri Il parallelogramma Definizione: un parallelogramma è un quadrilatero avente i lati opposti paralleli AB // DC AD // BC Teorema : se ABCD è un parallelogramma allora ciascuna diagonale lo

Dettagli

Progetto Matematica in Rete - Geometria euclidea - Quadrilateri. I quadrilateri. Il parallelogramma

Progetto Matematica in Rete - Geometria euclidea - Quadrilateri. I quadrilateri. Il parallelogramma I quadrilateri Il parallelogramma Definizione: un parallelogramma è un quadrilatero avente i lati opposti paralleli AB // DC AD // BC Teorema : se ABCD è un parallelogramma allora ciascuna diagonale lo

Dettagli

Principali Definizioni e Teoremi di Geometria

Principali Definizioni e Teoremi di Geometria Principali Definizioni e Teoremi di Geometria Segmento (definizione) Si dice segmento di estremi A e B l insieme costituito dai punti A e B e da tutti i punti della retta AB compresi tra A e B. Angolo

Dettagli

Test di autovalutazione

Test di autovalutazione Test di autovalutazione Test 0 10 0 30 0 0 0 70 80 90 100 n Il mio punteggio, in centesimi, è n Rispondi a ogni quesito segnando una sola delle alternative. n onfronta le tue risposte con le soluzioni.

Dettagli

Poligoni Un poligono è la parte di piano delimitata da una linea spezzata, semplice e chiusa.

Poligoni Un poligono è la parte di piano delimitata da una linea spezzata, semplice e chiusa. Poligoni Un poligono è la parte di piano delimitata da una linea spezzata, semplice e chiusa. Lato Vertice Angolo interno Angolo esterno I lati del poligono sono segmenti che costituiscono la linea spezzata.

Dettagli

REGOLA DELLA SEMPLIFICAZIONE DELLE AREE

REGOLA DELLA SEMPLIFICAZIONE DELLE AREE REGOLA DELLA SEMPLIFICAZIONE DELLE AREE Ogni formula di calcolo delle aree dei poligoni può essere espressa tramite una frazione avente al numeratore un prodotto di due valori e un unico valore al denominatore.

Dettagli

TRIANGOLI CLASSIFICAZIONE DEI TRIANGOLI RISPETTO AI LATI. Def: Si dice triangolo un poligono che ha 3 lati e 3 angoli.

TRIANGOLI CLASSIFICAZIONE DEI TRIANGOLI RISPETTO AI LATI. Def: Si dice triangolo un poligono che ha 3 lati e 3 angoli. TRIANGOLI Si dice triangolo un poligono che ha 3 lati e 3 angoli. Proprietà: in ogni triangolo la somma di due lati è sempre maggiore del terzo lato. CLASSIFICAZIONE DEI TRIANGOLI RISPETTO AI LATI SCALENO:

Dettagli

I Triangoli e i criteri di congruenza

I Triangoli e i criteri di congruenza I Triangoli e i criteri di congruenza 1 Le caratteristiche di un triangolo Un triangolo è un insieme di punti del piano costituito da una poligonale chiusa di tre lati e dai suoi punti interni I punti

Dettagli

lato obliquo trapezio isoscele Un quadrilatero che ha i lati opposti paralleli. Ogni parallelogramma ha... D α + β π

lato obliquo trapezio isoscele Un quadrilatero che ha i lati opposti paralleli. Ogni parallelogramma ha... D α + β π Ripasso Scheda per il recupero Trapezi e parallelogrammi OMNE he cos è un trapezio? RISOSTE Un trapezio è un quadrilatero con una coppia di lati opposti paralleli: i lati paralleli si chiamano basi del

Dettagli

I QUADRILATERI. d tot. = n(n 3) : 2 = 4(4 3) : 2 = 2 S I. = (n 2) 180 = (4 2) 180 = 360 S E = IL TRAPEZIO

I QUADRILATERI. d tot. = n(n 3) : 2 = 4(4 3) : 2 = 2 S I. = (n 2) 180 = (4 2) 180 = 360 S E = IL TRAPEZIO I QUADRILATERI Il quadrilatero è un poligono formato da quattro angoli e da quattro lati. Al contrario del triangolo è una figura deformabile, infatti i quadrilateri possono essere intercambiabili fra

Dettagli

Indice del vocabolario della Geometria euclidea

Indice del vocabolario della Geometria euclidea Indice del vocabolario della Geometria euclidea 1 Postulati di appartenenza: piano, retta e punto nello spazio Punto, retta, piano nello spazio Punto, retta nel piano Punto nella retta Punto esterno alla

Dettagli

AREE DEI POLIGONI. b = A h

AREE DEI POLIGONI. b = A h AREE DEI POLIGONI 1. RETTANGOLO E un parallelogramma avente quattro angoli retti, i lati opposti uguali e paralleli, le diagonali uguali non perpendicolari che si scambiano vicendevolmente a metà. Def.

Dettagli

GEOMETRIA CLASSE IV B A.S.

GEOMETRIA CLASSE IV B A.S. GEOMETRIA CLASSE IV B A.S. 2014/15 Insegnante: Stallone Raffaella RETTA, SEMIRETTA E SEGMANTO La retta è illimitata, non ha né inizio né fine. Si indica con una lettera minuscola. La semiretta è ciascuna

Dettagli

POLIGONI: PROPRIETÀ E FORMULE PER IL CALCOLO DI PERIMETRO E AREA. Poligono formato da 3 angoli e 3 lati. Nessuna diagonale.

POLIGONI: PROPRIETÀ E FORMULE PER IL CALCOLO DI PERIMETRO E AREA. Poligono formato da 3 angoli e 3 lati. Nessuna diagonale. POLIGONI: PROPRIETÀ E FORMULE PER IL CALCOLO DI PERIMETRO E AREA NOME E FIGURA PROPRIETÀ FORMULE TRIANGOLO Poligono formato da 3 angoli e 3 lati. Nessuna diagonale. P=somma delle misure dei 3lati SCALENO

Dettagli

TITOLO: LEGGERE I QUADRILATERI

TITOLO: LEGGERE I QUADRILATERI TITOLO: LEGGERE I QUADRILATERI Competenze di riferimento: Comprendere ed interpretare l informazione: comprendere messaggi verbali e non verbali di vario genere; individuare ed interpretare l informazione,

Dettagli

I QUADRILATERI. = n(n 3) : 2 = 4(4 3) : 2 = 2. d tot. = (n 2) 180 = (4 2) 180 = 360 S I = 360 S E 1. IL TRAPEZIO

I QUADRILATERI. = n(n 3) : 2 = 4(4 3) : 2 = 2. d tot. = (n 2) 180 = (4 2) 180 = 360 S I = 360 S E 1. IL TRAPEZIO I QUADRILATERI Il quadrilatero è un poligono formato da quattro angoli e da quattro lati. Al contrario del triangolo è una figura deformabile, infatti i quadrilateri possono essere intercambiabili fra

Dettagli

1B GEOMETRIA. Gli elementi fondamentali della geometria. Esercizi supplementari di verifica

1B GEOMETRIA. Gli elementi fondamentali della geometria. Esercizi supplementari di verifica Gli elementi fondamentali della geometria Esercizi supplementari di verifica Esercizio 1 a) V F Si dice linea retta una qualsiasi linea che non ha né un inizio né una fine. b) V F Il punto è una figura

Dettagli

equivalenti =. ABCD è un trapezio

equivalenti =. ABCD è un trapezio EQUISCOMPONIBILITÀ Problema P.367.41 Dato un trapezio ABCD, considera i due triangoli che hanno ciascuno per base uno dei due lati obliqui e per terzo vertice il punto medio del lato opposto. Dimostra

Dettagli

Problemi di geometria

Problemi di geometria 1 2 3 4 5 6 7 8 9 10 11 12 13 14 In un triangolo rettangolo l altezza relativa all ipotenusa è lunga 16 cm e la proiezione sull ipotenusa di un cateto è lunga 4 cm. Calcola l area del triangolo. [544 cm

Dettagli

REGOLA DELLA SEMPLIFICAZIONE DELLE AREE

REGOLA DELLA SEMPLIFICAZIONE DELLE AREE REGOLA DELLA SEMPLIFICAZIONE DELLE AREE Ogni formula di calcolo delle aree dei poligoni può essere espressa tramite una frazione avente al numeratore un prodotto di due valori e un unico valore al denominatore.

Dettagli

I TRIANGOLI AB < AC + BC

I TRIANGOLI AB < AC + BC I TRIANGOLI Il triangolo è un poligono formato da tre angoli e da tre lati: rappresenta la figura più semplice in assoluto, in quanto 3 è il numero minimo di segmenti necessari per delimitare una superficie

Dettagli

7.7 Esercizi. 236 Capitolo 7. Equiestensione e aree

7.7 Esercizi. 236 Capitolo 7. Equiestensione e aree 236 apitolo 7. quiestensione e aree 7.7 sercizi 7.7.1 sercizi dei singoli paragrafi 7.2 - Poligoni equivalenti 7.1. nunciate e dimostrate il teorema le cui ipotesi e tesi sono indicate di seguito. Ipotesi:,

Dettagli

QUADRILATERI. È dunque possibile pensare ad un quadrilatero come alla parte di piano delimitata da quattro rette a due a due incidenti.

QUADRILATERI. È dunque possibile pensare ad un quadrilatero come alla parte di piano delimitata da quattro rette a due a due incidenti. QURILTERI efinizione: un quadrilatero (o quadrangolo) è un poligono di quattro lati. ue lati non consecutivi di un quadrilatero sono detti opposti. ue angoli interni di un quadrilatero non adiacenti ad

Dettagli

01. Se il raggio di un cerchio dimezza, la sua area diventa: a) 1/3 b) 1/4 c) 3/2 d) 1/5

01. Se il raggio di un cerchio dimezza, la sua area diventa: a) 1/3 b) 1/4 c) 3/2 d) 1/5 GEOMETRIA 01. Se il raggio di un cerchio dimezza, la sua area diventa: 1/ b) 1/4 c) / d) 1/5 0. Quanto misura il lato di un quadrato la cui area è equivalente a quella di un triangolo che ha la base di

Dettagli

Corso di Matematica - Geometria. Geometria - 0. Ing. L. Balogh

Corso di Matematica - Geometria. Geometria - 0. Ing. L. Balogh Geometria - 0 Triangoli qualunque somma degli angoli interni, calcolo del perimetro e dell area Oggetti Vertici Lati Angoli Altezza Raggio Simbolo A, B, C a, b, c,, h S, r Perimetro = + + Somma angoli

Dettagli

TEST SULLE COMPETENZE Classe Seconda

TEST SULLE COMPETENZE Classe Seconda TEST SULLE COMPETENZE Classe Seconda 1 Una sola tra le seguenti proposizioni è FALSA Quale? A Se due punti A e B hanno la stessa ascissa, il coefficiente angolare della retta che li contiene non è definito

Dettagli

CORSO DI PREPARAZIONE AI GIOCHI DI ARCHIMEDE 2015

CORSO DI PREPARAZIONE AI GIOCHI DI ARCHIMEDE 2015 CORSO DI PREPARAZIONE AI GIOCHI DI ARCHIMEDE 2015 Lezione del 3 NOVEMBRE 2015 GEOMETRIA CRITERI DI CONGRUENZA FRA TRIANGOLI IL SIMBOLO indica la congruenza PRIMO CRITERIO DI CONGRUENZA: Se due triangoli

Dettagli

Anno 1. Quadrilateri

Anno 1. Quadrilateri Anno 1 Quadrilateri 1 Introduzione In questa lezione impareremo a risolvere i problemi legati all utilizzo dei quadrilateri. Forniremo la definizione di quadrilatero e ne analizzeremo le proprietà e le

Dettagli

C5. Triangoli - Esercizi

C5. Triangoli - Esercizi C5. Triangoli - Esercizi DEFINIZIONI 1) Dato il triangolo in figura completare al posto dei puntini. I lati sono i segmenti,, Gli angoli sono,, Il lato AB e l angolo sono opposti Il lato AB e l angolo

Dettagli

Problemi di geometria

Problemi di geometria criteri di similitudine sui triangoli 1 Dimostra che le altezze di un triangolo sono inversamente proporzionali ai relativi lati. 2 Dimostra che due triangoli rettangoli sono simili se hanno ordinatamente

Dettagli

Liceo Scientifico Statale ALBERT EINSTEIN Milano

Liceo Scientifico Statale ALBERT EINSTEIN Milano Liceo Scientifico Statale ALBERT EINSTEIN Milano A.S. 200/20 TEST DII IINGRESSO MATEMATIICA CLLASSII PRIIME ALUNNO/A: (COGNOME) (NOME) CLASSE: SCUOLA DI PROVENIENZA: AVVERTENZE: Hai 60 minuti di tempo;

Dettagli

TRIANGOLI. Proprietà: in ogni triangolo la somma di due lati è maggiore del terzo lato. CLASSIFICAZIONE DEI TRIANGOLI

TRIANGOLI. Proprietà: in ogni triangolo la somma di due lati è maggiore del terzo lato. CLASSIFICAZIONE DEI TRIANGOLI TRIANGOLI Si dice triangolo un poligono che ha 3 lati e 3 angoli. Proprietà: in ogni triangolo la somma di due lati è maggiore del terzo lato. a) RISPETTO AI LATI CLASSIFICAZIONE DEI TRIANGOLI SCALENO:

Dettagli

Chi ha avuto la sospensione di giudizio, deve aggiungere:

Chi ha avuto la sospensione di giudizio, deve aggiungere: CLASSE 1A Gli esercizi sono sul quaderno di recupero allegato al libro di testo: Esercizi da 80 a 94 pagina 49 Esercizi da 101 a 105 pagina 52-53 Esercizi da 108 a 118 pagina 52-53 Esercizi da 37 a 61

Dettagli

I TRIANGOLI AB < AC + BC

I TRIANGOLI AB < AC + BC I TRIANGOLI Il triangolo è un poligono formato da tre angoli e da tre lati: rappresenta la figura più semplice in assoluto, in quanto 3 è il numero minimo di segmenti necessari per delimitare una superficie

Dettagli

SCHEMA RIASSUNTIVO SUI QUADRILATERI

SCHEMA RIASSUNTIVO SUI QUADRILATERI SCHEMA RIASSUNTIVO SUI QUADRILATERI ( a cura della prof.sa Carmelisa Destradis ) SI CHIAMA QUADRILATERO UNA FIGURA PIANA CON QUATTRO LATI E QUATTRO ANGOLI. LA SOMMA DEGLI ANGOLI INTERNI DI QUALUNQUE QUADRILATERO

Dettagli

Assumendo 1 u = 1 cm, calcola il perimetro e l area del quadrilatero ABCD.

Assumendo 1 u = 1 cm, calcola il perimetro e l area del quadrilatero ABCD. Esercizio 1a Disegna un piano cartesiano ortogonale ed in esso inserisci i punti che seguono, poi uniscili nell ordine dato: Secondo te che tipo di quadrilatero hai ottenuto? Perché? Quali sono le sue

Dettagli

Unità 8 Esercizi per il recupero

Unità 8 Esercizi per il recupero LA GEOMETRIA DEL PIANO E LE TRASFORMAZIONI VOLUME Unità 8 Esercizi per il recupero ARGOMENTO: I quadrilateri. Teorema di Talete CONTENUTI: Il trapezio isoscele I parallelogrammi Il piccolo teorema di Talete

Dettagli

Geometria euclidea. Alessio del Vigna

Geometria euclidea. Alessio del Vigna Geometria euclidea Alessio del Vigna La geometria euclidea è una teoria fondata su quattro enti primitivi e sulle relazioni che tra essi intercorrono. I quattro enti primitivi in questione sono il punto,

Dettagli

I quadrilateri Punti notevoli di un triangolo

I quadrilateri Punti notevoli di un triangolo I quadrilateri Capitolo Quadrilateri 1 erifica per la classe prima COGME............................... ME............................. Quesiti 1.a ero o falso? 1. La somma degli angoli interni di un ottagono

Dettagli

Chi non risolve esercizi non impara la matematica.

Chi non risolve esercizi non impara la matematica. 2.8 esercizi 31 2.8 esercizi hi non risolve esercizi non impara la matematica. 1 Vero o falso? a. I punti (0, 2), (4, 4), (6, 0) e (2, 2) sono i vertici di un quadrato. V F b. Non esiste il coefficiente

Dettagli

LA CIRCONFERENZA, I POLIGONI INSCRITTI E CIRCOSCRITTI

LA CIRCONFERENZA, I POLIGONI INSCRITTI E CIRCOSCRITTI LA CIRCONFERENZA, I POLIGONI INSCRITTI E CIRCOSCRITTI TEST 1 In figura sono disegnati l angolo aob e il segmento PQ, perpendicolare al lato Oa e tale che PH sia congruente a HQ. Il luogo geometrico dei

Dettagli

Postulati e definizioni di geometria piana

Postulati e definizioni di geometria piana I cinque postulati di Euclide I postulato Adimandiamo che ce sia concesso, che da qualunque ponto in qualunque ponto si possi condurre una linea retta. Tra due punti qualsiasi è possibile tracciare una

Dettagli

Geometria figure piane Raccolta di esercizi

Geometria figure piane Raccolta di esercizi Geometria figure piane Raccolta di esercizi RETTANGOLO 1. Calcola il perimetro e l area di un rettangolo le cui dimensioni misurano rispettivamente 13 cm e 22 cm. [70 cm; 286 cm 2 ] 2. Un rettangolo ha

Dettagli

Appunti di geometria L. P. 17 Febbraio Notazione

Appunti di geometria L. P. 17 Febbraio Notazione ppunti di geometria L. P. 17 Febbraio 2008 Notazione I punti sono rappresentati da lettere maiuscole:,,, ecc.; rappresenta la lunghezza del segmento, rappresenta l ampiezza dell angolo compreso fra le

Dettagli

Test di Matematica di base

Test di Matematica di base Test di Matematica di base Geometria Il rapporto tra la superficie di un quadrato e quella di un triangolo equilatero di eguale lato è a. 4 b. 4 d. [ ] Quali sono le ascisse dei punti della curva di equazione

Dettagli

Un triangolo è un insieme di punti del piano costituito da una poligonale chiusa di tre lati e dai suoi punti interni CLASSIFICAZIONE RISPETTO AI

Un triangolo è un insieme di punti del piano costituito da una poligonale chiusa di tre lati e dai suoi punti interni CLASSIFICAZIONE RISPETTO AI Un triangolo è un insieme di punti del piano costituito da una poligonale chiusa di tre lati e dai suoi punti interni CLASSIFICAZIONE RISPETTO AI LATI: equilatero, isoscele, scaleno CLASSIFICAZIONE RISPETTO

Dettagli

CONGRUENZE TRA FIGURE DEL PIANO

CONGRUENZE TRA FIGURE DEL PIANO CONGRUENZE TRA FIGURE DEL PIANO Appunti di geometria ASSIOMI 15. La congruenza tra figure è una relazione di equivalenza 16. Tutte le rette del piano sono congruenti tra loro; così come tutti i piani,

Dettagli

Quadrilateri. Il Parallelogramma

Quadrilateri. Il Parallelogramma Il Parallelogramma 2. Fai clic su Ic3 e scegli Retta per due punti : disegna la retta a. 3. Fai clic su Ic2 e scegli Nuovo Punto : fai clic fuori dalla retta a 4. Fai clic su Ic4 e scegli Retta parallela

Dettagli

Confronto fra angoli La dimensione dell angolo è l ampiezza in base all ampiezza gli angoli si dicono:

Confronto fra angoli La dimensione dell angolo è l ampiezza in base all ampiezza gli angoli si dicono: Confronto fra angoli La dimensione dell angolo è l ampiezza in base all ampiezza gli angoli si dicono: congruenti (uguali) maggiore minore la somma di due angoli la ottieni portandoli ad essere consecutivi

Dettagli

C5. Triangoli. C5.1 Definizioni. C5.2 Classificazione dei triangoli in base ai lati

C5. Triangoli. C5.1 Definizioni. C5.2 Classificazione dei triangoli in base ai lati 5. Triangoli 5.1 efinizioni Un triangolo è un poligono con tre lati. In figura 5.1 i lati sono i segmenti =c, =b e =a. Gli angoli (interni) sono α = ˆ, β = ˆ e γ = ˆ. Si dice che un angolo è opposto a

Dettagli

I PARALLELOGRAMMI Si dice PARALLELOGRAMMA un quadrilatero avente i lati opposti paralleli a due a due.

I PARALLELOGRAMMI Si dice PARALLELOGRAMMA un quadrilatero avente i lati opposti paralleli a due a due. I PARALLELOGRAMMI Si dice PARALLELOGRAMMA un quadrilatero avente i lati opposti paralleli a due a due. A D B H C K Una particolarità del parallelogramma è che mantiene le sue caratteristiche anche quando

Dettagli

Matematica Introduzione alla geometria

Matematica Introduzione alla geometria Matematica Introduzione alla geometria prof. Vincenzo De Felice 2014 Problema. Si mostri che un triangolo con due bisettrici uguali è isoscele. La matematica è sfuggente. Ziodefe 1 2 Tutto per la gloria

Dettagli

Liceo Scientifico Statale Albert Einstein. Insegnante : Saccaro Arianna. Programma di Matematica 1E. a.s 2014/2015

Liceo Scientifico Statale Albert Einstein. Insegnante : Saccaro Arianna. Programma di Matematica 1E. a.s 2014/2015 Liceo Scientifico Statale Albert Einstein Insegnante : Saccaro Arianna Programma di Matematica 1E a.s 2014/2015 I NUMERALI NATURALI E I NUMERI INTERI: Che cosa sono i numeri naturali Le quattro operazioni

Dettagli

IL TRIANGOLO. Teorema di Pitagora. Il triangolo è un poligono avente tre lati.

IL TRIANGOLO. Teorema di Pitagora. Il triangolo è un poligono avente tre lati. IL TRIANGOLO Il triangolo è un poligono avente tre lati. FORMULE AREA: Il triangolo è equivalente a metà parallelogramma. A = (b x h) : da cui: b= A : h e h= A : b TRIANGOLO RETTANGOLO (a, b cateti; c

Dettagli

Gli angoli adiacenti agli angoli interni si dicono angoli esterni del poligono convesso.

Gli angoli adiacenti agli angoli interni si dicono angoli esterni del poligono convesso. Poligoni In geometria un poligono è una figura geometrica piana delimitata da una linea spezzata chiusa. I segmenti che compongono la spezzata chiusa si dicono lati del poligono e i punti in comune a due

Dettagli

Problemi di geometria

Problemi di geometria equivalenza fra parallelogrammi 1 2 3 4 Dimostra che, fra tutti i rettangoli equivalenti, il quadrato è quello che ha perimetro minimo. Dimostra che ogni quadrato è equivalente alla metà del quadrato costruito

Dettagli

CONOSCENZE 1. gli elementi di un triangolo 2. la classificazione dei triangoli. 3. il teorema dell'angolo esterno. 4. i punti notevoli di un triangolo

CONOSCENZE 1. gli elementi di un triangolo 2. la classificazione dei triangoli. 3. il teorema dell'angolo esterno. 4. i punti notevoli di un triangolo GEOMETRIA I TRIANGOLI PREREQUISITI l conoscere le caratteristiche del sistema di numerazione decimale l conoscere le proprietaá delle quattro operazioni e operare con esse l conoscere gli enti geometrici

Dettagli

Proposta di esercitazione per le vacanze Geometria ed aritmetica. Ricordo che a settembre verrà effettuata la verifica sul ripasso.

Proposta di esercitazione per le vacanze Geometria ed aritmetica. Ricordo che a settembre verrà effettuata la verifica sul ripasso. Proposta di esercitazione per le vacanze Geometria ed aritmetica Ricordo che a settembre verrà effettuata la verifica sul ripasso. 1) Un prisma retto, alto 7 cm, ha per base un triangolo isoscele;

Dettagli

Classifichiamo i poligoni

Classifichiamo i poligoni Geometria La parola geometria significa misura (metria) della terra (geo). La geometria si occupa dello studio della misura e della forma degli oggetti disposti nello spazio. Le idee primitive (che vengono

Dettagli

C8. Teoremi di Euclide e di Pitagora - Esercizi

C8. Teoremi di Euclide e di Pitagora - Esercizi C8. Teoremi di Euclide e di Pitagora - Esercizi EQUIVALENZA DI FIGURE GEOMETRICHE E CALCOLO DI AREE 1) Dimostra che ogni mediana divide un triangolo in due triangoli equivalenti. 2) Dato un parallelogramma

Dettagli

QUESTIONARIO INIZIALE DI AUTOVALUTAZIONE

QUESTIONARIO INIZIALE DI AUTOVALUTAZIONE QUESTIONARIO INIZIALE DI AUTOVALUTAZIONE relativo a GEOMETRIA PIANA EQUAZIONI E DISEQUAZIONI a cura di Mariacristina Fornasari, Daniela Mari, Giuliano Mazzanti, Valter Roselli, Luigi Tomasi 1) Nel piano

Dettagli

Liceo Scientifico G. Salvemini Corso di preparazione per la gara provinciale delle OLIMPIADI DELLA MATEMATICA INTRO GEOMETRIA

Liceo Scientifico G. Salvemini Corso di preparazione per la gara provinciale delle OLIMPIADI DELLA MATEMATICA INTRO GEOMETRIA Liceo Scientifico G. Salvemini Corso di preparazione per la gara provinciale delle OLIMPIADI DELLA MATEMATICA INTRO GEOMETRIA TRIANGOLI Criteri di congruenza Due triangoli sono congruenti se hanno congruenti:

Dettagli

Costruzioni inerenti i triangoli

Costruzioni inerenti i triangoli Costruzioni inerenti i triangoli D ora in poi indicheremo con a, b e c i tre lati del triangolo di vertici A, B e C, in modo che a sia opposto al vertice A, b al vertice B e c al vertice C Costruzione

Dettagli

> ; >0 ; 2 >0 ; 2 <0 ; <0 , 2 7

> ; >0 ; 2 >0 ; 2 <0 ; <0 , 2 7 Esercizi per la prova scritta Disequazioni + Geometria 1 1. La disequazione > ha per soluzione: > ; >0 ; 2>0 ; 2 4+4 1+31 3

Dettagli

Teoremi di geometria piana

Teoremi di geometria piana la congruenza teoremi sugli angoli γ teorema sugli angoli complementari Se due angoli sono complementari di uno stesso angolo α β In generale: Se due angoli sono complementari di due angoli congruenti

Dettagli

Un poligono è inscritto in una circonferenza se tutti i suoi vertici appartengono alla circonferenza

Un poligono è inscritto in una circonferenza se tutti i suoi vertici appartengono alla circonferenza 1. I poligoni inscritti Quando un poligono è inscritto in una Un poligono è inscritto in una circonferenza se tutti i suoi vertici appartengono alla circonferenza Se un poligono è inscritto in una circonferenza,

Dettagli

Considerato un qualunque triangolo ABC, siano D ed E due punti interni al lato BC tali che:

Considerato un qualunque triangolo ABC, siano D ed E due punti interni al lato BC tali che: atematica per la nuova maturità scientifica. Bernardo. Pedone 8 PROBLE Considerato un qualunque triangolo BC, siano D ed E due punti interni al lato BC tali che: BD= DE = EC Siano poi ed i punti medi rispettivamente

Dettagli

Le sezioni piane del cubo

Le sezioni piane del cubo Le sezioni piane del cubo Versione provvisoria 11 dicembre 006 1 Simmetrie del cubo e sezioni speciali Sezioni speciali si presentano in corrispondenza di piani perpendicolari agli assi di simmetria del

Dettagli

Angoli formati da due rette parallele tagliate da una trasversale (alterni interni ed esterni, corrispondenti, coniugati).

Angoli formati da due rette parallele tagliate da una trasversale (alterni interni ed esterni, corrispondenti, coniugati). ppunti di geometria.s. 013-014 1 Prof. Luigi ai PPUNTI ngoli formati da due rette parallele tagliate da una trasversale (alterni interni ed esterni, corrispondenti, coniugati). In un triangolo l angolo

Dettagli

La somma degli angoli interni di un triangolo è uguale a un angolo piatto (180 ).

La somma degli angoli interni di un triangolo è uguale a un angolo piatto (180 ). Il triangolo (UbiLearning) - 1 Triangoli Un triangolo è un poligono formato da tre lati. Rappresenta la più semplice figura piana formata dal minimo numero di lati utili a chiudere una superficie piana.

Dettagli

GEOMETRIA ANALITICA. Il Piano cartesiano

GEOMETRIA ANALITICA. Il Piano cartesiano GEOMETRIA ANALITICA La geometria analitica consente di studiare e rappresentare per via algebrica informazioni di tipo geometrico. Lo studio favorisce una più immediata visualizzazione di informazioni,

Dettagli

Problemi di geometria

Problemi di geometria corde e archi 1 Sia γγ una circonferenza di diametro AB. Siano AB e CD due corde parallele. Dimostra che la retta CB passa per il centro O della circonferenza. 2 3 4 5 6 7 Dimostra che due punti presi

Dettagli

CALCOLO MATEMATICO E GEOMETRIA GEOMETRIA PIANA

CALCOLO MATEMATICO E GEOMETRIA GEOMETRIA PIANA CALCOLO MATEMATICO E GEOMETRIA GEOMETRIA PIANA Nella prima parte del corso si ripasseranno le caratteristiche principali delle figure di geometria piana, per poi passare nella seconda parte dell'anno alla

Dettagli

Problemi di geometria

Problemi di geometria 1 2 5 6 7 8 9 10 11 12 1 1 In un triangolo rettangolo l ipotenusa misura 60 cm e la proiezione del cateto maggiore sull ipotenusa misura 55,29 cm. Calcola la misura dei due cateti. [57,6 cm; 16,8 cm] In

Dettagli

CAP.2:ITRIANGOLI GEOMETRIA 1 - AREA 3 I TRIANGOLI E LA LORO CLASSIFICAZIONE. richiami della teoria COMPRENSIONE DELLA TEORIA

CAP.2:ITRIANGOLI GEOMETRIA 1 - AREA 3 I TRIANGOLI E LA LORO CLASSIFICAZIONE. richiami della teoria COMPRENSIONE DELLA TEORIA GEOMETRIA 1 - AREA 3 CAP.2:ITRIANGOLI I TRIANGOLI E LA LORO CLASSIFICAZIONE richiami della teoria n In un triangolo ogni lato eá minore della somma degli altri due ed eá maggiore della loro differenza;

Dettagli

ALCUNE LINEE GUIDA PER LA DIMOSTRAZIONE DEI TEOREMI

ALCUNE LINEE GUIDA PER LA DIMOSTRAZIONE DEI TEOREMI ALCUNE LINEE GUIDA PER LA DIMOSTRAZIONE DEI TEOREMI LE RELAZIONI FRA GLI ELEMENTI DI UN TRIANGOLO 1) La somma degli angoli interni di un triangolo è 180 γ Consideriamo il triangolo ABC. Tracciamo la parallela

Dettagli

Test sui triangoli. Vengono presentate 25 domande a risposta multipla, risolte e commentate.

Test sui triangoli. Vengono presentate 25 domande a risposta multipla, risolte e commentate. Test sui triangoli In questa dispensa vengono proposti dei test di verifica relativi alle nozioni di geometria piana sui triangoli, in particolare, la classificazione dei triangoli, i criteri di uguaglianza

Dettagli

POLIGONI INSCRITTI E CIRCOSCRITTI A UNA CIRCONFERENZA

POLIGONI INSCRITTI E CIRCOSCRITTI A UNA CIRCONFERENZA POLIGONI INSCRITTI E CIRCOSCRITTI A UNA CIRCONFERENZA Poligoni Inscritti ad una circonferenza: Un poligono è inscritto in una circonferenza se tutti i suoi vertici appartengono alla circonferenza e gli

Dettagli