Esercizi di Elementi di Matematica Corso di laurea in Farmacia

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Esercizi di Elementi di Matematica Corso di laurea in Farmacia"

Transcript

1 Esercizi di Elementi di Matematica Corso di laurea in Farmacia dott.ssa Marilena Ligabò November 24, Esercizi sulla notazione scientifica Esercizio 1.1. Eseguire il seguente calcolo utilizzando la notazione scientifica Esercizio 1.2. Eseguire il seguente calcolo utilizzando la notazione scientifica Esercizio 1.3. Eseguire il seguente calcolo utilizzando la notazione scientifica Esercizi sulle equazioni di secondo grado Esercizio 2.1. Risolvere la seguente equazione di secondo grado 2x 2 + 3x 20 = 0 Esercizio 2.2. Risolvere la seguente equazione di secondo grado 1 9 x x + 1 = 0 Esercizio 2.3. Risolvere la seguente equazione di secondo grado x 2 3x + 4 = 0 Esercizio 2.4. Risolvere la seguente equazione di secondo grado 2 3 = x 1 x x

2 Esercizio 2.5. Risolvere la seguente equazione di secondo grado 7x 2 14x = 0 Esercizio 2.6. Risolvere la seguente equazione di secondo grado 11x 2 + x = 0 Esercizio 2.7. Risolvere la seguente equazione di secondo grado 9 2 x2 5x = 0 Esercizio 2.8. Risolvere la seguente equazione di secondo grado 3x = 0 Esercizio 2.9. Risolvere la seguente equazione di secondo grado 3 Esercizi sui sistemi lineari x = 0 Esercizio 3.1. Risolvere il seguente sistema lineare { x + y = 24 x y = 6 Esercizio 3.2. Risolvere il seguente sistema lineare { 2x + 5y 3 = 0 3x 4y + 7 = 0 Esercizio 3.3. Risolvere il seguente sistema lineare { 2x y = 0 x y = 1 Esercizio 3.4. Risolvere il seguente sistema lineare { 3x + y = 1 2x 2y = 1 Esercizio 3.5. Risolvere il seguente sistema lineare { x+1 3 x = y + 1 y 2 = 2x Esercizio 3.6. Risolvere il seguente sistema lineare { x + 5y = 1 3x 15y = 3 Esercizio 3.7. Risolvere il seguente sistema lineare { 4x 3y = 1 2x 3 2 y = 1 2

3 4 Esercizi di geometria analitica Esercizio 4.1. Rappresentare nel piano cartesiano i punti A(1, 3), B(2, 4) e determinare la retta passante per A e B. Calcolare la lunghezza del segmento AB. Esercizio 4.2. Rappresentare nel piano cartesiano i punti A(1, 3), B(3, 1) e determinare la retta passante per C( 2, 2) parallela alla retta passante per A e B. Determinare la retta passante per D(1, 1) perpendicolare alla retta passante per A e B. Calcolare la lunghezza del segmento CD. Esercizio 4.3. Rappresentare nel piano cartesiano i punti A(1, 5), B(3, 5) e determinare la retta passante per C(1, 2) parallela alla retta passante per A e B. Calcolare la lunghezza del segmento BC. Esercizio 4.4. Rappresentare nel piano cartesiano la parabola di equazione y = 2x 2 + 3x 20 disegnando il vertice, il fuoco e le eventuali intersezioni con l asse X. Esercizio 4.5. Rappresentare nel piano cartesiano la parabola di equazione y = x 2 x 1 disegnando il vertice, il fuoco e le eventuali intersezioni con l asse X. Esercizio 4.6. Rappresentare nel piano cartesiano la parabola di equazione y = 4x x + 9 disegnando il vertice, il fuoco e le eventuali intersezioni con l asse X. Esercizio 4.7. Determinare l equazione della parabola di vertice V (1, 0) e passante per P (0, 1). Esercizio 4.8. Determinare l equazione della retta tangente alla parabola di equazione y = x 2 4x nel punto A(1, 3). Esercizio 4.9. Determinare l equazione della retta tangente alla parabola y = x 2 + 2x + 1 e parallela alla retta di equazione 4x + y + 4 = 0. Esercizio Trovare l equazione della parabola avente per vertice V (2, 4) e per fuoco F (2, 3). Esercizio Trovare le intersezioni della retta di equazione y = x + 4 con la parabola di equazione y = x 2 + 6x. Esercizio Una parabola con asse parallelo all asse Y, passa per il punto G(1, 0) ed ha vertice V (4, 9). Scriverne l equazione e rappresentarla graficamente. La retta passante per P (0, 3), e di coefficiente angolare 1, interseca detta parabola in due punti A e B. Determinare le coordinate dei punti A e B. Da A e B si conducono le perpendicolari all asse X che intersecano l asse X in D e C. Calcolare la misura del perimetro e l area del quadrilatero ABCD (sapendo che l unità di misura sugli assi X e Y è il centimetro). Esercizio In un piano cartesiano rappresenta i punti di coordinate: A( 7, 1), B(5, 1), C(5, 9) e D( 1, 9). Congiungi nell ordine i punti dati, indica il nome della figura ottenuta. Calcola la misura del perimetro e l area del quadrilatero. Rappresenta nello stesso piano cartesiano la retta di equazione y = x 4 e verifica graficamente e algebricamente che la retta interseca il poligono in uno dei suoi vertici. Scrivi l equazione della retta parallela alla retta data passante per l origine 3

4 A B C Figure 1: Triangolo Esercizio 5.1 degli assi e rappresentala nello stesso piano cartesiano. Determina l area totale e il volume di un prisma retto avente per base il poligono dato e l altezza uguale ai 7/12 del perimetro di base (sapendo che l unità di misura sugli assi X e Y è il centimetro). Esercizio Disegna in un piano cartesiano il triangolo avente per vertici i seguenti punti A(2, 3), B(5, 1), C( 1, 1). Individua i punti medi dei segmenti AB, BC e AC e indicali con D, E, F. Disegna il triangolo DEF avente per vertici i punti medi del triangolo ABC e verifica che il suo perimetro è la metà di quello del triangolo ABC. Calcola le aree dei due poligoni (sapendo che l unità di misura sugli assi X e Y è il centimetro). Esercizio Disegna in un piano cartesiano il poligono avente per vertici i seguenti punti A(2, 0), B(8, 0), C(8, 4), D(2, 4). Descrivi le proprietà della figura ABCD e determina il suo perimetro e la sua area (sapendo che l unità di misura sugli assi X e Y è il centimetro). Fissa il punto E(11, 0) e considera il poligono AECD. Di quale figura si tratta? Descrivi le sue proprietà. Fai ruotare il poligono AECD di una rotazione completa attorno alla base maggiore. Descrivi il solido ottenuto e calcolane il volume ed la massa sapendo che la sua densità è di 1500 kg/m 3. 5 Esercizi di trigonometria Esercizio 5.1. Determinare i lati e gli angoli del triangolo rettangolo in Figura 1 sapendo che AB = 13 cm e che γ = π/6. Esercizio 5.2. Determinare il perimetro e l area del triangolo in Figura 2 sapendo che AH = 17 cm e che sin γ = 1/2 e che sin β = 2/2. Esercizio 5.3. Determinare l altezza di un palazzo che proietta un ombra orizzontale di 12 m quando l altezza del sole sull orizzonte è di π/6. Esercizio 5.4. Un osservatore si trova ai piedi di una torre di altezza h ad una distanza L dalla sua base e vede la cima della torre con un angolo α. Avvicinandosi di 5 m alla torre l osservatore vede la cima con un angolo β. Determinare l altezza h della torre e la distanza iniziale L dell osservatore sapendo che α = 50 e che β = 60. 4

5 A B H C Figure 2: Triangolo Esercizio 5.2 Esercizio 5.5. Una bandiera alta 7.3 m è posizionata sulla cima di un edificio. Un osservatore che si trova ad una distanza L dalla base dell edificio vede la cima dell edificio con un angolo di 35 e la punta della bandiera con un angolo di 40. Determinare l altezza dell edificio e la distanza dell osservatore dalla base. 6 Esercizi sulle coordinate polari Esercizio 6.1. Determinare le coordinate cartesiane di un punto P sapendo che le sue coordinate polari sono r = 2 e θ = 30 e disegnare il punto nel piano cartesiano. Esercizio 6.2. Determinare le coordinate cartesiane di un punto P sapendo che le sue coordinate polari sono r = 3 e θ = 120 e disegnare il punto nel piano cartesiano. Esercizio 6.3. Determinare le coordinate cartesiane di un punto P sapendo che le sue coordinate polari sono r = 5 e θ = 300 e disegnare il punto nel piano cartesiano. Esercizio 6.4. Determinare le coordinate polari di un punto P sapendo che le sue coordinate cartesiane sono P (2, 0) e disegnare il punto nel piano cartesiano. Esercizio 6.5. Determinare le coordinate polari di un punto P sapendo che le sue coordinate cartesiane sono P ( 3, 0) e disegnare il punto nel piano cartesiano. Esercizio 6.6. Determinare le coordinate polari di un punto P sapendo che le sue coordinate cartesiane sono P (1, 1) e disegnare il punto nel piano cartesiano. Esercizio 6.7. Determinare le coordinate polari di un punto P sapendo che le sue coordinate cartesiane sono P ( 1, 1) e disegnare il punto nel piano cartesiano. Esercizio 6.8. Determinare le coordinate polari di un punto P sapendo che le sue coordinate cartesiane sono P ( 1, 1) e disegnare il punto nel piano cartesiano. 5

6 7 Esercizi sulle equazioni esponenziali Esercizio 7.1. Risolvere la seguente equazione esponenziale 5 2x+1 = 1 25 Esercizio 7.2. Risolvere la seguente equazione esponenziale 8 5x 4 x+2 = 1 16 Esercizio 7.3. Risolvere la seguente equazione esponenziale 3 x x = 7 3 x Esercizio 7.4. Risolvere la seguente equazione esponenziale 3 2x 3 x 6 = 0 Esercizio 7.5. Risolvere la seguente equazione esponenziale 4 x x 7 = 0 8 Esercizi sui logaritmi Esercizio 8.1. Esegui il seguente calcolo log Esercizio 8.2. Esegui il seguente calcolo ln e 11 e 6 e e 1 Esercizio 8.3. Risolvere la seguente equazione logaritmica ln(x 2) ln(x 3) = ln 4 Esercizio 8.4. Risolvere la seguente equazione logaritmica log 3 (x + 1) 2 log 3 (x 1) = 0 Risultato x = 3. Esercizio 8.5. Risolvere la seguente equazione logaritmica log 2 (x + 1) = log 4 (2x + 5) Risultato x = 2. Esercizio 8.6. Risolvere la seguente equazione logaritmica 4 Log 2 x + 2 Logx = 0 Risultato x = 1/100 e x = 1/10. 6

7 v u Figure 3: Vettori Esercizio Esercizi sui vettori Esercizio 9.1. Dati i vettori u e v in Figura 3 determinare graficamente u + v e i vettori 2 u e 3 u. Esercizio 9.2. Dati i vettori u e v in Figura 4 calcolare u v sapendo che v = 3, u = 5 e che α = π/3. Esercizio 9.3. Dati i vettori u= 3 i + j e v = i +7 j applicati nell origine del piano cartesiano. (a) Determinare l angolo compreso tra u e l asse X; (b) Determinare l angolo compreso tra v e l asse X; (c) Determinare analiticamente e graficamente u + v esplicitando il modulo e la direzione; (d) Determinare analiticamente e graficamente v u esplicitando il modulo e la direzione; (e) Rappresentare graficamente il vettore w= u 2 v e determinarne il modulo e la direzione; (f) Calcolare i prodotti scalari w u e u v. 7

8 v u Figure 4: Vettori Esercizio 9.2 Esercizio 9.4. Determinare il vettore u sapendo che il suo modulo è u = 4 e che u forma un angolo di 30 con l asse X. Determinare le componenti cartesiane di u. Esercizio 9.5. Determinare il vettore u sapendo che il suo modulo è u = 2 e che u forma un angolo di 150 con l asse X. Determinare le componenti cartesiane di u. Esercizio 9.6. Determinare il vettore u sapendo che il suo modulo è u = 5 e che u punta nel verso negativo dell asse Y. Determinare le componenti cartesiane di u. Esercizio 9.7. Determinare il vettore u sapendo che il suo modulo è u = 5 e che u punta nel verso negativo dell asse X. Determinare le componenti cartesiane di u. Esercizio 9.8. Dati i vettori u= 3 i 5 j e v = 4 i +6 j applicati nell origine del piano cartesiano. (a) Determinare l angolo compreso tra u e l asse X; (b) Determinare l angolo compreso tra v e l asse X; (c) Determinare analiticamente e graficamente u + v esplicitando il modulo e la direzione; (d) Determinare analiticamente e graficamente u v esplicitando il modulo e la direzione; (e) Rappresentare graficamente il vettore w= 2 u v e determinarne il modulo e la direzione; (f) Calcolare i prodotti scalari w u e u v. Esercizio 9.9. Dati i vettori u e v in Figura 5 determinare il modulo la direzione ed il verso di u v e di v u sapendo che v = 2, u = 5 e che α = π/6. Esercizio Dati i vettori u e v in Figura 6 determinare il modulo la direzione ed il verso di u v e di v u sapendo che v = 3, u = 7 e che α = 120. Esercizio Dati i vettori u= 3 i +7 j e v = 5 i j, calcolare u v. 8

9 v u Figure 5: Vettori Esercizio 9.9 v u Figure 6: Vettori Esercizio 9.10 Esercizio Dati i vettori u= i 2 j + k e v = 2 i 3 j k, calcolare u v. Esercizio Dati i vettori u= 3 2 i 2 j k e v = i + k, calcolare v u. 9

C6. Quadrilateri - Esercizi

C6. Quadrilateri - Esercizi C6. Quadrilateri - Esercizi DEFINIZIONI E COSTRUZIONI 1) Dato il seguente quadrilatero completa al posto dei puntini. I lati AB e BC sono I lati AB e CD sono I lati AD e sono consecutivi I lati AD e sono

Dettagli

Rappresenta nel piano cartesiano l insieme dei punti P(x; y) le cui coordinate soddisfano le seguenti condizioni:

Rappresenta nel piano cartesiano l insieme dei punti P(x; y) le cui coordinate soddisfano le seguenti condizioni: ultima modifica /0/0 ESERCIZI PROPOSTI IL PIANO CARTESIANO LE COORDINATE DI UN PUNTO NEL PIANO CARTESIANO A Quali sono le coordinate dei punti indicati in figura? B Quali sono le coordinate dei punti indicati

Dettagli

D4. Circonferenza - Esercizi

D4. Circonferenza - Esercizi D4. Circonferenza - Esercizi Trasformare l equazione della circonferenza nell altra forma e rappresentare graficamente la circonferenza trovandone prima centro e raggio. 1) + --=0 [(-1) +(-1) =, C(1;1),

Dettagli

Testi verifiche 3 C 3 I a. s. 2008/2009

Testi verifiche 3 C 3 I a. s. 2008/2009 Testi verifiche 3 C 3 I a. s. 2008/2009 1) Sono assegnati i punti A(- 1; 3) C(3; 0) M ;1 a) Ricavare le coordinate del simmetrico di A rispetto a M e indicarlo con B. Verificare che il segmento congiungente

Dettagli

Esercizi Matematica 3

Esercizi Matematica 3 Esercizi Matematica 3 Dipartimento di Matematica ITIS V.Volterra San Donà di Piave Versione [1/13] Introduzione Gli esercizi presentati in questo volume, seguono la stessa struttura capitolo, sezione,

Dettagli

=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=

=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= Geometria analitica Studio di figure - 1 Raccolta di esercizi di geometria analitica completi di risoluzione Grafica realizzata con GeoGebra (www.geogebra.at) e sono disponibili i file ggb delle soluzioni

Dettagli

Test di Matematica di base

Test di Matematica di base Test di Matematica di base Geometria Il rapporto tra la superficie di un quadrato e quella di un triangolo equilatero di eguale lato è a. 4 b. 4 d. [ ] Quali sono le ascisse dei punti della curva di equazione

Dettagli

La retta nel piano cartesiano

La retta nel piano cartesiano La retta nel piano cartesiano Se proviamo a disporre, sul piano cartesiano, una retta vediamo che le sue possibili posizioni sono sei: a) Coincidente con l asse delle y; b) Coincidente con l asse delle

Dettagli

SISTEMI DI RIFERIMENTO SU UNA RETTA E SU UN PIANO

SISTEMI DI RIFERIMENTO SU UNA RETTA E SU UN PIANO DIPARTIMENTO DI INGEGNERIA CIVILE PRECORSO DI MATEMATICA ANNO ACCADEMICO 013-014 ESERCIZI RELATIVI A SISTEMI DI RIFERIMENTO SU UNA RETTA E SU UN PIANO Esercizio 1: Fissato su una retta un sistema di riferimento

Dettagli

GEOMETRIA ANALITICA: LE CONICHE

GEOMETRIA ANALITICA: LE CONICHE DIPARTIMENTO DI INGEGNERIA CIVILE PRECORSO DI MATEMATICA ANNO ACCADEMICO 2013-2014 ESERCIZI DI GEOMETRIA ANALITICA: LE CONICHE Esercizio 1: Fissato su un piano un sistema di riferimento cartesiano ortogonale

Dettagli

Verifiche di matematica classe 3 C 2012/2013

Verifiche di matematica classe 3 C 2012/2013 Verifiche di matematica classe 3 C 2012/2013 1) È assegnato il punto P 1 (3; 1), calcolare le coordinate dei punti: P 2 simmetrico di P 1 rispetto alla bisettrice del primo e terzo quadrante P 3 simmetrico

Dettagli

Test su geometria. 1. una circonferenza. 2. un iperbole. 3. una coppia di iperboli. 4. una coppia di rette. 5. una coppia di circonferenze

Test su geometria. 1. una circonferenza. 2. un iperbole. 3. una coppia di iperboli. 4. una coppia di rette. 5. una coppia di circonferenze Test su geometria Domanda 1 Fissato nel piano un sistema di assi cartesiani ortogonali Oxy, il luogo dei punti le cui coordinate (x; y) soddisfano l equazione x y = 1 è costituita da una circonferenza.

Dettagli

Esercizi di Geometria Analitica

Esercizi di Geometria Analitica Esercizi di Geometria Analitica Lucia Perissinotto I.T.I.S. V.Volterra San Donà di Piave Beatrice Hitthaler I.T.I.S. V.Volterra San Donà di Piave 10 settembre 2012 Capitolo 1 Esercizi di geometria analitica

Dettagli

CORSO DI RECUPERO DI MATEMATICA PER ALUNNI CLASSI TERZE CON GIUDIZIO SOSPESO

CORSO DI RECUPERO DI MATEMATICA PER ALUNNI CLASSI TERZE CON GIUDIZIO SOSPESO CORSO DI RECUPERO DI MATEMATICA PER ALUNNI CLASSI TERZE CON GIUDIZIO SOSPESO ESERCIZI PROPOSTI 1. DATI I PUNTI A(3,-) E B(-5,): A. RAPPRESENTARLI SUL PIANO; B. CALCOLARE LA LORO DISTANZA; C. CALCOLARE

Dettagli

Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto

Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto La parabola Esercizi Esercizio 368.395 Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto 0 ;5 e raggio, e la parabola ha il suo vertice in 0 ;0.

Dettagli

Problemi sull ellisse

Problemi sull ellisse 1 equazione dell ellisse Determina l equazione di un ellisse che ha i fuochi sull asse delle ascisse, semiasse maggiore lungo 6 e distanza focale uguale a 6 + yy Scrivi l equazione dell ellisse con i fuochi

Dettagli

PROGRAMMA SVOLTO II LB Matematica 2015/2016

PROGRAMMA SVOLTO II LB Matematica 2015/2016 PROGRAMMA SVOLTO II LB Matematica 2015/2016 Sistemi di equazioni lineari: metodo di sostituzione, metodo del confronto, riduzione e Cramer. Cenni a matrici e operazioni con esse. Interpretazione grafica

Dettagli

Costruzioni geometriche. (Teoria pag , esercizi )

Costruzioni geometriche. (Teoria pag , esercizi ) Costruzioni geometriche. (Teoria pag. 81-96, esercizi 141-153 ) 1) Costruzione con squadra e riga. a) Rette parallele. Ricorda: due rette sono parallele quando.... oppure quando hanno la stessa. Matematicamente

Dettagli

LAVORO ESTIVO di MATEMATICA Classi Terze Scientifico Moderno N.B. DA CONSEGNARE ALLA PRIMA LEZIONE DI MATEMATICA DI SETTEMBRE

LAVORO ESTIVO di MATEMATICA Classi Terze Scientifico Moderno N.B. DA CONSEGNARE ALLA PRIMA LEZIONE DI MATEMATICA DI SETTEMBRE LAVORO ETIVO di MATEMATICA Classi Terze cientifico Moderno N.B. A CONEGNARE ALLA PRIMA LEZIONE I MATEMATICA I ETTEMBRE PROBLEMI I ALGEBRA APPLICATA ALLA GEOMETRIA ) In un cerchio di raggio r si determini

Dettagli

Programmazione per Obiettivi Minimi. Matematica Primo anno

Programmazione per Obiettivi Minimi. Matematica Primo anno Programmazione per Obiettivi Minimi Matematica Primo anno Saper operare in N, Z e Q. Conoscere e saper applicare le proprietà delle potenze con esponente intero e relativo. Saper operare con i monomi.

Dettagli

Istituto Professionale di Stato per l Industria e l Artigianato Giancarlo Vallauri. Classe IIID ESERCIZI ESTIVI 2013/14

Istituto Professionale di Stato per l Industria e l Artigianato Giancarlo Vallauri. Classe IIID ESERCIZI ESTIVI 2013/14 Istituto Professionale di Stato per l Industria e l Artigianato Giancarlo Vallauri Classe IIID ESERCIZI ESTIVI 01/1 ALUNNO CLASSE ESEGUI TUTTI GLI ESERCIZI SU UN FOGLIO PROTOCOLLO O UN QUADERNO. Ulteriore

Dettagli

Note di geometria analitica nel piano

Note di geometria analitica nel piano Note di geometria analitica nel piano e-mail: maurosaita@tiscalinet.it Versione provvisoria. Novembre 2015. 1 Indice 1 Punti e vettori spiccati dall origine 3 1.1 Coordinate......................................

Dettagli

Matematica - Sessione 2 / Produzione a.f.2015/2016 Esame di Diploma (IV Livello Europeo) Quarto Anno

Matematica - Sessione 2 / Produzione a.f.2015/2016 Esame di Diploma (IV Livello Europeo) Quarto Anno Id Corso Formazione Professionale Data.. Nome e Cognome Tipo Prova Domanda 1 Matematica - Sessione 2 / Produzione a.f.2015/2016 Esame di Diploma (IV Livello Europeo) Quarto Anno M010755 Una impresa edile

Dettagli

Politecnico di Torino Facoltà di Architettura. Raccolta di esercizi proposti nelle prove scritte

Politecnico di Torino Facoltà di Architettura. Raccolta di esercizi proposti nelle prove scritte Politecnico di Torino Facoltà di Architettura Raccolta di esercizi proposti nelle prove scritte relativi a: algebra lineare, vettori e geometria analitica Esercizio. Determinare, al variare del parametro

Dettagli

Protocollo dei saperi imprescindibili Ordine di scuola: tecnico della grafica

Protocollo dei saperi imprescindibili Ordine di scuola: tecnico della grafica DISCIPLINA: MATEMATICA Protocollo dei saperi imprescindibili Ordine di scuola: tecnico della grafica RESPONSABILE: CAGNESCHI F. - IMPERATORE D. CLASSE/INDIRIZZO: prima tecnico della grafica calcolo numerico

Dettagli

MATEMATICA COMPLEMENTI DI MATEMATICA

MATEMATICA COMPLEMENTI DI MATEMATICA ISTITUTO TECNICO TECNOLOGICO STATALE G. e M. MONTANI FERMO Anno Scolastico 2014/ 15 PROGRAMMA SVOLTO DI Disciplina: MATEMATICA Classe di Concorso A047 3 ore settimanali Disciplina: COMPLEMENTI DI MATEMATICA

Dettagli

Le coniche: circonferenza, parabola, ellisse e iperbole.

Le coniche: circonferenza, parabola, ellisse e iperbole. Le coniche: circonferenza, parabola, ellisse e iperbole. Teoria in sintesi Queste curve si chiamano coniche perché sono ottenute tramite l intersezione di una superficie conica con un piano. Si possono

Dettagli

PIANO CARTESIANO. NB: attenzione ai punti con una coordinata nulla: si trovano sugli assi

PIANO CARTESIANO. NB: attenzione ai punti con una coordinata nulla: si trovano sugli assi PIANO CARTESIANO Il piano cartesiano è individuato da due rette perpendicolari (ortogonali) che si incontrano in un punto O detto origine del piano cartesiano. Si fissa sulla retta orizzontale il verso

Dettagli

Istituto Professionale di Stato per l Industria e l Artigianato Giancarlo Vallauri. Classe III C ESERCIZI ESTIVI 2013/14

Istituto Professionale di Stato per l Industria e l Artigianato Giancarlo Vallauri. Classe III C ESERCIZI ESTIVI 2013/14 Istituto Professionale di Stato per l Industria e l Artigianato Giancarlo Vallauri Classe III C ESERCIZI ESTIVI 013/14 ALUNNO CLASSE ESEGUI TUTTI GLI ESERCIZI SU UN FOGLIO PROTOCOLLO O UN QUADERNO. Ulteriore

Dettagli

Soluzioni dei problemi della maturità scientifica A.S. 2007/2008

Soluzioni dei problemi della maturità scientifica A.S. 2007/2008 Soluzioni dei problemi della maturità scientifica A.S. 007/008 Nicola Gigli Sunra J.N. Mosconi 19 giugno 008 Problema 1 (a) Determiniamo in funzione di a i lati del triangolo. Essendo l angolo BĈA retto

Dettagli

determinare le coordinate di P ricordando la relazione che permette di calcolare le coordinate del punto medio di un segmento si

determinare le coordinate di P ricordando la relazione che permette di calcolare le coordinate del punto medio di un segmento si PROBLEMA Determinare il punto simmetrico di P( ;) rispetto alla retta x y =0 Soluzione Il simmetrico di P rispetto ad una retta r è il punto P che appartiene alla retta passante per P, perpendicolare ad

Dettagli

ISTITUTO TECNICO TECNOLOGICO STATALE G.

ISTITUTO TECNICO TECNOLOGICO STATALE G. ISTITUTO TECNICO TECNOLOGICO STATALE G. e M. MONTANI FERMO Anno Scolastico 2015/ 16 PROGRAMMA SVOLTO DI MATEMATICA 3 ore settimanali COMPLEMENTI DI MATEMATICA 1 ora settimanale Classe: 3^ INFORMATICA sez.

Dettagli

Calcolo letterale. 1. Quale delle seguenti affermazioni è vera?

Calcolo letterale. 1. Quale delle seguenti affermazioni è vera? Calcolo letterale 1. Quale delle seguenti affermazioni è vera? (a) m.c.m.(49a b 3 c, 4a 3 bc ) = 98a 3 b 3 c (b) m.c.m.(49a b 3 c, 4a 3 bc ) = 98a 3 b 3 c (XX) (c) m.c.m.(49a b 3 c, 4a 3 bc ) = 49a bc

Dettagli

ELEMENTI DI GEOMETRIA ANALITICA Conoscenze (tutti)

ELEMENTI DI GEOMETRIA ANALITICA Conoscenze (tutti) ELEMENTI DI GEMETRIA ANALITICA Conoscenze (tutti) 1. Completa. a. La formula matematica che mette in relazione il valore della x con il corrispondente valore della y si chiama... b. Le equazioni di primo

Dettagli

ULTERIORI ESERCIZI SUL CALCOLO DIFFERENZIALE

ULTERIORI ESERCIZI SUL CALCOLO DIFFERENZIALE ULTERIORI ESERCIZI SUL CALCOLO DIFFERENZIALE 1 Scrivi l equazione della retta tangente al grafico di f(x) = (1 + 2x) 4 nel suo punto di intersezione con l asse y 2 Scrivi l equazione della retta tangente

Dettagli

Problemi di geometria

Problemi di geometria 1 2 3 4 5 6 7 8 9 10 11 12 13 14 In un triangolo rettangolo l altezza relativa all ipotenusa è lunga 16 cm e la proiezione sull ipotenusa di un cateto è lunga 4 cm. Calcola l area del triangolo. [544 cm

Dettagli

2. Determina l equazione della circonferenza passante per i punti A ( 2; 4), B ( 1; 3) ed avente centro sulla retta di equazione 2x 3y + 2 = 0.

2. Determina l equazione della circonferenza passante per i punti A ( 2; 4), B ( 1; 3) ed avente centro sulla retta di equazione 2x 3y + 2 = 0. CLASSE 3^ C LICEO SCIENTIFICO Novembre 01 La circonferenza 1. Ricava l equazione di ciascuna delle circonferenze rappresentate, spiegando in maniera esauriente il procedimento che seguirai, prima di svolgere

Dettagli

LA GEOMETRIA DELLO SPAZIO

LA GEOMETRIA DELLO SPAZIO LA GEOMETRIA ELLO SPAZIO 1 alcola l area e il perimetro del triangolo individuato dai punti A ; 0; 4, ; 1; 5 e 0; ;. ( ) ( ) ( ) 9 ; + 6 Stabilisci se il punto A ( 1;1; ) appartiene all intersezione dei

Dettagli

Istituto Professionale di Stato per l Industria e l Artigianato Giancarlo Vallauri. Classe III E ESERCIZI ESTIVI 2013/14

Istituto Professionale di Stato per l Industria e l Artigianato Giancarlo Vallauri. Classe III E ESERCIZI ESTIVI 2013/14 Istituto Professionale di Stato per l Industria e l Artigianato Giancarlo Vallauri Classe III E ESERCIZI ESTIVI 01/14 ALUNNO CLASSE ESEGUI TUTTI GLI ESERCIZI SU UN FOGLIO PROTOCOLLO O UN QUADERNO. Ulteriore

Dettagli

I FACOLTÀ DI INGEGNERIA - POLITECNICO DI BARI Corso di Laurea in Ingegneria Meccanica (corso A) A.A. 2009-2010, Esercizi di Geometria analitica

I FACOLTÀ DI INGEGNERIA - POLITECNICO DI BARI Corso di Laurea in Ingegneria Meccanica (corso A) A.A. 2009-2010, Esercizi di Geometria analitica I FACOLTÀ DI INGEGNERIA - POLITECNICO DI BARI Corso di Laurea in Ingegneria Meccanica (corso A) A.A. 2009-2010, Esercizi di Geometria analitica Negli esercizi che seguono si suppone fissato nello spazio

Dettagli

Liceo Scientifico Statale Leonardo da Vinci Reggio Calabria. PROGRAMMA DI MATEMATICA Per la classe IV sez.d Anno scolastico 2012/13

Liceo Scientifico Statale Leonardo da Vinci Reggio Calabria. PROGRAMMA DI MATEMATICA Per la classe IV sez.d Anno scolastico 2012/13 Liceo Scientifico Statale Leonardo da Vinci Reggio Calabria PROGRAMMA DI MATEMATICA Per la classe IV sez.d Anno scolastico 2012/13 Modulo 1: Le coniche Geometria elementare retta e circonferenza nel piano

Dettagli

QUESITO 2 Risolvi ed effettua la verifica delle seguenti equazioni (quando è possibile).

QUESITO 2 Risolvi ed effettua la verifica delle seguenti equazioni (quando è possibile). QUESITO 1 In un piano cartesiano sono dati i seguenti punti: a) Disegna i punti, uniscili nell ordine e indica che poligono hai ottenuto. b) Scrivi l equazione della retta che contiene il lato AB. c) Calcola

Dettagli

Considerato un qualunque triangolo ABC, siano D ed E due punti interni al lato BC tali che:

Considerato un qualunque triangolo ABC, siano D ed E due punti interni al lato BC tali che: atematica per la nuova maturità scientifica. Bernardo. Pedone 8 PROBLE Considerato un qualunque triangolo BC, siano D ed E due punti interni al lato BC tali che: BD= DE = EC Siano poi ed i punti medi rispettivamente

Dettagli

CLASSE 3^ A LICEO SCIENTIFICO 31 Agosto 2015 Recupero MATEMATICA

CLASSE 3^ A LICEO SCIENTIFICO 31 Agosto 2015 Recupero MATEMATICA CLASSE 3^ A LICEO SCIENTIFICO 3 Agosto 205 Recupero MATEMATICA. Scrivi l equazione della circonferenza passante per i punti ;2 e 2;5 e avente il centro sulla retta di equazione = 2 2. L asse del segmento

Dettagli

Formulario di Matematica

Formulario di Matematica Nicola Morganti 6 dicembre 00 Indice FORMULE DI GEOMETRIA ANALITICA PIANA. LA RETTA................................... LA CIRCONFERENZA............................. L ELLISSE...................................

Dettagli

POLIGONI NEL PIANO CARTESIANO (1)

POLIGONI NEL PIANO CARTESIANO (1) POLIGONI NEL PIANO CARTESIANO (1) Ora che sai come si trova la distanza tra due punti sul piano cartesiano e sai anche determinare le coordinate dei punti medi di un segmento,imparerai ad applicare queste

Dettagli

PROGRAMMAZIONE III Geometri. ORGANIZZAZIONE MODULARE (Divisa in unità didattiche) MODULO TITOLO DEL MODULO ORE PREVISTE A Richiami di algebra 30

PROGRAMMAZIONE III Geometri. ORGANIZZAZIONE MODULARE (Divisa in unità didattiche) MODULO TITOLO DEL MODULO ORE PREVISTE A Richiami di algebra 30 PROGRAMMAZIONE III Geometri ORGANIZZAZIONE MODULARE (Divisa in unità didattiche) MODULO TITOLO DEL MODULO ORE PREVISTE A Richiami di algebra 30 B Geometria analitica 32 C Goniometria 30 D Trigonometria

Dettagli

LICEO SCIENTIFICO SESSIONE STRAORDINARIA 2016 QUESTIONARIO QUESITO 1. lim. = lim cos(x) = 1 2 QUESITO 2

LICEO SCIENTIFICO SESSIONE STRAORDINARIA 2016 QUESTIONARIO QUESITO 1. lim. = lim cos(x) = 1 2 QUESITO 2 www.matefilia.it LICEO SCIENTIFICO SESSIONE STRAORDINARIA 6 QUESTIONARIO QUESITO Calcolare il limite: sen(cos(x) ) lim x ln (cos (x)) Ricordiamo che, se f(x) tende a zero, risulta: senf(x)~f(x) ed ln (

Dettagli

CALENDARIO BOREALE 1 EUROPA 2015 QUESITO 1

CALENDARIO BOREALE 1 EUROPA 2015 QUESITO 1 www.matefilia.it Indirizzi: LI0, EA0 SCIENTIFICO; LI0 - SCIENTIFICO - OPZIONE SCIENZE APPLICATE CALENDARIO BOREALE EUROPA 05 QUESITO La funzione f(x) è continua per x [ 4; 4] il suo grafico è la spezzata

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 10: soluzioni Corso di Geometria 2010-11 BIAR, BSIR Esercizi 10: soluzioni 1 Geometria dello spazio Esercizio 1. Dato il punto P 0 = ( 1, 0, 1) e il piano π : x + y + z 2 = 0, determinare: a) Le equazioni parametriche

Dettagli

PNI 2013 SESSIONE STRAORDINARIA - QUESITI QUESITO 1

PNI 2013 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 www.matefilia.it PNI 203 SESSIONE STRAORDINARIA - QUESITI QUESITO Un ufficiale della guardia di finanza, in servizio lungo un tratto rettilineo di costa, avvista una motobarca di contrabbandieri che dirige

Dettagli

ESERCIZI PER IL RECUPERO DEL DEBITO FINALE. Esercizio n.1

ESERCIZI PER IL RECUPERO DEL DEBITO FINALE. Esercizio n.1 Esercizio n.1 Un appezzamento di terreno quadrilatero ABCD è stato rilevato andando a misurare: AB = 345,65 m AD = 308,68 m CD = 195,44 m a = 95,3852 gon g = 115,5600 gon Rappresentare in scala opportuna

Dettagli

Esercitazione per la prova di recupero del debito formativo

Esercitazione per la prova di recupero del debito formativo LEZIONI ED ESERCITAZIONI DI MATEMATICA Prof. Francesco Marchi 1 Esercitazione per la prova di recupero del debito formativo 24 febbraio 2010 1 Per altri materiali didattici o per contattarmi: Blog personale:

Dettagli

D. 1 Il prodotto di a = 12,37 e b = 25,45

D. 1 Il prodotto di a = 12,37 e b = 25,45 Settembre 005 Aritmetica D. Il prodotto di a =,7 e b = 5,45 A 4, 867 B 4, 65 C 45, 650 D 4, 865 E 4, 8655 D. L inverso del numero numero: A 5 B 5 + 5 C + 5 D E D. I numeri 5 è il,4,5,0,00, si ordinano

Dettagli

Frazioni. 8 Esercizi di Analisi Matematica Versione Argomenti: Operazioni sulle frazioni Tempo richiesto: Completare la seguente tabella: a b

Frazioni. 8 Esercizi di Analisi Matematica Versione Argomenti: Operazioni sulle frazioni Tempo richiesto: Completare la seguente tabella: a b 8 Esercizi di Analisi Matematica ersione 2006 razioni Argomenti: Operazioni sulle frazioni Difficoltà: Tempo richiesto: Completare la seguente tabella: a b a + b a b 1/3 1/2 1/3 1/2 1/3 1/2 a b a a + b

Dettagli

1. conoscere i concetti fondamentali della geometria sintetica del piano (poligoni, circonferenza

1. conoscere i concetti fondamentali della geometria sintetica del piano (poligoni, circonferenza Terzo modulo: Geometria Obiettivi 1. conoscere i concetti fondamentali della geometria sintetica del piano (poligoni, circonferenza e cerchio, ecc.). calcolare perimetri e aree di figure elementari nel

Dettagli

Domande di Analisi Matematica tratte dai Test di autovalutazione o di recupero dei debiti formativi.

Domande di Analisi Matematica tratte dai Test di autovalutazione o di recupero dei debiti formativi. Domande di Analisi Matematica tratte dai Test di autovalutazione o di recupero dei debiti formativi. (1) Sia A l insieme dei numeri dispari minori di 56 e divisibili per 3. Quale delle seguenti affermazioni

Dettagli

Test A Teoria dei numeri e Combinatoria

Test A Teoria dei numeri e Combinatoria Test A Teoria dei numeri e Combinatoria Problemi a risposta secca 1. Determinare con quanti zeri termina la scrittura in base 12 del fattoriale di 2002. 2. Determinare quante sono le coppie (x, y) di interi

Dettagli

In un triangolo altezza mediana bisettrice asse Proprietà di angoli e lati di un triangolo

In un triangolo altezza mediana bisettrice asse Proprietà di angoli e lati di un triangolo In un triangolo si dice altezza relativa a un lato il segmento di perpendicolare al lato condotta dal vertice opposto. Si dice mediana relativa a un lato il segmento che unisce il punto medio del lato

Dettagli

(x B x A, y B y A ) = (4, 2) ha modulo

(x B x A, y B y A ) = (4, 2) ha modulo GEOMETRIA PIANA 1. Esercizi Esercizio 1. Dati i punti A(0, 4), e B(4, ) trovarne la distanza e trovare poi i punti C allineati con A e con B che verificano: (1) AC = CB (punto medio del segmento AB); ()

Dettagli

Appunti: il piano cartesiano. Distanza tra due punti

Appunti: il piano cartesiano. Distanza tra due punti ppunti: il piano cartesiano Distanza tra due punti Come determinare la distanza tra i punti ( ; ) e ( ; ): Se i due punti e hanno la stessa ascissa = allora (-3;1) (-3; 5) d()= d()= 1 5 4 4 Se i due punti

Dettagli

Appunti ed esercizi di geometria analitica PRIMA PARTE

Appunti ed esercizi di geometria analitica PRIMA PARTE Appunti ed esercizi di geometria analitica PRIMA PARTE Per la teoria studiare su il libro di testo La retta e i sistemi lineari, modulo E, da pagina 594 a pagina 597. Esercizi da pagina 617 a pagina 623.

Dettagli

POLIGONI INSCRITTI E CIRCOSCRITTI A UNA CIRCONFERENZA

POLIGONI INSCRITTI E CIRCOSCRITTI A UNA CIRCONFERENZA POLIGONI INSCRITTI E CIRCOSCRITTI A UNA CIRCONFERENZA Poligoni Inscritti ad una circonferenza: Un poligono è inscritto in una circonferenza se tutti i suoi vertici appartengono alla circonferenza e gli

Dettagli

Protocollo dei saperi imprescindibili Ordine di scuola: professionale

Protocollo dei saperi imprescindibili Ordine di scuola: professionale Protocollo dei saperi imprescindibili Ordine di scuola: professionale DISCIPLINA: MATEMATICA RESPONSABILE: CAGNESCHI F. - IMPERATORE D. CLASSE/INDIRIZZO: prima servizi commerciali Utilizzare le tecniche

Dettagli

GEOMETRIA. Studio dei luoghi /relazioni tra due variabili. Studio delle figure (nel piano/spazio) Problemi algebrici sulle figure geometriche

GEOMETRIA. Studio dei luoghi /relazioni tra due variabili. Studio delle figure (nel piano/spazio) Problemi algebrici sulle figure geometriche GEOMETRIA ANALITICA EUCLIDEA Studio dei luoghi /relazioni tra due variabili Studio delle figure (nel piano/spazio) Funzioni elementari Problemi algebrici sulle figure geometriche Grafici al servizio dell

Dettagli

ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA.

ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA. ELEMENTI DI GEOMETRIA ANALITICA: LA RETTA. Prerequisiti I radicali Risoluzione di sistemi di equazioni di primo e secondo grado. Classificazione e dominio delle funzioni algebriche Obiettivi minimi Saper

Dettagli

LICEO PEDAGOGICO-ARTISTICO G. Pascoli di Bolzano VERIFICA SCRITTA DI MATEMATICA CLASSE 4a P-FILA A 04/11/2010- Tempo 100

LICEO PEDAGOGICO-ARTISTICO G. Pascoli di Bolzano VERIFICA SCRITTA DI MATEMATICA CLASSE 4a P-FILA A 04/11/2010- Tempo 100 LICEO PEDAGOGICO-ARTISTICO G. Pascoli di Bolzano VERIFICA SCRITTA DI MATEMATICA CLASSE 4a P-FILA A 4//- Tempo Ogni risposta ai quesiti va opportunamente motivata (con calcoli, grafici, ecc.) pena la sua

Dettagli

MODULO DI DISEGNO C.D.L. INGEGNERIA CIVILE, AMBIENTALE E EDILE

MODULO DI DISEGNO C.D.L. INGEGNERIA CIVILE, AMBIENTALE E EDILE MODULO DI DISEGNO C.D.L. INGEGNERIA CIVILE, AMBIENTALE E EDILE PROVA GRAFICA DEL 13/01/2014 ESERCIZIO 1/2 Disegnare, in I e II proiezione ortogonale, un quadrato, ABCD, appartenente ad un piano verticale

Dettagli

Nucleo Fondante Competenze-Conoscenze-Abilità Contenuti Metodi Materiali - Strumenti Raccordi disciplinari

Nucleo Fondante Competenze-Conoscenze-Abilità Contenuti Metodi Materiali - Strumenti Raccordi disciplinari Nucleo Fondante Competenze-Conoscenze-Abilità Contenuti Metodi Materiali - Strumenti Raccordi disciplinari NUMERI Concetto di insieme e sua rappresentazione Operazioni con gli insiemi Eseguire le quattro

Dettagli

SYLLABUS DI MATEMATICA Liceo Linguistico Classe III

SYLLABUS DI MATEMATICA Liceo Linguistico Classe III SYLLABUS DI MATEMATICA Liceo Linguistico Classe III LE EQUAZIONI DI SECONDO GRADO Le equazioni di secondo grado e la loro risoluzione. La formula ridotta. Equazioni pure, spurie e monomie. Le relazioni

Dettagli

1 SIGNIFICATO DEL DETERMINANTE

1 SIGNIFICATO DEL DETERMINANTE UNIVERSITÀ DEGLI STUDI DI ROMA LA SAPIENZA - Facoltà di Farmacia e Medicina - Corso di Laurea in CTF 1 SIGNIFICATO DEL DETERMINANTE Consideriamo il seguente problema: trovare l area del parallelogramma

Dettagli

a) Parallela a y = x + 2 b) Perpendicolare a y = x +2. Soluzioni

a) Parallela a y = x + 2 b) Perpendicolare a y = x +2. Soluzioni Svolgimento Esercizi Esercizi: 1) Una particella arriva nel punto (-2,2) dopo che le sue coordinate hanno subito gli incrementi x=-5, y=1. Da dove è partita? 2) Disegnare il grafico di C = 5/9 (F -32)

Dettagli

1 Rette e piani nello spazio

1 Rette e piani nello spazio 1 Rette e piani nello spazio Esercizio 1.1 È assegnato un riferimento cartesiano 0xyz. Sono assegnati la retta x = t, r : y = t, z = t, il piano π : x + y + z = 0 ed il punto P = (1, 1, 1). Scrivere le

Dettagli

Classi: 4A inf Sirio Disciplina: MATEMATICA Ore settimanali previste: 3

Classi: 4A inf Sirio Disciplina: MATEMATICA Ore settimanali previste: 3 Classi: 4A inf Sirio Disciplina: MATEMATICA Ore settimanali previste: 3 Titolo unità didattiche in cui è diviso Titolo Modulo il modulo Prerequisiti per l'accesso al modulo 1: Calcolo numerico e letterale,

Dettagli

2. Calcola, enunciando, descrivendo e applicando la definizione, la derivata della 2

2. Calcola, enunciando, descrivendo e applicando la definizione, la derivata della 2 Domande di matematica per l esame di stato per il liceo classico Analisi matematica 1. Spiega quando una funzione è un infinitesimo e quando è un infinito per x che tende a x 0. Quali sono i possibili

Dettagli

C5. Triangoli - Esercizi

C5. Triangoli - Esercizi C5. Triangoli - Esercizi DEFINIZIONI 1) Dato il triangolo in figura completare al posto dei puntini. I lati sono i segmenti,, Gli angoli sono,, Il lato AB e l angolo sono opposti Il lato AB e l angolo

Dettagli

Geometria BATR-BCVR Esercizi 9

Geometria BATR-BCVR Esercizi 9 Geometria BATR-BCVR 2015-16 Esercizi 9 Esercizio 1. Per ognuna delle matrici A i si trovi una matrice ortogonale M i tale che Mi ta im sia diagonale. ( ) 1 1 2 3 2 A 1 = A 2 1 2 = 1 1 0 2 0 1 Esercizio

Dettagli

x 1 Fig.1 Il punto P = P =

x 1 Fig.1 Il punto P = P = Geometria di R 2 In questo paragrafo discutiamo le proprietà geometriche elementari del piano Per avere a disposizione delle coordinate nel piano, fissiamo un punto, che chiamiamo l origine Scegliamo poi

Dettagli

Problemi di geometria

Problemi di geometria 1 2 6 7 9 Calcola la misura dell ipotenusa di un triangolo rettangolo i cui cateti misurano 11,2 cm e 1 cm. [1,7 cm] In un triangolo rettangolo l ipotenusa misura cm, un cateto è dell ipotenusa. Calcola

Dettagli

Esercitazione Esame di Stato Secondaria di primo grado

Esercitazione Esame di Stato Secondaria di primo grado Esame di stato scuola media Esempio di tema d esame 001 UbiMath - 1 Esercitazione Esame di Stato Secondaria di primo grado Quesito 1 Piano cartesiano In un sistema di riferimento cartesiano ortogonale

Dettagli

PIANO CARTESIANO e RETTE classi 2 A/D 2009/2010

PIANO CARTESIANO e RETTE classi 2 A/D 2009/2010 PIANO CARTESIANO e RETTE classi 2 A/D 2009/2010 1) PIANO CARTESIANO serve per indicare, identificare, chiamare... ogni PUNTO del piano (ente geometrico) con una coppia di valori numerici (detti COORDINATE).

Dettagli

Mutue posizioni della parabola con gli assi cartesiani

Mutue posizioni della parabola con gli assi cartesiani Mutue posizioni della parabola con gli assi cartesiani L equazione di una parabola generica è data da: Consideriamo l equazione che definisce i punti di intersezione della parabola con l asse delle ascisse

Dettagli

a) S/ 4; b) S/ 8; c) S/12; d) S/16; e) Nessuna delle precedenti. 2. Due triangoli sono congruenti se hanno congruenti:

a) S/ 4; b) S/ 8; c) S/12; d) S/16; e) Nessuna delle precedenti. 2. Due triangoli sono congruenti se hanno congruenti: 1. Sia ABC un triangolo equilatero di area S. Siano L, M, N, i punti medi dei lati AB, BC, CA, e E, F, D, i punti medi dei lati LM, MN, NL.. L area del triangolo DEF è uguale a: a) S/ 4; b) S/ 8; c) S/12;

Dettagli

Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016

Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016 Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016 Prodotti scalari e forme bilineari simmetriche (1) Sia F : R 2 R 2 R un applicazione definita da F (x, y) = x 1 y 1 + 3x 1 y 2 5x 2 y 1 + 2x 2

Dettagli

LICEO SCIENTIFICO "R. NUZZI" - ANDRIA Anno Scolastico 2015/16 MATEMATICA

LICEO SCIENTIFICO R. NUZZI - ANDRIA Anno Scolastico 2015/16 MATEMATICA LICEO SCIENTIFICO "R. NUZZI" - ANDRIA Anno Scolastico 2015/16 MATEMATICA Il Dipartimento di Matematica per il corrente anno scolastico (2015/2016) ha individuato la realizzazione di diciannove corsi integrativi

Dettagli

Analogie e differenze tra i due metodi?

Analogie e differenze tra i due metodi? Il piano Cartesiano. Per iniziare..forse hai già giocato a Battaglia Navale! Descrivi il gioco: Come comunichi con l avversario? Altro passatempo simile per la comunicazione è il gioco degli scacchi. Descrivi

Dettagli

PROGRAMMAZIONE DISCIPLINARE ISTITUTO PROFESSIONALE COMMERCIALE MATEMATICA

PROGRAMMAZIONE DISCIPLINARE ISTITUTO PROFESSIONALE COMMERCIALE MATEMATICA PROGRAMMAZIONE DISCIPLINARE PROGRAMMAZIONE DISCIPLINARE ISTITUTO PROFESSIONALE COMMERCIALE MATEMATICA CLASSE TERZA IPC COMPETENZE 42) Utilizzare le tecniche e le procedure del calcolo aritmetico ed algebrico

Dettagli

Problemi sulla circonferenza verso l esame di stato

Problemi sulla circonferenza verso l esame di stato Problemi sulla circonferenza verso l esame di stato * * * n. 0 pag. 06 a) Scrivi l equazione della circonferenza γ 1 di centro P ; ) e passante per il punto A0; 1). b) Scrivi l equazione della circonferenza

Dettagli

Istituto di Istruzione Superiore L. da Vinci Civitanova Marche. Anno scolastico PROGRAMMA SVOLTO. Materia: Matematica

Istituto di Istruzione Superiore L. da Vinci Civitanova Marche. Anno scolastico PROGRAMMA SVOLTO. Materia: Matematica Anno scolastico 2015-2016 PROGRAMMA SVOLTO Materia: Matematica Docente: Massimiliano Iori Classe : 2F Indirizzo: Linguistico Disequazioni lineari Le diseguaglianze: definizioni e proprietà. Disequazioni

Dettagli

Rilevazione degli apprendimenti

Rilevazione degli apprendimenti Rilevazione degli apprendimenti Anno Scolastico 00-0 PROVA DI MATEMATICA Scuola secondaria di II grado Classe... Studente... Simulazioni di prove costruite secondo il Quadro di riferimento Invalsi pubblicato

Dettagli

C8. Teoremi di Euclide e di Pitagora - Esercizi

C8. Teoremi di Euclide e di Pitagora - Esercizi C8. Teoremi di Euclide e di Pitagora - Esercizi EQUIVALENZA DI FIGURE GEOMETRICHE E CALCOLO DI AREE 1) Dimostra che ogni mediana divide un triangolo in due triangoli equivalenti. 2) Dato un parallelogramma

Dettagli

Programma di matematica Classe: II BL Docente: Alessandra Mancini Anno scolastico: 2015/2016

Programma di matematica Classe: II BL Docente: Alessandra Mancini Anno scolastico: 2015/2016 Programma di matematica Classe: II BL Docente: Alessandra Mancini Anno scolastico: 2015/2016 NUCLEI DISCIPLINARI OBIETTIVI SPECIFICI 1. RIPASSO Saper operare con: 0.1 scomposizioni 0.2 frazioni algebriche

Dettagli

Geometria Analitica Domande e Risposte

Geometria Analitica Domande e Risposte Geometria Analitica Domande e Risposte A. Il Piano Cartesiano. Qual è la formula della distanza tra due punti nel piano cartesiano? Per calcolare la formula della distanza tra due punti nel piano cartesiano

Dettagli

ESERCITAZIONE SULLE RETTE CON DERIVE

ESERCITAZIONE SULLE RETTE CON DERIVE ESERCITAZIONE SULLE RETTE CON DERIVE Dati i punti : A (,) B (6,-) C (-3,-3) determinare:. il perimetro del triangolo avente come vertici i punti A,B,C. l area del triangolo avente come vertici i punti

Dettagli

Ricordiamo. 1. Disegna una retta orientata, prendi un unità di misura e posiziona i seguenti punti: 1

Ricordiamo. 1. Disegna una retta orientata, prendi un unità di misura e posiziona i seguenti punti: 1 Geometria Analitica Piano Cartesiano Sistema di coordinate su una retta Presa una retta r orientata, su cui sono stati fissati un origine O e un unità di misura, definiamo sistema di coordinate su una

Dettagli

Funzioni di secondo grado

Funzioni di secondo grado Definizione della funzione di secondo grado 1 Funzioni di secondo grado 1 Definizione della funzione di secondo grado f: R R, = a +b +c dove a, b, c ǫ R e a definisce una funzione di secondo grado. A seconda

Dettagli

Introduzione a GeoGebra

Introduzione a GeoGebra Introduzione a GeoGebra Nicola Sansonetto Istituto Sanmicheli di Verona 31 Marzo 2016 Nicola Sansonetto (Sanmicheli) Introduzione a GeoGebra 31 Marzo 2016 1 / 14 Piano dell incontro 1 Introduzione 2 Costruzioni

Dettagli

LA CIRCONFERENZA, I POLIGONI INSCRITTI E CIRCOSCRITTI

LA CIRCONFERENZA, I POLIGONI INSCRITTI E CIRCOSCRITTI LA CIRCONFERENZA, I POLIGONI INSCRITTI E CIRCOSCRITTI 1. La circonferenza e il cerchio ESERCIZI 1 A Disegna un triangolo ABC di altezza CH relativa ad AB. Fissa un segmento ED minore di CH. Determina il

Dettagli

Sezione 6.9. Esercizi 191. c ) d ) c ) d ) c ) x + 5y 2 = 23 ; d ) x 2 + 2y 2 = 4. c ) d ) 4y 2 + 9x 2. { x 2 + y 2 = 25. c ) x + 3y = 10 ; d ) c )

Sezione 6.9. Esercizi 191. c ) d ) c ) d ) c ) x + 5y 2 = 23 ; d ) x 2 + 2y 2 = 4. c ) d ) 4y 2 + 9x 2. { x 2 + y 2 = 25. c ) x + 3y = 10 ; d ) c ) Sezione 9 Esercizi 9 9 Esercizi 9 Esercizi dei singoli paragrafi - Sistemi di secondo grado Risolvere i seguenti sistemi di secondo grado { x + y = x + y = { x y x = 0 x y = { x + y = 0 x = y { x xy =

Dettagli

C I R C O N F E R E N Z A...

C I R C O N F E R E N Z A... C I R C O N F E R E N Z A... ESERCITAZIONI SVOLTE 3 Equazione della circonferenza di noto centro C e raggio r... 3 Equazione della circonferenza di centro C passante per un punto A... 3 Equazione della

Dettagli