SECONDA LEZIONE (4 ore): CONDUTTORI e DIELETTRICI

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "SECONDA LEZIONE (4 ore): CONDUTTORI e DIELETTRICI"

Transcript

1 SECONDA LEZIONE (4 oe): CONDUTTORI e DIELETTRICI Conduttoi in campo elettico Polaizzazione della mateia Vettoe polaizzazione Vettoe spostamento elettico Suscettività elettica Capacità Condensatoi Enegia del campo elettico

2 Conduttoe posto in un campo elettico In un conduttoe immeso in un campo elettico esteno le caiche elettiche libee di muovesi vengono spinte dalla foza del campo elettico fino ad addensasi sulle supefici finché il campo che esse poducono all inteno del conduttoe non annulla completamente il campo esteno applicato, poducendo così un equilibio.

3

4 In conclusione: 1) in un conduttoe posto in un campo elettostatico e che sia in equilibio elettico, il campo elettico nei punti inteni è nullo; 2) il campo elettico alla supeficie di un conduttoe in equilibio è nomale alla supeficie (altimenti le caiche saebbeo libee di muovesi fino a aggiungee un equilibio, campo nullo); 3) l intea caica elettica di un conduttoe in equilibio si tova sulla sua supeficie

5 Polaizzazione della mateia

6 Nella mateia non conduttice costituita da atomi, e quindi da un insieme di caiche positive (nuclei) e negative (elettoni), ci toviamo in pesenza di una situazione di neutalità elettica a livello macoscopico. A livello micoscopico possiamo avee due situazioni: (i) i baicenti della caica negativa e di quella positiva non coincidono; (ii) il baicento della caica positiva e di quella negativa coincidono. Nel pimo caso la mateia pesenta dipoli micoscopici. Nel secondo caso non abbiamo dipoli micoscopici.

7 E I dipoli elettici della mateia posti in un campo elettico E E Nei mateiali comuni costituiti da dipoli elettici micoscopici in assenza di campo elettico esteno i dipoli sono oientati in modo casuale, come conseguenza dell agitazione temica, e non si manifesta nessun effetto elettico macoscopico.

8 Se il mateiale in questione è immeso in un campo elettico esteno, i dipoli cominciano ad oientasi nella diezione del campo elettico dando oigine ad un effetto elettico macoscopico.

9 Mateiali pivi di dipoli elettici micoscopici Mateiali pivi di dipoli elettici micoscopici (baicento della caica positiva coincide con il baicento della caica negativa), se posti in un campo elettico esteno, manifestano uno spostamento in senso opposto dei baicenti delle due caiche. Questo povoca la ceazione di dipoli elettici micoscopici oientati in diezione del campo elettico esteno, che ceano un effetto elettico macoscopico.

10 Pezzetti di cata attiati dalla bacchetta caica

11 Il vettoe polaizzazione Se inseiamo un paallelepipedo di mateiale non conduttoe (dielettico) in un campo elettico, la sua polaizzazione cea la compasa di una caica positiva da un lato e una caica negativa dall alto. Definiamo la POLARIZZAZIONE P di un mateiale come il vettoe che indica il momento di dipolo pe unità di volume. Se p è il momento di dipolo indotto negli atomi (o quello molecolae), e n è il numeo di dipoli elementai pe unità di volume Pnp in genee (pe mateiali isotopi) la polaizzazione è paallela al campo elettico.

12 Se la lasta di mateiale ha spessoe l e supeficie S, posta pependicolamente al campo E, la polaizzazione paallela a E è pependicolae a S. Il momento di dipolo totale è P pe volume: P(Sl) (PS)l l è la distanza ta le due caiche sulle supefici del paallelepipedo. Dalla definizione di momento di dipolo (caica pe distanza) P(Sl) Ql abbiamo PSQ cioè la caica sulle supefici S. Possiamo genealizzae il isultato: la caica pe unità di supeficie di un pezzo di mateiale polaizzato è uguale alla componente della polaizzazione P nella diezione della nomale alla supeficie del copo. σ P u n n u vesoe nomale alla supeficie

13 Vettoe spostamento elettico Se inseiamo ta due piani caichi con uguale densità di caica σ LIB una lasta di dielettico, sulle sue supefici affacciate ai piani caichi viene indotta una caica di polaizzazione pe unità di aea pai a σ POL P Il campo elettico dento alla lasta saà il isultato della caica totale nei piani e sulle facce della lasta: σ σ LIB + σ POL σ LIB - P Quindi il campo E vale: E σ 1 ( σ LIB P ) σ LIB E + P

14 Si può definie un vettoe Spostamento Elettico D, tale che la componente di D lungo la nomale alla supeficie di un conduttoe immeso in un dielettico è uguale alla densità di caica libea supeficiale sul conduttoe σ LIB D u n D σ LIB E + E P Da cui, genealizzando il isultato in foma vettoiale + P L unità di misua dello spostamento elettico nel S.I. è [D] C m -2 (la stessa della polaizzazione P)

15 Essendo σ LIB D u n il flusso del vettoe spostamento elettico attaveso una supeficie chiusa è uguale alla caica libea totale ento la supeficie q LIB D S ds

16 Suscettività e pemettività elettica In molti mateiali (ma non è sempe veo) il vettoe polaizzazione è paallelo al vettoe campo elettico isultante nel mateiale: E P e χ Dove χ e è una costante adimensionata detta suscettività elettica, che dipende dal mateiale. Quindi se ipendiamo la definizione di vettoe spostamento elettico otteniamo: E D E E E P E D e e ) 1 ( χ χ (1+χ E ) è detta pemettività o costante dielettica del mezzo. (1+χ E ) è detta pemettività elativa o costante dielettica elativa.

17 Ripendendo la legge di Gauss pe il vettoe D q LIB S S D ds E ds q S LIB E ds N.B. nel caso in cui non si considei la costante dielettica elativa, la legge di Gauss deve tenee conto sia delle caiche libee che di quelle di polaizzazione S E ds q LIB + q POL

18 S E ds q LIB Pe una caica puntifome q il campo nel vuoto isulta E q 4π 2 La stessa caica in un dielettico ha campo E q 4π 2 Cioè smozato di un fattoe ispetto al vuoto. Lo smozamento del campo elettico di una caica in un mezzo, ispetto alla stessa caica nel vuoto, è una conseguenza degli effetti di schematua dei dipoli elettici indotti o oientati dal campo elettico sogente.

19 Pe una piasta con densità di caica supefic. libea σ LIB e di polaizzazione σ POL S E ds q LIB E σ LIB σ LIB Senza dielettico ta le piaste isulteebbe E σ LIB E isulta smozato di un fattoe ispetto al vuoto.

20 La suscettività elettica descive la isposta di un mezzo al campo elettico applicato. P χ C è da aspettasi una diffeenza se il campo è stazionaio o vaiabile, e c è da aspettasi una vaiazione con la tempeatua e E χe A + B T Legge di Cuie A dipende dallo spostamento dei baicenti delle caiche + e -; B dall oientazione dei dipoli micoscopici, che peggioa con l agitazione temica.

21 La capacità elettica e i condensatoi Se pendiamo un conduttoe isolato su cui si tova la caica Q si può dimostae che qualunque sia la geometia la caica Q è popozionale al potenziale V Q CV La costante C è detta capacità elettica del conduttoe. ESEMPIO: pendiamo una sfea metallica di aggio R con caica Q: Q V E quindi: C 4 π R 4πR La capacità si misua in FARAD [F]CV -1 nel S.I.

22 CONDENSATORE Quando pendiamo due conduttoi isolati su cui abbiamo posto due caiche Q uguali in modulo ma di segno opposto abbiamo un CONDENSATORE e si può dimostae che qualunque sia la geometia del sistema Q C V V è la diff. di pot. ta i metalli e C dipende solo dalla geometia e dal dielettico in cui il condensatoe è immeso.

23 CONDENSATORI

24 CONDENSATORI: bundling e bottiglia di Lenden il bundling ea paticato nelle coti del 18mo secolo: pesone di sesso opposto nello stesso letto, con una baiea pe mantenele distanti. Nella bottiglia di Leyden, caiche opposte sono sepaate dal veto; le linee di foza sono concentate dento il veto, l enegia è accumulata dento il veto della bottiglia. Pe scaicae la bottiglia basta connettee con un filo conduttoe il lato + ed il lato del veto.

25 Il condensatoe a facce piane e paallele σ LIB S Q E DATI: aea facce S; caica Q; densità di caica σ LIB Q/S σ S d Q d d E V V LIB 2 1 d S d S C Senza dielettico ta le piaste isulteebbe d S C La Capacità C di un condensatoe isulta incementata di un fattoe ispetto all assenza di dielettico (vuoto ta le piaste) V Q C

26 Enegia del campo elettostatico Se cechiamo di caicae un condensatoe a facce piane paallele di capacità C, il lavoo fatto pe potae la caica dq sulle facce vale: dl Vdq Ma V è la diff. di pot. ta le amatue V Pe il caicamento totale si fa un lavoo q C L V Vdq Q q C dq 1 2 Q C 2 L V Vdq V Vd( CV ) 1 2 CV 2

27 Immagazzinamento di 6 MJ Pogetto Nova: fusione nucleae. 1 condensatoi al Lawence Livemoe National laboatoy immagazzinano 6 MJ di enegia e la ilasciano in 1 ms a lampade che pilotano un lase.

28 Dove va a finie il lavoo L del geneatoe pe caicae il condensatoe? Nella costuzione del campo elettico dento il condensatoe. Quindi diventa enegia del campo elettostatico. Calcoliamo questa enegia in funzione di E pe un condensatoe a facce piane e paallele: 1 2 L CV W en. campo elett. 2 S ma icodando : C ; V Ed d 1 S W ( )( Ed) E ( Sd) 2 d 2 Intoducendo il concetto di densità di enegia del campo elettostatico: W 1 2 w E ( Sd) 2 Si può dimostae che il isultato è genealizzabile a qualsiasi campo elettostatico

29 Seie e paalleli di condensatoi capacità in seie 1 1 C eq C i capacità in paallelo C eq C i

30

Lezione 3. Applicazioni della Legge di Gauss

Lezione 3. Applicazioni della Legge di Gauss Applicazioni della Legge di Gauss Lezione 3 Guscio sfeico di aggio con caica totale distibuita unifomemente sulla supeficie. immetia sfeica, dipende solo da supeficie sfeica di aggio

Dettagli

Conduttori in equilibrio elettrostatico

Conduttori in equilibrio elettrostatico onduttoi in equilibio elettostatico In un conduttoe in equilibio, tutte le caiche di conduzione sono in equilibio Se una caica di conduzione è in equilibio, in quel punto il campo elettico è nullo caica

Dettagli

Nome..Cognome. classe 5D 29 Novembre VERIFICA di FISICA: Elettrostatica Domande

Nome..Cognome. classe 5D 29 Novembre VERIFICA di FISICA: Elettrostatica Domande Nome..ognome. classe 5 9 Novembe 8 RIFI di FISI: lettostatica omande ) ai la definizione di flusso di un campo vettoiale attaveso una supeficie. nuncia il teoema di Gauss pe il campo elettico (senza dimostalo)

Dettagli

Elettrostatica. P. Maestro Elettrostatica pag. 1

Elettrostatica. P. Maestro Elettrostatica pag. 1 Elettostatica Composizione dell atomo Caica elettica Legge di Coulomb Campo elettico Pincipio di sovapposizione Enegia potenziale del campo elettico Moto di una caica in un campo elettico statico Teoema

Dettagli

Facoltà di Ingegneria Fisica II Compito A

Facoltà di Ingegneria Fisica II Compito A Facoltà di ngegneia Fisica 66 Compito A Esecizio n Un filo di mateiale isolante, con densità di caica lineae costante, viene piegato fino ad assumee la foma mostata in figua (la pate cicolae ha aggio e

Dettagli

IL CAMPO ELETTROMAGNETICO DIPENDENTE DAL TEMPO

IL CAMPO ELETTROMAGNETICO DIPENDENTE DAL TEMPO IL CAMPO ELETTROMAGNETICO DIPENDENTE DAL TEMPO Legge di Faaday-Heny (o dell induzione elettomagnetica); Applicazioni della legge dell induzione e.m., caso della spia otante; Il fenomeno dell autoinduzione

Dettagli

Capacità ele+rica. Condensatori

Capacità ele+rica. Condensatori Capacità ele+ica Condensatoi Condensatoi Il sistema più semplice pe immagazzinae enegia elettostatica è caicae un condensatoe. Genealmente il condensatoe è costituito da due piani metallici sepaati da

Dettagli

( ) ( ) ( ) ( ) Esercizi 2 Legge di Gauss

( ) ( ) ( ) ( ) Esercizi 2 Legge di Gauss Esecizi Legge di Gauss. Un involuco sfeico isolante ha aggi inteno ed esteno a e b, ed e caicato con densita unifome ρ. Disegnae il diagamma di E in funzione di La geometia e mostata nella figua: Usiamo

Dettagli

Problema generale dell elettrostatica

Problema generale dell elettrostatica Poblema geneale dell elettostatica Deteminae il campo elettico in tutto lo spazio uando pe M conduttoi sono fissati i potenziali e pe i imanenti N sono note le caiche possedute Nello spazio esteno ai conduttoi

Dettagli

AZIONE A DISTANZA E TEORIA DI CAMPO (1)

AZIONE A DISTANZA E TEORIA DI CAMPO (1) Il campo elettico AZION A DITANZA TOIA DI CAMPO () Come fanno due caiche elettiche ad inteagie fa di loo? All inizio del 9 si sono confontate due ipotesi:.le caiche si scambiano dei messaggei e uindi si

Dettagli

DISTRIBUZIONE DELLA CARICA NEI CONDUTTORI

DISTRIBUZIONE DELLA CARICA NEI CONDUTTORI 1 DISTRIBUZIONE DELLA CARICA NEI CONDUTTORI I copi conduttoi sono caatteizzati dal fatto di avee moltissimi elettoni libei di muovesi (elettoni di conduzione). Cosa accade se un copo conduttoe viene caicato

Dettagli

Conduttore in equilibrio elettrostatico

Conduttore in equilibrio elettrostatico Conduttoe in equilibio elettostatico Un buon conduttoe elettico caico o neuto (Es. ame) contiene caiche (elettoni) che non sono legate a nessun atomo e libee di muovesi. Quando non esiste nessun movimento

Dettagli

IL POTENZIALE. = d quindi: LAB

IL POTENZIALE. = d quindi: LAB 1 IL POTENZIALE Sappiamo che il campo gavitazionale è un campo consevativo cioè nello spostamento di un copo ta due punti del campo gavitazionale teeste, le foze del campo compiono un lavoo che dipende

Dettagli

Potenza volumica. Legge di Joule in forma locale

Potenza volumica. Legge di Joule in forma locale Potenza volumica. Legge di Joule in foma locale Si considei un tubo di flusso elementae all inteno di un copo conduttoe nel quale ha sede un campo di coente. n da La potenza elettica che fluisce nel bipolo

Dettagli

IL POTENZIALE. Nello spostamento successivo B B, poiché la forza elettrica risulta perpendicolare allo spostamento, il lavoro L è nullo.

IL POTENZIALE. Nello spostamento successivo B B, poiché la forza elettrica risulta perpendicolare allo spostamento, il lavoro L è nullo. 1 I POTENZIAE Sappiamo che il campo gavitazionale è un campo consevativo cioè nello spostamento di un copo ta due punti del campo gavitazionale teeste, le foze del campo compiono un lavoo che dipende dalla

Dettagli

Proprietà della materia: isolanti e conduttori

Proprietà della materia: isolanti e conduttori Popietà della mateia: isolanti e conduttoi I copi solidi dal punto di vista elettico molto schematicamente si dividono in isolanti e conduttoi. La diffeenza di compotamento elettico deiva dalla divesa

Dettagli

E, ds. - Flusso totale uscente dalla superficie chiusa S: è la somma di tutti i flussi elementari, al tendere a zero delle aree infinitesime: r )

E, ds. - Flusso totale uscente dalla superficie chiusa S: è la somma di tutti i flussi elementari, al tendere a zero delle aree infinitesime: r ) Flusso del campo elettico e legge di Gauss. - Si definisce supeficie gaussiana una ipotetica supeficie S chiusa, che contiene un volume V. - La legge di Gauss mette in elazione i valoi dei campi elettici

Dettagli

Fisica II Secondo Appello - 7/2/2008

Fisica II Secondo Appello - 7/2/2008 Fisica II Secondo Appello - 7/2/2008 Chi ecupea il pimo compitino fa il pimo esecizio in due oe Chi ecupea il secondo compitino fa gli ultimi due esecizi in due oe Chi non ecupea fa le pime 4 domande del

Dettagli

Campo elettrico e potenziale di un disco uniformemente carico

Campo elettrico e potenziale di un disco uniformemente carico Campo elettico e poteniale di un disco unifomemente caico q S densità supeficiale di caica Consideo l anello di aggio e spessoe d calcolo l anello sommo sugli anelli ho due integaioni dq da πd d Σ anello

Dettagli

Energia potenziale elettrica

Energia potenziale elettrica Enegia potenziale elettica L ultima ossevazione del capitolo pecedente iguadava le analogie e le diffeenze ta il campo elettico e il campo gavitazionale pendendo in esame la foza di Coulomb e la legge

Dettagli

Appunti su argomenti monografici per il corso di FM1 Prof. Pierluigi Contucci. Gravità e Teorema di Gauss

Appunti su argomenti monografici per il corso di FM1 Prof. Pierluigi Contucci. Gravità e Teorema di Gauss 1 Appunti su agomenti monogafici pe il coso di FM1 Pof. Pieluigi Contucci Gavità e Teoema di Gauss Vogliamo dimostae, a patie dalla legge di gavitazione univesale che il campo gavitazionale geneato da

Dettagli

Politecnico di Milano Fondamenti di Fisica Sperimentale a.a Facoltà di Ingegneria Industriale - Ind. Aero-Energ-Mecc

Politecnico di Milano Fondamenti di Fisica Sperimentale a.a Facoltà di Ingegneria Industriale - Ind. Aero-Energ-Mecc Politecnico di Milano Fondamenti di Fisica Speimentale a.a. 9-1 - Facoltà di Ingegneia Industiale - Ind. Aeo-Eneg-Mecc II pova in itinee - 5/7/1 Giustificae le isposte e scivee in modo chiao e leggibile.

Dettagli

Esercizi Scheda N Fisica II. Esercizi con soluzione svolti

Esercizi Scheda N Fisica II. Esercizi con soluzione svolti Esecizi Scheda N. 45 Fisica II Esecizio. Esecizi con soluzione svolti Un filo ettilineo, indefinito, pecoso da una coente di intensità i=4 A, è immeso in un mezzo omogeneo, isotopo, indefinito e di pemeabilità

Dettagli

SELEZIONE DI ESERCIZI DI ELETTROSTATICA.

SELEZIONE DI ESERCIZI DI ELETTROSTATICA. Fisica geneale II, a.a. 13/14 SELEZIONE DI ESEIZI DI ELETTOSTATIA..1. Un pocesso elettolitico divide 1.3 mg di Nal (massa di una mole = 59 g) in Na + e l. Le caiche positive vengono allontanate da quelle

Dettagli

qq r Elettrostatica Legge di Coulomb permette di calcolare la forza che si esercita tra due particelle cariche.

qq r Elettrostatica Legge di Coulomb permette di calcolare la forza che si esercita tra due particelle cariche. lettostatica La mateia è costituita da atomi. Gli atomi sono fomati da un nucleo, contenete paticelle neute (neutoni) e paticelle caiche positivamente (potoni). Intono al nucleo ci sono paticelle caiche

Dettagli

Potenziale elettrostatico e lavoro. Potenziale elettrostatico Energia potenziale elettrostatica Esempi Moto di una carica in un potenziale e.s.

Potenziale elettrostatico e lavoro. Potenziale elettrostatico Energia potenziale elettrostatica Esempi Moto di una carica in un potenziale e.s. Potenziale elettostatico e lavoo Potenziale elettostatico Enegia potenziale elettostatica Esempi Moto di una caica in un potenziale e.s. Potenziale elettostatico Campo e.s. geneato da una caica puntifome

Dettagli

Concetto di capacità

Concetto di capacità oncetto di capacità Il teoema di Gauss stabilisce che, posta una caica su un conduttoe isolato, il campo elettico E da essa podotto nello spazio cicostante è diettamente popozionale alla caica stessa:

Dettagli

Effetto delle Punte e problema dell elettrostatica

Effetto delle Punte e problema dell elettrostatica Effetto delle Punte e poblema dell elettostatica 4 4 R Q R Q πε πε / / R R R R E E Effetto delle punte E L effetto paafulmine E E E R R Nel caso del paafulmine, R 6 Km è il aggio di cuvatua della supeficie

Dettagli

CAPACITA' Capacità pag 11 A. Scimone

CAPACITA' Capacità pag 11 A. Scimone Capacità pag 11 A. Scimone CAPACITA' Ci occupiamo aesso elle popietà ei conensatoi, ispositivi che accumulano la caica elettica. I conensatoi vengono usati in vai tipi i cicuiti. Un conensatoe è un insieme

Dettagli

Gravitazione. Dati due corpi di massa m 1 e m 2, posti ad una distanza r, tra di essi si esercita una forza attrattiva data in modulo da

Gravitazione. Dati due corpi di massa m 1 e m 2, posti ad una distanza r, tra di essi si esercita una forza attrattiva data in modulo da Gavitazione Dati due copi di massa m 1 e m 2, posti ad una distanza, ta di essi si esecita una foza attattiva data in modulo da F = G m 1m 2 dove G è una costante univesale, avente lo stesso valoe pe tutte

Dettagli

Fisica per Medicina. Lezione 22 - Campo magnetico. Dr. Cristiano Fontana

Fisica per Medicina. Lezione 22 - Campo magnetico. Dr. Cristiano Fontana Fisica pe Medicina Lezione 22 - Campo magnetico D. Cistiano Fontana Dipatimento di Fisica ed Astonomia Galileo Galilei Univesità degli Studi di Padova 1 dicembe 2017 ndice Elettomagnetismo Campo magnetico

Dettagli

Legge di Gauss. Superficie Σ immersa nel campo elettrostatico generato da una carica q. da! r 2. d!(! E) "! E #! n da = q r 2! er!!

Legge di Gauss. Superficie Σ immersa nel campo elettrostatico generato da una carica q. da! r 2. d!(! E) ! E #! n da = q r 2! er!! Legge di Gauss Legge di Gauss in foma integale e locale Esempi Equazioni di Poisson e di Laplace Poblemi di Diichlet e Neumann Poblema geneale dell elettostatica Legge di Gauss Supeficie Σ immesa nel campo

Dettagli

M.T., M.T.T. Appunti di Fisica per Scienze Biologiche Vers /09/2005

M.T., M.T.T. Appunti di Fisica per Scienze Biologiche Vers /09/2005 MT, MTT Appunti di Fisica pe Scienze iologiche Ves 4 /9/5 L Elettostatica costituenti elementai della mateia possiedono, olte alla massa, la caica elettica La caica elettica si misua in oulomb () ed il

Dettagli

SETTIMA-OTTAVA LEZIONE: sorgenti del campo magnetico, legge di Ampere, legge di Biot-Sawart

SETTIMA-OTTAVA LEZIONE: sorgenti del campo magnetico, legge di Ampere, legge di Biot-Sawart . Chiodoni esecizi di Fisica II SETTIM-OTTV LEZIONE: sogenti del campo magnetico, legge di mpee, legge di Biot-Sawat Esecizio 1 Due spie cicolai di aggio 3cm, aventi lo stesso asse, sono poste in piani

Dettagli

La forza di Lorentz: Una carica che si muove in un campo magnetico risente una forza F (forza di Lorentz) data da : r =

La forza di Lorentz: Una carica che si muove in un campo magnetico risente una forza F (forza di Lorentz) data da : r = INDUTTANZA RIASSUNTO: Richiami su campo magnetico, foza di oentz egge di Faaday Autoinduzione (dimensioni ) induttanza come elemento di cicuito Cicuito R: extacoente di apetua Enegia immagazzinata in una

Dettagli

Fisica Generale- Modulo Fisica II Esercitazione 2 Ingegneria Meccanica POTENZIALE ELETTRICO ED ENERGIA POTENZIALE

Fisica Generale- Modulo Fisica II Esercitazione 2 Ingegneria Meccanica POTENZIALE ELETTRICO ED ENERGIA POTENZIALE Fisica Geneale- Modulo Fisica II secitazione OTNZIL LTTRICO D NRGI OTNZIL Ba. Una caica elettica mc si tova nell oigine di un asse mente una caica negativa 4 mc si tova nel punto di ascissa m. Sia il punto

Dettagli

Sulla carica viene esercitata la forza magnetica. traiettoria circolare.

Sulla carica viene esercitata la forza magnetica. traiettoria circolare. Moto di caiche in Campo Magnetico Consideiamo una paticella di massa m e caica puntifome +q in moto con velocità v pependicolae ad un campo B unifome. B α v + F F v Nel piano α, B veso l alto Sulla caica

Dettagli

int Schiusa Schiusa r r Φ = r r S o 1 Anno scolastico

int Schiusa Schiusa r r Φ = r r S o 1 Anno scolastico Anno scolastico 4 + ε ε int dt E d C dt d E C Q E S o S Schiusa Schiusa gandezza definizione fomula Foza di Loentz Foza agente su una caica q in moto con velocità v in una egione in cui è pesente un campo

Dettagli

AI VERTICI DI UN QUADRATO DI LATO 2L SONO POSTE 4 CARICHE UGUALI Q. DETERMINARE: A) IL CAMPO ELETTRICO IN UN PUNTO P DELL ASSE.

AI VERTICI DI UN QUADRATO DI LATO 2L SONO POSTE 4 CARICHE UGUALI Q. DETERMINARE: A) IL CAMPO ELETTRICO IN UN PUNTO P DELL ASSE. ESERCIZIO 1 AI VERTICI DI UN UADRATO DI LATO SONO POSTE 4 CARICHE UGUALI. DETERMINARE: A) IL CAMPO ELETTRICO IN UN PUNTO P DELL ASSE. 4 caiche uguali sono poste ai vetiti di un quadato. L asse di un quadato

Dettagli

Fenomeni elettrici. I primordi

Fenomeni elettrici. I primordi enomeni elettici. I pimodi già gli antichi Geci ossevaono fenomeni di «elettizzazione», ad es. dell amba «ελεκτρον» Questi studi fuono ipesi in modo sistematico dagli «eletticisti» del XVIII- La mateia

Dettagli

Unità Didattica N 10 : I momenti delle forze

Unità Didattica N 10 : I momenti delle forze Unità didattica N 10 I momenti delle foze 1 Unità Didattica N 10 : I momenti delle foze 01) omento di una foza ispetto ad un punto 02) omento isultante di un sistema di foze 03) omento di una coppia di

Dettagli

Le basi dell elettrostatica

Le basi dell elettrostatica 1 Le basi dell elettostatica 1. Fenomeni elettici elementai Fin dal VI- VII secolo avanti Cisto ea noto ai geci (Talete di Mileto) che pezzetti di paglia o di sugheo venivano attiati da un pezzo di amba

Dettagli

Momenti. Momento di inerzia, momento di una forza, momento angolare

Momenti. Momento di inerzia, momento di una forza, momento angolare Momenti Momento di inezia, momento di una foza, momento angolae Conce&o di Momento I momenti in fisica sono cose molto divese fa loo. Cetamente non hanno sempe la stessa unità di misua; ed avemo cua di

Dettagli

Momenti. Momento di inerzia, momento di una forza, momento angolare

Momenti. Momento di inerzia, momento di una forza, momento angolare Momenti Momento di inezia, momento di una foza, momento angolae Conce&o di Momento I momenti in fisica sono cose molto divese fa loo. Cetamente non hanno sempe la stessa unità di misua; ed avemo cua di

Dettagli

LICEO PEDAGOGICO-ARTISTICO G. Pascoli di BOLZANO TEST DI FISICA IN SOSTITUZIONE DELL ORALE- FILA A CLASSE V B-27/05/2010

LICEO PEDAGOGICO-ARTISTICO G. Pascoli di BOLZANO TEST DI FISICA IN SOSTITUZIONE DELL ORALE- FILA A CLASSE V B-27/05/2010 LICEO PEDAGOGICO-ARTISTICO G. Pascoli di BOLZANO TEST DI FISICA IN SOSTITUZIONE DELL ORALE- FILA A CLASSE V B-7/05/010 Ogni quesito va oppotunamente motivato, pena la sua esclusione dalla valutazione.

Dettagli

Le equazioni di Maxwell.

Le equazioni di Maxwell. Le equazioni di Maxwell. Campi elettici indotti. Pe la legge di Faady, in una spia conduttice dove c è una vaiazione di Φ concatenato si osseva una coente indotta i. Ricodando che una coente è un flusso

Dettagli

Università degli Studi di Milano. Corso di Laurea in Informatica. Anno accademico 2013/14, Laurea Triennale FISICA. Lezione n.

Università degli Studi di Milano. Corso di Laurea in Informatica. Anno accademico 2013/14, Laurea Triennale FISICA. Lezione n. Univesità degli Studi di Milano Coso di Lauea in Infomatica Anno accademico 3/4, Lauea Tiennale FISICA Lezione n. (4 oe) Foze elettiche, campi e potenziale elettostatico Flavia Maia Goppi (A-G) & Calo

Dettagli

Il campo magnetico. campo magnetico B (si misura in Telsa (T)) carica genera campo elettrico campo elettrico imprime forza su carica

Il campo magnetico. campo magnetico B (si misura in Telsa (T)) carica genera campo elettrico campo elettrico imprime forza su carica Il campo magnetico caica genea campo elettico campo elettico impime foza su caica e allo stesso modo caica in moto genea campo magnetico campo magnetico impime foza su caica in moto campo magnetico (si

Dettagli

ISIS Einaudi Giordano S.Giuseppe Vesuviano (NA) 2012/ Fisica dei Puffi prof. Angelo Vitiello E -1

ISIS Einaudi Giordano S.Giuseppe Vesuviano (NA) 2012/ Fisica dei Puffi prof. Angelo Vitiello E -1 /3 - Fisica dei Puffi pof. Angelo Vitiello E - Elettostatica L elettostatica è la pate della fisica che studia le inteazioni fa caiche elettiche non in movimento (o tascuandone il movimento) L elettostatica

Dettagli

IL CALORE. Il calore Q è energia che sta transitando da un sistema all altro, e compare ogni volta che c è un dislivello di temperatura.

IL CALORE. Il calore Q è energia che sta transitando da un sistema all altro, e compare ogni volta che c è un dislivello di temperatura. IL CALORE Il caloe Il caloe Q è enegia che sta tansitando da un sistema all alto, e compae ogni volta che c è un dislivello di tempeatua. Il copo più caldo cede pate della sua enegia intena al copo più

Dettagli

Campo elettrostatico nei conduttori

Campo elettrostatico nei conduttori Campo elettostatico nei conduttoi Consideeemo conduttoi metallici (no gas, semiconduttoi, ecc): elettoni di conduzione libei di muovesi Applichiamo un campo elettostatico: movimento di caiche tansiente

Dettagli

Legge di Ohm. La corrente elettrica dal punto di vista microscopico: modello di Drude

Legge di Ohm. La corrente elettrica dal punto di vista microscopico: modello di Drude Legge di Ohm. Obiettivi didattici: Veifica della elazione ta coente e d.d.p. pe un conduttoe metallico. Veifica della elazione ta la esistenza di un conduttoe e le sue dimensioni (lunghezza, sezione) Misua

Dettagli

Università degli Studi di Roma La Sapienza Ingegneria Elettrotecnica

Università degli Studi di Roma La Sapienza Ingegneria Elettrotecnica Pova scitta di Fisica 2-14 Gennaio 2013 Esecizio 1 (8 punti) Una caica statica nel vuoto distibuita su un aco di ciconfeenza di aggio a con densità lineae λ = λ 0 sinα dove 0 < α < 3π/2. Calcolae il potenziale

Dettagli

Magnetostatica: forze magnetiche e campo magnetico

Magnetostatica: forze magnetiche e campo magnetico Magnetostatica: foze magnetiche e campo magnetico Lezione 6 Campo di induzione magnetica B() (nomenclatua stoica ; in ealtà si dovebbe chiamae, e spesso lo è, campo magnetico) è un campo di foze vettoiale

Dettagli

Sommario: Campo elettrico

Sommario: Campo elettrico Sommaio: ampo elettico ampo elettico: se F è la foza sulla caica q, il campo elettico è: F q Linee di foza: il campo si appesenta figuativamente mediante le sue linee di foza: in ogni punto il campo è

Dettagli

Esercizi Scheda N Fisica II. Esercizi con soluzione

Esercizi Scheda N Fisica II. Esercizi con soluzione Esecizio 9.1 Esecizi con soluzione Te divese onde sonoe hanno fequenza ν ispettivamente 1 Hz, 1 Hz e 5 Mhz. Deteminae le lunghezze d onda coispondenti ed i peiodi di oscillazione, sapendo che la velocità

Dettagli

Magnetostatica: forze magnetiche e campo magnetico

Magnetostatica: forze magnetiche e campo magnetico Magnetostatica: foze magnetiche e campo magnetico Lezione 6 Campo di induzione magnetica () (nomenclatua stoica ; in ealtà si dovebbe chiamae, e spesso lo è, campo magnetico) è un campo di foze vettoiale

Dettagli

La legge di Lenz - Faraday Neumann

La legge di Lenz - Faraday Neumann 1 La legge di Lenz - Faaday Neumann Il flusso del campo magnetico B Pe dae una veste matematica alle conclusioni delle espeienze viste nella lezione pecedente, abbiamo bisogno di definie una nuova gandezza

Dettagli

4. DINAMICA. I tre principi della dinamica per un corpo puntiforme (detto anche punto materiale o particella) sono:

4. DINAMICA. I tre principi della dinamica per un corpo puntiforme (detto anche punto materiale o particella) sono: 4.1 Pincipi della dinamica 4. DINAMICA I te pincipi della dinamica pe un copo puntifome (detto anche punto mateiale o paticella) sono: 1) pincipio di intezia di Galilei; 2) legge dinamica di Newton; 3)

Dettagli

Campo magnetico, forza magnetica, momenti meccanici sui circuiti piani

Campo magnetico, forza magnetica, momenti meccanici sui circuiti piani Campo magnetico, foza magnetica, momenti meccanici sui cicuiti piani Esecizio 1 Un potone d enegia cinetica E k 6MeV enta in una egione di spazio in cui esiste un campo magnetico B1T otogonale al piano

Dettagli

Campi elettrici e magnetici a bassa frequenza: sorgenti e metodi di valutazione

Campi elettrici e magnetici a bassa frequenza: sorgenti e metodi di valutazione Coso di Maste di secondo livello Sistemi Infomativi Geogafici pe il monitoaggio e la gestione del teitoio Campi elettici e magnetici a bassa fequenza: sogenti e metodi di valutazione Ing. Nicola Zoppetti

Dettagli

La struttura stellare

La struttura stellare La stuttua stellae La stuttua stellae Una stella è una sfea di gas tenuta insieme dall auto gavità ed il cui collasso è impedito dalla pesenza di gadienti di pessione. Con ottima appossimazione una stella

Dettagli

ELETTROTECNICA Ingegneria Industriale

ELETTROTECNICA Ingegneria Industriale ELETTROTECNICA Ingegneia Industiale CAMPI ELETTROMAGNETICI Stefano Pastoe Dipatimento di Ingegneia e Achitettua Coso di Elettotecnica (43IN) a.a. 15-16 Foza di Coulomb Nel 1785, Chales Coulomb fece degli

Dettagli

ISTITUTO D ISTRUZIONE SECONDARIA SUPERIORE E. FERDINANDO MESAGNE INDIRIZZI SCIENTIFICO-COMMERCIALE-COREUTICO

ISTITUTO D ISTRUZIONE SECONDARIA SUPERIORE E. FERDINANDO MESAGNE INDIRIZZI SCIENTIFICO-COMMERCIALE-COREUTICO ISTITUTO D ISTRUZION SONDARIA SUPRIOR. FRDINANDO MSAGN INDIRIZZI SINTIFIO-OMMRIAL-ORUTIO ANNO SOLASTIO LASS.... MATRIA FISIA DONT MILIZIA ROBRTO A VRIFIA SRITTA SU ARIA LTTRIA AMPO LTTRIO ALUNNO/A.. DATA...

Dettagli

Biomeccanica. Cinematica Dinamica Statica dei corpi rigidi Energia e principi di conservazione

Biomeccanica. Cinematica Dinamica Statica dei corpi rigidi Energia e principi di conservazione Biomeccanica Cinematica Dinamica Statica dei copi igidi Enegia e pincipi di consevazione Posizione: definita da : z modulo, diezione, veso vettoe s s z s s y unità di misua (S.I.) : meto x s x y Taiettoia:

Dettagli

SESTA LEZIONE: campo magnetico, forza magnetica, momenti meccanici sui circuiti piani

SESTA LEZIONE: campo magnetico, forza magnetica, momenti meccanici sui circuiti piani A. Chiodoni esecizi di Fisica II SESTA LEZIONE: campo magnetico, foza magnetica, momenti meccanici sui cicuiti piani Esecizio 1 Un potone d enegia cinetica E k 6MeV enta in una egione di spazio in cui

Dettagli

L = F s cosα = r F r s

L = F s cosα = r F r s LVORO Se su un copo agisce una foza F, il lavoo compiuto dalla foza pe uno spostamento s è (podotto scalae di due vettoi): L = F s cosα = F s F α s LVORO L unità di misua del lavoo nel S.I. si chiama Joule:

Dettagli

1 Potenziale elettrostatico e seconda equazione di Maxwell per E

1 Potenziale elettrostatico e seconda equazione di Maxwell per E 1 Potenziale elettostatico e seconda equazione di Maxwell pe E Consideiamo il campo elettico oiginato da una caica puntifome q che ipotizziamo fissa nell oigine degli assi: E( ) = q ˆ 2 = q 3 (1) Pe definizione,

Dettagli

( ) Energia potenziale U = GMm r. GMm r. GMm L AB. = r. r r. Definizione di energia potenziale

( ) Energia potenziale U = GMm r. GMm r. GMm L AB. = r. r r. Definizione di energia potenziale Enegia potenziale Definizione di enegia potenziale Il lavoo, compiuto da una foza consevativa nello spostae il punto di applicazione da a, non dipende dal cammino seguito, ma esclusivamente dai punti e.

Dettagli

1. Interazioni elettrostatiche

1. Interazioni elettrostatiche FISICA Elettostatica 9. Inteazioni elettostatiche. Alcuni fatti speimentali Pime definizioni di caica elettica L amba è una sostanza, che, stofinata con un pezzo di stoffa, acquista la popietà di attae

Dettagli

C dipende solo dalla geometria dei piatti e ci dice quanta carica serve ad un dato condensatore per portarlo ad una ΔV fissata.

C dipende solo dalla geometria dei piatti e ci dice quanta carica serve ad un dato condensatore per portarlo ad una ΔV fissata. I codesatoi U codesatoe è u dispositivo i gado di immagazziae eegia, sottofoma di eegia poteziale, i u campo elettico Ogi volta che abbiamo a che fae co due coduttoi di foma abitaia detti piatti o amatue,

Dettagli

CONDUTTORI A STATO SOLIDO

CONDUTTORI A STATO SOLIDO CONDUTTORI A STATO SOLIDO Abbiamo visto nelle lezioni pecedenti che i mateiali si possono dividee in isolanti e conduttoi. In uesto ciclo di lezioni avemo poca possibilità di tattae i mateiali liuidi e

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n lettomagnetismo Pof. Fancesco Ragusa Univesità degli Studi di Milano Lezione n. 4 16.11.17 Foze sul dipolo. spansione multipolae Campo elettico di mateia polaizzata nno ccademico 17/18 Dipoli atomici Il

Dettagli

L'atomo è così chiamato perché inizialmente dai filosofi greci era considerato l'unita più piccola ed indivisibile della materia.

L'atomo è così chiamato perché inizialmente dai filosofi greci era considerato l'unita più piccola ed indivisibile della materia. Il campo elettico La stuttua dell atomo L'atomo è così chiamato peché inizialmente dai filosofi geci ea consideato l'unita più piccola ed indivisibile della mateia. In ealtà sappiamo che non è così. Cecando

Dettagli

Momenti. Momento di una forza, momento di inerzia, momento angolare

Momenti. Momento di una forza, momento di inerzia, momento angolare Momenti Momento di una foza, momento di inezia, momento angolae Momento di una foza Supponiamo di avee una pota vista dall alto e supponiamo che sia incadinata su un lato, diciamo in A. A Se applicassimo

Dettagli

Richiami di Fisica Generale

Richiami di Fisica Generale Richiami di Fisica Geneale Slide 1 Caica elettica (I) La caica elettica (q) è la popietà delle paticelle sensibili alla foza (inteazione) elettomagnetica, così come la massa (o caica) gavitazionale (m)

Dettagli

Corrente elettrica. Definizione. dq i = dt. Unità di misura. 1Coulomb 1 Ampere = 1secondo. Verso della corrente

Corrente elettrica. Definizione. dq i = dt. Unità di misura. 1Coulomb 1 Ampere = 1secondo. Verso della corrente Nome file j:\scuola\cosi\coso fisica\elettomagnetismo\coente continua\coenti elettiche.doc Ceato il 05/1/003 3.07.00 Dimensione file: 48640 byte Elaboato il 15/01/004 alle oe.37.13, salvato il 10/01/04

Dettagli

Equilibrio dei corpi rigidi- Statica

Equilibrio dei corpi rigidi- Statica Equilibio dei copi igidi- Statica Ci ifeiamo solo a situazioni paticolai in cui i copi igidi non si muovono in nessun modo: ne taslano ( a 0 ), ne uotano ( 0 ), ossia sono femi in un oppotuno sistema di

Dettagli

Fisica Generale - Modulo Fisica II Esercitazione 3 Ingegneria Gestionale-Informatica POTENZIALE ELETTRICO ED ENERGIA POTENZIALE

Fisica Generale - Modulo Fisica II Esercitazione 3 Ingegneria Gestionale-Informatica POTENZIALE ELETTRICO ED ENERGIA POTENZIALE PTNZIL LTTRIC D NRGI PTNZIL Ba. Una caica elettica q mc si tova nell oigine di un asse mente una caica negativa q 4 mc si tova nel punto di ascissa m. Sia Q il punto dell asse dove il campo elettico si

Dettagli

Effetto Hall. flusso reale dei portatori se positivi. flusso reale dei portatori se negativi

Effetto Hall. flusso reale dei portatori se positivi. flusso reale dei portatori se negativi Appunti di Fisica II Effetto Hall L'effetto Hall è un fenomeno legato al passaggio di una coente I, attaveso ovviamente un conduttoe, in una zona in cui è pesente un campo magnetico dietto otogonalmente

Dettagli

Elettrostatica. di Daniele Gasparri

Elettrostatica. di Daniele Gasparri lettostatica di Daniele Gaspai Indice: - Legge di Coulomb - Sistema di caiche puntifomi 5 - Distibuzioni continue di caiche 7 - Il campo elettico - Flusso del campo elettico e legge di Gauss - Potenziale

Dettagli

Il magnetismo. Il Teorema di Ampere: la circuitazione del campo magnetico.

Il magnetismo. Il Teorema di Ampere: la circuitazione del campo magnetico. Il magnetismo Il Teoema di Ampee: la cicuitazione del campo magnetico. Richiamiamo la definizione geneale di cicuitazione pe un campo vettoiale Definizione: si definisce cicuitazione di un campo vettoiale

Dettagli

Circuiti RLC RIASSUNTO: L(r)C serie: impedenza Z(ω) Q valore risposta in frequenza L(r)C parallelo Circuiti risonanti Circuiti anti-risonanti

Circuiti RLC RIASSUNTO: L(r)C serie: impedenza Z(ω) Q valore risposta in frequenza L(r)C parallelo Circuiti risonanti Circuiti anti-risonanti icuiti R RIASSUNTO: () seie: impedenza () valoe isposta in fequenza () paallelo icuiti isonanti icuiti anti-isonanti icuito in seie I cicuiti pesentano caatteistiche inteessanti. Ad esempio, ponendo un

Dettagli

Il potenziale elettrostatico

Il potenziale elettrostatico apitolo 7 Il potenziale elettostatico. L enegia potenziale elettostatica Pe uali motivi è stata intodotta la gandezza fisica lavoo? Il lavoo è stato intodotto peché l evidenza speimentale mosta che esiste

Dettagli

Potenziale elettrico per una carica puntiforme isolata

Potenziale elettrico per una carica puntiforme isolata Potenziale elettico pe una caica puntifome isolata Consideiamo una caica puntifome positiva. Il campo elettico geneato da uesta caica è: Diffeenza di potenziale elettico ta il punto ed il punto B: B ds

Dettagli

Potenziale Elettrico. r A. Superfici Equipotenziali. independenza dal cammino. V Q 4pe 0 r. Fisica II CdL Chimica

Potenziale Elettrico. r A. Superfici Equipotenziali. independenza dal cammino. V Q 4pe 0 r. Fisica II CdL Chimica Potenziale Elettico Q V 4pe 0 R Q 4pe 0 C R R R q independenza dal cammino Supefici Equipotenziali Due modi pe analizzae i poblemi Con le foze o i campi (vettoi) pe deteminae posizione e velocità di un

Dettagli

Per migliorare la trasmissione tra satellite e Terra, emerge la necessità di portare il satellite ad un orbita circolare diversa.

Per migliorare la trasmissione tra satellite e Terra, emerge la necessità di portare il satellite ad un orbita circolare diversa. 1 Esecizio (tatto dagli esempi 5.3 e 5.4 del cap. V del Mazzoldi-Nigo-Voci) Un satellite atificiale di massa m 10 3 Kg uota attono alla Tea descivendo un obita cicolae di aggio 1 6.6 10 3 Km. 1. Calcolae

Dettagli

Campo magnetico B. Polo Nord. Terra. Polo Sud. Lezione V 1/15

Campo magnetico B. Polo Nord. Terra. Polo Sud. Lezione V 1/15 Leione V Campo magnetico B 1/15 Polo Nod N S S N Tea Sole Polo Sud Alcuni mineali (es. magnetite, da Magnesia Tessaglia) attiano il feo. Aghi calamitati si oientano nel campo magnetico teeste. Leione V

Dettagli

FISICA GENERALE II Esercitazione D tutorato ESERCIZI CON SOLUZIONE

FISICA GENERALE II Esercitazione D tutorato ESERCIZI CON SOLUZIONE FSCA GENERALE Esecitazione D tutoato -3 ESERCZ CON SOLUZONE. Un conduttoe cilindico cavo, di aggio esteno a =. cm e aggio inteno b =.6 cm, è pecoso da una coente =A, distibuita uniomemente sulla sua sezione.

Dettagli

Il Potenziale elettrostatico 3.1 Distribuzione della carica in eccesso sui conduttori metallici

Il Potenziale elettrostatico 3.1 Distribuzione della carica in eccesso sui conduttori metallici Il Potenziale elettostatico 3.1 Distibuzione della caica in eccesso sui conduttoi metallici Consideiamo un conduttoe metallico neuto, posto in una egione di spazio dove sia assente qualunque campo elettico

Dettagli

Campi scalari e vettoriali (1)

Campi scalari e vettoriali (1) ampi scalai e vettoiali (1) 3 e ad ogni punto P = (x, y, z) di una egione di spazio Ω R è associato uno ed uno solo scalae φ diemo che un campo scalae è stato definito in Ω. In alti temini: φ 3 : P R φ(p)

Dettagli

Dielettrici (Isolanti)

Dielettrici (Isolanti) Dielettrici (Isolanti) N.B. nelle operazioni che svolgeremo avremo a che fare con condensatori carichi. Si può operare in due diverse condizioni: 1) a carica costante: condensatore caricato e poi scollegato

Dettagli

Elettrostatica. Elettrostatica: branca della fisica che studia i fenomeni elettrici

Elettrostatica. Elettrostatica: branca della fisica che studia i fenomeni elettrici Elettostatica Elettostatica: banca della fisica che studia i fenomeni elettici Già nell antica Gecia (V secolo a.c.), si ea notato che l amba stofinata con un panno pesentava delle popietà attattive veso

Dettagli

Sorgenti del campo magnetico. Forze tra correnti

Sorgenti del campo magnetico. Forze tra correnti Campo magnetico pag 31 A. Scimone Sogenti el campo magnetico. Foze ta coenti Un campo magnetico può essee pootto a una coente elettica. Espeienze i questo tipo fuono effettuate nella pima ventina i anni

Dettagli

Facoltà di Ingegneria

Facoltà di Ingegneria Facoltà i Ingegneia Pova scitta i Fisica Cognome: Nome: Data: CL/Maticola: Compito: Aula: Pe annullae la popia pesenza a questa pova scivee ITIATO al igo seguente:.. Moalità i svolgimento:. isolvee i poblemi,

Dettagli

FONDAMENTI DI FISICA GENERALE

FONDAMENTI DI FISICA GENERALE FONDAMENTI DI FISICA GENERALE Ingegneia Meccanica Roma Te AA/- APPUNTI PER IL CORSO (Ripesi integalmente e da me assemblati dai testi di bibliogafia) Robeto Renzetti Bibliogafia: Paul J. Tiple, Gene Mosca

Dettagli

FORZA AGENTE SU UN TRATTO DI FILO RETTILINEO. Dispositivo sperimentale

FORZA AGENTE SU UN TRATTO DI FILO RETTILINEO. Dispositivo sperimentale FORZA AGENTE SU UN TRATTO DI FILO RETTILINEO 0 Dispositivo speimentale Consideiamo pe semplicità un campo magnetico unifome, le linee di foza sono paallele ed equidistanti. Si osseva una foza di oigine

Dettagli

7. Campo magnetostatico

7. Campo magnetostatico 7. Campo magnetostatico 7.1 Aspetti fenomenologici Inteazioni (attattive e epulsive) ta magneti (magnetite) In ogni magnete si possono individuae due poli che chiamiamo polo + (nod) e polo - (sud) Due

Dettagli

CENTRO DI MASSA. Il centro di massa C divide il segmento AB in parti inversamente proporzionali alle masse: AC. x C = m A x A + m B x B.

CENTRO DI MASSA. Il centro di massa C divide il segmento AB in parti inversamente proporzionali alle masse: AC. x C = m A x A + m B x B. Due paticelle: CENTRO DI MASSA 0 A m A A C m B B B C Il cento di massa C divide il segmento AB in pati invesamente popozionali alle masse: AC CB = m B m A C A B C = m B m A m A C m A A = m B B m B C (

Dettagli

Momento magnetico di un atomo.

Momento magnetico di un atomo. L Espeienza di Sten e Gelach. L espeienza di Sten e Gelach fu compiuta nel 1922 pe iuscie a misuae il momento magnetico di un atomo. Momento magnetico di un atomo. Un atomo possiede un momento magnetico:

Dettagli