C2. Congruenza. C2.1 Figure congruenti. C2.2 Relazione di equivalenza. C2.3 Esempi di relazioni di equivalenza

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "C2. Congruenza. C2.1 Figure congruenti. C2.2 Relazione di equivalenza. C2.3 Esempi di relazioni di equivalenza"

Transcript

1 2. ogrueza 2.1 igure cogrueti ue figure geometriche soo cogrueti se soo sovrappoibili perfettamete. Il simbolo di cogrueza è. cco alcui esempi di figure cogrueti: ue quadrati co i lati della stessa lughezza soo cogrueti. ue puti qualsiasi soo cogrueti. ue segmeti di lughezze diverse o soo cogrueti. ue rette soo sempre cogrueti. U triagolo e u quadrato o soo cogrueti. Gli agoli retti soo tutti cogrueti tra loro. Gli agoli piatti soo tutti cogrueti tra loro. 2.2 Relazioe di equivaleza Ua relazioe è detta di equivaleza se valgoo le segueti proprietà: o RILSSIV R o SIMMTRI se R allora R o TRNSITIV se R e R allora R 2.3 sempi di relazioi di equivaleza La relazioe essere ati lo stesso ao è ua relazioe di equivaleza. Ifatti: o RILSSIV oguo è ato il suo stesso ao e quidi R. o SIMMTRI se è ato lo stesso ao di allora è ato lo stesso ao di. o TRNSITIV se è ato lo stesso ao di e è ato lo stesso ao di allora è ato lo stesso ao di. La relazioe essere più alti di u altro o è ua relazioe di equivaleza. Ifatti: o RILSSIV chiuque o è più alto di sé stesso, quidi la riflessiva o vale. o SIMMTRI se è più alto di allora o è vero che è più alto di, e la simmetrica o vale. o TRNSITIV se è più alto di e è più alto di allora è più alto di, quidi la trasitiva vale. Per essere ua relazioe di equivaleza devoo valere tutte e tre, le prime due o valgoo e quidi la relazioe essere più alti di u altro o è ua relazioe di equivaleza. 2.4 La cogrueza è ua relazioe di equivaleza Ifatti: o RILSSIV ogi figura è sovrappoibile perfettamete a sé stessa. o SIMMTRI se è sovrappoibile a allora è sovrappoibile perfettamete ad. o TRNSITIV se è sovrappoibile perfettamete a e è sovrappoibile perfettamete a allora è sovrappoibile perfettamete a. Valgoo tutte e tre le proprietà duque la cogrueza è ua relazioe di equivaleza. 2.5 ogrueza come spostameto rigido Si può immagiare ua cogrueza come ua trasformazioe, ossia uo spostameto rigido. d esempio ua cogrueza è spostare a destra di 3 quadretti. Spostado ua figura a destra di 3 quadretti si ottiee ua figura cogruete a quella di parteza. osiderado la cogrueza come uo spostameto rigido allora la si può applicare a u oggetto i ua certa posizioe otteedo u oggetto cogruete ad esso i u altra posizioe. I tal modo ua cogrueza trasforma: o Rette i rette. o Segmeti i segmeti. o goli i agoli. 2.6 ogrueza e uguagliaza ssere cogruete NON VUOL IR essere uguale. I u codomiio capita spesso che gli appartameti uo sopra l altro siao cogrueti, ma o è vero che il primo appartameto è uguale al secodo. ltrimeti il sigor Rossi del primo piao e il sigor iachi del secodo piao abiterebbero ella stessa casa! Quidi due quadrati cogrueti o soo lo stesso quadrato, ma soo due diversi quadrati. ssedo sovrappoibili perfettamete soo cogrueti, ma soo diversi. Il simbolo di uguagliaza i matematica ha seso solo se le due quatità, quella prima del simbolo e quella dopo il simbolo, soo esattamete la stessa cosa. iò o accade per due figure cogrueti, i quato esse, occupado posizioi differeti ello spazio, o soo la stessa figura. Teoria 2-1

2 2.7 Lughezza e ampiezza Tutti i segmeti cogrueti tra loro hao qualcosa i comue che viee chiamato lughezza. Tutti gli agoli cogrueti tra loro hao qualcosa i comue che viee chiamato ampiezza. 2.8 ostruzioi geometriche Quado si vuole eseguire ua costruzioe geometrica, secodo la geometria uclidea, si possoo utilizzare esclusivamete ua riga e u compasso o graduati. No è duque permesso misurare i cm co il righello! Nelle costruzioi che seguirao si cercherà di seguire tale procedura. ostruzioe (trasporto di u segmeto) ato u segmeto e ua semiretta r di origie O è possibile costruire u segmeto O che giace sulla semiretta ed è cogruete ad. Si deve tracciare, utilizzado il terzo postulato di uclide, la circofereza di cetro O e di raggio di lughezza. ssa iterseca la semiretta r el puto, e il segmeto O è cogruete al segmeto. I pratica si apre il compasso co ampiezza e si traccia poi la circofereza co cetro O e raggio di lughezza. O O ig. 2.1 Trasporto di u segmeto. ostruzioe (trasporto di u agolo) ato u agolo ˆ è possibile costruire uo cogruete. Si effettui per esercizio questa costruzioe utilizzado il procedimeto seguete: ato l agolo ˆ si utilizzi il compasso e si tracci ua circofereza di cetro e apertura a piacere che itersechi i due lati dell agolo i e. Si tracci poi ua semiretta r di origie. Si disegi poi la circofereza di cetro e raggio che itersechi la semiretta r i. Si disegi poi la circofereza di cetro e raggio. ssa iterseca la circofereza precedete i. Si tracci la semiretta di origie passate per e si ottiee così l agolo ˆ cogruete ad ˆ. 2.9 ofroto tra segmeti ati due segmeti è possibile cofrotarli, ossia capire se uo dei due è maggiore o miore dell altro. Siao dati i segmeti e i figura 2.2. Si sovrappoe co, si sovrappogoo per quato possibile i due segmeti e si cofrotao e. Se si trova tra e, duque è miore di, e è maggiore di. Si scrive <. ig. 2.2 ofroto tra segmeti. Se, al cotrario, fosse a trovarsi tra e allora il segmeto sarebbe miore di, e maggiore di. Se e coicidessero allora i due segmeti sarebbero cogrueti e si scriverebbe Somma e differeza di segmeti Somma di segmeti ati i segmeti e si può costruire, come mostrato ella figura seguete, u segmeto cogruete a ed adiacete ad. Il segmeto è la somma di e e si scrive +. Teoria 2-2

3 ig. 2.3 Somma di segmeti. iffereza di segmeti ati i segmeti e si sovrappoe co e si sovrappogoo per quato possibile i due segmeti. Il segmeto è la differeza di e. Nella sottrazioe va scritto prima il segmeto maggiore dei due che i questo caso è, quidi si scrive -. Multiplo di u segmeto ato N si idica co il segmeto cogruete a ++ + ( volte). è multiplo di. ostruzioe (multiplo di u segmeto) ostruzioe di =3. ato il segmeto si tracci ua semiretta r qualsiasi di origie. Si disegi la circofereza avete cetro e raggio. ssa icotra la semiretta r i u puto. Si disegi la circofereza avete cetro e raggio. ssa icotra la semiretta r i e i u altro puto. Si tracci, ifie la circofereza avete cetro e raggio. ssa icotra la semiretta r i e i u altro puto. Il segmeto è 3 volte il segmeto. ig. 2.4 iffereza tra segmeti. ig. 2.5 ostruzioe del multiplo di u segmeto. Sottomultiplo di u segmeto Si idica co 1 il segmeto tale che ++ ( volte). ostruzioe (sottomultiplo di u segmeto) Per effettuare la costruzioe del sottomultiplo di u segmeto è ecessario utilizzare alcue ozioi (rette parallele e teorema di Talete) che sarao trattate i capitoli successivi. iò oostate si preseta comuque qui la costruzioe per motivi di completezza. ostruzioe di 1 4 ato il segmeto si tracci ua semiretta r di origie co r. Si tracci ua circofereza di cetro e raggio a piacere. ssa icotra la semiretta r i 1. Si tracci ua circofereza di cetro 1 e raggio uguale al precedete. ssa icotra la semiretta r i 1. Teoria 2-3

4 Si tracci ua circofereza di cetro 1 e raggio uguale al precedete. ssa icotra la semiretta r i G 1. Si tracci ua circofereza di cetro G 1 e raggio uguale al precedete. ssa icotra la semiretta r i H 1. Si tracci la retta s passate per e H 1. Si tracci la retta t parallela a s passate per G 1. ssa icotra il segmeto i G. Si tracci la retta u parallela a s passate per 1. ssa icotra il segmeto i. Si tracci la retta v parallela a s passate per 1. ssa icotra il segmeto i. Il segmeto è il segmeto cercato Puto medio di u segmeto ig. 2.6 ostruzioe del sottomultiplo di u segmeto. ato u segmeto è detto puto medio del segmeto quel puto M tale che M M. ostruzioe (puto medio di u segmeto) ato il segmeto si traccio le circofereze di cetri e e raggio. sse si icotrao i due puti e. Si tracci la retta. ssa icotra il segmeto el puto medio M. ig. 2.7 ostruzioe del puto medio di u segmeto. Si oti che co tale costruzioe si riesce ache a determiare la retta perpedicolare ad. Teoria 2-4

5 2.12 ofroto fra agoli ati due agoli è possibile cofrotarli, ossia capire se uo dei due è maggiore o miore dell altro. Siao dati gli agoli ˆ e ˆ i figura 2.8. Si sovrappoe il lato co il lato e si cofrotao i lati ed. Il lato si trova detro l agolo ˆ, quidi ˆ è miore di ˆ e ˆ è maggiore di ˆ Somma e differeza di agoli ig. 2.8 ofroto di agoli. ati due agoli ˆ e ˆ si sovrappoe co. La somma di ˆ e ˆ è l agolo ˆ e si scrive ˆ + ˆ. ˆ ig. 2.9 Somma di agoli. ati due agoli ˆ e ˆ si sovrappoe co. Nella differeza va messo prima il maggiore dei due che è. ˆ La differeza di ˆ e ˆ è l agolo ˆ e si scrive - ˆ ˆ. ˆ ig iffereza di agoli. Osservazioe Sommado o sottraedo agoli cogrueti si ottegoo agoli cogrueti. Se, ad esempio, sappiamo che α γ e β δ, allora è vero che α+β γ+δ ed è vero ache che α-β γ-δ. Multiplo di u agolo ato N si idica co α β l agolo α cogruete a β+β+ +β ( volte). α è multiplo di β. I tal caso si può ache dire che β sia sottomultiplo di α e si scrive β 1 α. Osservazioe ato u agolo è sempre possibile dividerlo i parti cogrueti tra loro. No è detto che ciò sia semplice, e o eache detto che sia possibile effettuare tale costruzioe utilizzado solamete la riga e il compasso. I particolare o è possibile dividere u agolo qualsiasi i tre parti cogrueti utilizzado solamete riga e compasso. possibile ivece dividere u agolo i due parti cogrueti utilizzado ua costruzioe co riga e compasso. La bisettrice di u agolo è la semiretta uscete dal vertice che divide l agolo i due parti cogrueti tra loro. ostruzioe (bisettrice) ato u agolo di vertice si tracci ua circofereza di cetro e raggio a piacere. ssa icotra i due lati dell agolo i due puti e. Si traccio le circofereze di cetri e e raggio. sse si icotrao i u puto. Teoria 2-5

6 La semiretta avete origie e passate per è la bisettrice dell agolo dato efiizioi relative agli agoli ig ostruzioe della bisettrice di u agolo. La bisettrice di u agolo piatto lo divide i due parti uguali. Ogua di queste è detta agolo retto. L agolo retto è l agolo che ha come ampiezza la metà di u agolo piatto, ed è idicato co π/2. U agolo miore di u agolo retto è detto acuto. U agolo maggiore di u agolo retto e miore di u agolo piatto è detto ottuso. ig golo retto golo acuto golo ottuso goli complemetari ue agoli soo detti complemetari se la loro somma è u agolo retto. ue agoli soo detti supplemetari se la loro somma è u agolo piatto. ue agoli soo detti esplemetari se la loro somma è u agolo giro. Nella figura 2.13 a siistra ˆ e ˆ soo supplemetari, metre a destra ˆ e ˆ soo complemetari. ig goli supplemetari e complemetari. Teoria 2-6

7 2.15 lcui teoremi relativi agli agoli possibile ora dimostrare alcui teoremi relativi agli agoli. Spesso è opportuo utilizzare u disego che permetta di compredere la dimostrazioe. Teorema 2.15a I complemetari di agoli cogrueti soo ach essi cogrueti. IPOTSI: α α. β complemetare di α, β complemetare di α. TSI: β β. IMOSTRZION: per ipotesi α+β π/2, α +β π/2 e α α. alle prime due relazioi si ha che α+β α +β da cui segue α+β-α β. osiderado che α α si ottiee che β β. Teorema 2.15b ue agoli opposti al vertice soo cogrueti. IPOTSI: α e β soo agoli opposti al vertice. TSI: α β. IMOSTRZION: al disego si vede che α e β soo supplemetari di γ. uque α+γ π e β+γ π. a ciò segue che α+γ β+γ, da cui α+γ-γ β e ifie α β. α γ β 2.16 Misura di segmeti e agoli ig goli opposti al vertice soo cogrueti. ue segmeti soo detti commesurabili se hao u sottomultiplo comue. O ig Segmeti commesurabili. I segmeti e i figura 2.15 soo commesurabili, i quato il segmeto O è sottomultiplo di, i quato 2O, ed è ache sottomultiplo di, i quato 3O. Potrebbe sembrare ovvio che, dati due qualsiasi segmeti, sia sempre possibile dividerli i parti abbastaza piccole da determiare u sottomultiplo comue. cco, questa era esattamete la covizioe ai tempi di Pitagora, covizioe dimostratasi poi LS. sistoo quidi coppie di segmeti che o hao sottomultipli comui e soo detti icommesurabili. L esempio classico di segmeti icommesurabili è dato dal lato di u qualsiasi quadrato e dalla sua diagoale. ire che due segmeti e soo commesurabili equivale a dire che esistoo due umeri iteri m ed tali che m. iò equivale a dire che m, ossia che esiste u umero razioale m tale che m. ue segmeti soo ivece icommesurabile se tale umero razioale o esiste. iò o vuol dire che i due segmeti o siao cofrotabili, perché ache se o esiste u umero razioale m umero reale k tale che k. tale che m Procedimeto per misurare u segmeto Si fissao u puto O e u puto su ua retta e si fissa ua uità di misura u O. Si dice che il segmeto ha misura ku se ko. Si dice che i puti e hao distaza ku. Se i figura 2.15 si cosidera u O è ovvio che 2u e 3u. Per misurare gli agoli si usa come uità di misura l agolo piatto π, che equivale a 180., esiste comuque u Teoria 2-7

Unità Didattica N 32 Grandezze geometriche omogenee e loro misura

Unità Didattica N 32 Grandezze geometriche omogenee e loro misura Uità Didattica N 3 Uità Didattica N 3 01) Classi di gradezze omogeee 0) Multipli e sottomultipli di ua gradezza geometrica 03) Gradezze commesurabili ed icommesurabili 04) Rapporto di due gradezze 05)

Dettagli

Insiemi numerici. Sono noti l insieme dei numeri naturali: N = {1, 2, 3, }, l insieme dei numeri interi relativi:

Insiemi numerici. Sono noti l insieme dei numeri naturali: N = {1, 2, 3, }, l insieme dei numeri interi relativi: Isiemi umerici Soo oti l isieme dei umeri aturali: N {1,, 3,, l isieme dei umeri iteri relativi: Z {0, ±1, ±, ±3, N {0 ( N e, l isieme dei umeri razioali: Q {p/q : p Z, q N. Si ottiee questo ultimo isieme,

Dettagli

RISOLUZIONE MODERNA DI PROBLEMI ANTICHI

RISOLUZIONE MODERNA DI PROBLEMI ANTICHI RISOLUZIONE MODERNA DI PROBLEMI ANTICHI L itelletto, duque, che o è la verità, o comprede mai la verità i modo così preciso da o poterla compredere (poi acora) più precisamete, all ifiito, perché sta alla

Dettagli

Problema 1 PROBLEMA 1. Sia f la funzione definita da f ( x) = 1 + x e. dove n è un intero positivo e x R

Problema 1 PROBLEMA 1. Sia f la funzione definita da f ( x) = 1 + x e. dove n è un intero positivo e x R Problema PROBLEMA Sia f la fuzioe defiita da f ( ) + + +... + e!! dove è u itero positivo e R. Si verifichi che la derivata di f è: f '( ) e!. Si dica se la fuzioe f ammette massimi e miimi (assoluti e

Dettagli

Unità Didattica N 33 L algebra dei vettori

Unità Didattica N 33 L algebra dei vettori Uità Didattica N 33 Uità Didattica N 33 0) La ozioe di vettore 02) Immagie geometrica di u vettore umerico 03) Somma algebrica di vettori 04) Prodotto di u umero reale per u vettore 05) Prodotto scalare

Dettagli

Precorso di Matematica, aa , (IV)

Precorso di Matematica, aa , (IV) Precorso di Matematica, aa 01-01, (IV) Poteze, Espoeziali e Logaritmi 1. Nel campo R dei umeri reali, il umero 1 e caratterizzato dalla proprieta che 1a = a, per ogi a R; per ogi umero a 0, l equazioe

Dettagli

ORDINAMENTO 2010 SESSIONE STRAORDINARIA - QUESITI QUESITO 1

ORDINAMENTO 2010 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 www.matefilia.it ORDINAMENTO 1 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 Due osservatori si trovao ai lati opposti di u grattacielo, a livello del suolo. La cima dell edificio dista 16 metri dal primo

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO 2005 CORSO DI ORDINAMENTO Sessione ordinaria Tema di MATEMATICA - 23 giugno 2005

ESAME DI STATO DI LICEO SCIENTIFICO 2005 CORSO DI ORDINAMENTO Sessione ordinaria Tema di MATEMATICA - 23 giugno 2005 ESAME DI STATO DI LICEO SCIENTIFICO 005 CORSO DI ORDINAMENTO Sessioe ordiaria Tema di MATEMATICA - 3 giugo 005 Svolgimeto a cura del prof. Luigi Tomasi (luigi.tomasi@libero.it) RISPOSTE AI QUESITI DEL

Dettagli

Elementi di statistica

Elementi di statistica Elemeti di statistica La misura delle gradezze fisiche può essere effettuata direttamete o idirettamete. Se la misura viee effettuata direttamete si parla di misura diretta; se essa viee dedotta attraverso

Dettagli

Diottro sferico. Capitolo 2

Diottro sferico. Capitolo 2 Capitolo 2 Diottro sferico Si idica co il termie diottro sferico ua calotta sferica che separa due mezzi co idice di rifrazioe diverso. La cogiugete il cetro di curvatura C della calotta co il vertice

Dettagli

Proposizione 1. Due sfere di R m hanno intersezione non vuota se e solo se la somma dei loro raggi e maggiore della distanza fra i loro centri.

Proposizione 1. Due sfere di R m hanno intersezione non vuota se e solo se la somma dei loro raggi e maggiore della distanza fra i loro centri. Laboratorio di Matematica, A.A. 009-010; I modulo; Lezioi II e III - schema. Limiti e isiemi aperti; SB, Cap. 1 Successioi di vettori; SB, Par. 1.1, pp. 3-6 Itori sferici aperti. Nell aalisi i ua variabile

Dettagli

Analisi Matematica Soluzioni prova scritta parziale n. 1

Analisi Matematica Soluzioni prova scritta parziale n. 1 Aalisi Matematica Soluzioi prova scritta parziale. 1 Corso di laurea i Fisica, 018-019 3 dicembre 018 1. Dire per quali valori dei parametri α R, β R, α > 0, β > 0 coverge la serie + (!) α β. ( )! =1 Soluzioe.

Dettagli

3. Calcolo letterale

3. Calcolo letterale Parte Prima. Algera 1) Moomi Espressioe algerica letterale 42 Isieme di umeri relativi, talui rappresetati da lettere, legati fra loro da segi di operazioi. Moomio Espressioe algerica che o cotiee le operazioi

Dettagli

Solidi e volumi Percorso: Il problema della misura

Solidi e volumi Percorso: Il problema della misura Solidi e volumi Percorso: Il problema della misura Abilità Coosceze Nuclei Collegameti esteri Calcolare perimetri e aree Equivaleza el piao ed Spazio e figure Fisica di poligoi. equiscompoibilità tra Disego

Dettagli

(1 2 3) (1 2) Lezione 10. I gruppi diedrali.

(1 2 3) (1 2) Lezione 10. I gruppi diedrali. Lezioe 0 Prerequisiti: Simmetrie di poligoi regolari. Gruppi di permutazioi. Cetro di u gruppo. Cetralizzate di u elemeto di u gruppo. Riferimeto al testo: [PC] Sezioe 5.4 I gruppi diedrali. Ogi simmetria

Dettagli

169. Segmenti paralleli

169. Segmenti paralleli 169. Segmeti paralleli Matematicamete.it UMERO 17 APRILE 01 Bruo Sachii bruosachii@yahoo.it Suto y ta x k b a ta ak x R cos ak Si utilizza il sistema: di ua grade famiglia di superfici. Lo scopo di questo

Dettagli

2,3, (allineamenti decimali con segno, quindi chiaramente numeri reali); 4 ( = 1,33)

2,3, (allineamenti decimali con segno, quindi chiaramente numeri reali); 4 ( = 1,33) Defiizioe di umero reale come allieameto decimale co sego. Numeri reali positivi. Numeri razioali: defiizioe e proprietà di desità Numeri reali Defiizioe: U umero reale è u allieameto decimale co sego,

Dettagli

Esercitazioni di Geometria II

Esercitazioni di Geometria II Esercitazioi di Geometria II Letizia Perigotti - perigotti@sciece.uit.it 20 aprile 2012 Esercizio 1. Dimostrare che la famiglia degli itervalli chiusi e limitati B 1 = {[a, b] R : a < b} o è base di alcua

Dettagli

Diottri sferici e lenti

Diottri sferici e lenti Diottri sferici e leti Deis Bastieri Dipartimeto di Fisica & Astroomia G. Galilei Uiversità di Padova 6 dicembre 013 1 Il diottro sferico I due mezzi che costituiscoo il diottro siao ora separati da ua

Dettagli

TEOREMA DELLA PROIEZIONE, DISUGUAGLIANZA DI BESSEL E COMPLEMENTI SULLE SERIE DI FOURIER

TEOREMA DELLA PROIEZIONE, DISUGUAGLIANZA DI BESSEL E COMPLEMENTI SULLE SERIE DI FOURIER TEOREMA DELLA PROIEZIONE, DISUGUAGLIANZA DI BESSEL E COMPLEMENTI SULLE SERIE DI FOURIER I uo spazio euclideo di dimesioe fiita, ad esempio R 3, cosideriamo u sottospazio, ad esempio u piao passate per

Dettagli

Corso Propedeutico di Matematica

Corso Propedeutico di Matematica POLINOMI RICHIAMI DI TEORIA Defiizioe: u poliomio ( o fuzioe poliomiale) ella variabile x di grado a coefficieti reali ha la forma A = a0 + a1x + + a 1 x, dove a 0, a 1,..., a soo umeri reali assegati

Dettagli

ALGEBRA I MODULO PROF. VERARDI - ESERCIZI. Sezione 1 NUMERI NATURALI E INTERI

ALGEBRA I MODULO PROF. VERARDI - ESERCIZI. Sezione 1 NUMERI NATURALI E INTERI ALGEBRA I MODULO PROF. VERARDI - ESERCIZI Sezioe 1 NUMERI NATURALI E INTERI 2 1.1. Si dimostri per iduzioe la formula: N, k 2 "1( * " 3 ) " 3k +1(. 3 1.2. A) Si dimostri che per ogi a,b N +, N +, se a

Dettagli

1. Suddivisione di triangoli

1. Suddivisione di triangoli 1. Suddivisioe di triagoli 1.1 Il problema proposto da Silvao Rossetto La costruzioe descritta dalla figura seguete divide il triagolo C, rettagolo i, i due parti equiestese: r t s C g P g 1 K M 1 1) Precisare

Dettagli

Esame di Stato - Liceo Scientifico Prova scritta di Matematica - 21 giugno Problema 1 Soluzione a cura di L. Tomasi

Esame di Stato - Liceo Scientifico Prova scritta di Matematica - 21 giugno Problema 1 Soluzione a cura di L. Tomasi Esame di Stato - Liceo Scietifico Prova scritta di Matematica - giugo 8 Problema Soluzioe a cura di L. Tomasi Soluzioe Puto Co riferimeto all esempio semplice del mauale d uso della macchia che colora

Dettagli

PROPRIETÀ DELLE POTENZE IN BASE 10

PROPRIETÀ DELLE POTENZE IN BASE 10 PROPRIETÀ DELLE POTENZE IN BASE Poteze i base co espoete itero positivo Prediamo u umero qualsiasi che deotiamo co la lettera a e u umero itero positivo che deotiamo co la lettera Per defiizioe (cioè per

Dettagli

NUMERI REALI Mauro Saita Versione provvisoria. Settembre 2012.

NUMERI REALI Mauro Saita Versione provvisoria. Settembre 2012. NUMERI REALI Mauro Saita maurosaita@tiscaliet.it Versioe provvisoria. Settembre 2012. Idice 1 Numeri reali. 1 1.1 Numeri aturali, iteri, razioali......................... 1 1.2 La scoperta dei umeri irrazioali.........................

Dettagli

DETERMINANTI (SECONDA PARTE). NOTE DI ALGEBRA LINEARE

DETERMINANTI (SECONDA PARTE). NOTE DI ALGEBRA LINEARE DETERMINANTI (SECONDA PARTE). NOTE DI ALGEBRA LINEARE 2010-11 MARCO MANETTI: 21 DICEMBRE 2010 1. Sviluppi di Laplace Proposizioe 1.1. Sia A M, (K), allora per ogi idice i = 1,..., fissato vale lo sviluppo

Dettagli

Istituzioni di Matematiche (CH-CI-MT) V o foglio di esercizi

Istituzioni di Matematiche (CH-CI-MT) V o foglio di esercizi Istituzioi di Matematiche (CH-CI-MT) V o foglio di esercizi ESERCIZIO. Si determiio le soluzioi dell equazioe x x + 5 = 0. Idicata co z 0 la soluzioe co parte immagiaria positiva, si disegi el piao di

Dettagli

TEORIA DELLE MATRICI. dove aij K. = di ordine n, gli elementi aij con i = j (cioè gli elementi a 11

TEORIA DELLE MATRICI. dove aij K. = di ordine n, gli elementi aij con i = j (cioè gli elementi a 11 1 TEORIA DELLE MATRICI Dato u campo K, defiiamo matrice ad elemeti i K di tipo (m, ) u isieme di umeri ordiati secodo m righe ed coloe i ua tabella rettagolare del tipo a11 a12... a1 a21 a22... a2 A =.........

Dettagli

11 Simulazione di prova d Esame di Stato

11 Simulazione di prova d Esame di Stato Simulazioe di prova d Esame di Stato Problema Risolvi uo dei due problemi e 5 dei quesiti i cui si articola il questioario I u sistema di riferimeto cartesiao ortogoale è assegata la seguete famiglia di

Dettagli

1. a n = n 1 a 1 = 0, a 2 = 1, a 3 = 2, a 4 = 3,... Questa successione cresce sempre piú al crescere di n e vedremo che {a n } diverge.

1. a n = n 1 a 1 = 0, a 2 = 1, a 3 = 2, a 4 = 3,... Questa successione cresce sempre piú al crescere di n e vedremo che {a n } diverge. Le successioi A parole ua successioe é u isieme ifiito di umeri disposti i u particolare ordie. Piú rigorosamete, ua successioe é ua legge che associa ad ogi umero aturale u altro umero (ache o aturale):

Dettagli

1 + 1 ) n ] n. < e nα 1 n

1 + 1 ) n ] n. < e nα 1 n Esercizi preparati e i parte svolti martedì 0.. Calcolare al variare di α > 0 Soluzioe: + ) α Per α il ite è e; se α osserviamo che da + /) < e segue che α + ) α [ + ) ] α < e α Per α > le successioi e

Dettagli

A.S ABSTRACT

A.S ABSTRACT ILLUSIONI GEOMETRICHE E NUMERI DI IBONACCI A.S. 00-0 GUGLIELMO SACCO (C) ENRICO IZZO (C) ABSTRACT I questo articolo vegoo messe i luce alcue "illusioi" geometriche elle quali giocao u ruolo chiave le proprietà

Dettagli

PRINCIPIO D INDUZIONE E DIMOSTRAZIONE MATEMATICA. A. Induzione matematica: Introduzione

PRINCIPIO D INDUZIONE E DIMOSTRAZIONE MATEMATICA. A. Induzione matematica: Introduzione PRINCIPIO D INDUZIONE E DIMOSTRAZIONE MATEMATICA CHU WENCHANG A Iduzioe matematica: Itroduzioe La gra parte delle proposizioi della teoria dei umeri dà euciati che coivolgoo i umeri aturali; per esempio

Dettagli

Congruenze in ; l insieme quoziente / n

Congruenze in ; l insieme quoziente / n Cogrueze i ; l isieme quoziete / Per ogi, si cosideri i la relazioe, che per il mometo deoteremo co ( ), così defiita: a ( ) b divide a-b Esempio: 5 (7 ) 19, perché 7 5-19=-14, metre 4 o è ella relazioe

Dettagli

1. Tra angoli e rettangoli

1. Tra angoli e rettangoli . Tra agoli e rettagoli Attività : il foglio A4 e le piegature Predi u foglio di carta A4 e piegalo a metà. Cota di volta i volta quati rettagoli si ottegoo piegado a metà più volte il foglio. Immagia

Dettagli

C5. Triangoli. C5.1 Definizioni. C5.2 Classificazione dei triangoli in base ai lati

C5. Triangoli. C5.1 Definizioni. C5.2 Classificazione dei triangoli in base ai lati 5. Triangoli 5.1 efinizioni Un triangolo è un poligono con tre lati. In figura 5.1 i lati sono i segmenti =c, =b e =a. Gli angoli (interni) sono α = ˆ, β = ˆ e γ = ˆ. Si dice che un angolo è opposto a

Dettagli

Radici, potenze, logaritmi in campo complesso.

Radici, potenze, logaritmi in campo complesso. SOMMARIO NUMERI COMPLESSI... Formula di Eulero... Coiugato di u umero complesso... 3 Poteza -esima di u umero complesso z (formula di De Moivre... 3 Radice -esima di z... 3 Osservazioi... Logaritmo di

Dettagli

FUNZIONI RADICE. = x dom f Im f grafici. Corso Propedeutico di Matematica. Politecnico di Torino CeTeM. 7 Funzioni Radice RICHIAMI DI TEORIA

FUNZIONI RADICE. = x dom f Im f grafici. Corso Propedeutico di Matematica. Politecnico di Torino CeTeM. 7 Funzioni Radice RICHIAMI DI TEORIA Politecico di Torio 7 Fuzioi Radice FUNZIONI RADICE RICHIAMI DI TEORIA f ( x) = x dom f Im f grafici. = = =7 =9. dispari R R -. - -. - - -. Grafici di fuzioi radici co pari pari [,+ ) [,+ ).. = = =6 =8

Dettagli

Campionamento casuale da popolazione finita (caso senza reinserimento )

Campionamento casuale da popolazione finita (caso senza reinserimento ) Campioameto casuale da popolazioe fiita (caso seza reiserimeto ) Suppoiamo di avere ua popolazioe di idividui e di estrarre u campioe di uità (co < ) Suppoiamo di studiare il carattere X che assume i valori

Dettagli

Soluzioni Esercizi. 16 marzo 2015

Soluzioni Esercizi. 16 marzo 2015 Soluzioi Esercizi 16 marzo 015 Esercizi tratti dalle Olimpiadi 1. Risposta corretta: (A) 4 3. Per il primo petalo si possoo fare 3 scelte, e ciascua di esse ha possibili versi di percorreza ( 3 possibilità);

Dettagli

f la cui derivata è sen x e il cui grafico passa per il punto ( ; 2)

f la cui derivata è sen x e il cui grafico passa per il punto ( ; 2) ESAME DI STATO DI LICEO SCIENTIFICO Sessioe Ordiaria 009 CORSO DI ORDINAMENTO Questioario Quesito Si trovi la fuzioe ( ) f la cui derivata è se e il cui grafico passa per il puto ( ; ) Ua primitiva della

Dettagli

1 Congruenze. Definizione 1.1. Siano a, b, n Z con n 2, definiamo a b (mod n) se n a b.

1 Congruenze. Definizione 1.1. Siano a, b, n Z con n 2, definiamo a b (mod n) se n a b. 1 Cogrueze Defiizioe 1.1. Siao a, b, Z co 2, defiiamo a b (mod ) se a b. Proposizioe 1.2. 2 la cogrueza mod è ua relazioe di equivaleza su Z. a a () perché a a a b () b a () a b () b c () a b b c a c =

Dettagli

2.5 Convergenza assoluta e non

2.5 Convergenza assoluta e non .5 Covergeza assoluta e o Per le serie a termii complessi, o a termii reali di sego o costate, i criteri di covergeza si qui visti o soo applicabili. L uico criterio geerale, rozzo ma efficace, è quello

Dettagli

Analisi Matematica 1 Nona lezione

Analisi Matematica 1 Nona lezione Aalisi Matematica 1 Noa lezioe prof. Claudio Sacco Dipartimeto di Matematica Applicata, Via F. Buoarroti 1/C email: sacco@mail.dm.uipi.it web: http://www2.ig.uipi.it/ d6081/idex.html Ricevimeto: ogi luedì,

Dettagli

QUESITO 1. Indicata con x la distanza della base superiore del cilindro dal vertice del cono si ha:

QUESITO 1. Indicata con x la distanza della base superiore del cilindro dal vertice del cono si ha: www.matefilia.it Scuole italiae all estero (Caledario australe) 005 QUESITO Prova che fra tutti i cilidri iscritti i u coo circolare retto ha volume massimo quello la cui altezza è la terza parte di quella

Dettagli

Si scriva un espressione analitica di g(x). Vi sono punti in cui g(x) non è derivabile? Se sì, quali sono? E perchè? x 9x y

Si scriva un espressione analitica di g(x). Vi sono punti in cui g(x) non è derivabile? Se sì, quali sono? E perchè? x 9x y PROBLEMA Nella figura che segue è riportato il grafico di g ( ) per - 5 essedo g la derivata di ua fuzioe f. Il grafico cosiste di tre semicircofereze co cetri i (, ), (, ), (9/, ) e raggi rispettivi,,/.

Dettagli

3.1 Rappresentazione dello stato tensionale nel piano di Mohr: circoli di Mohr.

3.1 Rappresentazione dello stato tensionale nel piano di Mohr: circoli di Mohr. DIDATTICA DI PROGETTAZIONE DELLE COSTRUZIONI PROF. CARMELO MAJORANA MODULO TRE I CONCETTI FONDAMENTALI NELL ANALISI DELLA TENSIONE PARTE B) MODULO PER LO SPECIALIZZANDO Modulo. Rappresetazioe dello stato

Dettagli

Precorso di Matematica. Parte IV : Funzioni e luoghi geometrici

Precorso di Matematica. Parte IV : Funzioni e luoghi geometrici Facoltà di Igegeria Precorso di Matematica 1. Equazioi e disequazioi Parte IV : Fuzioi e luoghi geometrici Richiamiamo brevemete la ozioe di fuzioe, che sarà utilizzato i quest ultima parte del precorso.

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2010

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2010 ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 00 Il cadidato risolva uo dei due problemi e 5 dei 0 quesiti i cui si articola il questioario. PROBLEMA Sia ABCD u quadrato di lato, P u puto di

Dettagli

GARA A SQUADRE - SOLUZIONI

GARA A SQUADRE - SOLUZIONI PROGETTO OLIMPIADI DI MATEMATICA SEZIONE DI ROMA GARA A SQUADRE - SOLUZIONI Roma, 7 marzo 01 Dipartimeti di Matematica delle Uiversità Sapieza, Tor Vergata, Roma Tre co il sostego di: Uioe Matematica Italiaa,

Dettagli

Problema di Natale 1 Corso di Geometria per la Laurea in Fisica Andrea Sambusetti 19 Dicembre 2008

Problema di Natale 1 Corso di Geometria per la Laurea in Fisica Andrea Sambusetti 19 Dicembre 2008 Problema di Natale 1 Corso di Geometria per la Laurea i Fisica Adrea Sambusetti 19 Dicembre 28 La particella Mxyzptlk. 2 La particella Mxyzptlk vive i u uiverso euclideo -dimesioale. È costituita da u

Dettagli

Giulio Cesare Barozzi: Primo Corso di Analisi Matematica Zanichelli (Bologna), 1998, ISBN

Giulio Cesare Barozzi: Primo Corso di Analisi Matematica Zanichelli (Bologna), 1998, ISBN Giulio Cesare Barozzi: Primo Corso di Aalisi Matematica Zaichelli (Bologa), 998, ISBN 88-08-069-0 Capitolo NUMERI REALI Soluzioe dei problemi posti al termie di alcui paragrafi. Numeri aturali, iteri,

Dettagli

Serie di potenze / Esercizi svolti

Serie di potenze / Esercizi svolti MGuida, SRolado, 204 Serie di poteze / Esercizi svolti Si cosideri la serie di poteze (a) Determiare il raggio di covergeza 2 + x (b) Determiare l itervallo I di covergeza putuale (c) Dire se la serie

Dettagli

Soluzione del Problema di Natale.

Soluzione del Problema di Natale. Soluzioe del Problema di Natale. Idicheremo, per comodità, ua particella Mxyzptl co M(d, = (m + ; m 1,..., m, dove m+ è il puto di che rappreseta il suo ucleo mxyzptl +, e gli m i rappresetao le sue subparticelle

Dettagli

Esponenziale complesso

Esponenziale complesso Espoeziale complesso P.Rubbioi 1 Serie el campo complesso Per forire il cocetto di serie el campo complesso abbiamo bisogo di itrodurre la defiizioe di limite per successioi di umeri complessi. Defiizioe

Dettagli

Stima della media di una variabile X definita su una popolazione finita

Stima della media di una variabile X definita su una popolazione finita Stima della media di ua variabile X defiita su ua popolazioe fiita otazioi: popolazioe, campioe e strati Popolazioe. umerosità popolazioe; Ω {ω,..., ω } popolazioe X variabile aleatoria defiita sulla popolazioe

Dettagli

Diagramma polare e logaritmico

Diagramma polare e logaritmico Diagramma polare e aritmico ariatori discotiui del moto di taglio Dalla relazioe π D c si ota che la velocità di taglio dipede, oltre che dal umero di giri del madrio, ache dal diametro dell elemeto rotate

Dettagli

1. DISUGUAGLIANZE GEOMETRICHE

1. DISUGUAGLIANZE GEOMETRICHE . DISUGUAGLIANZE GEOMETRICHE (SOLUZIONI) POTENZE E RADICI Siao m, N, a b 0, allora valgoo: a m b m, b m a m, e si ha l uguagliaza se e solo se a = b oppure m = 0. Esercizio. Dimostra che per ogi coppia

Dettagli

Stage Senior Pisa 2006 Test Iniziale

Stage Senior Pisa 2006 Test Iniziale Stage Seior Pisa 006 Test Iiziale Tempo cocesso: 10 miuti Valutazioe: risposta errata 0, macate, esatta 5 1. Sia ABC u triagolo scaleo, e siao K, L, M, rispettivamete, i piedi dell altezza, della bisettrice

Dettagli

Alcuni concetti di statistica: medie, varianze, covarianze e regressioni

Alcuni concetti di statistica: medie, varianze, covarianze e regressioni A Alcui cocetti di statistica: medie, variaze, covariaze e regressioi Esistoo svariati modi per presetare gradi quatità di dati. Ua possibilità è presetare la cosiddetta distribuzioe, raggruppare cioè

Dettagli

Scrivere su ogni foglio NOME e COGNOME. Le risposte devono essere giustificate sui fogli protocollo e riportate nel foglio RISPOSTE.

Scrivere su ogni foglio NOME e COGNOME. Le risposte devono essere giustificate sui fogli protocollo e riportate nel foglio RISPOSTE. CORSO DI CALCOLO DELLE PROBABILITÀ (o modulo) - PROVA d esame del 6/06/200 - Laurea Quadrieale i Matematica - (Prof. Nappo) Scrivere su ogi foglio NOME e COGNOME. Le risposte devoo essere giustificate

Dettagli

Algoritmi e Strutture Dati (Elementi)

Algoritmi e Strutture Dati (Elementi) Algoritmi e Strutture Dati (Elemeti Esercizi sulle ricorreze Proff. Paola Boizzoi / Giacarlo Mauri / Claudio Zadro Ao Accademico 00/003 Apputi scritti da Alberto Leporati e Rosalba Zizza Esercizio 1 Posti

Dettagli

Appendice 2. Norme di vettori e matrici

Appendice 2. Norme di vettori e matrici Appedice 2. Norme di vettori e matrici La ozioe esseziale per poter defiire il cocetto di distaza e lughezza i uo spazio vettoriale lieare è quello di orma. Il cocetto di orma è ua geeralizzazioe del cocetto

Dettagli

Definizione 1. Data una successione (a n ) alla scrittura formale. 1) a 1 + a a n +, si dà il nome di serie.

Definizione 1. Data una successione (a n ) alla scrittura formale. 1) a 1 + a a n +, si dà il nome di serie. SERIE NUMERICHE Defiizioe. Data ua successioe (a ) alla scrittura formale ) a + a 2 + + a +, si dà il ome di serie. I umeri a, a 2,, a, rappresetao i termii della serie, i particolare a è il termie geerale

Dettagli

CALCOLO COMBINATORIO

CALCOLO COMBINATORIO CALCOLO COMBINATORIO Che cosa sigifica cotare Tutti coosciamo la successioe dei umeri iteri Naturali N = {0, 1,,, } si tratta di ua struttura metale fodametale, chiaramete presete alla ostra ituizioe che

Dettagli

La comparsa dei numeri complessi è legata, da un punto di vista storico, alla risoluzione delle equazioni di secondo grado.

La comparsa dei numeri complessi è legata, da un punto di vista storico, alla risoluzione delle equazioni di secondo grado. Capitolo 3 3.1 Defiizioi e proprietà La comparsa dei umeri complessi è legata, da u puto di vista storico, alla risoluzioe delle equazioi di secodo grado. L equazioe ammette le soluzioi x 2 + 2px + q =

Dettagli

Analisi Matematica I

Analisi Matematica I Aalisi Matematica I Isiemi di umeri Naturali, iteri, razioali I primi umeri che si icotrao soo gli iteri positivi, detti ache umeri aturali: 1, 2, 3,.... L isieme dei umeri aturali si idica co il simbolo

Dettagli

Geometria analitica: rette e piani

Geometria analitica: rette e piani Geometria aalitica: rette e piai Coordiate polari Cambiameti di riferimeto el piao Cambiameti di riferimeto i geerale Isometrie Simmetrie Isometrie el piao Isometrie ello spazio 2 2006 Politecico di Torio

Dettagli

138. MOLTIPLICARE I NUMERI CON LA GEOMETRIA Luca Lussardi Technische Universität Dortmund, Vogelpothsweg , Dortmund (Germania)

138. MOLTIPLICARE I NUMERI CON LA GEOMETRIA Luca Lussardi Technische Universität Dortmund, Vogelpothsweg , Dortmund (Germania) 138. MOLTIPLICARE I NUMERI CON LA GEOMETRIA Luca Lussardi Techische Uiversität Dortmud, Vogelpothsweg 87 44227, Dortmud (Germaia) No c è certo da stupirsi se oggi troviamo relazioi tra operazioi matematiche

Dettagli

Congruenze in ; l insieme quoziente / n

Congruenze in ; l insieme quoziente / n Cogrueze i ; l isieme quoziete / Per ogi, si cosideri i la relazioe così defiita: a b divide a-b. La relazioe biaria è detta cogrueza modulo. Se a b scriveremo pure a b (mod. ) e leggeremo a cogruo b (modulo

Dettagli

le dimensioni dell aiuola, con le limitazioni 0 x λ λ

le dimensioni dell aiuola, con le limitazioni 0 x λ λ PROBLEMA a) idicate co e co che e esprime l area è: le dimesioi dell aiuola, co le limitazioi 0 A( )., la fuzioe Per la ricerca del massimo si studia il sego della derivata prima Si ha: 0 / / A' ( ). Si

Dettagli

Principio di induzione: esempi ed esercizi

Principio di induzione: esempi ed esercizi Pricipio di iduzioe: esempi ed esercizi Pricipio di iduzioe: Se ua proprietà P dipedete da ua variabile itera vale per e se, per ogi vale P P + allora P vale su tutto Variate del pricipio di iduzioe: Se

Dettagli

Algebra delle matrici

Algebra delle matrici Algebra delle matrici Prodotto di ua matrice per uo scalare Data ua matrice A di tipo m, e dato uo scalare r R, moltiplicado r per ciascu elemeto di A si ottiee ua uova matrice di tipo m, detta matrice

Dettagli

ESERCITAZIONE DI PROBABILITÀ 1

ESERCITAZIONE DI PROBABILITÀ 1 ESERCITAZIONE DI PROBABILITÀ 1 12/03/2015 Soluzioi del primo foglio di esercizi Esercizio 0.1. Ua classe di studeti è costituita da 6 ragazzi e 4 ragazze. I risultati dell esame vegoo esposti i ua graduatoria

Dettagli

= Pertanto. Per la formula di Navier ( σ = ), gli sforzi normali σ più elevati nella sezione varranno: di compressione);

= Pertanto. Per la formula di Navier ( σ = ), gli sforzi normali σ più elevati nella sezione varranno: di compressione); La sezioe di trave di figura è soggetta ad u mometo flettete pari a 000 knmm e ed u azioe di taglio pari a 5 kn, etrambe ageti su u piao verticale passate per l asse s-s. Calcolare gli sforzi σ e τ massimi

Dettagli

Matematica I, Limiti di successioni (II).

Matematica I, Limiti di successioni (II). Matematica I, 05102012 Limiti di successioi II) 1 Le successioi elemetari, cioe α, = 0, 1, 2, α R), b, = 0, 1, 2, b R), log b, = 1, 2, b > 0, b 1), si, = 0, 1, 2,, cos, = 0, 1, 2,, per + hao il seguete

Dettagli

RAPPRESENTAZIONE ANALITICA DEI PUNTALI OGIVALI PER PROIETTILI

RAPPRESENTAZIONE ANALITICA DEI PUNTALI OGIVALI PER PROIETTILI M. G. BUSATO RAPPRESENTAZIONE ANALITIA DEI PUNTALI OGIVALI PER PROIETTILI mgbstudio.et SOMMARIO I umerose applicazioi balistiche, ed i particolare per calcolare la resisteza aerodiamica di u proiettile,

Dettagli

Tutorato di Probabilità 1, foglio I a.a. 2007/2008

Tutorato di Probabilità 1, foglio I a.a. 2007/2008 Tutorato di Probabilità, foglio I a.a. 2007/2008 Esercizio. Siao A, B, C, D eveti.. Dimostrare che P(A B c ) = P(A) P(A B). 2. Calcolare P ( A (B c C) ), sapedo che P(A) = /2, P(A B) = /4 e P(A B C) =

Dettagli

Problema 1 - soluzione a cura di E. Castagnola e L. Tomasi, con l uso della calcolatrice grafica TI-Nspire CX (non CAS)

Problema 1 - soluzione a cura di E. Castagnola e L. Tomasi, con l uso della calcolatrice grafica TI-Nspire CX (non CAS) Esame di Stato - Liceo Scietifico Prova scritta di Matematica - giugo 8 Problema - soluzioe a cura di E. Castagola e L. Tomasi, co l uso della calcolatrice grafica TI-Nspire CX (o CAS) Soluzioe ) Co riferimeto

Dettagli

Caso studio 9. Distribuzioni doppie. Esempi

Caso studio 9. Distribuzioni doppie. Esempi 7/3/16 Caso studio 9 Si cosideri la seguete tabella che riporta i dati dei Laureati el 4 dei tre pricipali gruppi di corsi di laurea, per codizioe occupazioale a tre ai dalla laurea (Fote: ISTAT, Idagie

Dettagli

Tracce di soluzioni di alcuni esercizi di matematica 1 - gruppo 42-57

Tracce di soluzioni di alcuni esercizi di matematica 1 - gruppo 42-57 Tracce di soluzioi di alcui esercizi di matematica - gruppo 42-57 4. Limiti di successioi Soluzioe dell Esercizio 42.. Osserviamo che a = a +6 e duque la successioe prede valori i {a,..., a 6 } e ciascu

Dettagli

Il discriminante Maurizio Cornalba 23/3/2013

Il discriminante Maurizio Cornalba 23/3/2013 Il discrimiate Maurizio Coralba 3/3/013 Siao X 1,..., X idetermiate. Cosideriamo i poliomi V (X 1,..., X ) = i>j(x i X j ) (X 1,..., X ) = V (X 1,..., X ) Il poliomio V (X 1,..., X ) è chiaramete atisimmetrico.

Dettagli

Soluzioni foglio 7. Pietro Mercuri. 30 ottobre 2018

Soluzioni foglio 7. Pietro Mercuri. 30 ottobre 2018 Soluzioi foglio 7 Pietro Mercuri 30 ottobre 08 Esercizio Determiare se i segueti iti di successioi esistoo e, quado esistoo, calcolarli... e + e π + π + 3. 4. e + + 3 log5e + 5 5. 4 + 3 3 + 6. e + e +

Dettagli

1 Congruenze. Definizione 1.1. a, b, n Z n 2, allora definiamo a b (mod n) se n a b.

1 Congruenze. Definizione 1.1. a, b, n Z n 2, allora definiamo a b (mod n) se n a b. 1 Cogrueze Defiizioe 1.1. a, b, Z 2, allora defiiamo a b (mod ) se a b. Proposizioe 1.2. 2 la cogrueza mod è ua relazioe di equivaleza su Z. a a () perché a a a b () b a () a b () b c () a b b c a c =

Dettagli

Y557 - ESAME DI STATO DI LICEO SCIENTIFICO. 3 lim

Y557 - ESAME DI STATO DI LICEO SCIENTIFICO. 3 lim Y557 - ESAME DI STATO DI LICEO SCIETIFICO PIAO AZIOALE DI IFORMATICA CORSO SPERIMETALE Tema di: MATEMATICA (Sessioe ordiaria 2002) QUESTIOARIO 1 Se a e b soo umeri positivi assegati quale è la loro media

Dettagli

Progetto Matematica in Rete - Geometria euclidea - Introduzione GEOMETRIA EUCLIDEA. Introduzione. geo (terra) e metron (misura)

Progetto Matematica in Rete - Geometria euclidea - Introduzione GEOMETRIA EUCLIDEA. Introduzione. geo (terra) e metron (misura) GEOMETRIA EUCLIDEA La parola geometria deriva dalle parole greche geo (terra) e metron (misura) ed è nata per risolvere problemi di misurazione dei terreni al tempo degli antichi Egizi nel VI secolo a.c.

Dettagli

Correzione del primo compitino di Analisi 1 e 2 A.A. 2014/2015

Correzione del primo compitino di Analisi 1 e 2 A.A. 2014/2015 Correzioe del primo compitio di Aalisi e 2 A.A. 20/205 Luca Ghidelli, Giovai Paolii, Leoardo Tolomeo 5 dicembre 20 Esercizio Testo. Calcolare, se esiste, + 3 + 5 + + (2 ). 2 + + 6 + + 2 Soluzioe. Al deomiatore

Dettagli

Elementi di calcolo combinatorio

Elementi di calcolo combinatorio Appedice A Elemeti di calcolo combiatorio A.1 Disposizioi, combiazioi, permutazioi Il calcolo combiatorio si occupa di alcue questioi iereti allo studio delle modalità secodo cui si possoo raggruppare

Dettagli

Lezione 2. . Gruppi isomorfi. Gruppi S n e A n. Sottogruppi normali. Gruppi quoziente. , ossia, equivalentemente, se x G Hx = xh.

Lezione 2. . Gruppi isomorfi. Gruppi S n e A n. Sottogruppi normali. Gruppi quoziente. , ossia, equivalentemente, se x G Hx = xh. Prerequisiti: Lezioe Gruppi Lezioe 2 Z Gruppi isomorfi Gruppi S e A Riferimeti ai testi: [FdG] Sezioe ; [H] Sezioe 26; [PC] Sezioe 58 Sottogruppi ormali Gruppi quoziete L Esempio 7 giustifica la seguete

Dettagli

LE MISURE DI TENDENZA CENTRALE

LE MISURE DI TENDENZA CENTRALE STATISTICA DESCRITTIVA LE MISURE DI TENDENZA CENTRALE http://www.biostatistica.uich.itit OBIETTIVO Esempio: Nella tabella seguete soo riportati i valori del tasso glicemico rilevati su 0 pazieti: Idividuare

Dettagli

a n (x x 0 ) n. (1.1) n=0

a n (x x 0 ) n. (1.1) n=0 Serie di poteze. Defiizioi Assegati ua successioe {a } di umeri reali e u puto x dell asse reale si dice serie di poteze u espressioe del tipo a (x x ). (.) Il puto x viee detto cetro della serie e i umeri

Dettagli

Cenni di topologia di R

Cenni di topologia di R Cei di topologia di R. Sottoisiemi dei umeri reali Studieremo le proprietà dei sottoisiemi dei umeri reali, R, che hao ad esempio la forma: = (, ) (,) 6 8 = [,] { ;6;8} { } = (, ) (,) [, + ) Defiizioe:

Dettagli

a'. a' e b n y se e solo se x, y, divisi per n danno lo stesso resto.

a'. a' e b n y se e solo se x, y, divisi per n danno lo stesso resto. E.5. Cogrueze Nella sezioe D. (esempio (d)) abbiamo itrodotto la relazioe di cogrueza modulo : dati due umeri iteri x, y e u umero itero positivo diciamo che x è cogruo a y modulo (i formula x y se è u

Dettagli

( ) ( ) ( )( ) PROBLEMA Fissiamo un sistema di riferimento in cui A ( 0;0) C x y : siano α l angolo , ( ; ) l angolo ˆ

( ) ( ) ( )( ) PROBLEMA Fissiamo un sistema di riferimento in cui A ( 0;0) C x y : siano α l angolo , ( ; ) l angolo ˆ Soluzioe a cura di: lessadra iglio, Liceo lassico Vittorio lfieri, Torio Giuliaa ru, Liceo Scietifico Isaac Newto, hivasso (TO) laudia hau, IRRE Val d osta toella uppari, Liceo Scietifico Galileo Ferraris,

Dettagli

(a 0, a 1, a 2,..., a n,...) (0, a 0 ), (1, a 1 ), (2, a 2 ),... (1, 3, 5, 7,...) Lezione del 26 settembre. 1. Successioni.

(a 0, a 1, a 2,..., a n,...) (0, a 0 ), (1, a 1 ), (2, a 2 ),... (1, 3, 5, 7,...) Lezione del 26 settembre. 1. Successioni. Lezioe del 26 settembre. 1. Successioi. Defiizioe 1 Ua successioe di umeri reali e ua legge che associa a ogi umero aturale = 0, 1, 2,... u umero reale - i breve: e ua fuzioe N R; si scrive ella forma

Dettagli

GLI INSIEMI NUMERICI

GLI INSIEMI NUMERICI GLI INSIEMI NUMERICI R 2 π 2, _ -,8 2,89 Q Z N -2 2 28-87 -87 _, 7,76267 7 - e 2,7-7 -,6 _ -,627 7 6 R Numeri Reali Q Numeri Razioali Z Numeri Iteri Relativi N Numeri Naturali Dal diagramma di Eulero-Ve

Dettagli

Il Teorema di Markov. 1.1 Analisi spettrale della matrice di transizione. Il teorema di Markov afferma che

Il Teorema di Markov. 1.1 Analisi spettrale della matrice di transizione. Il teorema di Markov afferma che 1 Il Teorema di Marov 1.1 Aalisi spettrale della matrice di trasizioe Il teorema di Marov afferma che Teorema 1.1 Ua matrice di trasizioe regolare P su u isieme di stati fiito E ha ua uica distribuzioe

Dettagli

Equazioni differenziali

Equazioni differenziali Equazioi differeziali Defiizioe 1 Si chiama equazioe differeziale u tipo particolare di equazioe fuzioale, ella quale la fuzioe icogita compare isieme ad alcue sue derivate, ossia u equazioe ella quale,

Dettagli