18/06/2009. F =σ S F 1 F 2. Unità di misura della tensione: [N/mm 2 ] 1 [N/mm 2 ] = 1 [MPa]

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "18/06/2009. F =σ S F 1 F 2. Unità di misura della tensione: [N/mm 2 ] 1 [N/mm 2 ] = 1 [MPa]"

Transcript

1 ES. Sforzo Azioni interne (definizione di tensione o sforzo) Una barra di acciaio AISI 34 a sezione tonda, di diametro pari a 1 mm, deve sorreggere una massa di t. Qual è lo sforzo a cui è soggetta la barra? Cosa accade se vengono aggiunti 1 kg? E se vengono applicate 6 t? F 1 F F = S F = S Unità di misura della tensione: [N/mm ] 1 [N/mm ] = 1 [MPa] Ricavo il valore della sezione resistente dal diametro: A = π*d /4 = π*(1 mm) /4 = = 78.5 mm Per poter calcolare lo sforzo ( = F/A) devo prima calcolare la forza peso a partire dalla massa F = m*g = t * 9.81 m/s = = kg * 9.81 m/s = 196 kg*m/s = 196 N Quindi lo sforzo è pari a = F/A = 196 N/78.5 mm = = 5 N/mm = 5 MPa Devo confrontare il valore dello sforzo applicato con il carico di snervamento ed il carico di rottura del materiale 1

2 Rf m t Deformazione plastica uniforme Deformazione plastica localizzata Definizione di tensione di snervamento Fig. 1 Fig. Fig. 3 R s R sn R sn,max Rsn,min Rsn,, Snervamento Deformazione elastica ε ε.% ε Snervamento discontinuo Snervamento continuo Determinazione del carico di snervamento Determinazione del carico di rottura Rs, = 3 MPa API 5 X1 7 6 AISI S35JR Rm = 66 MPa 15 X1 14 inox 18-8 S 35JR API 5 X1 7 AISI S35JR

3 o sforzo applicato è inferiore al carico di snervamento del materiale <R s : 5 MPa < 3 MPa Questo significa che la barra opera in campo elastico, ove le deformazioni sono reversibili: applicando il carico la barra si allungherà, ma rimuovendolo tornerà alle condizioni iniziali Se si aggiungono 1 kg si ha che = F/A = (m*g)/a = = ((+1)kg*9.81 m/s ) /78.5 mm = 375 MPa In questo caso lo sforzo applicato è superiore al carico di snervamento ma inferiore a quello di rottura R s < < R m Questo significa che la barra opera in campo di plastica uniforme: il materiale ha superato il limite elastico e parte della che ha subito è irreversibile; rimuovendo il carico la lunghezza della barra non torna nelle condizioni iniziali Deformazione elastica e plastica reversibile ε imite elastico ε p ε e irreversibile ε Nel caso in cui si applicano 6 t si ha che = F/A = (m*g)/a = = (6 kg*9.81 m/s ) /78.5 mm = 75 MPa In questo caso lo sforzo applicato è superiore al carico di rottura (66 MPa) > R m Il carico di rottura è il massimo sforzo sopportabile dal materiale: questo significa che applicando 6 t la barra si allungherà sino a rompersi 3

4 ES. e legame elastico ε Una barra di acciaio AISI 34 a sezione rettangolare x6 mm e lunghezza iniziale di 5 m si allunga per effetto di un peso applicato sino a 5. m. Quanto vale la? Qual è il valore del peso applicato? Definizione di l/ F F l l/ / / l ε n = l ε t = l e deformazioni sono grandezze adimensionali Applicando la definizione di si ottiene che: ε = (l-l )/l = (5 5) mm/ 5 mm =.4 Per poter calcolare il peso applicato devo conoscere lo sforzo Posso ricavare il valore dello sforzo dalla utilizzando la legge di Hooke ( = E*ε) ma ATTENZIONE: la legge di Hooke è valida solo in campo elastico! Quindi devo ipotizzare che la barra lavori in campo elastico e verificare questa ipotesi controllando che < R s 4

5 Esempio: ε =.15 => = 45 MPa = E*ε = 196 MPa*.4 = 78.4 MPa o sforzo sulla barra è effettivamente inferiore al carico di snervamento (3 MPa), quindi l ipotesi che questa operasse in campo elastico è valida IN CASO CONTRARIO non è possibile determinare lo sforzo (quindi il peso applicato) utilizzando la legge di Hooke, ma è necessario ricorrere al grafico ε,, se disponibile X1 steel AISI 18-8 (AISI34) S 35JR E GPa , ν,33,8,33,31,31,33 = 45 MPa API 5 X1 7 6 AISI S35JR Noto lo sforzo, in base alla definizione dello sforzo stesso, si può ricavare che = F/A => F = *A = *(b*h) = = 78.4 MPa*(*6) mm = = 94.8 N corrispondente ad una massa di m = F/g = 94.8 N/9.81 m/s = 96 kg ES. Sistema di monitoraggio del campanile Un sistema interno di monitoraggio dell inclinazione di un campanile è realizzato mediante uno filo appeso alla sommità e teso con un peso di 1 kg. Il filo è in AISI 34 di,8 mm di diametro. Si pone il problema di aumentare il peso a 6 kg. Verificare l accettabilità della modifica e, se minore, il massimo peso consentito. Calcolare per questo peso la lunghezza del filo in assenza di carico. Calcolate la massima portata per la rottura 5

6 ES. Sistema di monitoraggio del campanile 7 m Dati iniziali: Peso 1 kg Diametro filo.8 mm Materiale: AISI 34 È ammissibile un peso di 6 kg? Se non ammissibile qual è il massimo peso consentito? Valutare lunghezza del filo senza carico Calcolo della massima portata per la rottura Devo verificare che: < Rs Peso (massa) -> sollecitazione (sforzo) Peso (massa) -> forza F = m*g = 6 kg * 9.81 m/s = = kg*m/s = N 1 kg Ricavo il valore della sezione resistente dal diametro: A = π*d /4 = π*(.8 mm) /4 = =.53 mm = F/A = N /.53 mm = = 117 N/mm = 117 MPa Verifica = 117 MPa < Rs Dal grafico osservo che Rs per l acciaio AISI 34 è pari a circa 3 MPa (tracciando retta parallela al tratto elastico passante per ε =. % =.) Un peso di 6 kg non è ammissibile 6

7 Rs, = Determinazione del carico di snervamento 3 MPa API 5 X1 7 6 AISI S35JR Calcolo del massimo peso consentito: F = *A => Fmax = Rs*a = = 3 MPa *.53 mm = 15.9 N Peso max = F/g = 15.9 N / 9.81 m/s = 15.4 kg Calcolo della lunghezza in assenza di carico: Utilizzo la legge di Hooke per ricavare ε = 1 kg*9.81 m/s /.53 mm = 195 MPa = E*ε => ε = /E = 195 MPa / 196 GPa = 195 / 196 = 9.95*1-4 Dalla definizione di : ε = (l-l )/l => l *ε = l-l => l = l/(1+ε) = 7 m / ( *1-4 ) = = m X1 steel AISI 18-8 (AISI34) S 35JR E GPa , ν,33,8,33,31,31,33 7

8 Massima portata per la rottura: Devo considerare non più Rs ma Rm Dal grafico individuo Rm = 66 MPa F = *A = 66 MPa *.53 mm = 33 N =>Massa = F/g = 33 N /9.81 m/s = 33.8 kg Rm = Determinazione del carico di rottura 66 MPa 15 X1 14 inox 18-8 S 35JR API 5 X1 7 AISI S35JR Es. Barra di ancoraggio Es. Barra di ancoraggio In un cantiere, è richiesto il collaudo di una barra di ancoraggio in di 1 m di lunghezza () e diametro (φ) 1 cm. a verifica è effettuata in campo mediante l applicazione di pesi crescenti ad una delle estremità della barra. altra estremità è appoggiata ad una trave rigida di grande sezione, inserita in un foro. Calcolare la massa in chilogrammi necessaria per raggiungere lo snervamento della barra e il corrispondente allungamento (espresso in millimetri). Calcolare la massa necessaria per la rottura della barra. Dopo la rottura, la parte superiore si sfila ed è proiettata verso l alto. Stimare la massima altezza raggiunta nel caso in cui la rottura avvenga nel punto centrale della barra. (Suggerimento: al momento della rottura, la velocità delle due parti deve soddisfare i principi della conservazione della quantità di moto e dell energia). φ Materiale: lunghezza = 1 m diametro φ = 1 cm? Massa che determina lo snervamento e allungamento corrispondente? Massa che determina la rottura? Altezza raggiunta dalla metà della barra proiettata verso l alto alla rottura 8

9 È innanzitutto necessario determinare il valore del carico di snervamento del materiale utilizzato () Si può ricavare il valore dell area dal diametro A = π*d /4 = π * (1 mm) /4 = 78.5 mm Dalla definizione di sforzo, si ricava che = F/A => F = *A = 1 MPa * 78.5 mm = = 94 N Rs, = 1 MPa Determinazione del carico di snervamento API 5 X1 7 6 AISI S35JR Noto il valore dello forza, si può ricavare quello della massa: M = F/g = 94 N / 9.81 m/s = 96 kg Per calcolare l allungamento è prima necessario determinare il valore della in corrispondenza dello snervamento. a può essere calcolata con la legge di Hooke ed è pari a = E*ε => ε = /E = 1 MPa/1 Mpa = = 5.7*1-3 In base alla definizione di si può calcolare il valore dell allungamento ε = l/l => l l = ε*l = 5.7*1-3 *1 mm = = 57 mm 9

10 Determinazione del carico di rottura a massa che determina la rottura della barra di ancoraggio è quella in grado di esercitare uno sforzo pari a quello massimo tollerabile dal materiale, ovvero il carico di rottura R m Rm = 15 MPa API 5 X1 AISI 34 S35JR X1 inox 18-8 S 35JR Energia In modo analogo a quanto visto precedentemente si può calcolare il valore della forza alla rottura = F/A => F = *A = 15 MPa*78.5 mm = = N F d = F*dl ma dl = l *ε ed F = *A quindi F dl = A l dε = A l = dε e il lavoro per unità di volume è pari a = dε Vol Nota la forza, il valore della massa è dato da F = m*g => m = F/g = N / 9.81 m/s = = 13 kg (circa 1 t) d avoro effettuato per allungare la barra da l a l+dl area sottesa alla curva rappresenta il lavoro effettuato per rompere la barra 1

11 Energia elastica e energia per la plastica Energia elastica Energia elastica Energia plastica ε energia elastica (per unità di volume) è pari a d E d Vol = ε = ε ε = = E ε = ε = E Il reticolo atomico assorbe energia deformandosi e la cede quando torna alla condizione iniziale di equilibrio area sottesa alla curva di trazione rappresenta l energia per unità di volume necessaria rompere il provino Per il principio di conservazione della quantità di moto, nell ipotesi che la barra si rompa in corrispondenza della metà, si ha che: (m tot /)*v 1 + (m tot /)*v = m tot *v e poiché la barra prima di rompersi è ferma si ottiene che v 1 = -v Nell istante della rottura l energia elastica accumulata nella barra viene ceduta e si trasforma in energia cinetica, resta invariata l energia potenziale. quindi, per il principio di conservazione dell energia (e tenendo conto di quanto ricavato per le velocità): E elastica = K1 + K Vol = m E Vol = mtot v E si ricava che 6 rottura 15 1 N / m v = = = 36.9m / s ρ E kg / m 1 1 N / m pari a circa 133 km/h tot 1 1 v1 + m tot v 11

12 sempre per il principio di conservazione dell energia, è possibile scrivere che mtot vi + mtot g hi = mtot v f poiché la velocità finale è nulla si ricava h = v i /g = = (36.9 m/s) / (*9.81 m/s ) = = 69.4 m 1 + mtot g h f 1

Azioni interne (definizione di tensione o sforzo)

Azioni interne (definizione di tensione o sforzo) ES. Sforzo Una barra di acciaio AISI 304 a sezione tonda, di diametro pari a 10 mm, deve sorreggere una massa di 2 t. Qual è lo sforzo a cui è soggetta la barra? Cosa accade se vengono aggiunti 1000 kg?

Dettagli

F 1. F =σ S F 2. Unità di misura della tensione: [N/mm 2 ] 1 [N/mm 2 ] = 1 [MPa]

F 1. F =σ S F 2. Unità di misura della tensione: [N/mm 2 ] 1 [N/mm 2 ] = 1 [MPa] ES. Sforzo Una barra di acciaio AISI 304 a sezione tonda, di diametro pari a 10 mm, deve sorreggere una massa di 2 t. Qual è lo sforzo a cui è soggetta la barra? Cosa accade se vengono aggiunti 1000 kg?

Dettagli

Azioni interne (definizione di tensione o sforzo)

Azioni interne (definizione di tensione o sforzo) 18/05/011 ES. Sforzo Una barra di acciaio AISI 304 a sezione tonda, di diametro pari a 10 mm, deve sorreggere una massa di t. Qual è lo sforzo a cui è soggetta la barra? Cosa accade se vengono aggiunti

Dettagli

Esercizio_1. Una barra metallica cilindrica di diametro pari a 1.25cm è. MPa. Soluzione: m 2

Esercizio_1. Una barra metallica cilindrica di diametro pari a 1.25cm è. MPa. Soluzione: m 2 Esercizio_1 Una barra metallica cilindrica di diametro pari a 1.5cm è sottoposta ad un carico pari a 500Kg.Calcolare lo sforzo in MPa. Soluzione: Kg m F m g 500 9.81 455 455N s d 0.015 4 A0 πr π π 1. 10

Dettagli

17/03/2014. Le prove meccaniche distruttive. Tipologie di deformazione. Sistemi di Produzione D. Antonelli, G. Murari C.L.U.T.

17/03/2014. Le prove meccaniche distruttive. Tipologie di deformazione. Sistemi di Produzione D. Antonelli, G. Murari C.L.U.T. Le prove meccaniche distruttive Le prove meccaniche distruttive Sistemi di Produzione D. Antonelli, G. Murari C.L.U.T. Editrice, 2008 capitolo 3 Tecnologia meccanica S. Kalpakjian, S. R. Schmid Pearson

Dettagli

Metallurgia e Materiali non Metallici. Prova di trazione. Marco Colombo.

Metallurgia e Materiali non Metallici. Prova di trazione. Marco Colombo. Metallurgia e Materiali non Metallici Prova di trazione Marco Colombo marco1.colombo@polimi.it 16/03/2016 La prova di trazione uniassiale Una delle più comuni e importanti prove distruttive, si ricavano

Dettagli

Scienza dei Materiali 1 Esercitazioni

Scienza dei Materiali 1 Esercitazioni Scienza dei Materiali 1 Esercitazioni 6. Elasticità ver. 1.3 Sforzo e deformazione Sia dato un provino di lunghezza l avente area della sezione A, sottoposto ad una forza di trazione F. A causa di questa

Dettagli

ESERCITAZIONI. MATERIALI PER L EDILIZIA Prof. L. Coppola. Coffetti Denny

ESERCITAZIONI. MATERIALI PER L EDILIZIA Prof. L. Coppola. Coffetti Denny MATERIALI PER L EDILIZIA Prof. L. Coppola ESERCITAZIONI Coffetti Denny PhD Candidate Dipartimento di Ingegneria e Scienze Applicate Università degli Studi di Bergamo ESERCIZIO 1 IL COLLAUDO DI UNA BARRA

Dettagli

Sforzo e Deformazione nei Metalli

Sforzo e Deformazione nei Metalli Sforzo e Deformazione nei Metalli I metalli vanno incontro a deformazione sotto l azione di una forza assiale a trazione Deformazione elastica: il metallo ritorna alla sua dimensione iniziale quando la

Dettagli

Università degli Studi di Cagliari - Facoltà di Ingegneria e Architettura. Fondamenti di Costruzioni Meccaniche Tensione e deformazione Carico assiale

Università degli Studi di Cagliari - Facoltà di Ingegneria e Architettura. Fondamenti di Costruzioni Meccaniche Tensione e deformazione Carico assiale Esercizio N.1 Un asta di acciaio è lunga 2.2 m e non può allungarsi più di 1.2 mm quando le si applica un carico di 8.5 kn. Sapendo che E = 200 GPa, determinare: (a) il più piccolo diametro dell asta che

Dettagli

PROPRIETÀ MECCANICHE DEI MATERIALI

PROPRIETÀ MECCANICHE DEI MATERIALI PROPRIETÀ MECCANICHE DEI MATERIALI Il comportamento meccanico di un materiale rappresenta la risposta ad una forza o ad un carico applicato 1. Comportamento elastico 2. Comportamento plastico 3. Comportamento

Dettagli

Università del Salento Facoltà di Ingegneria Costruzione di Macchine

Università del Salento Facoltà di Ingegneria Costruzione di Macchine Università del Salento Facoltà di Ingegneria Costruzione di Macchine Lezione 3 Prova di trazione a cura del prof. ing. Vito Dattoma e dell ing. Riccardo Nobile 1 Prove di caratterizzazione meccanica Prova

Dettagli

ESERCITAZIONE 1 ESTENSIMETRIA

ESERCITAZIONE 1 ESTENSIMETRIA UNIVERSITA DEGLI STUDI DI CAGLIARI FACOLTA DI INGEGNERIA E ARCHITETTURA DIPARTIMENTO DI MECCANICA, CHIMICA E MATERIALI CORSO DI LAUREA IN INGEGNERIA MECCANICA ESERCITAZIONE 1 ESTENSIMETRIA Relazione del

Dettagli

3) DIMENSIONAMENTO DI UNA SEZIONE INFLESSA

3) DIMENSIONAMENTO DI UNA SEZIONE INFLESSA 3) DIMENSIONAMENTO DI UNA SEZIONE INFLESSA Quanto segue ci consente di dimensionare l altezza di una trave inflessa con un criterio di imporre che la tensione massima agente sulla sezione della trave sia

Dettagli

Esercitazione 11: Stato di tensione nella sezione di trave

Esercitazione 11: Stato di tensione nella sezione di trave Meccanica e Tecnica delle Costruzioni Meccaniche Esercitazioni del corso. Periodo I Prof. Leonardo BERTINI Ing. Ciro SNTUS Esercitazione 11: Stato di tensione nella sezione di trave Indice 1 Forza normale

Dettagli

Unità 2 Diagrammi di stato e proprietà dei materiali UNITA 2 DIAGRAMMI DI STATO E PROPRIETA DEI MATERIALI

Unità 2 Diagrammi di stato e proprietà dei materiali UNITA 2 DIAGRAMMI DI STATO E PROPRIETA DEI MATERIALI Esercizio.1 UNITA DIAGRAMMI DI STATO E PROPRIETA DEI MATERIALI Tracciare un diagramma di stato binario in cui sia presente un composto intermedio A x B y a fusione congruente e un composto intermedio A

Dettagli

La resistenza dei materiali può essere misurata facendo ricorso a prove normalizzate.

La resistenza dei materiali può essere misurata facendo ricorso a prove normalizzate. La resistenza dei materiali può essere misurata facendo ricorso a prove normalizzate. Segui attentamente il video relativo ad una prova normalizzata di trazione LA PROVA DI TRAZIONE Molte sono le prove

Dettagli

EQUAZIONE DELLA LINEA ELASTICA

EQUAZIONE DELLA LINEA ELASTICA ESERCIZI SVOLTI O CON TRACCIA DI SOLUZIONE SU EQUAZIONE DELLA LINEA ELASTICA v 0.9 Calcolare lo spostamento verticale del pattino A della struttura utilizzando l equazione della linea elastica. Materiale:

Dettagli

ESERCIZIO SOLUZIONE. 13 Aprile 2011

ESERCIZIO SOLUZIONE. 13 Aprile 2011 ESERCIZIO Un corpo di massa m è lasciato cadere da un altezza h sull estremo libero di una molla di costante elastica in modo da provocarne la compressione. Determinare: ) la velocità del corpo all impatto

Dettagli

Proprietà meccaniche. Proprietà dei materiali

Proprietà meccaniche. Proprietà dei materiali Proprietà meccaniche Proprietà dei materiali Proprietà meccaniche Tutti i materiali sono soggetti a sollecitazioni (forze) di varia natura che ne determinano deformazioni macroscopiche. Spesso le proprietà

Dettagli

Facoltà di Farmacia - Anno Accademico A 18 febbraio 2010 primo esonero

Facoltà di Farmacia - Anno Accademico A 18 febbraio 2010 primo esonero Facoltà di Farmacia - Anno Accademico 2009-2010 A 18 febbraio 2010 primo esonero Corso di Laurea: Laurea Specialistica in FARMACIA Nome: Cognome: Matricola Aula: Canale: Docente: Riportare sul presente

Dettagli

Esercizi. Diagrammi delle forze (di corpo singolo) per sistemi in equilibrio

Esercizi. Diagrammi delle forze (di corpo singolo) per sistemi in equilibrio Esercizi Diagrammi delle forze (di corpo singolo) per sistemi in equilibrio Per ciascun esercizio disegnare su ciascun corpo del sistema il diagramma delle forze, individuando e nominando ciascuna forza.

Dettagli

Esercizi. Diagrammi delle forze (di corpo singolo) per sistemi in equilibrio

Esercizi. Diagrammi delle forze (di corpo singolo) per sistemi in equilibrio Esercizi Diagrammi delle forze (di corpo singolo) per sistemi in equilibrio Per ciascun esercizio disegnare su ciascun corpo del sistema il diagramma delle forze, individuando e nominando ciascuna forza.

Dettagli

Tecnologia dei Materiali e Chimica Applicata Soluzione Esercitazione IV Prof. Dott. Bernhard Elsener

Tecnologia dei Materiali e Chimica Applicata Soluzione Esercitazione IV Prof. Dott. Bernhard Elsener Tecnologia dei Materiali e Chimica Applicata Soluzione Esercitazione IV ESERCIZIO 4.1 E dato il diagramma di stato del sistema Pb-Sn (figura 1). Figura 1 Diagramma di stato Pb-Sn 1. Determinare le fasi

Dettagli

a.a. 2005/2006 Laurea Specialistica in Fisica Corso di Fisica Medica 1 Proprietà elastiche 28/2/2006

a.a. 2005/2006 Laurea Specialistica in Fisica Corso di Fisica Medica 1 Proprietà elastiche 28/2/2006 a.a. 2005/2006 Laurea Specialistica in Fisica Corso di Fisica Medica 1 Proprietà elastiche 28/2/2006 Deformazione dei materiali Un asta di acciaio posta su due appoggi si flette sotto l azione del suo

Dettagli

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 30 gennaio 2012

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 30 gennaio 2012 CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 30 gennaio 2012 1) Un corpo di massa m = 1 kg e velocità iniziale v = 5 m/s si muove su un piano orizzontale scabro, con coefficiente di attrito

Dettagli

Pressoflessione. Introduzione

Pressoflessione. Introduzione Pressoflessione verifica allo stato limite ultimo Introduzione Sperimentalmente, si osserva che il comportamento di una sezione in C.A. con armatura semplice, soggetta a sollecitazione di pressoflessione

Dettagli

LEZIONE N 46 LA TORSIONE ALLO S.L.U.

LEZIONE N 46 LA TORSIONE ALLO S.L.U. LEZIONE N 46 LA ORSIONE ALLO S.L.U. Supponiamo di sottoporre a prova di carico una trave di cemento armato avente sezione rettangolare b x H soggetta a momento torcente uniforme. All interno di ogni sua

Dettagli

SLU PER TAGLIO 127. Si consideri una trave in c.a., isostatica, soggetta in mezzeria ad una forza F = 20 tonn.

SLU PER TAGLIO 127. Si consideri una trave in c.a., isostatica, soggetta in mezzeria ad una forza F = 20 tonn. SLU PER TAGLIO 127 Esempio n. 33 - Verifica a taglio e flessione, allo stato limite ultimo e confronto con i risultati prodotti dall uso del metodo delle tensioni ammissibili SVOLGIMENTO Si consideri una

Dettagli

a) determinare le fasi presenti, la loro quantità (percentuale) e la loro composizione in una lega Pb30% - Sn a 300, 200 e 184, 180 e 20 C.

a) determinare le fasi presenti, la loro quantità (percentuale) e la loro composizione in una lega Pb30% - Sn a 300, 200 e 184, 180 e 20 C. ESERCIZIO 1 E dato il diagramma di stato del sistema Pb-Sn (figura). a) determinare le fasi presenti, la loro quantità (percentuale) e la loro composizione in una lega Pb30% - Sn a 300, 200 e 184, 180

Dettagli

Tecnologia dei Materiali e Chimica Applicata Soluzione Esercitazione IV Prof. Dott. Bernhard Elsener

Tecnologia dei Materiali e Chimica Applicata Soluzione Esercitazione IV Prof. Dott. Bernhard Elsener Tecnologia dei Materiali e Chimica Applicata Soluzione Esercitazione IV ESERCIZIO 4.1 E dato il diagramma di stato del sistema Pb-Sn (figura 1). Figura 1 Diagramma di stato Pb-Sn 1. Determinare le fasi

Dettagli

TECNOLOGIA DEI MATERIALI E CHIMICA APPLICATA- Appello scritto

TECNOLOGIA DEI MATERIALI E CHIMICA APPLICATA- Appello scritto TCNOOGI DI MTRII CHIMIC PPICT- ppello scritto 0-6-05 sercizio.. Si abbia un materiale su cui agisce lo sforzo 00 MPa: calcolare lo sforzo di taglio risolto sul piano inclinato a 45 e la deformazione di

Dettagli

Lezione n Forze elastiche

Lezione n Forze elastiche Corso di Fisica Lezione n Forze elastiche Corso di Fisica 1 Deformazione di un corpo Nel definire le forze abbiamo detto che La forza èl ente fisico che deforma i corpi Pertanto quando applichiamo una

Dettagli

196 L Fs cos cos J 0,98. cos30 135,8 F F// F , N. mv mv

196 L Fs cos cos J 0,98. cos30 135,8 F F// F , N. mv mv Problemi sul lavoro Problema Un corpo di massa 50 kg viene trascinato a velocità costante per 0 m lungo un piano orizzontale da una forza inclinata di 45 rispetto all orizzontale, come in figura. Sapendo

Dettagli

Esempio n Progetto e verifica della seguente trave a torsione, taglio e flessione, allo stato limite ultimo

Esempio n Progetto e verifica della seguente trave a torsione, taglio e flessione, allo stato limite ultimo SLU PER TORSIONE SEMPLICE O COMPOSTA 151 Esempio n. 38 - Progetto e verifica della seguente trave a torsione taglio e flessione allo stato limite ultimo SVOLGIMENTO Si consideri una trave in c.a. dallo

Dettagli

ESERCIZIO 1 (Punti 9)

ESERCIZIO 1 (Punti 9) UNIVERSITA DI PISA - ANNO ACCADEMICO 007-8 CORSO DI LAUREA IN ING. ELETTRICA (N.O.) CORSO DI MECCANICA E TECNICA DELLE COSTRUZIONI MECCANICHE VERIFICA INTERMEDIA DEL 15-06-009 ESERCIZIO 1 (Punti 9) Data

Dettagli

Fisica Generale per Ing. Gestionale e Civile (Prof. F. Forti) A.A. 2010/2011 Prova in itinere del 4/3/2011.

Fisica Generale per Ing. Gestionale e Civile (Prof. F. Forti) A.A. 2010/2011 Prova in itinere del 4/3/2011. Cognome Nome Numero di matricola Fisica Generale per Ing. Gestionale e Civile (Prof. F. Forti) A.A. 00/0 Prova in itinere del 4/3/0. Tempo a disposizione: h30 Modalità di risposta: scrivere la formula

Dettagli

DINAMICA 2. Quantità di moto e urti Attrito tra solidi Attrito viscoso Forza elastica Proprietà meccaniche dei solidi Forza centripeta

DINAMICA 2. Quantità di moto e urti Attrito tra solidi Attrito viscoso Forza elastica Proprietà meccaniche dei solidi Forza centripeta DINAMICA 2 Quantità di moto e urti Attrito tra solidi Attrito viscoso orza elastica Proprietà meccaniche dei solidi orza centripeta 2 Seconda Legge di Newton: quantità di moto Dalla seconda Legge di Newton

Dettagli

Soluzioni della prova scritta Fisica Generale 1

Soluzioni della prova scritta Fisica Generale 1 Corso di Laurea in Ingegneria Biomedica, dell Informazione, Elettronica e Informatica Canale 2 (S. Amerio, L. Martucci) Padova, 26 giugno 20 Soluzioni della prova scritta Fisica Generale Problema Una palla

Dettagli

Università degli studi di Palermo Corso di Laurea in Ingegneria Informatica Docente: Prof.ssa D. Persano Adorno

Università degli studi di Palermo Corso di Laurea in Ingegneria Informatica Docente: Prof.ssa D. Persano Adorno Esame di Fisica Generale (per laureandi) 19 giugno 2006 Problema 1: Un blocco di massa m 1 =2 kg ed un blocco di massa m 2 =6 kg sono collegati da una fune leggera tramite una puleggia a forma di disco

Dettagli

Esercitazione 2. Soluzione

Esercitazione 2. Soluzione Esercitazione 2 Esercizio 1 - Resistenza dell aria Un blocchetto di massa m = 0.01 Kg (10 grammi) viene appoggiato delicatamente con velocità iniziale zero su un piano inclinato rispetto all orizziontale

Dettagli

Verifica allo SLU di sezioni inflesse in cap

Verifica allo SLU di sezioni inflesse in cap Università degli Studi di Roma Tre - Facoltà di Ingegneria Laurea magistrale in Ingegneria Civile in Protezione Corso di Cemento Armato Precompresso A/A 2016-17 Verifica allo SLU di sezioni inflesse in

Dettagli

Prova scritta A classe A033 - Tecnologia - 26/11/2014

Prova scritta A classe A033 - Tecnologia - 26/11/2014 Prova scritta classe 033 - Tecnologia - 26/11/2014 Il candidato barri esattamente tre caselle fra quelle sottostanti, corrispondenti ai numeri degli esercizi affrontati. 1 2 3 4 5 6 7 1. Descrivere come

Dettagli

Caratteristiche di materiali

Caratteristiche di materiali Caratteristiche di materiali Caratteristiche macroscopiche Lavorazione Microstruttura Formula chimica Legami chimici Struttura atomica Meccaniche Materiale Fisiche Elettriche Megnetiche Termiche Meccaniche

Dettagli

ALLEGATO CORPO PRINCIPALE

ALLEGATO CORPO PRINCIPALE Committente : Provincia Regionale di Ragusa Località : Porto di Pozzallo (RG) Opera : Realizzazione della stazione passeggeri nel porto di Pozzallo ALLEGATO CORPO PRINCIPALE 1. VERIFICHE DEI NODI TRAVE

Dettagli

Errata Corrige. Quesiti di Fisica Generale

Errata Corrige. Quesiti di Fisica Generale 1 Errata Corrige a cura di Giovanni Romanelli Quesiti di Fisica Generale per i C.d.S. delle Facoltà di Scienze di Prof. Carla Andreani Dr. Giulia Festa Dr. Andrea Lapi Dr. Roberto Senesi 2 Copyright@2010

Dettagli

CENTRO DI TAGLIO E TORSIONE SPURIA IN TRAVI A PARETE SOTTILE ESERCIZIO 1

CENTRO DI TAGLIO E TORSIONE SPURIA IN TRAVI A PARETE SOTTILE ESERCIZIO 1 CENTR DI TAGLI E TRSINE SPURIA IN TRAVI A PARETE STTILE ESERCIZI 1 La sezione di figura, sietrica rispetto ad un asse orizzontale passante per, è soggetta all azione di taglio T agente in direzione verticale

Dettagli

Esame 28 Giugno 2017

Esame 28 Giugno 2017 Esame 28 Giugno 2017 Roberto Bonciani e Paolo Dore Corso di Fisica Generale 1 Dipartimento di atematica Università degli Studi di Roma La Sapienza Anno Accademico 2016-2017 Esame - Fisica Generale I 28

Dettagli

Pilastri con avvolgimento a spirale

Pilastri con avvolgimento a spirale metodo alle tensioni ammissibili Unità Sforzo normale di compressione semplice Pilastri con avvolgimento a spirale Calcolo di progetto L area ideale resistente A i,c del pilastro con avvolgimento a spirale

Dettagli

Resistenza dei materiali

Resistenza dei materiali Scheda riassuntiva capitoli 8-1 Resistenza dei materiali a resistenza dei materiali mette in relazione tra loro i seguenti elementi: Trazione/ Carichi compressione Taglio Flessione Torsione Deformazioni

Dettagli

Università dell Aquila - Ingegneria Prova Scritta di Fisica Generale I - 03/07/2015 Nome Cognome N. Matricola CFU

Università dell Aquila - Ingegneria Prova Scritta di Fisica Generale I - 03/07/2015 Nome Cognome N. Matricola CFU Università dell Aquila - Ingegneria Prova Scritta di Fisica Generale I - 03/07/2015 Nome Cognome N. Matricola CFU............ Tempo a disposizione (tre esercizi) 2 ore e 30 1 esercizio (esonero) 1 ora

Dettagli

ESERCITAZIONE STAMPAGGIO. Tecnologia Meccanica 1

ESERCITAZIONE STAMPAGGIO. Tecnologia Meccanica 1 ESERCITAZIONE STAMPAGGIO Tecnologia Meccanica 1 Vi è chiesto di studiare la realizzazione del componente descritto nel disegno (allegato 1), ottenuto mediante stampaggio a caldo nelle seguenti fasi: preformatura

Dettagli

Esame di Fisica con Laboratorio Corso di Laurea in Scienze dell Architettura Università degli Studi di Udine 29 gennaio 2010 Mario Paolo Giordani

Esame di Fisica con Laboratorio Corso di Laurea in Scienze dell Architettura Università degli Studi di Udine 29 gennaio 2010 Mario Paolo Giordani Esame di Fisica con Laboratorio Corso di Laurea in Scienze dell Architettura Università degli Studi di Udine 29 gennaio 2010 Mario Paolo Giordani Soluzioni Teoria Enunciare sinteticamente chiarendo il

Dettagli

Sollecitazioni delle strutture

Sollecitazioni delle strutture Sollecitazioni delle strutture I pilastri e i muri portanti sono tipicamente sollecitati a compressione Le travi e i solai sono sollecitati a flessione L indeformabilità di questi elementi costruttivi

Dettagli

La slitta trainata con due corde somma di forze perpendicolari

La slitta trainata con due corde somma di forze perpendicolari La slitta trainata con due corde somma di forze perpendicolari Due persone trainano una slitta con due corde, camminando ad una certa distanza tra loro; le corde si dispongono a formare tra loro un angolo

Dettagli

Prova scritta di Tecnica delle Costruzioni, Prof. Fausto Mistretta 27/01/2011 ore 15:00 aula alfa.

Prova scritta di Tecnica delle Costruzioni, Prof. Fausto Mistretta 27/01/2011 ore 15:00 aula alfa. Cognome e Nome: Matricola: Quesito 1 (14 punti) Università degli Studi di Cagliari Prova scritta di Tecnica delle Costruzioni, Prof. Fausto Mistretta 27/01/2011 ore 15:00 aula alfa. Data la struttura in

Dettagli

Calibrazione di una molla come sensore di forze

Calibrazione di una molla come sensore di forze Calibrazione di una molla come sensore di forze Materiale occorrente: un supporto metallico, una molla, un cestello, bulloni di uguale massa, una bilancia, una riga millimetrata, carta millimetrata. Esecuzione

Dettagli

- Punto 3: Progetto e verifica delle sezioni armate della trave e delle colonne costituenti il telaio principale.

- Punto 3: Progetto e verifica delle sezioni armate della trave e delle colonne costituenti il telaio principale. ESERCITAZIONE DI PROGETTO DI STRUTTURE - Anno Accademico 013/014 Redattore Dott. Ing. Simone Caffè OGGETTO - Punto 1 Analisi dei carichi di una copertura in calcestruzzo armato adibita a parcheggio sopraelevato.

Dettagli

PROVA DI RECUPERO 11/09/2001

PROVA DI RECUPERO 11/09/2001 Esercizio n Cemento Armato PROVA DI RECUPERO 11/09/001 Si consideri il portale in cemento armato indicato in figura costituito da una trave di base b t 30 cm e altezza h t 60 cm, e da due pilastri identici

Dettagli

Corso ghiaccio. La catena di assicurazione

Corso ghiaccio. La catena di assicurazione Corso ghiaccio La catena di assicurazione 07/09/2004 OBIETTIVI : Presentare la problematica Definire le caratteristiche degli elementi in gioco Definire gli strumenti di base Acquisire uno schema comportamentale

Dettagli

Grandezze angolari. Lineare Angolare Relazione x θ x = rθ. m I I = mr 2 F N N = rf sin θ 1 2 mv2 1

Grandezze angolari. Lineare Angolare Relazione x θ x = rθ. m I I = mr 2 F N N = rf sin θ 1 2 mv2 1 Grandezze angolari Lineare Angolare Relazione x θ x = rθ v ω v = ωr a α a = αr m I I = mr 2 F N N = rf sin θ 1 2 mv2 1 2 Iω 2 Energia cinetica In forma vettoriale: v = ω r questa collega la velocità angolare

Dettagli

PROVA SCRITTA DI TECNICA DELLE COSTRUZIONI DEL 05/12/2011 Esercizio n 1

PROVA SCRITTA DI TECNICA DELLE COSTRUZIONI DEL 05/12/2011 Esercizio n 1 PROVA SCRITTA DI TECNICA DELLE COSTRUZIONI DEL 05/1/011 Esercizio n 1 Sia data una sezione di c.a. avente dimensioni 40 x 60 cm. I materiali impiegati sono: a) calcestruzzo Rck=0 N/, b) acciaio tipo B450C.

Dettagli

Problema (tratto dal 7.42 del Mazzoldi 2)

Problema (tratto dal 7.42 del Mazzoldi 2) Problema (tratto dal 7.4 del azzoldi Un disco di massa m D e raggio R ruota attorno all asse verticale passante per il centro con velocità angolare costante ω. ll istante t 0 viene delicatamente appoggiata

Dettagli

SOMMARIO. 1. VERIFICA DEL PARAPETTO (parodos occidentale) - DESCRIZIONE DELL OPERA - NORMATIVA DI RIFERIMENTO - MATERIALI ADOTTATI

SOMMARIO. 1. VERIFICA DEL PARAPETTO (parodos occidentale) - DESCRIZIONE DELL OPERA - NORMATIVA DI RIFERIMENTO - MATERIALI ADOTTATI SOMMARIO 1. VERIFICA DEL PARAPETTO (parodos occidentale) - DESCRIZIONE DELL OPERA - NORMATIVA DI RIFERIMENTO - MATERIALI ADOTTATI 1.1 DIMENSIONAMENTO E VERIFICA DEGLI ELEMENTI STRUTTURALI - montante 1.1.1

Dettagli

Esercizio 1 L/3. mg CM Mg. La sommatoria delle forze e dei momenti deve essere uguale a 0 M A. ω è il verso di rotazione con cui studio il sistema

Esercizio 1 L/3. mg CM Mg. La sommatoria delle forze e dei momenti deve essere uguale a 0 M A. ω è il verso di rotazione con cui studio il sistema Esercizio 1 Una trave omogenea di lunghezza L e di massa M è appoggiata in posizione orizzontale su due fulcri lisci posti alle sue estremità. Una massa m è appoggiata sulla trave ad una distanza L/3 da

Dettagli

Fisica Generale I (primo modulo) A.A , 9 febbraio 2009

Fisica Generale I (primo modulo) A.A , 9 febbraio 2009 Fisica Generale I (primo modulo) A.A. 2008-09, 9 febbraio 2009 Esercizio 1. Due corpi di massa M 1 = 10kg e M 2 = 5Kg sono collegati da un filo ideale passante per due carrucole prive di massa, come in

Dettagli

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Secondo Compitino di FISICA 15 giugno 2012

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Secondo Compitino di FISICA 15 giugno 2012 CORSO DI LAUREA IN SCIENZE BIOLOGICHE Secondo Compitino di FISICA 15 giugno 01 1) FLUIDI: Un blocchetto di legno (densità 0,75 g/ cm 3 ) di dimensioni esterne (10x0x5)cm 3 è trattenuto mediante una fune

Dettagli

Calcolo della deformazione a rottura di un tirante metallico

Calcolo della deformazione a rottura di un tirante metallico MICHELE VINCI Calcolo della deformazione a rottura di un tirante metallico Collana Calcolo di edifici in muratura (www.edificiinmuratura.it) Articolo 1 Marzo 014 Bibliografia: Michele Vinci Metodi di calcolo

Dettagli

Peso Proprio impalcato 20t/m Carico max sugli appoggi 50* t Carico accidentale max 50*6 300t SECTION B-B

Peso Proprio impalcato 20t/m Carico max sugli appoggi 50* t Carico accidentale max 50*6 300t SECTION B-B 8. 75 1 75 8 75 5. 15 7.5 Prof. Camillo Nuti Dispense Corso Costruzioni in Zona Sismica PONTE A 1 CAMPATA Pile circolari φ altezze 7.5 Peso Proprio impalcato t/m Carico max sugli appoggi 5* 1t Carico accidentale

Dettagli

Progettazione di strutture in c.a. Armature minime di travi e pilastri

Progettazione di strutture in c.a. Armature minime di travi e pilastri Progettazione di strutture in c.a. Armature minime di travi e pilastri Travi 4.1.6.1.1 Armatura delle travi armatura minima A s,req > A s,min = 0,26 b t d f ctm / f yk > 0,0013 b t d Negli appoggi di estremità

Dettagli

Fisica Generale I (primo e secondo modulo) A.A , 15 luglio 2009

Fisica Generale I (primo e secondo modulo) A.A , 15 luglio 2009 Fisica Generale I (primo e secondo modulo) A.A. 2008-09, 15 luglio 2009 Esercizi di meccanica relativi al primo modulo del corso di Fisica Generale I, anche equivalente ai corsi di Fisica Generale 1 e

Dettagli

COMPORTAMENTO PLASTICO DEI MATERIALI METALLICI

COMPORTAMENTO PLASTICO DEI MATERIALI METALLICI COMPORTMENTO PLSTICO DEI MTERILI METLLICI 1 1. Prove sperimentali per la caratterizzazione del comportamento plastico dei materiali metallici 2. Modelli reologici 3. Effetto Bauschinger 4. Condizioni di

Dettagli

IIS Moro Dipartimento di matematica e fisica

IIS Moro Dipartimento di matematica e fisica IIS Moro Dipartimento di matematica e fisica Obiettivi minimi per le classi seconde - Fisica CONTENUTI SECONDO ANNO MODULO LE FORZE E IL MOTO Conoscenze Significato e unità di misura della velocità Legge

Dettagli

NYLON-CARBON DUREZZA & TRAZIONE

NYLON-CARBON DUREZZA & TRAZIONE NYLON-CARBON DUREZZA & TRAZIONE D R. F L A V I A N A C A L I G N A NO D R. M A S S I M O L O R U S S O D R. I G N A Z I O R O P P O L O N Y LO N - C A R BON PROVE DI DUREZZA E DI TRAZIONE INTRODUZIONE

Dettagli

Macchina a regime periodico

Macchina a regime periodico Macchina a regime periodico rev. 1.2 J m J v τ, η t r φ motore l m F x, ẋ, ẍ (P.M.E.) p m p a Figura 1: Schema dell impianto di pompaggio Della pompa volumetrica a stantuffo a singolo effetto rappresentata

Dettagli

RELAZIONE ESERCITAZIONI AUTODESK INVENTOR

RELAZIONE ESERCITAZIONI AUTODESK INVENTOR 20 Ottobre 2015 RELAZIONE ESERCITAZIONI AUTODESK INVENTOR Corso di Costruzione di Macchine e Affidabilità C.d.L.M. in Ingegneria Meccanica Docente: Prof.ssa Cosmi Francesca Assistente: Dott.ssa Ravalico

Dettagli

Esercizio (tratto dal problema 7.36 del Mazzoldi 2)

Esercizio (tratto dal problema 7.36 del Mazzoldi 2) Esercizio (tratto dal problema 7.36 del Mazzoldi 2) Un disco di massa m D = 2.4 Kg e raggio R = 6 cm ruota attorno all asse verticale passante per il centro con velocità angolare costante ω = 0 s. ll istante

Dettagli

Statica ed equilibrio dei corpi

Statica ed equilibrio dei corpi Statica ed equilibrio dei corpi Avendo stabilito le leggi che regolano il moto dei corpi è possibile dedurre le leggi che regolano il loro equilibrio in condizioni statiche, cioè in assenza di movimento.

Dettagli

SIGMAc SOFT - programmi di calcolo strutturale PROCEDURA FINDLIM TEST CASES

SIGMAc SOFT - programmi di calcolo strutturale PROCEDURA FINDLIM TEST CASES TC FINDLIM test cases 1 SIGMAc SOFT - programmi di calcolo strutturale PROCEDURA FINDLIM TEST CASES La procedura FindLim calcola i momenti flettenti ultimi di una sezione in c.a. composta da una sezione

Dettagli

Conservazione dell energia

Conservazione dell energia mercoledì 15 gennaio 2014 Conservazione dell energia Problema 1. Un corpo inizialmente fermo, scivola su un piano lungo 300 m ed inclinato di 30 rispetto all orizzontale, e, dopo aver raggiunto la base,

Dettagli

Esercizi sulle vibrazioni

Esercizi sulle vibrazioni Esercizi sulle vibrazioni 1. Frequenza propria di una boa Una boa cilindrica avente sezione circolare di area A e massa totale m viene spostata dalla configurazione di equilibrio e lasciata libera di oscillare

Dettagli

Indice I vettori Geometria delle masse

Indice I vettori Geometria delle masse Indice 1 I vettori 1 1.1 Vettori: definizioni................................ 1 1.2 Componenti scalare e vettoriale di un vettore secondo una retta orientata. 2 1.3 Operazioni di somma, differenza tra

Dettagli

Collegamenti filettati

Collegamenti filettati Collegamenti filettati Carmine Napoli Si possono dividere i collegamenti filettati in due tipologie: 1. di serraggio (collegamento forzato tra due elementi) 2. viti di manovra ( tornio movimento torretta)

Dettagli

Esercizio Soluzione: Esercizio Soluzione: Esercizio Soluzione: Esercizio

Esercizio Soluzione: Esercizio Soluzione: Esercizio Soluzione: Esercizio Un ragazzo di massa 50 kg si lascia scendere da una pertica alta 12 m e arriva a terra con una velocità di 6 m/s. Supponendo che la velocità iniziale sia nulla: 1. si calcoli di quanto variano l energia

Dettagli

2 m 2u 2 2 u 2 = x = m/s L urto è elastico dunque si conserva sia la quantità di moto che l energia. Possiamo dunque scrivere: u 2

2 m 2u 2 2 u 2 = x = m/s L urto è elastico dunque si conserva sia la quantità di moto che l energia. Possiamo dunque scrivere: u 2 1 Problema 1 Un blocchetto di massa m 1 = 5 kg si muove su un piano orizzontale privo di attrito ed urta elasticamente un blocchetto di massa m 2 = 2 kg, inizialmente fermo. Dopo l urto, il blocchetto

Dettagli

Esercizio 1 Meccanica del Punto

Esercizio 1 Meccanica del Punto Esercizio 1 Meccanica del Punto Una molla di costante elastica k e lunghezza a riposo L 0 è appesa al soffitto di una stanza di altezza H. All altra estremità della molla è attaccata una pallina di massa

Dettagli

Soluzioni della prova scritta di Fisica Generale

Soluzioni della prova scritta di Fisica Generale Scienze e Tecnologie dell Ambiente Soluzioni della prova scritta di Fisica Generale 1 Febbraio 2011 Parte 1 Esercizio 1 Un punto parte dall origine dell asse x con velocità v 0 positiva. Il punto viaggia

Dettagli

SOLUZIONE ESERCIZIO 1.1

SOLUZIONE ESERCIZIO 1.1 SOLUZIONE ESERCIZIO 1.1 La temperatura di fusione ed il coefficiente di espansione termica di alcuni metalli sono riportati nella tabella e nel diagramma sottostante: Metallo Temperatura di fusione [ C]

Dettagli

Compito di prova - risolti

Compito di prova - risolti Compito di prova - risolti A P B q A q P q B 1. La carica positiva mobile q P si trova tra le cariche positive fisse q A, q B dove AB = 1 m. Se q A = 2 C e all equilibrio AP = 0.333 m, la carica q B vale

Dettagli

1 Equilibrio statico nei corpi deformabili

1 Equilibrio statico nei corpi deformabili Equilibrio statico nei corpi deformabili Poiché i materiali reali non possono considerarsi rigidi, dobbiamo immaginare che le forze esterne creino altre forze interne che tendono ad allungare (comprimere)

Dettagli

sfera omogenea di massa M e raggio R il momento d inerzia rispetto ad un asse passante per il suo centro di massa vale I = 2 5 MR2 ).

sfera omogenea di massa M e raggio R il momento d inerzia rispetto ad un asse passante per il suo centro di massa vale I = 2 5 MR2 ). ESERCIZI 1) Un razzo viene lanciato verticalmente dalla Terra e sale con accelerazione a = 20 m/s 2. Dopo 100 s il combustibile si esaurisce e il razzo continua a salire fino ad un altezza massima h. a)

Dettagli

Esercitazione n 3. 2) Con riferimento alla giunzione tra i profili IPE 200 e HE 200 A dimensionare i bulloni per i carichi applicati come in figura.

Esercitazione n 3. 2) Con riferimento alla giunzione tra i profili IPE 200 e HE 200 A dimensionare i bulloni per i carichi applicati come in figura. Collegamento a bulloni Esercitazione n 3 ) Un contenitore C, caricato nel punto della trave orizzontale H dalla massa M, trasporta tale massa al punto, per poi ritornare scarico al punto di partenza. Si

Dettagli

Si valuti lo stato di tensione e la deformazione plastica permanente agli istanti A, B, C e D, assumendo valido il modello elasto-plastico perfetto.

Si valuti lo stato di tensione e la deformazione plastica permanente agli istanti A, B, C e D, assumendo valido il modello elasto-plastico perfetto. Esercizio n.: 1 4-18 Una barra in (σ S = 180 MPa, E = 70 GPa, α = 24 10-6 C -1 ), bloccata alle estremità, subisce il seguente ciclo termico: T 325 175 25 A Si valuti lo stato di tensione e la deformazione

Dettagli

Don Bosco 2014/15, Classe 3B - Primo compito in classe di Fisica

Don Bosco 2014/15, Classe 3B - Primo compito in classe di Fisica Don Bosco 014/15, Classe B - Primo compito in classe di Fisica 1. Enuncia il Teorema dell Energia Cinetica. Soluzione. Il lavoro della risultante delle forze agenti su un corpo che si sposta lungo una

Dettagli

Corso di Laurea Ingegneria Meccanica Costruzione di Macchine 2. Dimensionamento di una sospensione

Corso di Laurea Ingegneria Meccanica Costruzione di Macchine 2. Dimensionamento di una sospensione Corso di Laurea Ingegneria Meccanica Dimensionamento di una sospensione Un esempio storico Ford Model T Altri esempi 3 Sospensione a quadrilatero basso MacPherson Sospensione a quadrilatero alto Molle:

Dettagli

E data la sezione inflessa di c.a. di dimensioni B=30 cm, H=60 cm, con semplice armatura (As=25 cm 2 ).

E data la sezione inflessa di c.a. di dimensioni B=30 cm, H=60 cm, con semplice armatura (As=25 cm 2 ). PROVA SCRITTA DI TECNICA DELLE COSTRUZIONI DEL 9/0/007 Esercizio n 1 Sia data una colonna di acciaio HEA 40 alla quale è collegata, con un vincolo a cerniera, una trave IPE 400. Il collegamento bullonato

Dettagli

UNIVERSITA DEGLI STUDI DI GENOVA SCUOLA POLITECNICA FISICA GENERALE I

UNIVERSITA DEGLI STUDI DI GENOVA SCUOLA POLITECNICA FISICA GENERALE I FISICA GENERALE I - Sede di Spezia Prova A del 15/02/2016 ME 1 Un pezzetto di plastilina di massa m=100 g cade partendo da fermo da un altezza h= 5.0 m su una lastrina orizzontale di massa M=120 g attaccata

Dettagli

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 25 Settembre 2014

CORSO DI LAUREA IN SCIENZE BIOLOGICHE Prova scritta di FISICA 25 Settembre 2014 OSO DI LAUEA IN SIENZE BIOLOGIHE Prova scritta di FISIA 5 Settembre 4 ) Un corpo puntiforme di massa m5 g appoggia nel punto A su un piano inclinato di 3 ed è trattenuto mediante una fune di tensione T,

Dettagli

Test Esame di Fisica

Test Esame di Fisica Test Esame di Fisica NOTA: per le domande a risposta multipla ogni risposta corretta viene valutata con un punto mentre una errata con -0.5 punti. 1) Una sola delle seguenti uguaglianze non e corretta?

Dettagli

m = 53, g L = 1,4 m r = 25 cm

m = 53, g L = 1,4 m r = 25 cm Un pendolo conico è formato da un sassolino di 53 g attaccato ad un filo lungo 1,4 m. Il sassolino gira lungo una circonferenza di raggio uguale 25 cm. Qual è: (a) la velocità del sassolino; (b) la sua

Dettagli