Studio del comportamento. Esercitazione 02

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Studio del comportamento. Esercitazione 02"

Transcript

1 DINAMICA DELLE MACCHINE E DEGLI IMPIANTI ELETTRICI: Stuio el comportamento inamico i i un elettromagnete t Esercitazione

2 Moellizzazione i un sistema i inuttori Sistema i inuttori: i è un multiporta Legame flussi concatenati-correnti: L ii L è matrice inuttanze; costante solo nel caso LINEARE (fa a coefficiente i proporzionalità) E un sistema Conservativo perché NON è see i perite

3 Sistema i inuttori: sistema elettromeccanico Si consierano esterne le perite per effetto Joule meccaniche all albero lb Equazione elettrica el sistema: v R i L ii p Comoo usare i flussi come vs (vs: variabile i stato)

4 Sistema i inuttori: sistema elettromeccanico Fisicamente le forze nelle macchine elettriche traizionali sono i ue tipi: 1. Forze i Lorentz: I B. Forze sulle superfici i iscontinuità: m 1 1 Bn Bt 1 che se μ 1 = μ, μ = μ μ r e μ r >> 1 si scrive: m 1 B

5 Sistema i inuttori: sistema elettromeccanico Calcolo i forze e coppie Dfii Definite come erivate ell energia interna W(Φ, ) L energia interna W(Φ, ) è una funzione i stato (fs) Dipene alle sole variabili i stato el sistema. Φ -flussi concatenati cate coorinate geometriche

6 Convenzioni i segno Lavoro elettrico: positivo entrante e negativo uscente Lavoro meccanico: positivo uscente e negativo entrante (punto i vista ell utilizzatore esterno)

7 La variazione i energia è pari al lavoro entrante W W W W W, L elettrico Lmeccanico Si ricava l espressione ella forza in funzione ell energia L e i T v t i T W i T W const L m F W F W const

8 Consierazioni Occorre eterminare l espressione ella funzione i stato energia, in moo a esplicitare la relazione ientificativa ella forza Si ricora che, l energia, come tutte le funzioni si stato, è efinita it a meno i una costante t (che spesso per comoità si ritiene i valore nullo)

9 Variazione ell Energia el sistema: W W W i T F efinita a meno i una costante si sceglie W = W è una fs lavoro inipenente al cammino scelto Si sceglie un cammino comoo: OA flussi nulli e aumenta F m = L m = AB costante e i flussi crescono = L m =

10 Energia el sistema i inuttori: W W W B A B B A A A A A i i W T T B B i i W T T A A i W T

11 FORZA i W T L espressione ella forza in funzione ei flussi e elle correnti nella formulazione più generale è i W F T cost

12 CASO LINEARE Trascurano le non linearità: isteresi el materiale saturazione Si ricavano relazioni in forma chiusa poiché ora = () (inuttanza inversa) W F Legame flussi-correnti: i = () Φ T 1 T T 1 T 1 T L i i

13 Stuio el comportamento inamico i un elettromagnete v(t) i(t) N = As k -numero i spire: N= 1 -sezione: - lunghezza totale percorso in ferro: As = 1 cm b = 1 m -posizione iniziale ancora (i riposo): = 5 mm -costante elastica ella molla: k = 1 6 N/m -resistenza el conuttore ella bobina: R=5Ohm.5 - massa ell'ancora: M = 4 kg

14 Stuio el comportamento inamico i un elettromagnete Determinare, urante il transitorio: l'anamento i posizione e velocità ell'ancora, ell inuttanza e ella forza magnetica in funzione el tempo b) l'anamento ella corrente e el flusso in funzione el tempo confrontano i risultati ottenuti nei seguenti casi: 1) sollecitazione i tensione a graino i 5 V con comportamento el ferro lineare (μ r =8644) ) sollecitazione i tensione i tipo sinusoiale i valore efficace pari a 5 V e frequenza i 5 Hz con comportamento el ferro lineare (μ r =8644) Analizzare come varia il comportamento oscillatorio ell elettromagnete al variare ei parametri, elettrici e meccanici, el circuito.

15 Moellizzazione el magnete elettromeccanico Interazione tra il sistema meccanico e il sistema elettrico. 1 b A fe TOT Fe Traf, Inuttanza: Dipene a saturazione N L TOT Dipene linearmente alla posizione

16 Moellizzazione el magnete elettromeccanico Equazione elettrica el sistema: p v Ri i Equazione i equilibrio meccanico: t 1 1 M 1 è la velocità ella parte mobile, ma occorre conoscere anche la posizione 1 t F molla F elett

17 Forze in gioco: Sistema meccanico: Forza i richiamo ella molla: F molla k Sistema elettrico: Legame flusso-correnti: i, N Forza magnetica: F elett, N

18 Calcolo ella forza magnetica: 1, b A fe Riluttanza el circuito magnetico: f, F 1 b F N F 1 F A N F fe F A N F F A N F Le eventuali non linearità l il i A N F el materiale magnetico non forniscono contributi.

19 Equazione el sistema elettrico: Si ha una sola porta elettrica: v R i p Riscriveno l equazione in forma normale usano il flusso come variabile i stato (più semplice per trattare le non linearità el materiale ferromagnetico): p v R b N A fe Le non linearità el ferro influiscono sull equazione elettrica,,quini sulla corrente assorbita alla rete.

20 MODELLO ELETTROMECCANICO COMPLETO: p p v 1 R b N A fe 1 A p k 1 M N Anche trascurano le non linearità el ferro, il sistema è fortemente non lineare poiché si hanno prootti i vs.

21 Moello matematico: 1 eq. ifferenziale elettrica: p v R b N A fe p p k M N A eq. ifferenziali meccaniche:

22 Moello matematico: Il moello è el terzo orine nelle variabili i stato: flusso posizione velocità

23 Moello Simulink: R.5 Step Sine Wave v R*i Equazione Flusso Concatenato 1 s Flusso Flusso Concatenato Flusso² 4*pi*(1e-7)*1^*1*(1e-4) m*n²*as Forza Magnetica -1 Forza Magnetica Flusso corrente i 4 Massa Ancora 1 s Eq Velocità Velocità 1.57e-9 m*as Riluttanza tot traferri Riluttanza Ferro 96 Riluttanza tot 1*1 N² Inertanza tot Corrente Posizione 1 u 1 s Eq Posizione *1^6-1 Inuttanza Posizione iniziale.5 K molla Forza Molla Forza Elastica

24 Comportamenti in c.c., V cc = 5 V p 1 1 k M N A velocità p 1 posizione posizione a riposo posizione finale 1 k f 11Hz M

25 Comportamenti in c.c., V cc = 5 V i corrente,, N inuttanza p v R b N A fe

26 Comportamenti in c.c., V cc = 5 V, N F A N F N forza magnetica A N b R v p flusso concatenato A N v p fe

27 Comportamenti in c.a., V eff = 5 V, f = 5 Hz velocità posizione le granezze meccaniche g hanno f=1hz (la forzante è il flusso al quarato)

28 Comportamenti in c.a., V eff = 5 V, f = 5 Hz Il minimo ell inuttanza corrispone a un minimo in corrente corrente inuttanza L inuttanza ipene alla L inuttanza ipene alla variazione ella coorinata geometrica el circuito magnetico

29 Comportamenti in c.a., V eff = 5 V, f = 5 Hz La forza ha frequenza pari a 1Hz perché ipene al quarato el flusso (forzante ella parte meccanica) forza magnetica flusso concatenato Il flusso concatenato ha frequenza pari a quella ella forzante elettrica

30 Analisi ulteriore Provare a moificare la massa Provare a moificare la resistenza Provare a moificare la costante ella molla Invertire la polarità ella sorgente in cc

31 Alcuni esempi: moifica ella R = 1 Ohm, Vcc

32 Alcuni esempi: moifica ella R =.4 Ohm, Vcc

33 Alcuni esempi: moifica ella R =.4 Ohm, Vcc

34 Alcuni esempi: moifica ella k = N/m, Vcc

35 Alcuni esempi: moifica ella k = N/m, Vcc

Si considera un corpo solido a forma di parallelepipedo, di spessore d [m] e facce maggiori con superficie S [m 2 ], tale che sia T 1

Si considera un corpo solido a forma di parallelepipedo, di spessore d [m] e facce maggiori con superficie S [m 2 ], tale che sia T 1 I sistemi termici La resistenza termica Se ue corpi aventi temperature iverse vengono messi a contatto, si ha un passaggio i quantità i calore al corpo a temperatura maggiore verso quello a temperatura

Dettagli

SIA DATO UN SOLENOIDE RETTILINEO DI LUNGHEZZA d, RAGGIO R e COSTITUITO DA N SPIRE.

SIA DATO UN SOLENOIDE RETTILINEO DI LUNGHEZZA d, RAGGIO R e COSTITUITO DA N SPIRE. POBLEMA 11 SIA DATO UN SOLENOIDE ETTILINEO DI LUNGHEZZA, AGGIO e COSTITUITO DA N SPIE. A) DETEMINAE IL CAMPO MAGNETICO PODOTTO LUNGO L ASSE DEL SOLENOIDE. Un solenoie rettilineo è costituito a un filo

Dettagli

Legge di conservazione dell Energia Meccanica

Legge di conservazione dell Energia Meccanica 4-SBAC Fisica / ENERGIA e LAVORO Leggi ella Dinamica e spesso un problema molto complicato!!! risolverle e trovare la legge el moto r(t) Esempio Leggi i VARIAZIONE Leggi i CONSERVAZIONE energia massa carica

Dettagli

Modellistica di sistemi elettromeccanici

Modellistica di sistemi elettromeccanici Modellistica di sistemi elettromeccanici Legge di Lorentz: una carica elettrica q che si muove con velocità v(t) relativamente ad un campo magnetico di induzione B(t) è soggetta ad una forza v(t) q α B(t)

Dettagli

DERIVATE DIREZIONALI ITERATE

DERIVATE DIREZIONALI ITERATE Analisi Matematica II, Anno Accaemico 206-207. Ingegneria Eile e Architettura Vincenzo M. Tortorelli FOGLIO DI TEORIA n. 0 SVILUPPI DI TAYLOR DERIVATE DIREZIONALI ITERATE Se v R è non nullo è efinito l

Dettagli

Nome: Cognome: Matricola:

Nome: Cognome: Matricola: Esercizio 1: Una particella ++ si trova in uiete a una istanza = 100 µm a un piano metallico verticale mantenuto a potenziale nullo. i. Calcolare le componenti el campo E in un generico punto P el semispazio

Dettagli

Lavoro ed energia cinetica

Lavoro ed energia cinetica INGEGNERIA GESTIONALE corso i Fisica Generale Prof. E. Puu LEZIONE DEL 7 8 OTTOBRE 2008 Lavoro e energia cinetica 1 Il lavoro Il lavoro W fatto su un oggetto a un agente che esercita su i esso una forza

Dettagli

Nozioni elementari di calcolo differenziale e integrale

Nozioni elementari di calcolo differenziale e integrale Nozioni elementari i calcolo ifferenziale e integrale DIPARTIMENTO DI FISICA E INFN UNIVERSITÀ DEL SALENTO a.a. 013/014 L. Renna - Dipartimento i Fisica 1 Sommario 1 Funzioni... 3 Derivate... 4 3 Integrali...

Dettagli

è definito in tutto il dielettrico e dipende dalla sola carica libera

è definito in tutto il dielettrico e dipende dalla sola carica libera Dielettrici I. Un conensatore a facce piane e parallele, i superficie S e istanza fra le armature, h, viene parzialmente riempito con un ielettrico lineare omogeneo i costante ielettrica.e spessore s Il

Dettagli

Equazioni Differenziali alle Derivate Parziali del primo ordine semilineari

Equazioni Differenziali alle Derivate Parziali del primo ordine semilineari Equazioni Differenziali alle Derivate Parziali el primo orine semilineari Analisi Matematica III C. Lattanzio B. Rubino 1 Teoria Per equazione ifferenziale alle erivate parziali el primo orine semilineare

Dettagli

Modellistica di sistemi elettrici e magnetici

Modellistica di sistemi elettrici e magnetici Modellistica di sistemi elettrici e magnetici Interazione tra cariche elettriche Legge di Coulomb q q 2 F d F F = q q 2 4 π ǫ d 2, ǫ = ǫ 0 ǫ r ǫ : permettività del mezzo ǫ 0 : permettività del vuoto ǫ

Dettagli

ε = ε = x TFA A048. Matematica applicata Incontro del 16 aprile 2014, ore 17-19

ε = ε = x TFA A048. Matematica applicata Incontro del 16 aprile 2014, ore 17-19 TFA A048. Matematica applicata Incontro el 16 aprile 014, ore 17-19 Appunti i iattica ella matematica applicata all economia e alla finanza. Funzioni (i una variabile) utilizzate nello stuio ell Economia

Dettagli

Univ i e v r e si s t i à à deg e li i Stud u i i di i Fi F r i en e ze S i t m i a m de d ll l lene n rg r i g a i d i d

Univ i e v r e si s t i à à deg e li i Stud u i i di i Fi F r i en e ze S i t m i a m de d ll l lene n rg r i g a i d i d Università egli Stui i Firenze Dipartimento i Meccanica e Tecnologie Inustriali Stima ell energia i eformazione: Metoo el Triangolo applicato all urto auto-moto Aprile 0 Metoo i ampbell (rash 3) Normalizzano

Dettagli

Gli esperimenti condotti da Faraday hanno portato a stabilire l esistenza di una forza elettromotrice e quindi di una corrente indotta in un circuito

Gli esperimenti condotti da Faraday hanno portato a stabilire l esistenza di una forza elettromotrice e quindi di una corrente indotta in un circuito Gli esperimenti condotti da Faraday hanno portato a stabilire l esistenza di una forza elettromotrice e quindi di una corrente indotta in un circuito quando: 1) il circuito è in presenza di un campo magnetico

Dettagli

Rs Afe. δ1 δ2 δ3 Rs. Vs R1

Rs Afe. δ1 δ2 δ3 Rs. Vs R1 Dato il circuito in figura funzionante in regime stazionario, sono noti: Rs = 7.333 Ω, R = 2 Ω, R3 = 7 Ω, δ = mm, δ2 =.3 mm, δ3 =.5 mm, Α = 8 cm 2, N = 00, = 500, V = 30 V. Si consideri la permeabilità

Dettagli

L'intensità del campo magnetico nell'aria (o nel vuoto) H0 misurato in amperspire/m, può avere in alcuni casi espressioni particolarmente semplici:

L'intensità del campo magnetico nell'aria (o nel vuoto) H0 misurato in amperspire/m, può avere in alcuni casi espressioni particolarmente semplici: C A M P O M A G N E T I C O N E L L ' A R I A L'intensità del campo magnetico nell'aria (o nel vuoto) H0 misurato in amperspire/m, può avere in alcuni casi espressioni particolarmente semplici: 1] Intensità

Dettagli

Formulario Elettromagnetismo

Formulario Elettromagnetismo Formulario Elettromagnetismo. Elettrostatica Legge di Coulomb: F = q q 2 u 4 0 r 2 Forza elettrostatica tra due cariche puntiformi; ε 0 = costante dielettrica del vuoto; q = cariche (in C); r = distanza

Dettagli

Fisica Main Training Lorenzo Manganaro

Fisica Main Training Lorenzo Manganaro Fisica Main Training 2016-2017 Lorenzo Manganaro 1. Lavoro di una forza 2. Energia meccanica e legge di conservazione 3. Forze dissipative 4. Potenza 30 25 20 15 1. Conservazione dell energia 2. Potenza

Dettagli

Indice. XI Prefazione. 1 Capitolo 1 METODO CIRCUITALE: COMPONENTI E LEGGI DI KIRCHHOFF Modello circuitale dei fenomeni elettromagnetici

Indice. XI Prefazione. 1 Capitolo 1 METODO CIRCUITALE: COMPONENTI E LEGGI DI KIRCHHOFF Modello circuitale dei fenomeni elettromagnetici XI Prefazione 1 Capitolo 1 METODO CIRCUITALE: COMPONENTI E LEGGI DI KIRCHHOFF 1 1.1 Modello circuitale dei fenomeni elettromagnetici 1.1.1 Modello a parametri concentrati, p. 1-1.1.2 Modello a parametri

Dettagli

CIRCUITI MAGNETICI nucleo in materiale ferromagnetico traferri traferro riluttanza corrente flusso magnetico

CIRCUITI MAGNETICI nucleo in materiale ferromagnetico traferri traferro riluttanza corrente flusso magnetico CICUITI MAGNETICI I circuiti magnetici sono costituiti prevalentemente da un nucleo in materiale ferromagnetico e possono eventualmente presentare delle parti in aria denominate traferri. Nella presente

Dettagli

L INDUZIONE ELETTROMAGNETICA. V Scientifico Prof.ssa Delfino M. G.

L INDUZIONE ELETTROMAGNETICA. V Scientifico Prof.ssa Delfino M. G. L INDUZIONE ELETTROMAGNETICA V Scientifico Prof.ssa Delfino M. G. INDUZIONE E ONDE ELETTROMAGNETICHE 1. Il flusso del vettore B 2. La legge di Faraday-Neumann-Lenz 3. Induttanza e autoinduzione 4. I circuiti

Dettagli

Una volgare introduzione alle EDO

Una volgare introduzione alle EDO Una volgare introuzione alle EDO Tiziano Penati 1 Primitive Abbiamo già incontrato un esempio semplice i equazioni ifferenziali orinarie (EDO): il calcolo i primitive. Vale la pena infatti i ricorare che

Dettagli

OSCILLAZIONI TORSIONALI

OSCILLAZIONI TORSIONALI OSCILLAZIONI TORSIONALI Introuzione Come è noto, per un corpo i imensione estesa vincolato a ruotare attorno a un asse (volano), vale la seguente relazione tra l'accelerazione angolare e il momento ella

Dettagli

Formulazione dell equazione del moto. Prof. Adolfo Santini - Dinamica delle Strutture 1

Formulazione dell equazione del moto. Prof. Adolfo Santini - Dinamica delle Strutture 1 Formulazione dell equazione del moto Prof. Adolfo Santini - Dinamica delle Strutture 1 Sistema a un grado di libertà In alcuni sistemi strutturali la massa, lo smorzamento e la rigidezza sono concentrati

Dettagli

ITN DUCA DEGLI ABRUZZI di Catania Compito di elettrotecnica ed elettronica.

ITN DUCA DEGLI ABRUZZI di Catania Compito di elettrotecnica ed elettronica. TN DUCA DEGL ABRUZZ di Catania Compito di elettrotecnica ed elettronica. Cognome.. Nome... Classe. Data / / Quesiti Dalla 1 alla 15 16 17 18 19 0 tot Punteggio totale previsto 45 3 10 4 6 70 Esatte. x3

Dettagli

Università degli studi di Trento Facoltà di Ingegneria Corso di Laurea in Viticoltura ed Enologia

Università degli studi di Trento Facoltà di Ingegneria Corso di Laurea in Viticoltura ed Enologia Università degli studi di Trento Facoltà di Ingegneria Corso di Laurea in Viticoltura ed Enologia Prof. Dino Zardi Dipartimento di Ingegneria Civile, Ambientale e Meccanica Fisica Componenti elementari

Dettagli

Dispense di Fisica Matematica. Prof. Maura Ughi

Dispense di Fisica Matematica. Prof. Maura Ughi Dispense i Fisica Matematica Prof. Maura Ughi 13 febbraio 2005 Capitolo 1 Equazioni ella Dinamica 1.1 Introuzione, Principio i D Alembert Una grossa scorciatoia mentale valia in Meccanica Classica è il

Dettagli

Riassunto lezione 11

Riassunto lezione 11 Riassunto lezione 11 Forza di Coloumb attrattiva o repulsiva F A B = 1 4 π ϵ 0 q A q B r 2 Consideriamo effetto di una carica sola campo elettrico: E Q = F Qq q = 1 4 π ϵ 0 Q r 2 ^u A B Come si rappresenta?

Dettagli

Azionamenti Elettrici Parte 1 Generazione del moto mediante motori elettrici

Azionamenti Elettrici Parte 1 Generazione del moto mediante motori elettrici Azionamenti Elettrici Parte Generazione del moto mediante motori elettrici Prof. Alberto Tonielli DEIS - Università di Bologna Tel. 05-6443024 E-mail mail: atonielli@deis deis.unibo.itit Collocazione del

Dettagli

Esercitazione 2. Soluzione

Esercitazione 2. Soluzione Esercitazione 2 Esercizio 1 - Resistenza dell aria Un blocchetto di massa m = 0.01 Kg (10 grammi) viene appoggiato delicatamente con velocità iniziale zero su un piano inclinato rispetto all orizziontale

Dettagli

TASFORMATORI. I trasformatori sono macchine elettriche:

TASFORMATORI. I trasformatori sono macchine elettriche: TASFORMATORI Trasformatori I trasformatori sono macchine elettriche: 1. statiche, cioè non hanno parti in movimento; 2. funzionanti a corrente alternata sinusoidale; 3. Reversibili: l ingresso può diventare

Dettagli

MOTORE ASINCRONO. Rotore ROTORE 2 - avvolto - a gabbia di scoiattolo

MOTORE ASINCRONO. Rotore ROTORE 2 - avvolto - a gabbia di scoiattolo MOTORE ASINCRONO STATORE: pacco magnetico 1 laminato secondo piani ortogonali all asse Rotore ROTORE - avvolto - a gabbia di scoiattolo Statore Avvolgimento rotorico (avvolgimento trifase con uguale numero

Dettagli

Capitolo 12. Moto oscillatorio

Capitolo 12. Moto oscillatorio Moto oscillatorio INTRODUZIONE Quando la forza che agisce su un corpo è proporzionale al suo spostamento dalla posizione di equilibrio ne risulta un particolare tipo di moto. Se la forza agisce sempre

Dettagli

Prof. F.Soramel Elementi di Fisica 2 - A.A. 2010/11 1

Prof. F.Soramel Elementi di Fisica 2 - A.A. 2010/11 1 Induzione La legge dell induzione di Faraday combina gli effetti dei campi elettrici e delle correnti, infatti sappiamo che Corrente + campo magnetico momento torcente motore elettrico Momento torcente

Dettagli

Esercitazione 1. Invece, essendo il mezzo omogeneo, il vettore sarà espresso come segue

Esercitazione 1. Invece, essendo il mezzo omogeneo, il vettore sarà espresso come segue 1.1 Una sfera conduttrice di raggio R 1 = 10 cm ha una carica Q = 10-6 C ed è circondata da uno strato sferico di dielettrico di raggio (esterno) R 2 = 20 cm e costante dielettrica relativa. Determinare

Dettagli

z σrdr Il campo E(z) è nullo per z = 0, è una funzione dispari di z, cresce con z e per z diventa, come da aspettarsi, E = σ

z σrdr Il campo E(z) è nullo per z = 0, è una funzione dispari di z, cresce con z e per z diventa, come da aspettarsi, E = σ Esame scritto di Elettromagnetismo del 4 Luglio 20 - a.a. 200-20 proff. S. Giagu, F. Lacava, F. Ricci Elettromagnetismo 0 o 2 crediti: esercizi,3,4 tempo 3 h e 30 min; Elettromagnetismo 5 crediti: esercizio

Dettagli

Opera rilasciata sotto licenza CC BY-NC-SA 3.0 Italia da Studio Bells (www.studiobells.it)

Opera rilasciata sotto licenza CC BY-NC-SA 3.0 Italia da Studio Bells (www.studiobells.it) Esercizio 001 Si consideri un piano inclinato di un angolo = 30 rispetto all orizzontale e di lunghezza L = 1 m. Sul piano è posta una massa m = 5, 0 kg collegata alla cima del piano tramite una molla

Dettagli

L Oscillatore Armonico

L Oscillatore Armonico L Oscillatore Armonico Descrizione del Fenomeno (max 15) righe Una molla esercita su un corpo una forza di intensità F=-kx, dove x è l allungamento o la compressione della molla e k una costante [N/m]

Dettagli

IL TRASPORTO DEGLI INQUINANTI

IL TRASPORTO DEGLI INQUINANTI La iffusione molecolare La ispersione avviene principalmente in irezione longituinale rispetto al flusso meio, e le variazioni i velocità non spiegano l aumento l i ampiezza in irezione normale al moto

Dettagli

MOTORI IN CORRENTE CONTINUA (C.C.) Comprendere come si genera energia meccanica di rotazione a partire da una corrente continua

MOTORI IN CORRENTE CONTINUA (C.C.) Comprendere come si genera energia meccanica di rotazione a partire da una corrente continua MOTORI IN CORRENTE CONTINUA (C.C.) Comprendere come si genera energia meccanica di rotazione a partire da una corrente continua Ing. Antonio Coppola 2 Motore CC Il motore in corrente continua a magnete

Dettagli

Trasformatore monofase

Trasformatore monofase Trasformatore ideale l trasformatore ideale è un sistema lineare e non dissipativo potesi: P 0 ρ cu 0 (P cu 0) μ η u i u i l 0 μ S Tutto il flusso viene incanalato nel nucleo che si comporta come un unico

Dettagli

Legge di Faraday. x x x x x x x x x x E x x x x x x x x x x R x x x x x x x x x x. x x x x x x x x x x. x x x x x x x x x x E B 1 Φ B.

Legge di Faraday. x x x x x x x x x x E x x x x x x x x x x R x x x x x x x x x x. x x x x x x x x x x. x x x x x x x x x x E B 1 Φ B. Φ ε ds ds dφ = dt Legge di Faraday E x x x x x x x x x x E x x x x x x x x x x R x x x x x x x x x x 1 x x x x x x x x x x E x x x x x x x x x x E Schema Generale Elettrostatica moto di q in un campo E

Dettagli

LE MACCHINE E GLI AZIONAMENTI ELETTRICI Corso di Laurea di Ingegneria Industriale Prof. Francesco Benzi INTRODUZIONE

LE MACCHINE E GLI AZIONAMENTI ELETTRICI Corso di Laurea di Ingegneria Industriale Prof. Francesco Benzi INTRODUZIONE LE MACCHINE E GLI AZIONAMENTI ELETTRICI Corso di Laurea di Ingegneria Industriale Prof. Francesco Benzi INTRODUZIONE Nell ambito dell ingegneria industriale si definiscono come azionamenti i dispositivi

Dettagli

Informazioni logistiche e organizzative Applicazione di riferimento. caratteristiche e tipologie di moduli. Circuiti con operazionali reazionati

Informazioni logistiche e organizzative Applicazione di riferimento. caratteristiche e tipologie di moduli. Circuiti con operazionali reazionati Elettronica per telecomunicazioni Contenuto ell unità A Informazioni logistiche e organizzative Applicazione i riferimento caratteristiche e tipologie i mouli Circuiti con operazionali reazionati amplificatori

Dettagli

Introduzione e modellistica dei sistemi

Introduzione e modellistica dei sistemi Introduzione e modellistica dei sistemi Modellistica dei sistemi dinamici meccanici Sistemi meccanici in traslazione: elementi base Sistemi in traslazione: equazioni del moto Sistemi in traslazione: rappresentazione

Dettagli

Modulo 8 Elettromagnetismo

Modulo 8 Elettromagnetismo Elettromagnetismo 1 Modulo 8 Elettromagnetismo 8.1. Elettrostatica: carica, forza e campo. 8.2. Tensione e corrente elettica 8.3. Conduttori e isolanti 8.4. Circuiti elettrici 8.5. Magnetismo 8.6. Onde

Dettagli

Indice. 0.1 Prefazione...

Indice. 0.1 Prefazione... 0.1 Prefazione............................ xi 1 GRANDEZZE ELETTRICHE 1 1.1 Tensione elettrica - Voltmetro................. 1 1.1.1 Esempio n. 1...................... 3 1.1.2 Esempio n. 2......................

Dettagli

Induzione magnetica 1

Induzione magnetica 1 l flusso concatenato nduzione magnetica 1 è solenoidale è definito il flusso di concatenato con una linea chiusa e orientata Φ () n d (verso della normale n indotto dalla percorrenza della linea secondo

Dettagli

ELETTROTECNICA (10 CFU) CS INGEGNERIA MATEMATICA I

ELETTROTECNICA (10 CFU) CS INGEGNERIA MATEMATICA I ELETTOTECNICA (0 CFU) CS INGEGNEIA MATEMATICA I prova in itinere 20 Novembre 2009 SOLUZIONI - - D. (punti 4 ) ) Spiegare cosa si intende per DUALITA nello studio dei circuiti elettrici. 2) Scrivere per

Dettagli

Introduzione 2. Serie P20 4. Serie P28 6. Serie P35 8. Serie P Serie P Serie P Serie P Serie P85 18.

Introduzione 2. Serie P20 4. Serie P28 6. Serie P35 8. Serie P Serie P Serie P Serie P Serie P85 18. INDICE Introduzione 2 Serie P20 4 Serie P28 6 Serie P35 8 Serie P39 10 Serie P42 12 Serie P57 14 Serie P60 16 Serie P85 18 Serie P110 20 Motori con Encoder 22 Azionamento Passo Passo 25 Codifica 26 Note

Dettagli

1 ANTENNE IN TRASMISSIONE SU PIANO DI MASSA

1 ANTENNE IN TRASMISSIONE SU PIANO DI MASSA 1 ANTENNE IN TRASMISSIONE SU PIANO DI MASSA Per una serie i applicazioni legate allo stuio elle antenne interessa valutare come si moifica il comportamento i una antenna in presenza el suolo. Per frequenze

Dettagli

1 Prove esami Fisica II

1 Prove esami Fisica II 1 Prove esami Fisica II Prova - 19-11-2002 Lo studente risponda alle seguenti domande: 1) Scrivere il teorema di Gauss (2 punti). 2) Scrivere, per un conduttore percorso da corrente, il legame tra la resistenza

Dettagli

Errata Corrige. Quesiti di Fisica Generale

Errata Corrige. Quesiti di Fisica Generale 1 Errata Corrige a cura di Giovanni Romanelli Quesiti di Fisica Generale per i C.d.S. delle Facoltà di Scienze di Prof. Carla Andreani Dr. Giulia Festa Dr. Andrea Lapi Dr. Roberto Senesi 2 Copyright@2010

Dettagli

La forza di Lorentz è: una forza conservativa. una forza radiale. una forza a distanza. tutte le le risposte precedenti.

La forza di Lorentz è: una forza conservativa. una forza radiale. una forza a distanza. tutte le le risposte precedenti. La forza di Lorentz è: una forza conservativa. una forza radiale. una forza a distanza. tutte le le risposte precedenti. 1 / 1 La forza di Lorentz è: una forza conservativa. una forza radiale. una forza

Dettagli

Prova a vuoto e in corto circuito di un trasformatore trifase

Prova a vuoto e in corto circuito di un trasformatore trifase Prova a vuoto e in corto circuito di un trasformatore trifase Oggetto della prova Prova a vuoto e in corto circuito di un trasformatore trifase per la determinazione dei parametri del circuito equivalente

Dettagli

Esistono alcune sostanze che manifestano la capacità di attirare la limatura di ferro, in particolare, la magnetite

Esistono alcune sostanze che manifestano la capacità di attirare la limatura di ferro, in particolare, la magnetite 59 Esistono alcune sostanze che manifestano la capacità di attirare la limatura di ferro, in particolare, la magnetite Questa proprietà non è uniforme su tutto il materiale, ma si localizza prevelentemente

Dettagli

Esercizi Scheda N Fisica II. Esercizi con soluzione svolti

Esercizi Scheda N Fisica II. Esercizi con soluzione svolti Esercizi Schea N. 45 Fisica II Esercizio. Esercizi con soluzione svolti Si calcoli la capacità ei conensatori a piatti paralleli riempiti a iversi ielettrici come in figura caso a) caso b) caso c) 3 a)

Dettagli

Equazioni della fisica matematica

Equazioni della fisica matematica Equazioni ella fisica matematica Equazione i conservazione ella massa in fluioinamica Questo principio ella fisica si può scrivere come ρ = ρv n, t ove è una generica porzione i spazio occupata al fluio,

Dettagli

PIANO DI LAVORO ANNUALE

PIANO DI LAVORO ANNUALE PIANO DI LAVORO ANNUALE Classe 2 B Disciplina: FISICA A.S. 2016/2017 Docente: prof. Vidhi Meri Ore settimanali: 3 Analisi della situazione di partenza della classe In generale i comportamento degli gli

Dettagli

Elementi di Fisica 2CFU

Elementi di Fisica 2CFU Elementi di Fisica 2CFU III parte - Elettromagnetismo Andrea Susa MAGNETISMO 1 Magnete Alcune sostanze naturali, come ad esempio la magnetite, hanno la proprietà di attirare pezzetti di ferro, e per questo

Dettagli

Cosa è la dinamo? dinamo

Cosa è la dinamo? dinamo La dinamo Cosa è la dinamo? La dinamo è una macchina elettrica rotante per la trasformazione di lavoro meccanico in energia elettrica, sotto forma di corrente continua (DC, per gli inglesi, direct current).

Dettagli

MAGNETISMO - 2a parte. pina di vito

MAGNETISMO - 2a parte. pina di vito MAGNETISMO - 2a parte 1 Flusso del vettore B, l unità di misura è il weber (Wb) B Caso generale: Teorema di Gauss per il magnetismo F S ( B) = 0 Poli magnetici non separabili Il numero di linee entranti

Dettagli

Trasformatore reale monofase

Trasformatore reale monofase Macchine elettriche parte Trasformatore reale monofase ei paragrafi precedenti si è ricavato il circuito equivalente del trasformatore ideale, si è anche visto che la corrente di primario (corrente di

Dettagli

Quella della formula (1) è una definizione operativa di L, ovvero fornisce un modo del tutto generale per calcolare L dal rapporto F IHB I L

Quella della formula (1) è una definizione operativa di L, ovvero fornisce un modo del tutto generale per calcolare L dal rapporto F IHB I L AUTOINDUTTANZA 1. INTRODUZIONE L auto inuttanza L è la granezza fisica che lega la corrente I che scorre in un ato circuito con il flusso el campo i inuzione magnetica B(I), quest ultimo generato proprio

Dettagli

Lezione 18. Motori elettrici DC a magneti permanenti. F. Previdi - Controlli Automatici - Lez. 18

Lezione 18. Motori elettrici DC a magneti permanenti. F. Previdi - Controlli Automatici - Lez. 18 Lezione 18. Motori elettrici DC a magneti permanenti F. Previdi - Controlli Automatici - Lez. 18 1 1. Struttura di un motore elettrico DC brushed Cilindro mobile di materiale ferromagnetico detto rotore;

Dettagli

Formulario per Fisica con Esercitazioni (LT Chimica Industriale - Bologna)

Formulario per Fisica con Esercitazioni (LT Chimica Industriale - Bologna) Formulario per Fisica con Esercitazioni (LT Chimica Industriale - Bologna) 7 giugno 2013 1 Errori di misura Errore sulle misure dirette: Errore massimo (il risultato della misura non fluttua): 1 oppure

Dettagli

Conoscenze FISICA LES CLASSE TERZA SAPERI MINIMI

Conoscenze FISICA LES CLASSE TERZA SAPERI MINIMI FISICA LES SAPERI MINIMI CLASSE TERZA LE GRANDEZZE FISICHE E LA LORO MISURA Nuovi principi per indagare la natura. Il concetto di grandezza fisica. Misurare una grandezza fisica. L impossibilità di ottenere

Dettagli

Esercizio (tratto dal Problema 4.28 del Mazzoldi 2)

Esercizio (tratto dal Problema 4.28 del Mazzoldi 2) Esercizio (tratto dal Problema 4.28 del Mazzoldi 2) Un punto materiale di massa m = 20 gr scende lungo un piano inclinato liscio. Alla fine del piano inclinato scorre su un tratto orizzontale scabro (µ

Dettagli

Elettrotecnica. Capitolo 2: componenti elettromagnetici, equazioni costitutive e connessioni circuitali. Dipartimento Energia Politecnico di Torino

Elettrotecnica. Capitolo 2: componenti elettromagnetici, equazioni costitutive e connessioni circuitali. Dipartimento Energia Politecnico di Torino Capitolo 2: elettromagnetici, equazioni costitutive e circuitali Dipartimento Energia Politecnico di Torino a 3 Settembre 2012 elettromagnetici quanti tipi di esistono? i fenomeni elettromagnetici sono

Dettagli

Prova scritta di Elettricità e Magnetismo ed Elettromagnetismo A.A. 2006/ Settembre 2007 (Proff. F. Lacava, C. Mariani, F. Ricci, D.

Prova scritta di Elettricità e Magnetismo ed Elettromagnetismo A.A. 2006/ Settembre 2007 (Proff. F. Lacava, C. Mariani, F. Ricci, D. Prova scritta i Elettricità e Magnetismo e Elettromagnetismo A.A. 2006/2007 6 Settembre 2007 (Proff. F. Lacava, C. Mariani, F. Ricci, D. Trevese) Moalità - Prova scritta i Elettricità e Magnetismo: Esercizi

Dettagli

10.4 Azionamento per motori sincroni IPM

10.4 Azionamento per motori sincroni IPM 10.4 Azionamento per motori sincroni PM motori sincroni a magneti sepolti hanno recentemente guaagnato crescente popolarità per una larga serie i applicazioni inustriali. Questo tipo i motore ha una costruzione

Dettagli

Compito di Fisica Generale (Meccanica) 16/01/2015

Compito di Fisica Generale (Meccanica) 16/01/2015 Compito di Fisica Generale (Meccanica) 16/01/2015 1) Un cannone spara un proiettile di massa m con un alzo pari a. Si calcoli in funzione dell angolo ed in presenza dell attrito dell aria ( schematizzato

Dettagli

SISTEMI ELEMENTARI. Prof. Laura Giarré https://giarre.wordpress.com/ca/ Sistemi Elementari CA Prof.

SISTEMI ELEMENTARI. Prof. Laura Giarré https://giarre.wordpress.com/ca/ Sistemi Elementari CA Prof. SISTEMI ELEMENTARI Prof. Laura Giarré Laura.Giarre@UNIMORE.IT https://giarre.wordpress.com/ca/ Sistemi Elementari CA 2017 2018 Prof. Laura Giarré 1 Principi di modellistica Problema: determinare il modello

Dettagli

Esercitazione 2. Soluzione

Esercitazione 2. Soluzione Esercitazione 2 Esercizio 1 - Resistenza dell aria Un blocchetto di massa m = 0.01 Kg (10 grammi) viene appoggiato delicatamente con velocità iniziale zero su un piano inclinato rispetto all orizziontale

Dettagli

ESERCIZIO SOLUZIONE. 13 Aprile 2011

ESERCIZIO SOLUZIONE. 13 Aprile 2011 ESERCIZIO Un corpo di massa m è lasciato cadere da un altezza h sull estremo libero di una molla di costante elastica in modo da provocarne la compressione. Determinare: ) la velocità del corpo all impatto

Dettagli

Misure e Tecniche Sperimentali - Alfredo Cigada

Misure e Tecniche Sperimentali - Alfredo Cigada Misure di spostamento Estensometro F A 2 L t F VISTA A - A A estensimetri 1 Misure di spostamento 3 Misure di spostamento : lineare angolare Misure di spostamento : Quasi statiche (allineamento di un rotore

Dettagli

Esercizi S A 2.0 S B. =0.2; Metodo B: S B ii)

Esercizi S A 2.0 S B. =0.2; Metodo B: S B ii) Si usano ue metoi ifferenti per misurare il carico i rottura i un filo i acciaio e si fanno 0 misure per ognuno ei metoi. I risultati, espressi in tonnellate, sono i seguenti: Metoo :..5.7..6.5.6.4.6.9

Dettagli

Le coordinate del generico punto nei riferimenti fisso e mobile sono legate dalle relazioni: d dt. d dt

Le coordinate del generico punto nei riferimenti fisso e mobile sono legate dalle relazioni: d dt. d dt Questo programma calcola le espressioni elle circonferenze ei flessi, i stazionarietà, ei jerk normali nulli e ei jerk tangenziali nulli, basanosi sulle note formule i trasformazione tra sistemi i riferimento

Dettagli

Esercizio 1 Meccanica del Punto

Esercizio 1 Meccanica del Punto Esercizio 1 Meccanica del Punto Una molla di costante elastica k e lunghezza a riposo L 0 è appesa al soffitto di una stanza di altezza H. All altra estremità della molla è attaccata una pallina di massa

Dettagli

Induzione magne-ca. La legge di Faraday- Neumann- Lenz e l indu7anza

Induzione magne-ca. La legge di Faraday- Neumann- Lenz e l indu7anza Induzione magne-ca a legge di Faraday- Neumann- enz e l indu7anza egge di Faraday Un filo percorso da corrente crea un campo magnetico. Con un magnete si può creare una corrente? a risposta è naturalmente

Dettagli

EFFETTO MAGNETICO DELLA CORRENTE

EFFETTO MAGNETICO DELLA CORRENTE IL CAMPO MAGNETICO E GLI EFFETTI MAGNETICI DELLA CORRENTE 1 EFFETTO MAGNETICO DELLA CORRENTE Ogni conduttore percorso da corrente crea intorno a sé un campo magnetico (H), cioè una perturbazione di tipo

Dettagli

CIRCUITI ELETTRICI. Le grandezze fondamentali nei circuiti elettrici sono:

CIRCUITI ELETTRICI. Le grandezze fondamentali nei circuiti elettrici sono: CIRCUITI ELETTRICI Riccardo Scannaliato 4H 2015/16 Le grandezze fondamentali nei circuiti elettrici sono: La corrente elettrica: la quantità di carica che attraversa una sezione S di conduttore in un secondo.

Dettagli

E K = 1 2 mv 2. A.A. 2014/15 Fisica 1 1

E K = 1 2 mv 2. A.A. 2014/15 Fisica 1 1 Lavoro ed energia Le relazioni ricavate dalla cinematica e dalla dinamica permettono di descrivere il moto di un oggetto puntiforme note le variabili cinematiche e le forze applicate all oggetto in funzione

Dettagli

Università del Sannio

Università del Sannio Università del Sannio Corso di Fisica 1 Lezione 6 Dinamica del punto materiale II Prof.ssa Stefania Petracca 1 Lavoro, energia cinetica, energie potenziali Le equazioni della dinamica permettono di determinare

Dettagli

Esercizi di Fisica LB: Induzione Elettromagnetica

Esercizi di Fisica LB: Induzione Elettromagnetica Esercizi di Fisica LB: Induzione Elettromagnetica Esercizio 1 Esercitazioni di Fisica LB per ingegneri - A.A. 23-24 Una sbarra conduttrice di lunghezza l è fissata ad un estremo ed è fatta ruotare con

Dettagli

POLITECNICO DI MILANO Scuola di Ingegneria Industriale Fondamenti di Fisica Sperimentale, a.a I Appello, 10 luglio 2013

POLITECNICO DI MILANO Scuola di Ingegneria Industriale Fondamenti di Fisica Sperimentale, a.a I Appello, 10 luglio 2013 POLITECNICO DI MILNO Scuola di Ingegneria Industriale Fondamenti di Fisica Sperimentale, a.a. 0-3 I ppello, 0 luglio 03 Giustificare le risposte e scrivere in modo chiaro e leggibile. Sostituire i valori

Dettagli

Coppia differenziale con BJT e carico passivo

Coppia differenziale con BJT e carico passivo oppia ifferenziale con BJ e carico passivo tensione ifferenziale e i moo comune: v v v B1 B v M v + v B1 B risposta al segnale i moo comune G. Martines 1 oppia ifferenziale con BJ e carico passivo Saturazione

Dettagli

Corso di Laurea in Scienze Ambientali Corso di Fisica Generale II a.a. 2010/11. Prova di esame del 14/11/ NOME

Corso di Laurea in Scienze Ambientali Corso di Fisica Generale II a.a. 2010/11. Prova di esame del 14/11/ NOME Corso di Laurea in Scienze Ambientali Corso di Fisica Generale II a.a. 2010/11 Prova di esame del 14/11/2011 - NOME 1) a) Quanto calore è necessario per aumentare la temperatura di una pentola di ferro

Dettagli

Modelli di sistemi elementari. (Fondamenti di Automatica G. Ferrari Trecate)

Modelli di sistemi elementari. (Fondamenti di Automatica G. Ferrari Trecate) Modelli di sistemi elementari (Fondamenti di Automatica G. Ferrari Trecate) Circuiti elettrici Resistore R i resistenza corrente v tensione v = Ri( Induttore L i induttanza corrente v tensione L i! = v(

Dettagli

Costruzione di Macchine Verifica a fatica degli elementi delle macchine

Costruzione di Macchine Verifica a fatica degli elementi delle macchine Costruzione di Macchine Verifica a fatica degli elementi delle macchine In figura 1 è rappresentato schematicamente un mescolatore: l albero con la paletta è mosso da un motore elettrico asincrono trifase

Dettagli

Corrente di spostamento ed equazioni di Maxwell

Corrente di spostamento ed equazioni di Maxwell Corrente di spostamento ed equazioni di Maxwell n Corrente di spostamento n Modifica della legge di Ampere n Equazioni di Maxwell n Onde elettromagnetiche Corrente di spostamento n La legge di Ampere e`

Dettagli

Corso di Elettromagnetismo Prova scritta / recupero esoneri: a.a. 2014/15, 13 Luglio 2015 Proff. S. Giagu, F. Lacava, D. Trevese

Corso di Elettromagnetismo Prova scritta / recupero esoneri: a.a. 2014/15, 13 Luglio 2015 Proff. S. Giagu, F. Lacava, D. Trevese Corso i Elettromagnetismo Prova scritta / recupero esoneri: a.a. 214/15, 13 Luglio 215 Proff. S. Giagu, F. Lacava, D. Trevese - intero scritto: risolvere i problemi 1, 2 e 3: tempo a isposizione 3.5; -

Dettagli

QUINTA LEZIONE: corrente elettrica, legge di ohm, carica e scarica di un condensatore, leggi di Kirchoff

QUINTA LEZIONE: corrente elettrica, legge di ohm, carica e scarica di un condensatore, leggi di Kirchoff QUINTA LEZIONE: corrente elettrica, legge di ohm, carica e scarica di un condensatore, leggi di Kirchoff Esercizio Un conduttore cilindrico in rame avente sezione di area S = 4mm è percorso da una corrente

Dettagli

1 EQUAZIONI DI MAXWELL

1 EQUAZIONI DI MAXWELL 1 EQUAZIONI DI MAXWELL Il campo elettromagnetico è un campo i forze. Può essere utile utilizzare una efinizione oparativa i campo: iciamo che in unazona ello spazio è presente un campo seèutile associare

Dettagli

Lavoro. Esempio. Definizione di lavoro. Lavoro motore e lavoro resistente. Lavoro compiuto da più forze ENERGIA, LAVORO E PRINCIPI DI CONSERVAZIONE

Lavoro. Esempio. Definizione di lavoro. Lavoro motore e lavoro resistente. Lavoro compiuto da più forze ENERGIA, LAVORO E PRINCIPI DI CONSERVAZIONE Lavoro ENERGIA, LAVORO E PRINCIPI DI CONSERVAZIONE Cos è il lavoro? Il lavoro è la grandezza fisica che mette in relazione spostamento e forza. Il lavoro dipende sia dalla direzione della forza sia dalla

Dettagli

G. Rizzoni, Elettrotecnica - Principi e applicazioni Soluzioni ai problemi, Capitolo 3

G. Rizzoni, Elettrotecnica - Principi e applicazioni Soluzioni ai problemi, Capitolo 3 CAPITOLO 3 Analisi delle reti resistive Paragrafi da 3.2 a 3.4: Analisi ai nodi e alle maglie Problema 3.1 Correnti di maglia: Correnti di lato in Fissa una direzione per la corrente in R 1 (ad esempio

Dettagli

Esercitazione Misure su circuiti magnetici. 3 - Rilievo del ciclo di isteresi dinamico di un nucleo magnetico

Esercitazione Misure su circuiti magnetici. 3 - Rilievo del ciclo di isteresi dinamico di un nucleo magnetico Esercitazione Misure su circuiti magnetici - 1 Esercitazione Misure su circuiti magnetici 1 - Oggetto Caratterizzazione di materiali magnetici. Strumento virtuale per il rilievo del ciclo di isteresi dinamico.

Dettagli

Olimpiadi di Fisica 2015 Campo elettrico Franco Villa

Olimpiadi di Fisica 2015 Campo elettrico Franco Villa 1 Olimpiadi di Fisica 015 ampo elettrico Franco illa 1. ate le cariche Q = -1 µ e Q = - µ (ale in cm O=0, O=10, =10, O=0) determinare: il potenziale elettrico ed il campo elettrico E (modulo, direzione

Dettagli

1. Il moto della sbarretta (OLIMPIADI della FISICA 1991)

1. Il moto della sbarretta (OLIMPIADI della FISICA 1991) 1. Il moto della sbarretta (OLIMPIADI della FISICA 1991) Obiettivi Determinare la f.e.m. indotta agli estremi di un conduttore rettilineo in moto in un campo magnetico Applicare il secondo principio della

Dettagli

Meccanica Applicata Alle Macchine. Elementi di Meccanica Teorica ed Applicata

Meccanica Applicata Alle Macchine. Elementi di Meccanica Teorica ed Applicata Meccanica Applicata Alle Macchine (Ingegneria Energetica) Elementi i Meccanica Teorica e Applicata (Scienze per l Ingegneria) Università egli Stui i oma La Sapienza Una traccia egli argomenti el Corso

Dettagli