PROBLEMI DINAMICI. 6.1 Equazioni di equilibrio dinamico. L'equazione di equilibrio dinamico di un corpo discretizzato in n elementi finiti è:

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "PROBLEMI DINAMICI. 6.1 Equazioni di equilibrio dinamico. L'equazione di equilibrio dinamico di un corpo discretizzato in n elementi finiti è:"

Transcript

1 Corso 202/203 Atoio Patao - Dipartimeto di Meccaica, iversità di Palermo 6. Equazioi di equilibrio diamico L'equazioe di equilibrio diamico di u corpo discretizzato i elemeti fiiti è: 6.)... M C K F dove: 6.2) K V B T EBdV rappreseta la matrice di rigidezza; 6.3) M N V T NdV rappreseta la matrice di massa del sistema ; 6.4) C V T N C NdV rappreseta la matrice di smorzameto ed F le forze estere odali. Ioltre si è idicato co: E la matrice di elasticità e co la desità di massa.

2 Corso 202/203 Atoio Patao - Dipartimeto di Meccaica, iversità di Palermo 6. Equazioi di equilibrio diamico Tale equazioe va ora itegrata, oi tratteremo il metodo di itegrazioe diretto utilizzado ua procedura umerica. Il termie diretto sta ad idicare che prima di effettuare l'itegrazioe, secodo ua procedura umerica, le equazioi o soo i alcu modo trasformate. L'itegrazioe diretta si basa su: a) cercare di soddisfare le equazioi differeziali solo i certi itervalli discreti t, ivece di ogi istate, ciò vuol dire adottare ua discretizzazioe alle differeze fiite el tempo ed imporre i ogi itervallo, u equilibrio statico compredete ache le forze d'ierzia e le forze smorzati; b) assumere i ogi itervallo t prefissate leggi di variazioe di spostameti, velocità ed accelerazioe che determiio accuratezza e stabilità della soluzioe. I metodi di itegrazioe diretta umerica cosetoo di superare tutte le o liearità mediate l'ipotesi di comportameto lieare i ogi passo di itegrazioe. I pricipali metodi di itegrazioe diretta soo il metodo implicito ed il metodo esplicito.

3 Corso 202/203 Atoio Patao - Dipartimeto di Meccaica, iversità di Palermo 6.2 Metodo di itegrazioe implicita I metodi di itegrazioe implicita si basao sulla soluzioe ota al tempo t e cosiderado l'equilibrio del sistema al tempo t+t; i preseza di o liearità ciò impoe che vega effettuato u procedimeto iterativo per raggiugere l'equilibrio. o dei metodi più utilizzati è il metodo di Newmark Metodo di Newmark. Il metodo di itegrazioe di Newmark assume: t 6.5) 2 t t 2 dove i termii, soo i parametri di itegrazioe di Newmark che devoo essere scelti i maiera opportua per cosetire ua buoa approssimazioe; gli idici, + soo relativi rispettivamete all istate di itegrazioe correte ed al successivo. Per esempio assumere ==0 comporta: se =0 t t t t t se =0 t b) 2 2

4 Corso 202/203 Atoio Patao - Dipartimeto di Meccaica, iversità di Palermo La prima delle 6.5b idica che si sta eguagliado l accelerazioe al tempo co la differeza tra le velocità agli istati e + divisa per l itervallo temporale. La secoda delle 6.5b rappreseta l espasioe i serie di Taylor del vettore. Se ivece si assume ==/2 si ha: se = t 2 2 t 6.5c) 2 2 t t t se = t La prima delle 6.5c idica che si sta eguagliado l accelerazioe, otteuta come media delle accelerazioi ai tempi e +, co la differeza tra le velocità agli stessi istati divisa per l itervallo temporale. La secoda delle 6.5c idica che il cotributo dell accelerazioe alla espasioe i serie di Taylor del vettore viee assuto pari alla media delle accelerazioi ai tempi e +. L'equazioe 6.) valutata all istate + diveta: 6.6)... M C K F Maipolado le 6.5) otteiamo: 2 6.7) t t t t 2

5 Corso 202/203 Atoio Patao - Dipartimeto di Meccaica, iversità di Palermo sostituedo le 6.7) ella 6.6) otteiamo: 6.8) 2 M C K t t t F M C 2 2 t t 2 t 2 Si risolve la 6.8) ell'icogita + co u metodo iterativo (per esempio Newto Rapsho) e si calcolao poi velocità ed accelerazioe co le 6.7). Il metodo è particolarmete oeroso ei problemi o lieari perché la matrice di rigidezza è fuzioe del campo di spostameti icogito. Si può dimostrare che la soluzioe col metodo di Newmark è icodizioatamete stabile per: Per esempio assumere ==/2 verifica queste relazioi, quidi per tali valori dei parametri il metodo risulta icodizioatamete stabile ed è deomiato costat-average-acceleratio. La caratteristica fodametale del metodo è i geerale la scelta di ricalcolare la matrice di rigidezza ad ogi iterazioe ed ioltre, osservado la 6.8), ci si accorge che ua soluzioe per + è legata alla fattorizzazioe della matrice di rigidezza. Quidi il calcolo co il metodo implicito diveta oeroso perché ad ogi passo di itegrazioe soo ecessarie più iterazioi (secodo Newto-Raphso che ricalcola più volte la matrice di rigidezza) e dover eseguire più fattorizzazioi al fie di trovare l'equilibrio ella cofigurazioe icogita. Il pregio del metodo è quello di poter essere icodizioatamete stabile, che permette quidi di impiegare passi di itegrazioe molto ampi, ciò ovviamete a spese di u umero elevato di iterazioi.

6 Corso 202/203 Atoio Patao - Dipartimeto di Meccaica, iversità di Palermo 6.3 Metodo di itegrazioe esplicita Il metodo di itegrazioe esplicita è basato sul metodo alle differeze cetrali. Nota che sia l'equazioe differeziale lieare del secodo ordie, utilizzado il metodo alle differeze fiite, discretizzado il tempo di itegrazioe i tati itervalli, è possibile sviluppare i serie di Taylor i vettori + e - ; arrestado lo sviluppo ai termii di secodo grado e trascurado il resto si ha: 2 t t 6.9) 2 2 t t 2 sommado membro a membro le 6.9) otteiamo le compoeti di accelerazioe, sottraedo membro a membro ivece otteiamo le compoeti di velocità, quidi: 2 2 t 6.0) 2t l'errore che si commette è dell'ordie di t 2. I questo modo si sostituiscoo le compoeti di accelerazioe e velocità co le differeze cetrate. Scritta la 6.) al tempo e sostituedo le 6.0) si ottiee: 2 M C F K M M C t 2t t t 2t 6.) 2 2 2

7 Corso 202/203 Atoio Patao - Dipartimeto di Meccaica, iversità di Palermo Come si ota dalla 6.) la determiazioe dello spostameto icogito + è legato soltato alla coosceza dell'equilibrio al tempo (cofigurazioe ota), ioltre o è ecessario la fattorizzazioe della matrice di rigidezza trovadosi già a secodo membro e o è ecessario u metodo iterativo perché la matrice di rigidezza è calcolata su ua cofigurazioe ota. Suppoedo ulli gli effetti viscosi, la risoluzioe dell'equazioe del moto può essere realizzata co l'uso dello schema a masse cocetrate ei odi. Riducedo i forma triagolare la matrice di massa le equazioi 6.) risultao essere disaccoppiate. Noto il vettore accelerazioe al tempo, si passa a ricavare il vettore spostameto al tempo + ed il vettore velocità al tempo +/2 co uo schema alle differeze cetrali. Il codice esplicito risulta quidi essere, ai fii del tempo di calcolo molto più veloce dei codici impliciti riducedo il problema o lieare ad equazioi lieari che possoo essere risolte direttamete, l'icoveiete del metodo è che esso è codizioatamete stabile, ciò comporta la ecessità di fare passi di itegrazioi molto piccoli. La scelta corretta del passo di carico t è legata oltre all'accuratezza del risultato alla stabilità del metodo. Si può dimostrare che per u sistema ad u grado di libertà il metodo alle differeze cetrali da ua soluzioe stabile se risulta: T 6.2) t dove T è il periodo di oscillazioe del sistema.

8 Corso 202/203 Atoio Patao - Dipartimeto di Meccaica, iversità di Palermo Per u sistema a p gradi di libertà la codizioe di stabilità risulta: Tp 6.3) t t crt dove Tp è il più piccolo periodo di vibrazioe del sistema, esprimedo questo i fuzioe della frequeza di vibrazioe libera, si ottiee: 2 6.4) Tp max Cosiderata ora la struttura discretizzata i elemeti fiiti, supposto il caso di elemeti moodimesioali di lughezza L, il passo di carico deve avere u valore iferiore al tempo di attraversameto dell'oda soica sull'elemeto: 6.5) co: t crt L a 6.6) a E 2 dove a è la velocità di propagazioe dell'oda di pressioe el corpo ed L la lughezza del più piccolo elemeto della struttura. I coclusioe, la stabilità del metodo esplicito è codizioata dal fatto di avere u t iferiore al periodo di oscillazioe del più piccolo elemeto della mesh, o i altro modo, iferiore al tempo di attraversameto da parte dell'oda soica della dimesioe miima del suddetto elemeto. Ecco perché el calcolo strutturale esplicito si da grade importaza allo sviluppo di algoritmi che aggiorio il massimo t stabile al proseguire della deformazioe.

9 Corso 202/203 Atoio Patao - Dipartimeto di Meccaica, iversità di Palermo I geere i codici calcolao il passo critico iiziale come: 6.8) a L t crt dove tra paretesi vi è u valore umerico gestibile dall'operatore e viee poi modificato co l'evolvere del feomeo al fie di miimizzare il tempo di calcolo complessivo.

L'equazione di equilibrio dinamico di un corpo discretizzato in n elementi finiti è:

L'equazione di equilibrio dinamico di un corpo discretizzato in n elementi finiti è: 6. Equazioi di equilibrio diamico Corso 06/07 Atoio Patao - Dipartimeto di Meccaica, iversità di Palermo L'equazioe di equilibrio diamico di u corpo discretizzato i elemeti fiiti è: 6.) dove:... M + C+

Dettagli

Trasmissione del calore con applicazioni numeriche: informatica applicata

Trasmissione del calore con applicazioni numeriche: informatica applicata Corsi di Laurea i Igegeria Meccaica Trasmissioe del calore co applicazioi umerice: iformatica applicata a.a. 5/6 Teoria Parte IV Ig. Nicola Forgioe Dipartimeto di Igegeria Civile e Idustriale E-mail: icola.forgioe@ig.uipi.it;

Dettagli

Corso di Costruzioni in Zona Sismica

Corso di Costruzioni in Zona Sismica Corso di Costruzioi i Zoa Sismica Uiversità degli Studi di Cassio e del Lazio Meridioale Eresto Grade e.grade@uicas.it +39.0776.299.3478 Corso di Costruzioi i Zoa Sismica Lezioe 2 Sistema a u grado di

Dettagli

REGRESSIONE LINEARE E POLINOMIALE

REGRESSIONE LINEARE E POLINOMIALE REGRESSIONE LINEARE E POLINOMIALE Nota ua tabella di dati relativi alle osservazioi di due gradezze X e Y, è aturale formulare ipotesi su quale possa essere ua ragioevole fuzioe che rappreseti o che approssimi

Dettagli

SERIE DI POTENZE Esercizi risolti. Esercizio 1 Determinare il raggio di convergenza e l insieme di convergenza della serie di potenze. x n.

SERIE DI POTENZE Esercizi risolti. Esercizio 1 Determinare il raggio di convergenza e l insieme di convergenza della serie di potenze. x n. SERIE DI POTENZE Esercizi risolti Esercizio x 2 + 2)2. Esercizio 2 + x 3 + 2 3. Esercizio 3 dove a è u umero reale positivo. Esercizio 4 x a, 2x ) 3 +. Esercizio 5 x! = x + x 2 + x 6 + x 24 + x 20 +....

Dettagli

I seguenti dati sono stati ottenuti in un reattore batch omogeneo per l esterificazione di butanolo (B) e acido acetico (A):

I seguenti dati sono stati ottenuti in un reattore batch omogeneo per l esterificazione di butanolo (B) e acido acetico (A): Dipartimeto di Eergia Politecico di Milao Piazza Leoardo da ici 2-2 MILNO Esercitazioi del corso ONDMENTI DI PROESSI HIMII Prof. Giapiero Groppi ESERITZIONE Reattore di esterificazioe del butaolo I segueti

Dettagli

Laboratorio di Fisica per Scienze Naturali Esperienza n 1. Verifica della legge di Hooke Misura dei coefficiente di elasticità di molle di acciaio.

Laboratorio di Fisica per Scienze Naturali Esperienza n 1. Verifica della legge di Hooke Misura dei coefficiente di elasticità di molle di acciaio. Scopo dell'esperieza Laboratorio di isica per Scieze aturali Esperieza Verifica della legge di Hooe Misura dei coefficiete di elasticità di molle di acciaio. ) verifica del fatto che l allugameto di ua

Dettagli

Calcolo della risposta di un sistema lineare viscoso a più gradi di libertà con il metodo dell Analisi Modale

Calcolo della risposta di un sistema lineare viscoso a più gradi di libertà con il metodo dell Analisi Modale Calcolo della risposta di u sistema lieare viscoso a più gradi di libertà co il metodo dell Aalisi Modale Lezioe 2/2 Prof. Adolfo Satii - Diamica delle Strutture 1 La risposta a carichi variabili co la

Dettagli

Corso di Costruzioni in Zona Sismica

Corso di Costruzioni in Zona Sismica Corso di Costruzioi i Zoa Sismica Uiversità degli Studi di Cassio e del Lazio Meridioale Eresto Grade e.grade@uicas.it +39.0776.299.3478 Earthquake Egieerig Lezioe 4-parte 1 Sistema a u GdL: vibrazioi

Dettagli

2T(n/2) + n se n > 1 T(n) = 1 se n = 1

2T(n/2) + n se n > 1 T(n) = 1 se n = 1 3 Ricorreze Nel caso di algoritmi ricorsivi (ad esempio, merge sort, ricerca biaria, ricerca del massimo e/o del miimo), il tempo di esecuzioe può essere descritto da ua fuzioe ricorsiva, ovvero da u equazioe

Dettagli

Trasmissione del calore con applicazioni numeriche: informatica applicata

Trasmissione del calore con applicazioni numeriche: informatica applicata Corsi di Laurea i Igegeria Meccaica Trasmissioe del calore co applicazioi umeriche: iformatica applicata a.a. 17/18 Teoria Parte I Prof. Nicola Forgioe Dipartimeto di Igegeria Civile e Idustriale E-mail:

Dettagli

Popolazione e Campione

Popolazione e Campione Popolazioe e Campioe POPOLAZIONE: Isieme di tutte le iformazioi sul feomeo oggetto di studio Viee descritta mediate ua variabile casuale X: X ~ f x; = costate icogita Qual è il valore di? E verosimile

Dettagli

Circuiti a tempo discreto Raffaele Parisi

Circuiti a tempo discreto Raffaele Parisi Uiversità di Roma La Sapieza Laurea specialistica i Igegeria Elettroica Circuiti a tempo discreto Raffaele Parisi : Esempi di Sequeze e di Circuiti TD Sequeze otevoli, periodicità delle sequeze, esempi

Dettagli

Esercitazione 2 Soluzione di equazioni non lineari

Esercitazione 2 Soluzione di equazioni non lineari Esercitazioe 2 Soluzioe di equazioi o lieari Scopo di questa serie di esercizi è quella di trovare ove possibile gli zeri di fuzioe di equazioi o lieari utilizzado i vari metodi spiegati a lezioe. I metodi

Dettagli

NUMERICI QUESITI FISICA GENERALE

NUMERICI QUESITI FISICA GENERALE UMERICI (Aalisi Dimesioale). Utilizzado le iformazioi ricavabili dalla gradezza fisica che ci si aspetta come risultato e dai valori umerici foriti, idividuare, tra le espressioi riportate, quella/e dimesioalmete

Dettagli

Metodi numerici PROCESSI ITERATIVI PER VALORI SCALARI. Ivan Zivko. Metodi numerici. Docente: Ivan Zivko 1

Metodi numerici PROCESSI ITERATIVI PER VALORI SCALARI. Ivan Zivko. Metodi numerici. Docente: Ivan Zivko 1 Iva Zivko PROCESSI ITERATIVI PER VALORI SCALARI Docete: Iva Zivko Processi umerici: puti ulli Immagiiamo ua fuzioe y f ( ), a., b Spesso è utile saper determiare tutti i suoi puti ulli, cioè tutti i puti

Dettagli

1.6 Serie di potenze - Esercizi risolti

1.6 Serie di potenze - Esercizi risolti 6 Serie di poteze - Esercizi risolti Esercizio 6 Determiare il raggio di covergeza e l isieme di covergeza della serie Soluzioe calcolado x ( + ) () Per la determiazioe del raggio di covergeza utilizziamo

Dettagli

Corso di Teoria dei Circuiti 1 - II modulo

Corso di Teoria dei Circuiti 1 - II modulo Uiversità di Roma La Sapieza - Sede di Latia - Laurea i Igegeria dell Iformazioe Corso di Teoria dei Circuiti 1 - II modulo Docete: Fabio Massimo Frattale Mascioli : Esempi di Sequeze e di Circuiti TD

Dettagli

Sommando le (8-13), (8-14), (8-19), (8-20), (8-21), (8-22) e uguagliando a zero si ottiene: V g

Sommando le (8-13), (8-14), (8-19), (8-20), (8-21), (8-22) e uguagliando a zero si ottiene: V g Correti a superficie libera 5 F p (8-) La proiezioe su s della forza di ierzia è ivece pari a: d ρ A ds ρ A ds + (8-) dt Sommado le (8-3), (8-4), (8-9), (8-0), (8-), (8-) e uguagliado a zero si ottiee:

Dettagli

Appendice A. Elementi di Algebra Matriciale

Appendice A. Elementi di Algebra Matriciale ppedice. Elemeti di lgebra Matriciale... 2. Defiizioi... 2.. Matrice quadrata... 2..2 Matrice diagoale... 2..3 Matrice triagolare... 3..4 Matrice riga e matrice coloa... 3..5 Matrice simmetrica e emisimmetrica...

Dettagli

Popolazione e Campione

Popolazione e Campione Popolazioe e Campioe POPOLAZIONE: Isieme di tutte le iformazioi sul feomeo oggetto di studio Viee descritta mediate ua variabile casuale X: X ~ f ( x; ϑ) θ = costate icogita Qual è il valore di θ? E verosimile

Dettagli

La dinamica dei sistemi - intro

La dinamica dei sistemi - intro La diamica dei sistemi - itro Il puto materiale rappreseta ua schematizzazioe utile o solo per descrivere situazioi di iteresse diretto ma è ache il ecessario presupposto alla meccaica dei sistemi materiali

Dettagli

ESERCIZI UNITA G SOMMARIO

ESERCIZI UNITA G SOMMARIO Cotrollo Termico dei Sistemi di Calcolo Es.G/0 ESERCIZI UNITA G SOMMARIO G. PERDITE DI CARICO G.I. G.II. G.III. G.IV. G.V. G.VI. Efflusso da serbatoio Codotto di vetilazioe Pompaggio di ua portata d acqua

Dettagli

Esercitazioni del Corso di Probabilitá e Statistica Lezione 6: Stime di parametri puntuali e per intervalli

Esercitazioni del Corso di Probabilitá e Statistica Lezione 6: Stime di parametri puntuali e per intervalli Esercitazioi del Corso di Probabilitá e Statistica Lezioe 6: Stime di parametri putuali e per itervalli Stefao Patti 1 19 geaio 005 Defiizioe 1 Ua famiglia di desitá f(, θ) ad u parametro (uidimesioale)

Dettagli

Matematica III. 1 Richiami di teoria

Matematica III. 1 Richiami di teoria appresetazioe dei umeri reali el calcolatore La rappresetazioe avviee el formato matissa espoete: pn q dove: - p matissa - N base di umerazioe - q espoete La rappresetazioe si dice ormalizzata quado N

Dettagli

Elementi finiti trave inflessa con deformazione a taglio Timoshenko

Elementi finiti trave inflessa con deformazione a taglio Timoshenko Elemeti fiiti trave iflessa co Timosheko q odo odo EI, GA s Covezioe sui segi spostameti e deformazioi v (e) =v A (e) = A Q (e) e e v (e) = v B (e) = B Q (e) Elemeto fiito trave iflessa u y( x) d dv, v

Dettagli

COME CALCOLARE L INTERVALLO DI CONFIDENZA QUANDO E NECESSARIO STIMARE LA DEVIAZIONE STANDARD? (è quasi sempre così!)

COME CALCOLARE L INTERVALLO DI CONFIDENZA QUANDO E NECESSARIO STIMARE LA DEVIAZIONE STANDARD? (è quasi sempre così!) COME CALCOLARE L INTERVALLO DI CONFIDENZA QUANDO E NECESSARIO STIMARE LA DEVIAZIONE STANDARD? (è quasi sempre così!) Per fortua le cose o cambiao poi di molto visto che la uova variabile x µ s x co s x

Dettagli

Analisi I - IngBM COMPITO A 17 Gennaio 2015 COGNOME... NOME... MATRICOLA... VALUTAZIONE =...

Analisi I - IngBM COMPITO A 17 Gennaio 2015 COGNOME... NOME... MATRICOLA... VALUTAZIONE =... Aalisi I - IgBM - 2014-15 COMPITO A 17 Geaio 2015 COGNOME........................ NOME............................. MATRICOLA....................... VALUTAZIONE..... +..... =...... 1. Istruzioi Gli esercizi

Dettagli

Trasformata Z, linearizzazione

Trasformata Z, linearizzazione Trasformata Z, liearizzazioe La soluzioe della diamica mediate trasformate Liearizzazioi Cei sulla trasformata Z Esempio: problema 1 Esempio: problema 2: Esempio: problema 3: Cotrollo come problema di

Dettagli

Stima di somme: esercizio

Stima di somme: esercizio Stima di somme: esercizio Valutare l'ordie di gradezza della somma k l (1 + 3 k ) Quado x

Dettagli

Analisi I - IngBM COMPITO B 17 Gennaio 2015 COGNOME... NOME... MATRICOLA... VALUTAZIONE =...

Analisi I - IngBM COMPITO B 17 Gennaio 2015 COGNOME... NOME... MATRICOLA... VALUTAZIONE =... Aalisi I - IgBM - 2014-15 COMPITO B 17 Geaio 2015 COGNOME........................ NOME............................. MATRICOLA....................... VALUTAZIONE..... +..... =...... 1. Istruzioi Gli esercizi

Dettagli

Distribuzione normale o gaussiana

Distribuzione normale o gaussiana Distribuzioe ormale o gaussiaa Ua variabile radom si dice distribuita ormalmete (o secodo ua curva gaussiaa) se la sua fuzioe di desità di probabilità è del tipo: f () ( ) ep co - rappreseta il valore

Dettagli

Algoritmi e Strutture Dati (Elementi)

Algoritmi e Strutture Dati (Elementi) Algoritmi e Strutture Dati (Elemeti Esercizi sulle ricorreze Proff. Paola Boizzoi / Giacarlo Mauri / Claudio Zadro Ao Accademico 00/003 Apputi scritti da Alberto Leporati e Rosalba Zizza Esercizio 1 Posti

Dettagli

Statistica Corso Base (Serale) Dott.ssa Cristina Mollica

Statistica Corso Base (Serale) Dott.ssa Cristina Mollica Statistica Corso Base (Serale) Dott.ssa Cristia Mollica cristia.mollica@uiroma1.it Idici di posizioe Esercizio 1: Data la seguete distribuzioe uitaria del carattere X 4 2 4 2 6 4 0 4 0 2 4 4 (1) calcolare

Dettagli

Circuiti a tempo discreto

Circuiti a tempo discreto Uiversità di Roma La Sapieza Laurea specialistica i Igegeria Elettroica Circuiti a tempo discreto Raffaele Parisi : Esempi di Sequeze e di Circuiti TD Sequeze otevoli, periodicità delle sequeze, esempi

Dettagli

METODI NUMERICI CON ELEMENTI DI PROGRAMMAZIONE ESERCIZI DI AUTOVALUTAZIONE Ingegneria Aerospaziale A.A. 2015/2016

METODI NUMERICI CON ELEMENTI DI PROGRAMMAZIONE ESERCIZI DI AUTOVALUTAZIONE Ingegneria Aerospaziale A.A. 2015/2016 METODI NUMERICI CON ELEMENTI DI PROGRMMZIONE ESERCIZI DI UTOVLUTZIONE Igegeria erospaziale /6 ESERCIZIO Si cosiderio le segueti successioi dipedeti dal parametro reale Stabilire quate e quali di esse covergoo

Dettagli

Distribuzione normale

Distribuzione normale Distribuzioe ormale Tra le distribuzioi di frequeze, la distribuzioe ormale riveste u importaza cetrale. Essa ha ua forma a campaa ed è simmetrica rispetto all asse verticale che passa per il vertice (moda).

Dettagli

Unità Didattica N 33 L algebra dei vettori

Unità Didattica N 33 L algebra dei vettori Uità Didattica N 33 Uità Didattica N 33 0) La ozioe di vettore 02) Immagie geometrica di u vettore umerico 03) Somma algebrica di vettori 04) Prodotto di u umero reale per u vettore 05) Prodotto scalare

Dettagli

Appendice 2. Norme di vettori e matrici

Appendice 2. Norme di vettori e matrici Appedice 2. Norme di vettori e matrici La ozioe esseziale per poter defiire il cocetto di distaza e lughezza i uo spazio vettoriale lieare è quello di orma. Il cocetto di orma è ua geeralizzazioe del cocetto

Dettagli

Esame di Stato di Liceo Scientifico- Sessione ordinaria 2003 Corso Sperimentale P.N.I. Tema di MATEMATICA

Esame di Stato di Liceo Scientifico- Sessione ordinaria 2003 Corso Sperimentale P.N.I. Tema di MATEMATICA L.Lecci\Sol. Problema 2\Esame di Stato di Liceo Scietifico\Sess. Ordiaria\Corso P.N.I.\ao23 Esame di Stato di Liceo Scietifico- Sessioe ordiaria 23 Corso Sperimetale P.N.I. Tema di MATEMATICA Problema

Dettagli

Daniela Tondini

Daniela Tondini Daiela Todii dtodii@uite.it Facoltà di Medicia Veteriaria C.L. i Tutela e Beessere Aimale Uiversità degli Studi di Teramo Nella ricerca scietifica e tecologica è importate misurare la reale efficacia di

Dettagli

Elementi di statistica

Elementi di statistica Elemeti di statistica La misura delle gradezze fisiche può essere effettuata direttamete o idirettamete. Se la misura viee effettuata direttamete si parla di misura diretta; se essa viee dedotta attraverso

Dettagli

Gli Indici di VARIABILITA

Gli Indici di VARIABILITA Elemeti di Statistica descrittiva Gli Idici di VARIABILITA - Campo di variazioe - Scarto dalla media - Variaza - Scarto quadratico medio - Coefficiete di variazioe Idici di Variabilità I valori medi soo

Dettagli

Sviluppi di Taylor. Andrea Corli 1 settembre Notazione o 1. 3 Formula di Taylor 3. 4 Esempi ed applicazioni 5

Sviluppi di Taylor. Andrea Corli 1 settembre Notazione o 1. 3 Formula di Taylor 3. 4 Esempi ed applicazioni 5 Sviluppi di Taylor Adrea Corli settembre 009 Idice Notazioe o Liearizzazioe di ua fuzioe 3 Formula di Taylor 3 4 Esempi ed applicazioi 5 I questo capitolo aalizziamo l approssimazioe di ua fuzioe regolare

Dettagli

Definizione di Sistema di Riferimento Inerziale

Definizione di Sistema di Riferimento Inerziale Defiizioe di Sistema di Riferimeto Ierziale Defiiamo sistema di riferimeto ierziale u sistema i cui valga rigorosamete la legge di ierzia, i cui cioè u puto materiale o soggetto a forze laciato co velocità

Dettagli

La legge di Hooke. Alessio Bianchi 5 aprile 2017

La legge di Hooke. Alessio Bianchi 5 aprile 2017 La legge di Hooke Alessio Biachi 5 aprile 2017 Sommario Determiazioe delle costati elastiche k di alcue molle e di ua massa m icogita sfruttado la legge di Hooke. Verifica del legame tra costate elastica

Dettagli

Politecnico di Milano Ingegneria Industriale Analisi 2/II

Politecnico di Milano Ingegneria Industriale Analisi 2/II Politecico di Milao Igegeria Idustriale Aalisi /II Test di autovalutazioe. Sia S = ( artg +. (a Stabilire se la serie data coverge assolutamete. (b Stabilire se la serie data coverge.. Sia L lo spazio

Dettagli

CAPITOLO 3. Quicksort

CAPITOLO 3. Quicksort CAPITOLO 3 Quicksort I questa lezioe presetiamo l algoritmo di ordiameto Quicksort(vedi []). L algoritmo Quicksort riceve i iput u array A e idici p r ed ordia l array A[p,, r] el modo seguete. L array

Dettagli

Esercitazione 3 STATI DI SFORZO E DEFORMAZIONE. Elenco formule utilizzate nell esercitazione. 1) det. 0: calcolo sforzi principali.

Esercitazione 3 STATI DI SFORZO E DEFORMAZIONE. Elenco formule utilizzate nell esercitazione. 1) det. 0: calcolo sforzi principali. TCNOLO MATRAL AROSPAZAL SRCTAZON STAT D SFORZO DFORMAZON sercitazioe STAT D SFORZO DFORMAZON leco formule utiliate ell esercitazioe xz ) det yx : calcolo sforzi pricipali zy ),, ; : criterio di uest-tresca

Dettagli

Il corso è indirizzato a studenti che affrontano per la prima volta dinamiche non lineari e caos

Il corso è indirizzato a studenti che affrontano per la prima volta dinamiche non lineari e caos Itroduzioe Il corso è idirizzato a studeti che affrotao per la prima volta diamiche o lieari e caos Mira a far familiarizzare gli studeti co la feomeologia e lo studio quatitativo, della diamica dei sistemi

Dettagli

4: Strato fisico: i segnali nel tempo e nella frequenza

4: Strato fisico: i segnali nel tempo e nella frequenza 1 1 4: Strato fisico: i segali el tempo e ella frequeza Lo strato fisico Le pricipali fuzioi dello strato fisico soo defiizioe delle iterfacce meccaiche (specifiche dei coettori) tra il mezzo trasmissivo

Dettagli

a n (x x 0 ) n. (1.1) n=0

a n (x x 0 ) n. (1.1) n=0 Serie di poteze. Defiizioi Assegati ua successioe {a } di umeri reali e u puto x dell asse reale si dice serie di poteze u espressioe del tipo a (x x ). (.) Il puto x viee detto cetro della serie e i umeri

Dettagli

Campionamento casuale da popolazione finita (caso senza reinserimento )

Campionamento casuale da popolazione finita (caso senza reinserimento ) Campioameto casuale da popolazioe fiita (caso seza reiserimeto ) Suppoiamo di avere ua popolazioe di idividui e di estrarre u campioe di uità (co < ) Suppoiamo di studiare il carattere X che assume i valori

Dettagli

0.1 Esercitazioni V, del 18/11/2008

0.1 Esercitazioni V, del 18/11/2008 1 0.1 Esercitazioi V, del 18/11/2008 Esercizio 0.1.1. Risolvere usado Cramer il seguete sistema lieare x + y + z = 1 kx + y z = 0 x kz = 1 Soluzioe: Il determiate della matrice dei coefficieti è (k 2)(k

Dettagli

AM110 - ESERCITAZIONI V - VI. Esercizio svolto 1. Dimostrare che ogni insieme finito ha un massimo ed un minimo.

AM110 - ESERCITAZIONI V - VI. Esercizio svolto 1. Dimostrare che ogni insieme finito ha un massimo ed un minimo. AM110 - ESERCITAZIONI V - VI 16-18 OTTOBRE 2012 Esercizio svolto 1. Dimostrare che ogi isieme fiito ha u massimo ed u miimo. Sia A = {a 1,..., a } R. Dimostriamo che A ha u massimo si procede i maiera

Dettagli

CAMBIAMENTO DI BASE IN UNO SPAZIO VETTORIALE

CAMBIAMENTO DI BASE IN UNO SPAZIO VETTORIALE CAMBIAMENTO DI BASE IN UNO SPAZIO VETTORIALE Sia V uo spazio vettoriale sul campo K. Siao v, v,..., v vettori dati apparteeti a V e siao, ioltre, assegati scalari k, k,..., k apparteeti a K. Si defiisce

Dettagli

Corso di Statistica - Esercitazione 2

Corso di Statistica - Esercitazione 2 Corso di Statistica - Esercitazioe 2 Dott. Davide Buttarazzi d.buttarazzi@uicas.it Esercizio 1 La seguete tabella riporta dati relativi al giudizio espresso da alcui clieti sulla qualità dell ultimo modello

Dettagli

STATISTICA 1 ESERCITAZIONE 4

STATISTICA 1 ESERCITAZIONE 4 STATISTICA 1 ESERCITAZIONE 4 Dott. Giuseppe Padolfo 21 Ottobre 2013 Percetili: i valori che dividoo la distribuzioe i ceto parti di uguale umerosità. Esercizio 1 La seguete tabella riporta la distribuzioe

Dettagli

Cosa vogliamo imparare?

Cosa vogliamo imparare? Cosa vogliamo imparare? risolvere i modo approssimato equazioi del tipo f()=0 che o solo risolubili i maiera esatta ed elemetare tramite formule risolutive. Esempio: log( ) 1= 0 Iterpretazioe grafica Come

Dettagli

RAPPRESENTAZIONE ANALITICA DEI PUNTALI OGIVALI PER PROIETTILI

RAPPRESENTAZIONE ANALITICA DEI PUNTALI OGIVALI PER PROIETTILI M. G. BUSATO RAPPRESENTAZIONE ANALITIA DEI PUNTALI OGIVALI PER PROIETTILI mgbstudio.et SOMMARIO I umerose applicazioi balistiche, ed i particolare per calcolare la resisteza aerodiamica di u proiettile,

Dettagli

Daniela Tondini

Daniela Tondini Daiela Todii dtodii@uite.it Facoltà di Bioscieze e Tecologie agro-alimetari e ambietali e Facoltà di Medicia Veteriaria C.L. i Biotecologie Uiversità degli Studi di Teramo 1 La mediaa o valore mediao M

Dettagli

Elementi di statistica descrittiva. Tabella dei dati :

Elementi di statistica descrittiva. Tabella dei dati : - - Elemeti di statistica descrittiva I dati riportati sotto si riferiscoo a 20 studeti uiversitari che frequetavao u corso di Statistica e soo stati raccolti facedo compilare ad ogi studete il seguete

Dettagli

Oscillatore controllato in tensione (VCO)

Oscillatore controllato in tensione (VCO) //6 Oscillatore cotrollato i tesioe (O) Frequeza di oscillazioe jl Z jl[ L() L()] [L L ()] L () T L //6 3 Guadago del O / f () L () L 4 () L 4 / Logf f f 3 Lf f () () L 4 Log Logf 4 Guadago del O / j /

Dettagli

Corso di Linguaggi e Traduttori 1 AA TEORIA DELLA COMPUTAZIONE (cenni)

Corso di Linguaggi e Traduttori 1 AA TEORIA DELLA COMPUTAZIONE (cenni) Corso di Liguaggi e Traduttori 1 AA 2004-05 TEORIA DELLA COMPUTAZIONE cei) 1 Sommario Iterazioe e ricorsioe Relazioi di ricorreza Complessità computazioale 2 Iterazioe e Ricorsioe Dato u problema, la sua

Dettagli

Approfondimento 2.1 Scaling degli stimoli mediante il metodo del confronto a coppie

Approfondimento 2.1 Scaling degli stimoli mediante il metodo del confronto a coppie Approfodimeto 2.1 Scalig degli stimoli mediate il metodo del cofroto a coppie Il metodo del cofroto a coppie di Thurstoe (Thurstoe, 1927) si basa sull assuzioe che la valutazioe di u oggetto o di uo stimolo

Dettagli

FORMULAZIONE ALTERNATIVA DELLE EQUAZIONI DI MAXWELL IN FORMA INTEGRALE

FORMULAZIONE ALTERNATIVA DELLE EQUAZIONI DI MAXWELL IN FORMA INTEGRALE FORMULAZIONE ALTERNATIA DELLE EQUAZIONI DI MAXWELL IN FORMA INTEGRALE i riscrivoo le equazioi di Maxwell i ua forma itegrale alterativa comoda per la determiazioe delle codizioi al cotoro: Ed B d (3.5a)

Dettagli

Equazioni Differenziali

Equazioni Differenziali Equazioi Differeziali Nota itroduttiva: Lo scopo di queste dispese o è trattare la teoria riguardo alle equazioi differeziali, ma solo dare u metodo risolutivo pratico utilizzabile egli esercizi che richiedoo

Dettagli

ESERCIZI SULLE SERIE

ESERCIZI SULLE SERIE ESERCIZI SULLE SERIE. Dimostrare che la serie seguete è covergete: =0 + + A questa serie applichiamo il criterio del cofroto. Dovedo quidi dimostrare che la serie è covergete si tratterà di maggiorare

Dettagli

Quartili. Esempio Q 3. Me Q 1. Distribuzione unitaria degli affitti settimanali in euro pagati da 19 studenti U.S. A G I F B D L H E M C

Quartili. Esempio Q 3. Me Q 1. Distribuzione unitaria degli affitti settimanali in euro pagati da 19 studenti U.S. A G I F B D L H E M C Quartili Primo quartile Q 1 : modalità che ella graduatoria (crescete o decrescete) bipartisce il 50% delle osservazioi co modalità più piccole o al più uguali alla Me Terzo quartile Q 3 : modalità che

Dettagli

Algebra delle matrici

Algebra delle matrici Algebra delle matrici Prodotto di ua matrice per uo scalare Data ua matrice A di tipo m, e dato uo scalare r R, moltiplicado r per ciascu elemeto di A si ottiee ua uova matrice di tipo m, detta matrice

Dettagli

Esercizi sull estremo superiore ed inferiore

Esercizi sull estremo superiore ed inferiore AM0 - A.A. 03/4 ALFONSO SORRENTINO Esercizi sull estremo superiore ed iferiore Esercizio svolto. Dire se i segueti isiemi soo limitati iferiormete o superiormete ed, i caso affermativo, trovare l estremo

Dettagli

1 + 1 ) n ] n. < e nα 1 n

1 + 1 ) n ] n. < e nα 1 n Esercizi preparati e i parte svolti martedì 0.. Calcolare al variare di α > 0 Soluzioe: + ) α Per α il ite è e; se α osserviamo che da + /) < e segue che α + ) α [ + ) ] α < e α Per α > le successioi e

Dettagli

Esercizi sul metodo degli elementi finiti. Esercizio 1 Si consideri il seguente problema differenziale: du dx. d a(x) dx. du dx.

Esercizi sul metodo degli elementi finiti. Esercizio 1 Si consideri il seguente problema differenziale: du dx. d a(x) dx. du dx. Esercizi sl metodo degli elemeti fiiti Esercizio 1 d a d 1 d d b L 1 e 16 d d e 16 c f L co a 1 b c 4 f 4 L 8 ella forma KU=F+Q essedo Q il vettore derivate dai termii di bordo Discretizzare ora il domiio

Dettagli

Alcuni concetti di statistica: medie, varianze, covarianze e regressioni

Alcuni concetti di statistica: medie, varianze, covarianze e regressioni A Alcui cocetti di statistica: medie, variaze, covariaze e regressioi Esistoo svariati modi per presetare gradi quatità di dati. Ua possibilità è presetare la cosiddetta distribuzioe, raggruppare cioè

Dettagli

( ) = J s m

( ) = J s m CAPITOO 9 a meccaica quatistica QUESITI Quesito A ogi particella materiala co ua quatità di moto! p corrispode ua lughezza d oda, detta di De Broglie, data da: λ = h p. () Nel modello corpuscolare di Bohr

Dettagli

TEORIA DELLE MATRICI. dove aij K. = di ordine n, gli elementi aij con i = j (cioè gli elementi a 11

TEORIA DELLE MATRICI. dove aij K. = di ordine n, gli elementi aij con i = j (cioè gli elementi a 11 1 TEORIA DELLE MATRICI Dato u campo K, defiiamo matrice ad elemeti i K di tipo (m, ) u isieme di umeri ordiati secodo m righe ed coloe i ua tabella rettagolare del tipo a11 a12... a1 a21 a22... a2 A =.........

Dettagli

Insiemi numerici. Sono noti l insieme dei numeri naturali: N = {1, 2, 3, }, l insieme dei numeri interi relativi:

Insiemi numerici. Sono noti l insieme dei numeri naturali: N = {1, 2, 3, }, l insieme dei numeri interi relativi: Isiemi umerici Soo oti l isieme dei umeri aturali: N {1,, 3,, l isieme dei umeri iteri relativi: Z {0, ±1, ±, ±3, N {0 ( N e, l isieme dei umeri razioali: Q {p/q : p Z, q N. Si ottiee questo ultimo isieme,

Dettagli

si ha: giacciano all interno del cerchio unitario. Inoltre, poiché:

si ha: giacciano all interno del cerchio unitario. Inoltre, poiché: 2.4 PROCESSI STOCASTICI A MEDIA MOBILE (MA) U processo MA di ordie p esprime il valore correte del processo come ua somma fiita di p campioi di rumore biaco pesati secodo dei coefficieti θ i ossia 1 1

Dettagli

Soluzioni degli esercizi del corso di Analisi Matematica I

Soluzioni degli esercizi del corso di Analisi Matematica I Soluzioi degli esercizi del corso di Aalisi Matematica I Prof. Pierpaolo Natalii Roberta Biachii & Marco Pezzulla ovembre 015 FOGLIO 1 1. Determiare il domiio e il sego della fuzioe ( ) f(x) = arccos x

Dettagli

Realizzazione, Raggiungibilità e Osservabilità

Realizzazione, Raggiungibilità e Osservabilità Prof. Carlo Cosetio Fodameti di Automatica, A.A. 26/7 Corso di Fodameti di Automatica A.A. 26/7 Realizzazioe, Raggiugiilità e Osservailità Prof. Carlo Cosetio Dipartimeto di Medicia Sperimetale e Cliica

Dettagli

Calcolo I - Corso di Laurea in Fisica - 31 Gennaio 2018 Soluzioni Scritto

Calcolo I - Corso di Laurea in Fisica - 31 Gennaio 2018 Soluzioni Scritto Calcolo I - Corso di Laurea i Fisica - Geaio 08 Soluzioi Scritto Data la fuzioe f = 8 + / a Calcolare il domiio, puti di o derivabilità ed asitoti; b Calcolare, se esistoo, estremi relativi ed assoluti.

Dettagli

STUDIO DEL LANCIO DI 3 DADI

STUDIO DEL LANCIO DI 3 DADI Leoardo Latella STUDIO DEL LANCIO DI 3 DADI Il calcolo delle probabilità studia gli eveti casuali probabili, cioè quegli eveti che possoo o o possoo verificarsi e che dipedoo uicamete dal caso. Tale studio

Dettagli

Inferenza Statistica. L inferenza statistica cerca di risalire al modello del fenomeno sulla base delle osservazioni.

Inferenza Statistica. L inferenza statistica cerca di risalire al modello del fenomeno sulla base delle osservazioni. Ifereza Statistica L ifereza statistica cerca di risalire al modello del feomeo sulla base delle osservazioi No coosciamo il modello del feomeo cioè la vc X A volte la coosceza può essere parziale (coosciamo

Dettagli

UNIVERSITÀ DEGLI STUDI DI MILANO - BICOCCA

UNIVERSITÀ DEGLI STUDI DI MILANO - BICOCCA UNIVERSITÀ DEGLI STUDI DI MILANO - BICOCCA FACOLTÀ DI SOCIOLOGIA a. a. 9 Esame del -6- Statistica ESERCIZIO Relazioi tra Variabili (totale puti: ) Ad ua riuioe del circolo Amati dell acquario, i soci preseti

Dettagli

( 4) ( ) ( ) ( ) ( ) LE DERIVATE ( ) ( ) (3) D ( x ) = 1 derivata di un monomio con a 0 1. GENERALITÀ

( 4) ( ) ( ) ( ) ( ) LE DERIVATE ( ) ( ) (3) D ( x ) = 1 derivata di un monomio con a 0 1. GENERALITÀ LE DERIVATE. GENERALITÀ Defiizioe A) Ituitiva. La derivata, a livello ituitivo, è u operatore tale che: a) ad ua fuzioe f associa u altra fuzioe; b) obbedisce alle segueti regole di derivazioe: () D a

Dettagli

Soluzione Dai dati di energia libera standard di formazione si può ricavare il G per la reazione:

Soluzione Dai dati di energia libera standard di formazione si può ricavare il G per la reazione: La metilammia, reagisce co acqua allo stato gassoso portado alla formazioe di alcool metilico e ammoiaca secodo la reazioe: (g) + H (g) H(g) + (g). Soo oti i segueti dati a 5 C G f (kj mol -1 ) (g).16

Dettagli

Esercitazione parte 1 Medie e medie per dati raggruppati. Esercitazione parte 2 - Medie per dati raggruppati

Esercitazione parte 1 Medie e medie per dati raggruppati. Esercitazione parte 2 - Medie per dati raggruppati Esercitazioe parte Medie e medie per dati raggruppati el file dati0.xls soo coteute alcue distribuzioi di dati. Calcolare di ogua. Media aritmetica o Mostrare, co u calcolo automatico, che la somma degli

Dettagli

le dimensioni dell aiuola, con le limitazioni 0 x λ λ

le dimensioni dell aiuola, con le limitazioni 0 x λ λ PROBLEMA a) idicate co e co che e esprime l area è: le dimesioi dell aiuola, co le limitazioi 0 A( )., la fuzioe Per la ricerca del massimo si studia il sego della derivata prima Si ha: 0 / / A' ( ). Si

Dettagli

2.1. CONSIDERAZIONI GENERALI SULLA TEORIA DEL METODO AGLI ELEMENTI FINITI PER LA SIMULAZIONE DEI PROCESSI DI LAMIERA

2.1. CONSIDERAZIONI GENERALI SULLA TEORIA DEL METODO AGLI ELEMENTI FINITI PER LA SIMULAZIONE DEI PROCESSI DI LAMIERA Politecico di Torio Sistemi di Produzioe... CONSIDERAZIONI GENERALI SULLA TEORIA DEL METODO AGLI ELEMENTI FINITI PER LA SIMULAZIONE DEI PROCESSI DI LAMIERA... Equazioe di govero Negli ultimi ai il metodo

Dettagli

Caso studio 9. Distribuzioni doppie. Esempi

Caso studio 9. Distribuzioni doppie. Esempi 7/3/16 Caso studio 9 Si cosideri la seguete tabella che riporta i dati dei Laureati el 4 dei tre pricipali gruppi di corsi di laurea, per codizioe occupazioale a tre ai dalla laurea (Fote: ISTAT, Idagie

Dettagli

Esercitazioni del corso: STATISTICA

Esercitazioni del corso: STATISTICA A. A. Esercitazioi del corso: STATISTICA Sommario Esercitazioe : Matrice di dati Distribuzioi uivariate Rappresetazioi grafiche Idici di Posizioe Statistica a. a. - RICHIAMI MATEMATICI ) Approssimazioe

Dettagli

Le successioni di Fibonacci traslate

Le successioni di Fibonacci traslate Le successioi di iboacci traslate Di Cristiao Arellii, cristiao.arellii@alice.it U successioe di iboacci è ua successioe uerica descritta dalla forula di ricorreza: 0 0, ; +,,3,4,... ovvero ogi terie è

Dettagli

Introduzione alla dinamica delle strutture e spettri di progetto

Introduzione alla dinamica delle strutture e spettri di progetto GIOVANNI TRIGILI Itroduzioe alla diamica delle strutture e spettri di progetto Giovai Trigili INTRODUZIONE ALLA DINAMICA DELLE STRUTTURE E SPETTRI DI PROGETTO ISBN 978-88-7758-922-4 21 by Dario Flaccovio

Dettagli

x n (1.1) n=0 1 x La serie geometrica è un esempio di serie di potenze. Definizione 1 Chiamiamo serie di potenze ogni serie della forma

x n (1.1) n=0 1 x La serie geometrica è un esempio di serie di potenze. Definizione 1 Chiamiamo serie di potenze ogni serie della forma 1 Serie di poteze È stato dimostrato che la serie geometrica x (1.1) coverge se e solo se la ragioe x soddisfa la disuguagliaza 1 < x < 1. I realtà c è covergeza assoluta i ] 1, 1[. Per x 1 la serie diverge

Dettagli

STATISTICA INFERENZIALE

STATISTICA INFERENZIALE STATISTICA INFERENZIALE 6 INFERENZA STATISTICA Isieme di metodi che cercao di raggiugere coclusioi sulla popolazioe, sulla base delle iformazioi coteute i u campioe estratto da quella popolazioe. INFERENZA

Dettagli

1 Congruenze. Definizione 1.1. Siano a, b, n Z con n 2, definiamo a b (mod n) se n a b.

1 Congruenze. Definizione 1.1. Siano a, b, n Z con n 2, definiamo a b (mod n) se n a b. 1 Cogrueze Defiizioe 1.1. Siao a, b, Z co 2, defiiamo a b (mod ) se a b. Proposizioe 1.2. 2 la cogrueza mod è ua relazioe di equivaleza su Z. a a () perché a a a b () b a () a b () b c () a b b c a c =

Dettagli

ELEMENTI DI STATISTICA. Giancarlo Zancanella 2015

ELEMENTI DI STATISTICA. Giancarlo Zancanella 2015 ELEMENTI DI STATISTICA Giacarlo Zacaella 2015 2 Itroduzioe I termii statistici soo molto utilizzati el liguaggio correte 3 Cos è la STATISTICA STATISTICA = scieza che studia i feomei collettivi o di massa

Dettagli

Equazioni differenziali

Equazioni differenziali Equazioi differeziali Defiizioe 1 Si chiama equazioe differeziale u tipo particolare di equazioe fuzioale, ella quale la fuzioe icogita compare isieme ad alcue sue derivate, ossia u equazioe ella quale,

Dettagli

Sottospazi associati a matrici e forma implicita. Sottospazi associati a una matrice Dimensione e basi con riduzione Sottospazi e sistemi. Pag.

Sottospazi associati a matrici e forma implicita. Sottospazi associati a una matrice Dimensione e basi con riduzione Sottospazi e sistemi. Pag. Spazi vettoriali Sottospazi associati a ua matrice Dimesioe e basi co riduzioe Sottospazi e sistemi 2 Pag. 1 2006 Politecico di Torio 1 Spazi delle righe e delle coloe Sia A M m, ua matrice m x. Allora

Dettagli