Sottospazi vettoriali. Nota Bene: Questo materiale non deve essere considerato come sostituto delle lezioni.

Save this PDF as:

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Sottospazi vettoriali. Nota Bene: Questo materiale non deve essere considerato come sostituto delle lezioni."

Transcript

1 Politecnico di Torino. Sottospazi vettoriali. Nota Bene: Questo materiale non deve essere considerato come sostituto delle lezioni. Argomenti: Sottospazi. Generatori. Confrontando sottospazi: intersezione. Somma e somma diretta. Complemento e sottospazi complementari. Complemento ortogonale e proiezioni ortogonali. Esercizi: 20dimensione Sottospazi Sia V uno spazio vettoriale e sia W V un sottoinsieme non vuoto di V. W e un sottospazio di V se e chiuso rispetto alle combinazioni lineari. Essere chiuso rispetto alle combinazioni lineari significa che per qualsiasi vettori v, v 2,, v n W qualsiasi combinazione lineare c v + c 2 v c n v n e un vettore di W. Criterio del sottospazio. Sia W V un sottoinsieme. Per sapere se W e un sottospazio di V basta verificare: ) che il vettore nullo 0 di V appartenga a W; 2) che se due vettori v, w appartengono a W allora la loro somma v + w appartenga a W; 3) che se il vettore v appartiene a W allora qualsiasi moltiplo r v appartiene a W. Nota Uno spazio vettoriale e sempre sottospazio di se stesso. Inoltre, l insieme { 0 } e sempre un sottospazio di V e si chiama sottospazio banale ed e l unico sottospazio di dimensione zero. Esempio.. I sottospazi di R 2 di dimensione sono le rette passante per l origene. I sottospazio di R 3 di dimensione 2 sono i piani passanti per l origene. Invece una retta Sottospazi Vettoriali Geometria

2 . Generatori o equazioni? Politecnico di Torino. di R 3 che passa per l origene e un sottospazio di dimensione. Una retta di R 2 o R 3 che non passa per l origene non e un sottospazio. Esercizio.2. Fare il disegno del sottospazio che contiene il vettore (, ) nel piano R 2. Esercizio.3. Fare il disegno approssimato del sottospazio di dimensione che contiene il vettore (,, ) nello spazio R 3. Quanti sottospazi di R 3 di dimensione 2 contengono il vettore (,, )?. Generatori o equazioni? Siccome un sottospazio W e in particolare un sottoinsieme dello spazio vettoriale V ci sono due modi per determinare i suoi elementi: ) Esplicitamente mediante un sistema di generatori, cioe si danno esplicitamente k vettori w, w 2 w k e W e l insieme di tutte le loro combinanzioni lineari: W = {c w + c 2 w c k w k : c, c 2,, c k R} spesso si scrive L( w, w 2,, w k ) per il sottospazio generato da questi k vettori. Nota: Un sottospazio potrebbe essere definito come L( w,, w k ) in molti modi diversi. Esempio.4. Ecco un sottospazio definito in due modi diversi : uno usando 4 generatori e l altro con soltanto 2 generatori: L(,, 2, ) = L( 2, 3 ) ) Implicitamente mediante le equazioni che devono soddisfare i sui elementi. Ad esempio, i sottospazi W di R n spesso vengo definiti dando una matrice A R n,m dicendo che W e l insieme di tutte le soluzioni del sistema omogeneo AX = 0, cioe W = {X : AX = 0} = ker(a) Se un sottospazio W R n e definito dando le sue equazione allora per trovare un sistema di generatori bisogna risolvere il sistema AX = 0. Reciprocamente e anche possibile trovare l equazioni che definiscono un sottospazio L( w, w 2,, w k ) di R n. Ecco due esempi. Sottospazi Vettoriali 2 Geometria

3 . Generatori o equazioni? Politecnico di Torino. 5 Esempio.5. Sia W = L( 2, 0 ). Per trovare un sistema di equazioni che 3 2 defina W si osserva che una equazione omogenea ax + by + cz = 0 si puo interpretare x a come il prodotto scalare E X tra le colonna X = y e E = b. Dunque tutte z c le colonne E che pensate come equazioni valgono zero su i vettori di W soddisfano il sistema ( ) 2 3 E = L insieme soluzione e L( 7 ) e quindi W e definito implicitamente dalla equazione: 0 4x 7y + 0z = 0 Esempio.6. Il sottospazio L( ) di R4 e anche definito implicitamente dal sistema omogeneo MX = 0, cioe L( ) = ker(m), dove M e la matrice M = Esempio.7. Il sottospazio del esempio precedente si puo anche ricavare tramite la la matrice 0 0 N = cioe L( ) = ker(m) = ker(n) Sottospazi Vettoriali 3 Geometria

4 . Generatori o equazioni? Politecnico di Torino. Questi esempi fanno vedere che anche la definizione implicita di un sottospazio puo essere fatta di piu di un modo. Dunque un sottospazio W di R n normalmente se specifica dando una matrice A e indicando W = ker(a) oppure dando un matrice B e indicando che W = im(b) Se il sottospazio W se define mediante W = ker(a) in generale non e vero che W = im(a). Quello che e vero e che si puo trovare una matrice B tale che W = ker(a) = im(b). Infatti data A tale che W = ker(a) una matrice B si ottiene risolvendo il sistema AX = 0, cioe le colonne della matrice B devono essere un sistema di generatori di W. Invece se si conosce la matrice B tale che W = im(b) e possibile trovare una matrice A tale che W = ker(a) = im(b). Infatti una matrice A si ottiene risolvendo il sistema B X = 0, cioe le colonne di A devono essere un sistema di generatori di W = ker(b ). ( ) Esercizio.8. Sia W R 2 dato da W = ker. Trovare una matrice B tale 3 3 che W = im(b). Esercizio.9. Sia W R 3 dato da W = im che W = ker(a) Trovare una matrice A tale Osservazione: Se W = ker(a) = { 0 } R n allora come B si puo prendere la colonna nulla B = 0. Se invece W = im(b) = { 0 } allora come A si puo prendere la matrice identica, cioe W = ker() = { 0 }. In questo caso la matrice B e per forza la matrice nulla, poiche le sue colonne generano soltanto il vettore nullo e dunque sono tutte colonne nulle. Sottospazi Vettoriali 4 Geometria

5 Politecnico di Torino. 2 Confrontando sottospazi Dati due sottospazi W e W 2 di R n spesso e necessario rispondere a domande del tipo: Sono W e W 2 uguali? oppure e W contenuto in W 2?. Supponiamo che entrami W e W 2 sono dati usando generatori, cioe W = im(b ) W 2 = im(b 2 ). Calcolando il rango delle tre matrici B, B 2 e (B B 2 ) se determina se i sottospazi W e W 2 sono uguali, cioe W = W 2 se e soltanto se rango(b ) = rango(b 2 ) = rango(b B 2 ) dove (B B 2 ) e la matrice che si ottiene mettendo B 2 a destra della matrice B. Invece se soltanto sucede che rango(b ) = rango(b B 2 ) questo dice che W 2 e contenuto in W. Naturalmente se otteniamo che W e contenuto in W 2. rango(b 2 ) = rango(b B 2 ) La giustificazione di queste affermazione segue dal Teorema di Rouche- Capelli. ( ) 2 Esercizio 2.. Sia W = im 2 o W 2 W o W = W 2 o W W 2. Esercizio 2.2. Sia W = im ( 3 4 e sia W 2 = im Decidere se W W 2 o W 2 W o W = W 2 o W W 2. Il sottospazio intersezione W W 2 ). Decidere se W W 2 e sia W 2 = im puo essere utile per rispondere alle precedenti domande. Anzitutto, si nota che l intersezione e infatti un sottospazio di entrambi sottospazi W, W 2 e anche dello spazio vettoriale Sottospazi Vettoriali 5 Geometria

6 2. Somma e somma diretta Politecnico di Torino. V di cui W e W 2 sono sottospazi. Dunque confrontando dim(w W 2 ) con la dimensione dei sottospazi W, W 2 possiamo concludere se i sottospazio sono uguali o contenuti eventualmente uno in un altro. Ad esempio, se allora W 2 W. dim(w W 2 ) = dim(w 2 ) Se i sottospazi W e W 2 sono definiti come W = ker(a ) e W 2 = ker(a 3 ) allora : ( ) A W W 2 = ker dove A A 2 e la matrice ottenuta mettendo A 2 sotto di A. In parole povere, i vettori della interesezione W W 2 soddisfano contemporaneamente l equazioni di W e W 2. Nota: L intersezione W W 2 non e mai l insieme vuoto poiche il vettore nullo 0 appartiene ad entrambi sottospazi, cioe 0 W W 2. Puo capitare che 0 sia l unico vettore nella intersezione W W 2 in questo caso di dice che l interesezione e banale. Dunque l intersezione e banale se dim(w W 2 ) = 0. A 2 2. Somma e somma diretta La somma W + W 2 di due sottospazi e l insime ottenuto sommando tutti i vettori di W con tutti i vettori di W 2 : W + W 2 = { v + w : v W, w W 2 }. Si se sa che l intersezione W W 2 e banale allora si dice che la somma e somma diretta e si usa il simbolo W W 2 anziche W + W 2. Spesso si chiede o si ha bisogno di sapere se una somma e somma diretta. Dunque bisogna controllare se dim(w W 2 ) = 0. Ecco la Formula di Grassmann dim(w + W 2 ) = dim(w ) + dim(w 2 ) dim(w W 2 ) Sottospazi Vettoriali 6 Geometria

7 Politecnico di Torino. Esercizio 2.3. Calcolare dim(w + W 2 ) e dim(w W 2 ): ( ) ( ) (i) W = ker( ), W = ker (ii) W = im , W 2 = ker ( 2 3 ) (iii) W = im , W 2 = im Complemento e sottospazi complementari Due sottospazi W e W 2 dello spazio vettoriale V si dicono complementari se W W 2 = V. Si dice anche che W 2 e un complemento di W, che W e un complemento di W 2, che W 2 complementa W, ecc. Dunque due sottospazi W e W 2 sono complemetari se : ) Qualsiasi vettore v V si puo scrivere come v = w + w 2 con w W e w 2 W 2 2) w e w 2 sono unici. In parole povere, i vettori v di V hanno un pezzo w in W e un pezzo w 2 W 2 e questi pezzi sono unici.. Esempio 3.. Sia W = L((, )) il sottospazio di R 2 generato dal vettore (, ). Allora L(, 0) e un complemento di W. Ma anche L(, ) e un complemento di W. Cioe un sottospazio ha molti complementi. Se un sottospazio W R n e definito dai generatori, cioe come il sottospazio generato dalle colonne di una matrice A allora per trovare un complemento bisogna trovare una matrice B tale che : rango(a B) = rango(a) + rango(b) = n Una il sottospazio generato dalle colonne di B e dunque un complemento di W. Questa procedura e facile se la trasposta A e ridotta per righe. Sottospazi Vettoriali 7 Geometria

8 3. Piu di due sommandi Politecnico di Torino. Esempio 3.2. Sia W il sottospazio di R 5 generato dalle colonne di A = ( ) Siccome la trasposta A = e ridotta per righe basta completare A ad una matrice quadrata ridotta per righe: Dunque un complementare di W e il sottospazio L(e, e 4, e 5 ). generato dalle 3 colonne canoniche e, e 4, e 5. Osservare che anche il sottospazio L(e 3, e 4, e 5 ) complementa W. 3. Piu di due sommandi Se invece W, W 2, W 3 somma sono tre sottospazi dello spazio vettoriale V possiamo fare la W + W 2 + W 3 = { w V : w = w + w 2 + w 3 ; w i W i, i =, 2, 3} cioe un vettore della somma si sprime come somme di tre pezzi uno in ciascuno dei sottospazi W, W 2 e W 3. Esempio 3.3. Lo spazio R 3 e somma W +W 2 +W 3 dove W e l asse x, W 2 e l asse y e W 3 e l asse z. Il vettore v = (5, 3, ) e somma di tre vettori ciascuno in un asse: (5, 3, ) = (5, 0, 0) + (0, 3, 0) + (0, 0, ) Sottospazi Vettoriali 8 Geometria

9 Politecnico di Torino. La somma si puo anche fare con qualsiasi numero di sottospazi, cioe se W,, W n sono sottospazi di uno spazio vettoriale V allora la somma W + + W n e il sottospazio di V ottenuto sommando tutti i vettori dei W i tra di loro. Dunque se v W + + W n allora v e somma di vettori v i W i : v = v + + v n. Se il modo di scrivere v come somma di vettori in W i e unica, cioe se i pezzi v, v 2,, v n sono determinati unici allora si dice che la somma W + + W n e diretta e se usa il simbolo, cioe si scrive W W n. I pezzi v i che formano il vettore v si chiamano proiezioni del vettore v. Esempio 3.4. Siano W, W 2, W 3 i seguenti sottospazi di R 4 W = L(e, e 2 ) W 2 = L(e 3 ) W 3 = L(e 4 ) Allora R 4 = W W 2 W 3. Le proizioni del vettore v = (8, 7, 4, 3) sono v = (8, 7, 0, 0) v 2 = (0, 0, 4, 0) v 3 = (0, 0, 0, 3) 4 Complemento ortogonale e proiezioni ortogonali Per i sottospazi W di R n c e sempre un complemento privilegiato: il complemento ortogonale W : W = {X R n : X Y = 0 Y W} dove le lettere X, Y indicano i vettori di R n come colonne e X Y e il loro prodotto scalare. Dunque un vettore X di R n appartiene ad W se e perpendicolare a tutti i vettori di W. La somma W + W e diretta, cioe R n = W W. Infatti, l unico vettore v nella intersezione W W e il vettore nullo poiche se v W W il vettore v e perpendicolare a se stesso e dunque v = 0. Spesso interessa trovare le proiezioni ortogonali Y, Y 2 di un vettore Y R n rispetto alla somma diretta R n = W W, cioe dato Y trovare Y W e Y 2 W tale che Y = Y + Y 2. Talvolta serve soltanto trovare Y e non ci interessa Y 2. Sottospazi Vettoriali 9 Geometria

10 Politecnico di Torino. Esempio 4.. Sia W = L(X, X 2 ) R dove e sia X = ( 3, 3,,, 0, 0, 0,, 2, 2, 3) X 2 = ( 4, 2, 3, 0, 2,, 2,, 0, 3, 4) Y = (5, 6, 5, 0, 3,, 2, 3, 2, 5, 6). Per trovare la proiezione ortogonale Y di Y su W si raggiona come segue: ) si osserva che Y = ax + bx 2 dove a, b sono due numeri incogniti che dovremmo trovare. 2) questi numeri a, b sodisfanno un sistema non omogeneo 2 2. Infatti, faccendo prodotto scalare prima con X e dopo con X 2 otteniamo Y.X = a(x.x ) + b(x 2.X ) Y.X 2 = a(x.x 2 ) + b(x 2.X 2 ) dunque { Y.X = a38 + b40 Y.X 2 = a40 + b64 inoltre siccome la proiezione Y 2 e perpendicolare ad entrambi X, X 2 risulta che Y.X = Y.X = 73 Y.X 2 = Y.X 2 = 00 e cioe i numeri a, b sono soluzioni del sistema { 73 = a38 + b40 dunque a = 2 26, b = ed ecco Y : 00 = a40 + b64 Y = 2 55 X X2 = ( , 59 3, , 2 26, 55 26, 55 52, 55 26, 97 52, 2 3, , ) Osservare che in realta quello che conta e trovare i numeri a, b poiche sono loro che determinano Y. 2 Esercizio 4.2. Sia W = im(b) R 5 dove B = 0 e sia Y = (, 2, 3, 4, 5). 2 Calcolare la proiezione ortogonale Y di Y su W. Sottospazi Vettoriali 0 Geometria

Corso di Geometria BIAR, BSIR Esercizi 4: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 4: soluzioni Corso di Geometria - BIAR, BSIR Esercizi : soluzioni Esercizio. Sono dati i seguenti sistemi lineari omogenei nelle incognite x, y, z: { x + y z = x + y z = x + y z = S : x y + z =, S :, S 3 : x 3y =,

Dettagli

Esercizi svolti. delle matrici

Esercizi svolti. delle matrici Esercizi svolti. astratti. Si dica se l insieme delle coppie reali (x, y) soddisfacenti alla relazione x + y è un sottospazio vettoriale di R La risposta è sì, perchè l unica coppia reale che soddisfa

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 3: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 3: soluzioni Corso di Geometria - BIAR, BSIR Esercizi : soluzioni Rango e teorema di Rouché-Capelli Esercizio. Calcolare il rango di ciascuna delle seguenti matrici: ( ) ( ) ( ) A =, A =, A =, A 4 = ( ). a a a Soluzione.

Dettagli

1 Indipendenza lineare e scrittura unica

1 Indipendenza lineare e scrittura unica Geometria Lingotto. LeLing7: Indipendenza lineare, basi e dimensione. Ārgomenti svolti: Indipendenza lineare e scrittura unica. Basi e dimensione. Coordinate. Ēsercizi consigliati: Geoling. Indipendenza

Dettagli

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA Cognome Nome Matricola FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA Ciarellotto, Esposito, Garuti Prova del 21 settembre 2013 Dire se è vero o falso (giustificare le risposte. Bisogna necessariamente rispondere

Dettagli

1.[25 punti] Risolvere il seguente sistema di equazioni lineari al variare del parametro reale λ: X +Y +Z = 2. X 2Y +λz = 2

1.[25 punti] Risolvere il seguente sistema di equazioni lineari al variare del parametro reale λ: X +Y +Z = 2. X 2Y +λz = 2 Università di Modena e Reggio Emilia Facoltà di Scienze MM.FF.NN. PROVA SCRITTA DI GEOMETRIA A del 27 giugno 2011 ISTRUZIONI PER LO SVOLGIMENTO. Scrivere cognome, nome, numero di matricola in alto a destra

Dettagli

Vettori dello spazio

Vettori dello spazio 0.1 Vettori applicati e liberi Politecnico di Torino. Vettori dello spazio Nota Bene: delle lezioni. Questo materiale non deve essere considerato come sostituto 0.1 Vettori applicati e liberi P P Q Q Il

Dettagli

Rango di una matrice e teorema di Rouché-Capelli

Rango di una matrice e teorema di Rouché-Capelli Rango di una matrice e teorema di Rouché-Capelli Sappiamo che a una matrice m n, A, è associata l applicazione lineare L A : R n R m, L A (X) = AX, X R n. Definizione 1. Lo spazio nullo di A, N (A), è

Dettagli

a + 2b + c 3d = 0, a + c d = 0 c d

a + 2b + c 3d = 0, a + c d = 0 c d SPAZI VETTORIALI 1. Esercizi Esercizio 1. Stabilire quali dei seguenti sottoinsiemi sono sottospazi: V 1 = {(x, y, z) R 3 /x = y = z} V = {(x, y, z) R 3 /x = 4} V 3 = {(x, y, z) R 3 /z = x } V 4 = {(x,

Dettagli

Applicazioni Lineari. Nota Bene: Questo materiale non deve essere considerato come sostituto delle lezioni.

Applicazioni Lineari. Nota Bene: Questo materiale non deve essere considerato come sostituto delle lezioni. Politecnico di Torino. Applicazioni Lineari. Nota Bene: Questo materiale non deve essere considerato come sostituto delle lezioni. Argomenti: Basi e coordinate. Applicazioni lineari. Matrici come applicazioni

Dettagli

Corso di Geometria Ing. Informatica e Automatica Test 1: soluzioni

Corso di Geometria Ing. Informatica e Automatica Test 1: soluzioni Corso di Geometria Ing. Informatica e Automatica Test : soluzioni k Esercizio Data la matrice A = k dipendente dal parametro k, si consideri il k sistema lineare omogeneo AX =, con X = x x. Determinare

Dettagli

Geometria BAER A.A. Canale I Foglio esercizi 4

Geometria BAER A.A. Canale I Foglio esercizi 4 Geometria BAER A.A. Canale I Foglio esercizi 4 Esercizio. Si trovino basi degli spazi delle soluzioni dei seguenti sistemi lineari Soluzione: Sol(S ) = L[ x + 3x x 3 + 5x 4 = S : x + 3x x 3 + x 4 = S x

Dettagli

Dim. Usare la chiusura rispetto al prodotto esterno (vedi appunti lezione o libri di testo).

Dim. Usare la chiusura rispetto al prodotto esterno (vedi appunti lezione o libri di testo). ESERCIZI PER CASA di GEOMETRIA per il Corso di Laurea di Scienze dei Materiali, Facoltà di Scienze MM.FF.NN., UNICAL (Dott.ssa Galati C.) Rende, 28 maggio 29 Sottospazi di uno spazio vettoriale, sistemi

Dettagli

Nozioni e notazioni: concetti primitivi di insieme, elemento ed appartenenza.

Nozioni e notazioni: concetti primitivi di insieme, elemento ed appartenenza. Geometria I lezione del 30 settembre 2013 Presentazione del corso. Nozioni e notazioni: concetti primitivi di insieme, elemento ed appartenenza. Insiemi numerici: i numeri naturali, gli interi, i numeri

Dettagli

Esame di Geometria - 9 CFU (Appello del 14 gennaio A)

Esame di Geometria - 9 CFU (Appello del 14 gennaio A) Esame di Geometria - 9 CFU (Appello del 4 gennaio 24 - A) Cognome: Nome: Nr.matricola: Corso di laurea: Esercizio. Si considerino le rette s : { x x 2 2x 3 = 2 3x x 2 =, { x + x s 2 : 2 x 3 = x 2 =.. Stabilire

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a Prova scritta del TESTO E SOLUZIONI

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a Prova scritta del TESTO E SOLUZIONI UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a. 2011-2012 Prova scritta del 28-1-2013 TESTO E SOLUZIONI 1. Per k R considerare il sistema lineare X 1 X 2 + kx 3 =

Dettagli

Esame scritto di Geometria I

Esame scritto di Geometria I Esame scritto di Geometria I Università degli Studi di Trento Corso di laurea in Fisica A.A. 26/27 Appello di febbraio 27 Esercizio Sia f h : R R l applicazione lineare definita da f h (e ) = 2e + (2 h)e

Dettagli

P z. OP x, OP y, OP z sono le proiezioni ortogonali di v sugli assi x, y, z, per cui: OP x = ( v i) i. k j. P x. OP z = ( v k) k

P z. OP x, OP y, OP z sono le proiezioni ortogonali di v sugli assi x, y, z, per cui: OP x = ( v i) i. k j. P x. OP z = ( v k) k Richiami di calcolo vettoriale Consideriamo il vettore libero v = OP. Siano P x, P y, P z le proiezioni ortogonali di P sui tre assi cartesiani. v è la diagonale del parallelepipedo costruito su OP x,

Dettagli

VETTORIALE E PRODOTTO MISTO. PIANI E RETTE DI

VETTORIALE E PRODOTTO MISTO. PIANI E RETTE DI Universita degli Studi di Roma - "Tor Vergata" - Facolta Ingegneria Esercizi GEOMETRIA (Edile-Architettura e dell Edilizia) PRODOTTO VETTORIALE E PRODOTTO MISTO. PIANI E RETTE DI R 3. FASCI E STELLE. FORMULE

Dettagli

Corso di GEOMETRIA Dipartimento di Ingegneria ed Architettura Università degli Studi di Trieste Prof. Fabio Perroni. 5. Rango

Corso di GEOMETRIA Dipartimento di Ingegneria ed Architettura Università degli Studi di Trieste Prof. Fabio Perroni. 5. Rango Corso di GEOMETRIA Dipartimento di Ingegneria ed Architettura Università degli Studi di Trieste Prof Fabio Perroni 5 Rango Definizione 1 Sia A M m,n (K) una matrice m n a coefficienti nel campo K Il rango

Dettagli

21 settembre Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...

21 settembre Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA... COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono stati consegnati tre fogli, stampati fronte e retro. Come prima cosa scrivi

Dettagli

Geometria BAER Canale I Esercizi 11

Geometria BAER Canale I Esercizi 11 Geometria BAER Canale I Esercizi 11 Esercizio 1. Data la retta x = t r : y = t z = 1 si trovi il punto A di r tale che l angolo di r con il vettore AO sia π/2, e il punto B di r tale che l angolo di r

Dettagli

1 Equazioni parametriche e cartesiane di sottospazi affini di R n

1 Equazioni parametriche e cartesiane di sottospazi affini di R n 2 Trapani Dispensa di Geometria, Equazioni parametriche e cartesiane di sottospazi affini di R n Un sottospazio affine Σ di R n e il traslato di un sottospazio vettoriale. Cioe esiste un sottospazio vettoriale

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI Esercizi Esercizio Date le seguenti applicazioni lineari f : R 2 R 3 definita da fx y = x 2y x + y x + y; 2 g : R 3 R 2 definita da gx y z = x + y x y; 3 h : Rx] 2 R 2 definita da

Dettagli

Geometria analitica: rette e piani

Geometria analitica: rette e piani Geometria analitica: rette e piani Equazioni del piano Intersezioni di piani. Rette nello spazio Fasci di piani e rette Intersezioni fra piani e rette Piani e rette ortogonali Piani di forma parametrica

Dettagli

dipendenti. Cosa possiamo dire sulla dimensione di V?

dipendenti. Cosa possiamo dire sulla dimensione di V? Esercizi Esercizi. In uno spazio vettoriale V ci sono tre vettori v, v 2, v linearmente indipendenti. Cosa possiamo dire sulla dimensione di V? 2. In uno spazio vettoriale V ci sono tre vettori v, v 2,

Dettagli

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA CHIMICA E DEI MATERIALI 8 LUGLIO 2015

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA CHIMICA E DEI MATERIALI 8 LUGLIO 2015 FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA CHIMICA E DEI MATERIALI 8 LUGLIO 2015 MATTEO LONGO Svolgere entrambe le parti (Teoria ed Esercizi Si richiede la sufficienza su entrambe le parti 1

Dettagli

Esercitazione 6 - Soluzione

Esercitazione 6 - Soluzione Anno Accademico 28-29 Corso di Algebra Lineare e Calcolo Numerico per Ingegneria Meccanica Esercitazione 6 - Soluzione Immagine, nucleo. Teorema di Rouché-Capelli. Esercizio Sia L : R 3 R 3 l applicazione

Dettagli

1 Esercizi di ripasso 4

1 Esercizi di ripasso 4 Esercizi di ripasso 4. Determinare k in modo che il piano kx + 2y 6z + = 0 sia parallelo al piano x + y z + = 0. Soluzione. La condizione di parallelismo richiede che ( ) k 2 6 rg = Ne segue che k = e

Dettagli

Geometria Prova scritta, appello unico, sessione autunnale Corso di laurea in fisica A.A 2017/2018 Canali A C, e L Pa

Geometria Prova scritta, appello unico, sessione autunnale Corso di laurea in fisica A.A 2017/2018 Canali A C, e L Pa Geometria Prova scritta, appello unico, sessione autunnale Corso di laurea in fisica A.A 27/28 Canali A C, e L Pa Durata: 2 ore e 3 minuti Simone Diverio Alessandro D Andrea Paolo Piccinni 7 settembre

Dettagli

Geometria BAER I canale Foglio esercizi 5

Geometria BAER I canale Foglio esercizi 5 Geometria BAER I canale Foglio esercizi 5 Esercizio. Si considerino i sottospazi di R 4 : E = L[v =, v = Si trovi una base di E F. ] F = L[w = 3, w = 4, w 3 = Soluzione: Osserviamo che w 3 = w + w, dunque

Dettagli

Analisi Matematica 1 e Matematica 1 Geometria Analitica: Rette

Analisi Matematica 1 e Matematica 1 Geometria Analitica: Rette Analisi Matematica 1 e Matematica 1 Geometria Analitica: Rette Annalisa Amadori e Benedetta Pellacci amadori@uniparthenope.it pellacci@uniparthenope.it Università di Napoli Parthenope Contenuti Nel Piano

Dettagli

12 gennaio Commenti esame di geometria - Ing. gestionale - a.a

12 gennaio Commenti esame di geometria - Ing. gestionale - a.a Questo documento riporta commenti, approfondimenti o metodi di soluzione alternativi per alcuni esercizi dell esame Ovviamente alcuni esercizi potevano essere risolti utilizzando metodi ancora diversi

Dettagli

Algebra lineare. Laboratorio di programmazione e calcolo CdL in Chimica. Pierluigi Amodio

Algebra lineare. Laboratorio di programmazione e calcolo CdL in Chimica. Pierluigi Amodio Algebra lineare Laboratorio di programmazione e calcolo CdL in Chimica Pierluigi Amodio Dipartimento di Matematica Università di Bari pierluigi.amodio@uniba.it http://dm.uniba.it/ amodio A.A. 2016/17 P.

Dettagli

ax 1 + bx 2 + c = 0, r : 2x 1 3x 2 + 1 = 0.

ax 1 + bx 2 + c = 0, r : 2x 1 3x 2 + 1 = 0. . Rette in R ; circonferenze. In questo paragrafo studiamo le rette e le circonferenze in R. Ci sono due modi per descrivere una retta in R : mediante una equazione cartesiana oppure mediante una equazione

Dettagli

Esame di Geometria e Algebra Lineare Politecnico di Milano Ingegneria informatica Appello 30 Aprile 2015 Cognome: Nome: Matricola:

Esame di Geometria e Algebra Lineare Politecnico di Milano Ingegneria informatica Appello 30 Aprile 2015 Cognome: Nome: Matricola: Esame di Geometria e Algebra Lineare Politecnico di Milano Ingegneria informatica Appello 3 Aprile 25 Cognome: Nome: Matricola: Tutte le risposte devono essere motivate. Gli esercizi vanno svolti su questi

Dettagli

Definizione 1 Un insieme (V, +, ) dotato delle due operazioni: - + somma di elementi v 1 V, v 2 V ;

Definizione 1 Un insieme (V, +, ) dotato delle due operazioni: - + somma di elementi v 1 V, v 2 V ; Spazi vettoriali Definizione Un insieme (V, +, ) dotato delle due operazioni: - + somma di elementi v V, v V ; - prodotto per uno scalare λ K, (K campo); e chiuso rispetto ad esse, è uno spazio vettoriale

Dettagli

Lezione del 5 dicembre. Sottospazi vettoriali.

Lezione del 5 dicembre. Sottospazi vettoriali. Lezione del 5 dicembre. Sottospazi vettoriali. 1. Sottospazi vettoriali. Identificato lo spazio con R 3 tramite un sistema di riferimento cartesiano ortogonale, consideriamo un piano passante per l origine

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a Prova scritta del TESTO E SOLUZIONI

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a Prova scritta del TESTO E SOLUZIONI UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a. 2015-2016 Prova scritta del 16-9-2016 TESTO E SOLUZIONI Svolgere tutti gli esercizi. 1. Per k R considerare il sistema

Dettagli

SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n

SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n SPAZI E SOTTOSPAZI 1 SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n Spazi di matrici. Spazi di polinomi. Generatori, dipendenza e indipendenza lineare, basi e dimensione. Intersezione e somma di sottospazi,

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 9: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 9: soluzioni Corso di Geometria 2010-11 BIAR, BSIR Esercizi 9: soluzioni Esercizio 1. Nello spazio sono dati i punti A = (1, 2, 3), B = (2, 4, 5), C = (1, 1, 4). a) Scrivere equazioni parametriche della retta r 1 passante

Dettagli

Sottospazi vettoriali

Sottospazi vettoriali Capitolo 6 Sottospazi vettoriali 6.1 Introduzione Riprendiamo un argomento già studiato ampiamente nel corso di Geometria, i sottospazi vettoriali di uno spazio vettoriale. Ci limiteremo a darne la definizione,

Dettagli

Geometria analitica: rette e piani

Geometria analitica: rette e piani Geometria analitica: rette e piani parametriche Allineamento nel piano nello spazio Angoli tra rette e distanza 2 2006 Politecnico di Torino 1 Esempio 2 Sia A = (1, 2). Per l interpretazione geometrica

Dettagli

2 Sistemi lineari. Metodo di riduzione a scala.

2 Sistemi lineari. Metodo di riduzione a scala. Sistemi lineari. Metodo di riduzione a scala. Esercizio.1 Utilizzando il metodo di eliminazione di Gauss, risolvere i seguenti sistemi lineari: 1. 3. x 1 x + 3x 3 = 1 x 1 x x 3 = x 1 + x + 3x 3 = 5 x 1

Dettagli

Lezione 10: Teorema di Rouchè-Capelli e la classificazione dei sistemi lineari

Lezione 10: Teorema di Rouchè-Capelli e la classificazione dei sistemi lineari Lezione 10: Teorema di Rouchè-Capelli e la classificazione dei sistemi lineari In questa lezione ci dedicheremo a studiare a fondo quali proprietà della matrice dei coefficienti di un sistema (e della

Dettagli

ESERCIZI DI MATEMATICA DISCRETA ANNO 2006/2007

ESERCIZI DI MATEMATICA DISCRETA ANNO 2006/2007 ESERCIZI DI MATEMATICA DISCRETA ANNO 6/7 //7 () Ridurre la seguente matrice ad una a scala ridotta utilizzando il metodo di Gauss-Jordan. Soluzione. () Determinare quante e quali sono le matrici a scala

Dettagli

Risoluzione di sistemi lineari

Risoluzione di sistemi lineari Risoluzione di sistemi lineari Teorema (Rouché-Capelli) Dato il sistema di m equazioni in n incognite Ax = b, con A M at(m, n) b R n x R n [A b] si ha che: matrice dei coefficienti, vettore dei termini

Dettagli

CORSO DI ALGEBRA LINEARE Anno Accademico 2004/2005 Appunti su SISTEMI di EQUAZIONI LINEARI

CORSO DI ALGEBRA LINEARE Anno Accademico 2004/2005 Appunti su SISTEMI di EQUAZIONI LINEARI CORSO DI ALGEBRA LINEARE Anno Accademico 2004/2005 Appunti su SISTEMI di EQUAZIONI LINEARI Lo studente ha forse già incontrato i sistemi di equazioni lineari alla scuola secondaria Con il termine equazione

Dettagli

Esercizi svolti. Geometria analitica: rette e piani

Esercizi svolti. Geometria analitica: rette e piani Esercizi svolti. Sistemi di riferimento e vettori. Dati i vettori v = i + j k, u =i + j + k determinare:. il vettore v + u ;. gli angoli formati da v e u;. i vettore paralleli alle bisettrici di tali angoli;

Dettagli

Geometria analitica I supplementi sulle rette. (M.S. Bernabei & H. Thaler)

Geometria analitica I supplementi sulle rette. (M.S. Bernabei & H. Thaler) Geometria analitica I supplementi sulle rette (M.S. Bernabei & H. Thaler) Siano dati un vettore v = li + mj = (l, m) non nullo e un punto P 0 = x 0, y 0. Cerchiamo la retta r che passa per il punto P 0

Dettagli

2. Determinare le dimensioni dei seguenti sottospazi W ed esibirne due basi basi diverse, quando è possibile:

2. Determinare le dimensioni dei seguenti sottospazi W ed esibirne due basi basi diverse, quando è possibile: aa 5-6 Esercizi 5 Basi dimensione e coordinate Soluzioni Apostol: Sezione 5 Esercizi 6a 7 8 9 Determinare le dimensioni dei seguenti sottospazi W ed esibirne due basi basi diverse quando è possibile: i

Dettagli

Esercizi 2. Soluzioni. 1. Siano dati i vettori 1 1, 1 R 3.

Esercizi 2. Soluzioni. 1. Siano dati i vettori 1 1, 1 R 3. Esercizi. Soluzioni.. Siano dati i vettori,, R. (i) Far vedere che formano una base di R. (ii) Ortonormalizzarla col metodo di Gram-Schmidt. (iii) Calcolare le coordinate del vettore X = 5 Sol. (i) Usiamo

Dettagli

Rette e piani nello spazio Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1

Rette e piani nello spazio Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1 ette e piani nello spazio Federico Lastaria, Analisi e Geometria 1 Politecnico di Milano Corso di Analisi e Geometria 1 Federico Lastaria federico.lastaria@polimi.it ette e piani nello spazio. 9 Gennaio

Dettagli

r 2 r 2 2r 1 r 4 r 4 r 1

r 2 r 2 2r 1 r 4 r 4 r 1 SPAZI R n 1. Esercizi Esercizio 1. Stabilire quali dei seguenti sottoinsiemi sono sottospazi: V 1 = {(x, y, z) R 3 /x = y = z} V = {(x, y, z) R 3 /x = 4} V 3 = {(x, y, z) R 3 /z = x } V 4 = {(x, y, z)

Dettagli

1 o ESONERO DI ALGEBRA (Studenti di Informatica canale D Andrea) 10 Novembre 2014 Soluzione

1 o ESONERO DI ALGEBRA (Studenti di Informatica canale D Andrea) 10 Novembre 2014 Soluzione 1 o ESONERO DI ALGEBRA (Studenti di Informatica canale D Andrea) 10 Novembre 2014 Soluzione 1. Scrivere la matrice associata all applicazione lineare T : R 3 R 4 definita da T (x, y, z) (2x + y z, 3y +

Dettagli

Università degli Studi di Bergamo Modulo di Geometria e Algebra Lineare (vecchio programma) 2 luglio 2014 Tema A

Università degli Studi di Bergamo Modulo di Geometria e Algebra Lineare (vecchio programma) 2 luglio 2014 Tema A Università degli Studi di Bergamo Modulo di Geometria e Algebra Lineare (vecchio programma) 2 luglio 24 Tema A Tempo a disposizione: 2 ore. Calcolatrici, libri e appunti non sono ammessi. Ogni esercizio

Dettagli

Esercizi Di Geometria 1 (BAER) Canale 1

Esercizi Di Geometria 1 (BAER) Canale 1 Esercizi Di Geometria 1 (BAER) Canale 1 SETTIMANA 9 (23 29 Novembre 2015) da consegnare Mercoledi 2 Dicembre. Esercizio 1. Sia E = (V,, ) uno spazio metrico finito dimensionale. sottospazio vettoriale

Dettagli

Capitolo 2 Spazi vettoriali Esercizi svolti Tutorato di geometria e algebra lineare. Marco Robutti

Capitolo 2 Spazi vettoriali Esercizi svolti Tutorato di geometria e algebra lineare. Marco Robutti Capitolo 2 Spazi vettoriali Esercizi svolti Tutorato di geometria e algebra lineare Marco Robutti 5 Ottobre 27 Introduzione Gli esercizi di questo capitolo riguardano i seguenti argomenti: Dato un insieme,

Dettagli

NOME COGNOME MATRICOLA CANALE

NOME COGNOME MATRICOLA CANALE NOME COGNOME MATRICOLA CANALE Fondamenti di Algebra Lineare e Geometria Proff. R. Sanchez - T. Traetta - C. Zanella Ingegneria Gestionale, Meccanica e Meccatronica, dell Innovazione del Prodotto, Meccatronica

Dettagli

Soluzioni. Foglio 1. Rette e piani. n x + c = 0. (1)

Soluzioni. Foglio 1. Rette e piani. n x + c = 0. (1) Soluzioni Foglio 1. Rette e piani. Esercizio 1. Se n è la normale al piano, sia c = n x 0. Dimostriamo prima che se x π, allora x soddisfa Si ha Sostituendo dentro (1) si ottiene n x + c = 0. (1) x = x

Dettagli

Geometria e Topologia I 18 maggio

Geometria e Topologia I 18 maggio Geometria e Topologia I 18 maggio 2005 64 17 Mappe affini (17.1) Definizione. Siano X e Y due spazi affini sullo stesso campo K. Una funzione f : X Y si dice affine (anche, mappa affine o trasformazione

Dettagli

Inversa di una matrice

Inversa di una matrice Geometria Lingotto. LeLing: La matrice inversa. Ārgomenti svolti: Inversa di una matrice. Unicita e calcolo della inversa. La inversa di una matrice. Il gruppo delle matrici invertibili. Ēsercizi consigliati:

Dettagli

15 Mappe affini mag-07 Geometria e Topologia I

15 Mappe affini mag-07 Geometria e Topologia I 62 2008-mag-07 Geometria e Topologia I 15 Mappe affini (15.1) Definizione. Siano X e Y due spazi affini sullo stesso campo K. Una funzione f : X Y si dice affine (anche, mappa affine o trasformatione affine)

Dettagli

Geometria BAER Canale A-K Esercizi 8

Geometria BAER Canale A-K Esercizi 8 Geometria BAER Canale A-K Esercizi 8 Esercizio. Si consideri il sottospazio U = L v =, v, v 3 =. (a) Si trovino le equazioni cartesiane ed una base ortonormale di U. (b) Si trovi una base ortonormale di

Dettagli

= (cioè le due terne di numeri direttori ( devono essere ) proporzionali). Tale uguaglianza non è verificata, poiché risulta ρ

= (cioè le due terne di numeri direttori ( devono essere ) proporzionali). Tale uguaglianza non è verificata, poiché risulta ρ Alcuni esercizi sullo spazio euclideo R Nel seguito R indicherà lo spazio euclideo tridimensionale standard, dotato del riferimento cartesiano naturale (pag 56-57 del libro Nota: gli esercizi proposti

Dettagli

Corso di Laurea in Fisica. Geometria 1. a.a Gruppo B. Prof. P. Piazza Soluzioni compito a casa del 17/11/06 B =

Corso di Laurea in Fisica. Geometria 1. a.a Gruppo B. Prof. P. Piazza Soluzioni compito a casa del 17/11/06 B = Corso di Laurea in Fisica. Geometria. a.a. 26-7. Gruppo B. Prof. P. Piazza Soluzioni compito a casa del 7//6 Soluzione esercizio. Sia B {e, e 2 } e sia B {v, v 2 }. La matrice B del cambiamento di base

Dettagli

Esercizi per Geometria II Geometria euclidea e proiettiva

Esercizi per Geometria II Geometria euclidea e proiettiva Esercizi per Geometria II Geometria euclidea e proiettiva Filippo F. Favale 8 aprile 014 Esercizio 1 Si consideri E dotato di un riferimento cartesiano ortonormale di coordinate (x, y) e origine O. Si

Dettagli

La retta nel piano. Supponiamo che la retta r sia assegnata attraverso un suo punto P 0 (x 0, y 0 ) e un vettore v (l, m) che ne indichi la direzione.

La retta nel piano. Supponiamo che la retta r sia assegnata attraverso un suo punto P 0 (x 0, y 0 ) e un vettore v (l, m) che ne indichi la direzione. La retta nel piano Equazioni vettoriale e parametriche di una retta Supponiamo che la retta r sia assegnata attraverso un suo punto P 0 (x 0, y 0 ) e un vettore v (l, m) che ne indichi la direzione. Condizione

Dettagli

13 febbraio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI

13 febbraio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI febbraio 0 - Soluzione esame di geometria - Ing. gestionale - a.a. 0-0 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono stati

Dettagli

NOTE DI ALGEBRA LINEARE v = a 1 v a n v n, w = b 1 v b n v n

NOTE DI ALGEBRA LINEARE v = a 1 v a n v n, w = b 1 v b n v n NOTE DI ALGEBRA LINEARE 2- MM 9 NOVEMBRE 2 Combinazioni lineari e generatori Sia K un campo e V uno spazio vettoriale su K Siano v,, v n vettori in V Definizione Un vettore v V si dice combinazione lineare

Dettagli

Note sui sistemi lineari

Note sui sistemi lineari Note sui sistemi lineari Sia K un campo e siano m e n due numeri interi positivi. Sia A M(m n, K) e sia b K m. Consideriamo il sistema lineare Ax = b nell incognita x K n (o, se preferite, nelle incognite

Dettagli

Geometria BAER Canale A-K Esercizi 10

Geometria BAER Canale A-K Esercizi 10 Geometria BAER 2016-2017 Canale A-K Esercizi Esercizio 1. Data la retta r : y = t z = 1 si trovi il punto A di r tale che l angolo di r con il vettore AO sia π/2, e il punto B di r tale che l angolo di

Dettagli

RETTE E PIANI. ove h R. Determinare i valori di h per cui (1) r h e α sono incidenti ed, in tal caso, determinare l angolo ϑ h da essi formato;

RETTE E PIANI. ove h R. Determinare i valori di h per cui (1) r h e α sono incidenti ed, in tal caso, determinare l angolo ϑ h da essi formato; RETTE E PIANI Esercizi Esercizio 1. Nello spazio con riferimento cartesiano ortogonale Oxyz si considerino la retta r h ed il piano α rispettivamente di equazioni x = 1 + t r h : y = 1 t α : x + y + z

Dettagli

Geometria analitica del piano pag 25 Adolfo Scimone. Equazione della retta perpendicolare ad una retta data passante per un punto

Geometria analitica del piano pag 25 Adolfo Scimone. Equazione della retta perpendicolare ad una retta data passante per un punto Geometria analitica del piano pag 5 Adolfo Scimone Equazione della retta perpendicolare ad una retta data passante per un punto Consideriamo una retta r di equazione r: ax by sia P ( x y), un punto del

Dettagli

VETTORI NELLO SPAZIO ORDINARIO ,

VETTORI NELLO SPAZIO ORDINARIO , VETTORI E GEOMETRIA ANALITICA 1 VETTORI NELLO SPAZIO ORDINARIO Vettori ordinari ed operazioni. Dipendenza ed indipendenza lineare, basi. Prodotto scalare, proiezioni, angoli. Prodotto vettoriale e prodotto

Dettagli

Sullo svolgimento di una delle quattro versioni della prova scritta di Geometria analitica e algebra lineare del giorno 11 febbraio 2013.

Sullo svolgimento di una delle quattro versioni della prova scritta di Geometria analitica e algebra lineare del giorno 11 febbraio 2013. Sullo svolgimento di una delle quattro versioni della prova scritta di Geometria analitica e algebra lineare del giorno febbraio 0 x + y + z = 0 Stabilire se le due rette r, di equazioni cartesiane ed

Dettagli

Soluzioni primi compitini - Geometria 1

Soluzioni primi compitini - Geometria 1 Soluzioni primi compitini - Geometria Caterina Vernieri Ottobre 7 Le soluzioni proposte non sono state riviste dai professori Soluzioni Primi Compitini - G I compitino 7//3 Esercizio Al variare di α R

Dettagli

RETTE E PIANI NELLO SPAZIO

RETTE E PIANI NELLO SPAZIO VETTORI E GEOMETRIA ANALITICA 1 RETTE E PIANI NELLO SPAZIO Rette e piani in forma cartesiana e parametrica. Parallelismo e perpendicolarità, posizioni reciproche tra rette e piani, distanze. Esercizio

Dettagli

SISTEMI LINEARI. x y + 2t = 0 2x + y + z t = 0 x z t = 0 ; S 3 : ; S 5x 2y z = 1 4x 7y = 3

SISTEMI LINEARI. x y + 2t = 0 2x + y + z t = 0 x z t = 0 ; S 3 : ; S 5x 2y z = 1 4x 7y = 3 SISTEMI LINEARI. Esercizi Esercizio. Verificare se (,, ) è soluzione del sistema x y + z = x + y z = 3. Trovare poi tutte le soluzioni del sistema. Esercizio. Scrivere un sistema lineare di 3 equazioni

Dettagli

Facsimile di prova d esame Esempio di svolgimento

Facsimile di prova d esame Esempio di svolgimento Geometria analitica 18 marzo 009 Facsimile di prova d esame Esempio di svolgimento 1 Nello spazio, riferito a coordinate cartesiane ortogonali e monometriche x,y,z, è assegnata la retta r di equazioni

Dettagli

1 Definizione di sistema lineare non-omogeneo.

1 Definizione di sistema lineare non-omogeneo. Geometria Lingotto LeLing: Sistemi lineari non-omogenei Ārgomenti svolti: Sistemi lineari non-omogenei Il metodo di Gauss-Jordan per sistemi non-omogenei Scrittura della soluzione generale Soluzione generale

Dettagli

SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE

SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE. Esercizi Esercizio. In R calcolare il modulo dei vettori,, ),,, ) ed il loro angolo. Esercizio. Calcolare una base ortonormale del sottospazio

Dettagli

1. Complemento ortogonale di un vettore non nullo Abbiamo visto che nel piano

1. Complemento ortogonale di un vettore non nullo Abbiamo visto che nel piano Geometria e Algebra (II), 11.12.12 1. Complemento ortogonale di un vettore non nullo Abbiamo visto che nel piano P O i vettori ortogonali ad un dato vettore non nullo descrivono una retta per O, e nello

Dettagli

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA CHIMICA E DEI MATERIALI 8 SETTEMBRE 2015 VERSIONE A

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA CHIMICA E DEI MATERIALI 8 SETTEMBRE 2015 VERSIONE A FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA CHIMICA E DEI MATERIALI 8 SETTEMBRE 015 VERSIONE A DOCENTE: MATTEO LONGO 1. Domande. Esercizi Esercizio 1 (8 punti). Al variare del parametro a R, considerare

Dettagli

Tutti gli esercizi della verifica di Ottobre più altri

Tutti gli esercizi della verifica di Ottobre più altri 1) Nell equazione generica della retta y = mx + q, che cosa rappresenta q? 2) Scrivere l equazione della retta che passa per il punto A(0;4) e perpendicolare a quella di equazione y = 1 3 x 5 ; b. tracciare

Dettagli

Appunti su Indipendenza Lineare di Vettori

Appunti su Indipendenza Lineare di Vettori Appunti su Indipendenza Lineare di Vettori Claudia Fassino a.a. Queste dispense, relative a una parte del corso di Matematica Computazionale (Laurea in Informatica), rappresentano solo un aiuto per lo

Dettagli

Manlio Bordoni. APPUNTI SULLA RAPPRESENTAZIONE DEI SOTTOSPAZI VETTORIALI DI R n I MODO. v 11. v n1

Manlio Bordoni. APPUNTI SULLA RAPPRESENTAZIONE DEI SOTTOSPAZI VETTORIALI DI R n I MODO. v 11. v n1 Manlio Bordoni APPUNTI SULLA RAPPRESENTAZIONE DEI SOTTOSPAZI VETTORIALI DI R n I MODO Sia dato un insieme di generatori v v =,, v k = v n di W : questo vuol dire che ogni vettore w W si scrive come combinazione

Dettagli

Sistemi lineari - Parte Seconda - Esercizi

Sistemi lineari - Parte Seconda - Esercizi Sistemi lineari - Parte Seconda - Esercizi Terminologia Operazioni elementari sulle righe. Equivalenza per righe. Riduzione a scala per righe. Rango di una matrice. Forma canonica per righe. Eliminazione

Dettagli

INGEGNERIA EDILE ARCHITETTURA ELEMENTI DI ALGEBRA LINEARE E GEOMETRIA 19 GIUGNO 2012

INGEGNERIA EDILE ARCHITETTURA ELEMENTI DI ALGEBRA LINEARE E GEOMETRIA 19 GIUGNO 2012 INGEGNERIA EDILE ARCHITETTURA ELEMENTI DI ALGEBRA LINEARE E GEOMETRIA 19 GIUGNO 2012 MATTEO LONGO Esercizio 1. Al variare del parametro a R, si consideri l applicazione lineare L a : R R definita dalle

Dettagli

Equazione vettoriale del piano

Equazione vettoriale del piano Osservazione (/) z s P 0 (x 0, y 0,z 0 ) P(x, y,z) v (0) v (0) +vt v (0) +vt+ut Corso di Laurea in Disegno Industriale Corso di Metodi Numerici per il Design 9 Marzo 00 Piani e posizioni reciproche rette

Dettagli

Le risposte vanno giustificate con chiarezza. 1) Nello spazio vettoriale V delle matrici 2 2 a coefficienti reali, considera le matrici A 1 = , A 4 =

Le risposte vanno giustificate con chiarezza. 1) Nello spazio vettoriale V delle matrici 2 2 a coefficienti reali, considera le matrici A 1 = , A 4 = Università degli Studi di Roma Tor Vergata. Corso di Laurea in Matematica Esame di Geometria 1 con Elementi di Storia Prof. F. Tovena 30 gennaio 2015 Le risposte vanno giustificate con chiarezza. 1 Nello

Dettagli

Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite

Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite 3 Sistemi lineari 3 Generalità Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite ovvero, in forma matriciale, a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n x

Dettagli

1 Combinazioni lineari.

1 Combinazioni lineari. Geometria Lingotto LeLing5: Spazi Vettoriali Ārgomenti svolti: Combinazioni lineari Sistemi lineari e combinazioni lineari Definizione di spazio vettoriale Ēsercizi consigliati: Geoling 6, Geoling 7 Combinazioni

Dettagli

Esame di geometria e algebra

Esame di geometria e algebra Laurea Ing. 9 febbraio 2007 Traccia I 1 In R 3 si consideri il sottoinsieme H = {(a, b, 2a + b) a, b R}. Stabilire se H è un sottospazio vettoriale di R 3 e, in caso affermativo, determinarne la dimensione

Dettagli

Fondamenti di ALGEBRA LINEARE E GEOMETRIA

Fondamenti di ALGEBRA LINEARE E GEOMETRIA Fondamenti di ALGEBRA LINEARE E GEOMETRIA Corso di laurea in Ingegneria Gestionale 2011-2012 Michel Lavrauw Dipartimento di Tecnica e Gestione dei Sistemi Industriali Università di Padova Lezione 19 Capitolo

Dettagli

Geometria BAER Canale I Esercizi 10

Geometria BAER Canale I Esercizi 10 Geometria BAER Canale I Esercizi 10 Esercizio 1. Data la retta x = t r : y = t z = 1 si trovi il punto A di r tale che l angolo di r con il vettore AO sia π/2, e il punto B di r tale che l angolo di r

Dettagli

1 Esercizi di ripasso 2

1 Esercizi di ripasso 2 Esercizi di ripasso. Sia P r : R R l endomorfismo che manda ogni vettore v R nella sua proiezione ortogonale sulla retta r passante per l origine di equazione x y =. Calcolare una matrice per P r. Determinare

Dettagli

Per le risposte utilizza gli spazi predisposti. Quando richiesto, il procedimento va esposto brevemente, ma in maniera comprensibile.

Per le risposte utilizza gli spazi predisposti. Quando richiesto, il procedimento va esposto brevemente, ma in maniera comprensibile. COGNOME............................... NOME..................................... Punti ottenuti Esame di geometria Scrivi cognome e nome negli spazi predisposti in ciascuno dei tre fogli. Per ogni domanda

Dettagli