Partiamo da un informazione comune a tutti gli alunni della scuola italiana: La somma degli angoli interni di un triangolo è 180.

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Partiamo da un informazione comune a tutti gli alunni della scuola italiana: La somma degli angoli interni di un triangolo è 180."

Transcript

1 1 Partiamo da un informazione comune a tutti gli alunni della scuola italiana: La somma degli angoli interni di un triangolo è 180. Come giustificare questo fatto? Con delle prove sperimentali, ad esempio. Proviamo così: 1) Prendi due cartoncini rettangolari uguali e disegna su di essi due triangoli uguali, che abbiano per base un lato del cartoncino e per vertice opposto alla base, un punto, E, qualsiasi del lato opposto. 2) Dal punto scelto, E, traccia la perpendicolare alla base AB (l altezza) 3) I triangoli ABE rimangono così divisi ciascuno in due triangoli rettangoli, AEF e BEF, i quali hanno un angolo acuto che coincide con quello del triangolo iniziale, ABE D E C D E C A F B A F B B 4) Ora ritaglia da un solo cartoncino, i due triangoli rettangoli AEF e BEF 5) Appoggiali sull altro cartoncino sovrapponendoli a quelli disegnati poi ruotali in modo che il punto A vada sul punto E, il punto F vada sul punto D e il punto E vada su A. In tal modo l angolo acuto alla base, ( EAF) va a collocarsi vicino all angolo al vertice (AEB) del triangolo grande. F AB F F AB F E D C E E B E 6) Ora osserva: che tipo di angolo formano i triangoli così accostati? 7) Si vede che si tratta di un angolo piatto. E, se rifletti bene, ti accorgi che i tre angoli in questione sono proprio gli angoli del triangolo iniziale. D Dunque, concludendo: La somma degli angoli interni di un triangolo misura 180, proprio come l angolo piatto che essi hanno formato.

2 2 Possiamo fornire un altra prova sperimentale di questo fatto Prendiamo un triangolo ed inseriamo al suo interno un oggetto di cui sia facile stabilire l orientamento, ad esempio una freccia o una matita A' B' A B A B A' B' Si vede che, se voglio cambiare l orientamento, la freccia deve percorrere un angolo. Così, nella seconda figura, si capisce che se la direzione è la stessa, ma l orientamento è opposto, la freccia deve aver percorso una rotazione complessiva di 180. La freccia ha percorso tre angoli ed ora ha l orientamento opposto. Dunque ha percorso 180. Ne consegue che la somma dei tre angoli percorsi doveva essere di 180. Dunque, concludendo: La somma degli angoli interni di un triangolo misura 180, proprio come l angolo piatto che è stato percorso.

3 3 Scheda 1 Proviamo ad applicare questa informazione, alla scoperta di altre proprietà delle figure geometriche. Come si può trovare la somma degli angoli interni di un poligono con più di tre lati? Iniziamo dai quadrilateri: 1) Determina la somma degli angoli interni di un quadrilatero e spiega come hai fatto. 2) Determina la somma degli angoli interni di un pentagono e spiega come hai fatto. 3) Quale relazione intercorre fra la somma degli angoli interni di un poligono e il numero dei suoi lati? Esprimiamo questo legame con una formula:

4 4 Alcune definizioni Nella figura qui sotto sono indicati due elementi dei poligoni: l angolo interno e l angolo esterno. ANGOLO INTERNO ANGOLO ESTERNO Prova a descriverli in modo che le parole illustrino in maniera chiara questi due elementi. Definizione di Angolo Interno di un poligono: Definizione di Angolo Esterno di un poligono: Relazione fra angolo interno e angolo esterno adiacenti RELAZIONE FRA ANGOLO INTERNO ED ANGOLO ESTERNO ADIACENTI ANGOLO INTERNO ANGOLO ESTERNO Quale relazione intercorre fra l angolo interno e quello esterno adiacente?

5 5 Il Teorema dell angolo esterno Abbiamo visto che l angolo esterno e quello interno ad esso adiacente formano un angolo di 180, e che la somma degli angoli interni di un triangolo vale 180. A partire da queste informazioni puoi dedurre la relazione che intercorre fra un l angolo esterno di un triangolo e gli altri due angoli interni, e, non adiacenti ad esso? Quello che hai appena dimostrato è uno dei più importanti teoremi della geometria e si chiama: Teorema dell angolo esterno. Proviamo ad enunciarlo:

6 6 Somma Angoli Esterni di un poligono Un altra definizione: La somma degli angoli esterni. Def. Si chiama Somma degli angoli esterni di un poligono, la somma degli angoli esterni ottenuti prolungando i lati sempre nello stesso verso. Nel poligono in figura, i lati sono stati prolungati in senso orario. Proviamo ora a scoprire cosa si può dire della somma degli angoli esterni di un poligono. Si può ricavare dai dati che abbiamo? Determina la somma degli angoli esterni di un triangolo e descrivi il ragionamento seguito: Quale relazione intercorre fra la somma degli angoli esterni di un poligono e il numero dei suoi lati?

7 7 Def: Un poligono si dice regolare quando ha : a) tutti i lati uguali fra loro e b) tutti gli angoli uguali fra loro. Poligoni regolari Se non ci fosse questa definizione così completa, non avremmo l idea che abbiamo di poligono regolare. Diciamo che, alla ricerca di un massimo di simmetria, desideriamo che tutti gli elementi dello stesso tipo (lati; angoli;) siano uguali fra loro. Ma è proprio necessario dire entrambe le cose? O si ottiene lo stesso risultato dicendone solo una? Rispondi alle domande seguenti: 1) E vero che se un poligono ha tutti i lati uguali fra loro, allora ha anche gli angoli uguali fra loro? Spiega la tua risposta 2) E vero che se un poligono ha tutti gli angoli uguali fra loro, allora ha anche i lati uguali fra loro? Spiega la tua risposta 3) Quanti tipi di poligono regolare si possono immaginare? 4) Come si può trovare l ampiezza di un solo angolo di un poligono regolare? 5) Scrivi la formula che consente di determinare l ampiezza di un solo angolo interno di un poligono regolare di n lati. 6) Determina l ampiezza dell angolo interno nei seguenti poligoni regolari: Triangolo equilatero.. Pentagono regolare Ottagono regolare.. Quadrato Esagono regolare Decagono regolare

8 8 Rispondi alle domande seguenti: Una piccola curiosità 1)Come si comporta l angolo interno di un poligono regolare all aumentare del numero dei lati? 2) La sua ampiezza aumenta indefinitamente? o c è un limite? 3) Cosa suggerisce la formula: n quando n è molto, molto. molto grande? n 4) E se n continua ad aumentare a quale numero la frazione n 2 n si avvicina sempre più? 5) A quale numero si avvicina allora l ampiezza dell angolo interno all aumentare dei lati? 6) Commenta il seguente disegno: ) Quanti lati ha un poligono regolare con un angolo di 179 gradi?

9 9 Riempimenti regolari del piano. (Tassellazioni o pavimentazioni di un piano infinito) Per pavimentazione regolare si intende un ricoprimento del piano con poligoni regolari tutti dello stesso tipo, accostati in modo che abbiano lati e vertici in comune, come accade nei pavimenti. 1) Qual è la legge geometrica che governa il riempimento del piano? (Osservare cosa accade nei vertici delle mattonelle che formano il pavimento) 2) Qui sotto sono elencati alcuni poligoni regolari. Stabilisci quali di essi possono essere usati per costruire un pavimento e per ognuno di essi, quanti convergono nello stesso vertice: Triangoli equilateri.. Quadrati Si e in ogni vertice ne convergono 4 Pentagoni.. Esagoni.. Ottagoni.. 3) A quale legge deve obbedire l ampiezza dell angolo dei poligoni regolari con i quali posso riempire il piano? Spiega la tua risposta 4) Disegna qui sotto le possibili pavimentazioni regolari 5) Dimostra che esistono solo tre tipi di pavimentazione regolare

10 10 Riempimenti semiregolari del piano Questa attività è il naturale proseguimento dell altra. Può contribuire a rinforzare le nozioni sugli angoli e a sviluppare la capacità dell alunno di vedere la matematica intorno a sé. Ora vogliamo studiare le tassellazioni del piano che si possono ottenere mescolando poligoni regolari delle stesse dimensioni (lati uguali), ma di tipo diverso. Ad esempio, usando quadrati e triangoli equilateri. Per questa ricerca fissiamo due regole: A) I vertici devono incontrarsi sui vertici (non devono esserci vertici di un poligono sui lati di un altro); B) Tutti i vertici del piano devono essere dello stesso tipo, cioè in ogni vertice deve concorrere lo stesso numero e tipo di poligoni, e con la stessa orientazione. 1) Quali moduli ( disposizioni) si possono avere con triangoli equilateri e quadrati? Fai un disegno e descrivi cosa accade in ogni vertice: 2) Sono ripetibili tali moduli? Vuol dire: si può continuare a pavimentare allo stesso modo? (con gli stessi poligoni, orientati allo stesso modo, in tutti i vertici) Abbiamo visto cosa accade usando triangoli equilateri e quadrati. 3) Con quali altre coppie (ad esempio, triangoli ed esagoni oppure quadrati e pentagoni, oppure ottagoni e quadrati di poligoni regolari si possono costruire pavimenti con i vertici tutti dello stesso tipo? Elenca i modi possibili: (per aiutarti, ti dirò che ne mancano solo 6. Riesci a trovarli tutti? )

11 11 4) In quanti modi si può ricoprire il piano con poligoni regolari di tre tipi diversi e i vertici tutti dello stesso tipo? Elenca alcuni modi possibili. ( In tutto sono solo 10, ma chissà se riesci a trovarli tutti? Cercane un po e fermati quando vuoi) 5) Dimostra che non è possibile con quattro tipi di poligono regolare.. 6) Enuncia il Teorema al quale si perviene con l ultima dimostrazione: 7) E ripetibile il modulo sotto illustrato? Giustifica la risposta 8) Riesamina le risposte date nella pagina precedente e stabilisci, per ogni situazione individuata, l effettiva costruibilità. 9) Prova a costruire e colorare alcuni pavimenti semiregolari

12 12 Riempimenti del piano con poligoni non regolari Questa attività è posta alla fine del lavoro sui riempimenti del piano, ma può essere presentata prima come gioco introduttivo, oppure dopo il lavoro con i poligoni regolari. Oppure alla fine per completare il lavoro e per fare riflettere su alcune proprietà poco note dei poligoni. Abbiamo visto come riempire il piano con poligoni regolari dello stesso tipo. Si può fare la stessa cosa utilizzando poligoni non regolari, tutti dello stesso tipo? Iniziamo dai triangoli 1) Si può riempire il piano usando solo triangoli della stessa forma? Spiega la tua risposta. (Costruire triangoli in cartoncino,tutti uguali fra loro e provare) 2) Si può riempire il piano usando solo quadrilateri della stessa forma? Spiega la tua risposta. (Costruire 10 quadrilateri uguali, in cartoncino e provare) 3) Si può riempire il piano con pentagoni non regolari tutti della stessa forma? Provare con pentagoni in cartoncino, non regolari, ma tutti uguali fra loro 4) A quali conclusioni si arriva?

SCUOLA SECONDARIA DI SECONDO GRADO. Contenuti Attività Metodo Strumenti Durata (in ore)

SCUOLA SECONDARIA DI SECONDO GRADO. Contenuti Attività Metodo Strumenti Durata (in ore) SCUOLA SECONDARIA DI SECONDO GRADO Obiettivi di apprendimento Contenuti Attività Metodo Strumenti Durata (in ore) Valutazione degli obiettivi di apprendimento Valutazione della competenza Conoscere i poligoni

Dettagli

Capitolo 6. I poligoni. (Ob. 4, 5, 6, 7, 9, 11, 12, 14, 15)

Capitolo 6. I poligoni. (Ob. 4, 5, 6, 7, 9, 11, 12, 14, 15) (Ob. 4, 5, 6, 7, 9, 11, 12, 14, 15) (vertici, lati, diagonali, convessità, angoli, perimetro) 6.2 I triangoli 6.3 I quadrilateri 6.4 I poligoni regolari 6.5 Le altezze 6.6 Le aree Un poligono è la parte

Dettagli

I POLIGONI. DEFINIZIONE: un poligono è una parte limitata di piano definita da una linea chiusa, spezzata, non intrecciata.

I POLIGONI. DEFINIZIONE: un poligono è una parte limitata di piano definita da una linea chiusa, spezzata, non intrecciata. I POLIGONI COS È UN POLIGONO? DEFINIZIONE: un poligono è una parte limitata di piano definita da una linea chiusa, spezzata, non intrecciata. Un poligono è fatto di: - SEGMENTI detti LATI - ESTREMI DEI

Dettagli

Somma degli angoli interni di un poligono

Somma degli angoli interni di un poligono 1 Somma degli angoli interni di un poligono Soluzioni Scheda 1 Possibili soluzioni: la somma degli angoli interni del poligono di 5 lati è 180x5-360 180 360 180 180x5-180x2 180 180 180 180x(5-2) in un

Dettagli

ARROTONDANDO FIGURE CON TRIANGOLI EQUILATERI

ARROTONDANDO FIGURE CON TRIANGOLI EQUILATERI ARROTONDANDO Cosa succede ad accostare figure identiche una all altra? Le figure ottenute che proprietà presentano? Posso trovare un qualche tipo di legge generale? Per rispondere a questa ed altre domande

Dettagli

I TRIANGOLI. Esistono vari tipi di triangoli che vengono classificati in base ai lati e agli angoli.

I TRIANGOLI. Esistono vari tipi di triangoli che vengono classificati in base ai lati e agli angoli. I TRIANGOLI Il triangolo è un poligono formato da tre angoli o vertici e da tre lati. Il triangolo è la forma geometrica con il minor numero di lati perché tre è il numero minimo di lati con cui si può

Dettagli

LE TRASFORMAZIONI GEOMETRICHE

LE TRASFORMAZIONI GEOMETRICHE LE TRASFORMAZIONI GEOMETRICHE LA SIMMETRIA ASSIALE Definizione: il simmetrico P di un punto P, rispetto alla simmetria assiale di asse r gode delle seguenti proprietà: P e P sono equidistanti da r e il

Dettagli

TITOLO: LEGGERE I QUADRILATERI

TITOLO: LEGGERE I QUADRILATERI TITOLO: LEGGERE I QUADRILATERI Competenze di riferimento: Comprendere ed interpretare l informazione: comprendere messaggi verbali e non verbali di vario genere; individuare ed interpretare l informazione,

Dettagli

Confrontare angoli Indica, colorando il quadratino, quali sono gli angoli retti tra quelli che vedi qui sotto.

Confrontare angoli Indica, colorando il quadratino, quali sono gli angoli retti tra quelli che vedi qui sotto. Confrontare angoli Indica, colorando il quadratino, quali sono gli angoli retti tra quelli che vedi qui sotto. R V T P S U Z Colora di verde le caselle corrispondenti agli angoli piatti e di rosso quelle

Dettagli

POLIGONI REGOLARI. ( Libro : teoria pag ; esercizi pag )

POLIGONI REGOLARI. ( Libro : teoria pag ; esercizi pag ) POLIGONI REGOLARI. ( Libro : teoria pag. 52 61; esercizi pag. 120 128) Un poligono è detto regolare quando Possiamo costruire un poligono regolare partendo o dalla circonferenza circoscritta al poligono

Dettagli

LA GEOMETRIA DELLA TARTARUGA

LA GEOMETRIA DELLA TARTARUGA LA GEOMETRIA DELLA TARTARUGA CAPITOLO 4 Tracciare figure Iniziamo con una figura semplice: il QUADRATO. Certamente sai che un quadrato ha tutti i lati uguali e gli angoli uguali. Dopo aver avviato Logo

Dettagli

1 La traslazione. 2 La composizione di traslazioni. 3 La rotazione

1 La traslazione. 2 La composizione di traslazioni. 3 La rotazione 1 La traslazione Per poter applicare una traslazione ad una generica figura geometrica si deve: ± creare il vettore di traslazione AB mediante il comando Vettore tra due punti; ± cliccare con il mouse

Dettagli

6. Trimini per tassellare il piano

6. Trimini per tassellare il piano 6. Trimini per tassellare il piano Osservando il pavimento sotto i vostri piedi, noterete che la sua superficie è interamente ricoperta da piastrelle identiche, probabilmente di forma triangolare, quadrata

Dettagli

GEOMETRIA CLASSE IV B A.S.

GEOMETRIA CLASSE IV B A.S. GEOMETRIA CLASSE IV B A.S. 2014/15 Insegnante: Stallone Raffaella RETTA, SEMIRETTA E SEGMANTO La retta è illimitata, non ha né inizio né fine. Si indica con una lettera minuscola. La semiretta è ciascuna

Dettagli

Stabilire se il punto di coordinate (1,1) appartiene alla circonferenza centrata nell origine e di raggio 1.

Stabilire se il punto di coordinate (1,1) appartiene alla circonferenza centrata nell origine e di raggio 1. Definizione di circonferenza e cerchio. Equazione della circonferenza centrata in O e di raggio R. Esercizi. La circonferenza e il cerchio Definizioni: dato un punto C nel piano cartesiano e dato un numero

Dettagli

POLIGONI REGOLARI. ( Libro : teoria pag ; esercizi pag ) Un poligono è detto regolare quando.

POLIGONI REGOLARI. ( Libro : teoria pag ; esercizi pag ) Un poligono è detto regolare quando. POLIGONI REGOLARI. ( Libro : teoria pag. 54 61; esercizi pag. 120 128) Un poligono è detto regolare quando. Possiamo costruire un poligono regolare partendo o dalla circonferenza circoscritta al poligono

Dettagli

IL TANGRAM. Il quadrato della saggezza. Il tangram e un' antica invenzione cinese e forse il più antico puzzle di carattere geometrico.

IL TANGRAM. Il quadrato della saggezza. Il tangram e un' antica invenzione cinese e forse il più antico puzzle di carattere geometrico. IL TANGRAM. Il quadrato della saggezza. Il tangram e un' antica invenzione cinese e forse il più antico puzzle di carattere geometrico. Consiste in un quadrato diviso in 7 parti, chiamati tan, come indicate

Dettagli

Poligoni con riga e compasso

Poligoni con riga e compasso Poligoni con riga e compasso Affrontiamo alcuni problemi di costruzione con riga e compasso, che ci aiuteranno a ricordare le principali relazioni tra le circonferenze e le rette, gli angoli inscritti,

Dettagli

Gli angoli corrispondenti sono congruenti; I lati corrispondenti, che si dicono lati omologhi, sono in rapporto costante:

Gli angoli corrispondenti sono congruenti; I lati corrispondenti, che si dicono lati omologhi, sono in rapporto costante: ome sai, se vuoi riprodurre una figura, puoi disegnarla perfettamente uguale rispettandone la forma e le dimensioni e cambiandone quindi solo la posizione. In questo caso la riproduci isometricamente,

Dettagli

Costruzioni geometriche. (Teoria pag , esercizi )

Costruzioni geometriche. (Teoria pag , esercizi ) Costruzioni geometriche. (Teoria pag. 81-96, esercizi 141-153 ) 1) Costruzione con squadra e riga. a) Rette parallele. Ricorda: due rette sono parallele quando.... oppure quando hanno la stessa. Matematicamente

Dettagli

PERCORSO 2 Poligoni e triangoli

PERCORSO 2 Poligoni e triangoli PERCORSO 2 Poligoni e triangoli di Elena Ballarin Riferimento al testo base: A. Acquati, Mate.com, volume 1B, capitolo 4, pp. 132-177 Destinatari: scuola secondaria di primo grado, classe 1 a In classe

Dettagli

POLIGONI E NON POLIGONI: elementi caratteristici, proprietà e relazioni.

POLIGONI E NON POLIGONI: elementi caratteristici, proprietà e relazioni. POLIGONI E NON POLIGONI: elementi caratteristici, proprietà e relazioni. Il problema dell altezza. Clara Colombo Bozzolo, Carla Alberti,, Patrizia Dova Nucleo di Ricerca in Didattica della Matematica Direttore

Dettagli

I punti di inizio e di fine della spezzata prendono il nome di estremi della spezzata. lati

I punti di inizio e di fine della spezzata prendono il nome di estremi della spezzata. lati I Poligoni Spezzata C A cosa vi fa pensare una spezzata? Qualcosa che si rompe in tanti pezzi A me dà l idea di un spaghetto che si rompe Se noi rompiamo uno spaghetto e manteniamo uniti i vari pezzi per

Dettagli

In un triangolo altezza mediana bisettrice asse Proprietà di angoli e lati di un triangolo

In un triangolo altezza mediana bisettrice asse Proprietà di angoli e lati di un triangolo In un triangolo si dice altezza relativa a un lato il segmento di perpendicolare al lato condotta dal vertice opposto. Si dice mediana relativa a un lato il segmento che unisce il punto medio del lato

Dettagli

Corso di Matematica - Geometria. Geometria - 0. Ing. L. Balogh

Corso di Matematica - Geometria. Geometria - 0. Ing. L. Balogh Geometria - 0 Triangoli qualunque somma degli angoli interni, calcolo del perimetro e dell area Oggetti Vertici Lati Angoli Altezza Raggio Simbolo A, B, C a, b, c,, h S, r Perimetro = + + Somma angoli

Dettagli

Principali Definizioni e Teoremi di Geometria

Principali Definizioni e Teoremi di Geometria Principali Definizioni e Teoremi di Geometria Segmento (definizione) Si dice segmento di estremi A e B l insieme costituito dai punti A e B e da tutti i punti della retta AB compresi tra A e B. Angolo

Dettagli

Introduzione. Nome. per la geometria. per le frazioni

Introduzione. Nome. per la geometria. per le frazioni Introduzione Questo volume contiene una serie di esercizi per gli alunni della scuola elementare dalla classe terza in poi, che mirano a consolidare i concetti matematici di base di geometria e di algebra

Dettagli

Geometria euclidea. Alessio del Vigna. Lunedì 15 settembre

Geometria euclidea. Alessio del Vigna. Lunedì 15 settembre Geometria euclidea Alessio del Vigna Lunedì 15 settembre La geometria euclidea è una teoria fondata su quattro enti primitivi e sulle relazioni che tra essi intercorrono. I quattro enti primitivi in questione

Dettagli

Far apprendere i concetti della geometria. Sviluppare la capacità di osservazione e ragionamento attraverso l esperienza.

Far apprendere i concetti della geometria. Sviluppare la capacità di osservazione e ragionamento attraverso l esperienza. Progetto: Far apprendere i concetti della geometria. Sviluppare la capacità di osservazione e ragionamento attraverso l esperienza. Offrire all alunno con DSA l opportunità di acquisire un metodo di lavoro

Dettagli

I TRIANGOLI. Geogebra l Triangoli COSTRUZIONE DEL TRIANGOLO ISOSCELE

I TRIANGOLI. Geogebra l Triangoli COSTRUZIONE DEL TRIANGOLO ISOSCELE I TRIANGOLI COSTRUZIONE DEL TRIANGOLO ISOSCELE Come sai il triangolo isoscele ha due lati della stessa lunghezza. Costruiamo il triangolo isoscele a partire dal lato disuguale. 1. Apri il programma Geogebra

Dettagli

Equivalenza delle figure piane

Equivalenza delle figure piane Capitolo Equivalenza Poligoni equivalenti - erifica per la classe seconda Teoremi di Pitagora ed Euclide COGNOME............................... NOME............................. Classe....................................

Dettagli

Unità Didattica N 25 Quadrilateri particolari

Unità Didattica N 25 Quadrilateri particolari Unità idattica N 25 Quadrilateri particolari 41 Unità idattica N 25 Quadrilateri particolari 01) efinizione di quadrilatero 02) efinizione di parallelogrammo 03) Teoremi diretti sul parallelogrammo 04)

Dettagli

Test di autovalutazione

Test di autovalutazione Test di autovalutazione Test 0 10 0 30 0 0 0 70 80 90 100 n Il mio punteggio, in centesimi, è n Rispondi a ogni quesito segnando una sola delle alternative. n onfronta le tue risposte con le soluzioni.

Dettagli

I poliedri SMS E. MAJORANA ROMA CLASSI 3F 3 H

I poliedri SMS E. MAJORANA ROMA CLASSI 3F 3 H I poliedri SMS E. MAJORANA ROMA CLASSI 3F 3 H Cosa è un poliedro? Definizioni: Un poliedro è la parte di spazio delimitata da poligoni posti su piani diversi in modo tale che ogni lato sia comune a due

Dettagli

ESPERIENZE CON GLI SPECCHI PIANI

ESPERIENZE CON GLI SPECCHI PIANI 1. Qual è la posizione dell immagine fornita da uno specchio piano? Di che tipo di immagine si tratta? Disponi il cilindro giallo dietro lo specchio, in modo che coincida con l immagine riflessa del cilindro

Dettagli

Simmetrie nei poliedri

Simmetrie nei poliedri Simmetrie nei poliedri Livello scolare: 1 biennio Abilità interessate Individuare e riconoscere nel mondo reale le figure. geometriche note e descriverle con la terminologia specifica. Analizzare con strumenti

Dettagli

METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA. Lezione n 12

METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA. Lezione n 12 METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA Lezione n 12 PARTE SECONDA GEOMETRIA SOLIDA UNA PREMESSA Diversi esperti di Didattica della Matematica ritengono che l approccio migliore, per la

Dettagli

GEOMETRIA ANALITICA. Il Piano cartesiano

GEOMETRIA ANALITICA. Il Piano cartesiano GEOMETRIA ANALITICA La geometria analitica consente di studiare e rappresentare per via algebrica informazioni di tipo geometrico. Lo studio favorisce una più immediata visualizzazione di informazioni,

Dettagli

La misura della lunghezza della poligonale si chiama perimetro del poligono. Due poligoni che hanno lo stesso perimetro si chiamano isoperimetrici.

La misura della lunghezza della poligonale si chiama perimetro del poligono. Due poligoni che hanno lo stesso perimetro si chiamano isoperimetrici. Perimetro La misura della lunghezza della poligonale si chiama perimetro del poligono. Quindi è la somma delle lunghezze dei lati. Due poligoni che hanno lo stesso perimetro si chiamano isoperimetrici.

Dettagli

ANALISI MATEMATICA DEI POLIEDRI ARCHIMEDEI

ANALISI MATEMATICA DEI POLIEDRI ARCHIMEDEI ANALISI MATEMATICA DEI POLIEDRI ARCHIMEDEI Ho affermato che le matematiche sono molto utili per abituare la mente a un raziocinio esatto e ordinato; con ciò non è che io creda necessario che tutti gli

Dettagli

Triangolo rettangolo

Triangolo rettangolo Dato il triangolo rettangolo Possiamo perciò utilizzare angoli). Progetto Matematica in Rete Triangolo rettangolo OPA sappiamo che: PA cateto sen OP cos tg OA cateto OP PA cateto OA cateto opposto ad ipotenusa

Dettagli

Esercizi di geometria per il corso PAS A059

Esercizi di geometria per il corso PAS A059 Esercizi di geometria per il corso PAS A059 1. Dato un rombo con un angolo di 60 trovare il rapporto tra il raggio del cerchio inscritto nel rombo e il raggio del piu piccolo cerchio che contiene interamente

Dettagli

Un poligono può avere tre, quattro, cinque o più lati. Il vertice è il punto d incontro di due lati; i vertici si indicano

Un poligono può avere tre, quattro, cinque o più lati. Il vertice è il punto d incontro di due lati; i vertici si indicano Pagina 1 di 13 I poligoni I poligoni sono figure piane che hanno come contorno una linea spezzata chiusa formatada almeno tre segmenti consecutivi. Un poligono può avere tre, quattro, cinque o più lati.

Dettagli

MATEMATICA: Compiti delle vacanze Estate 2015

MATEMATICA: Compiti delle vacanze Estate 2015 MATEMATICA: Compiti delle vacanze Estate 2015 Classe II a PRIMA PARTE Ecco una raccolta degli esercizi sugli argomenti svolti quest anno: risolvili sul tuo quaderno! Per algebra ho inserito anche una piccola

Dettagli

Anno 1. Quadrilateri

Anno 1. Quadrilateri Anno 1 Quadrilateri 1 Introduzione In questa lezione impareremo a risolvere i problemi legati all utilizzo dei quadrilateri. Forniremo la definizione di quadrilatero e ne analizzeremo le proprietà e le

Dettagli

Istruzioni. Ecco gli argomenti che ti chiediamo di ripassare:

Istruzioni. Ecco gli argomenti che ti chiediamo di ripassare: Matematica La matematica rappresenta una delle materie di base dei vari indirizzi del nostro Istituto e, anche se non sarà approfondita come in un liceo scientifico, prevede comunque lo studio di tutte

Dettagli

Una proposizione che si pone alla base di una teoria matematica senza darne una giustificazione. Sono le «regole del gioco».

Una proposizione che si pone alla base di una teoria matematica senza darne una giustificazione. Sono le «regole del gioco». Ripasso Scheda per il recupero Il metodo assiomatico-deduttivo OMNE he cos è un assioma? he cos è un concetto primitivo? he cos è un teorema? he cosa significa affrontare lo studio della geometria secondo

Dettagli

Classifichiamo i poligoni

Classifichiamo i poligoni Geometria La parola geometria significa misura (metria) della terra (geo). La geometria si occupa dello studio della misura e della forma degli oggetti disposti nello spazio. Le idee primitive (che vengono

Dettagli

Si chiamano poligoni regolari quei poligoni che sono equilateri ed equiangoli.

Si chiamano poligoni regolari quei poligoni che sono equilateri ed equiangoli. 6.4 I poligoni regolari Si chiamano poligoni regolari quei poligoni che sono equilateri ed equiangoli. Poligoni regolari: triangolo equilatero; quadrato; pentagono regolare; esagono regolare; ettagono

Dettagli

Questo teorema era già noto ai babilonesi, ma fu il matematico greco Pitagora, intorno al 500 a.c., a darne una descrizione precisa.

Questo teorema era già noto ai babilonesi, ma fu il matematico greco Pitagora, intorno al 500 a.c., a darne una descrizione precisa. IL TEOREMA DI PITAGORA Questo teorema era già noto ai babilonesi, ma fu il matematico greco Pitagora, intorno al 500 a.c., a darne una descrizione precisa. ENUNCIATO: la somma dei quadrati costruiti sui

Dettagli

quadrilatero generico parallelogramma rombo rettangolo quadrato

quadrilatero generico parallelogramma rombo rettangolo quadrato Pavimentare 1. Quali forme di quadrilateri puoi costruire? Schizza tutte le forme possibili e scrivi il loro nome. 2. Cosa rappresentano i piccoli punti rossi sui lati del quadrilatero? 3. a) Costruisci

Dettagli

Disegna la figura di cui vuoi la trasformata e gli oggetti (asse o centro di simmetria, vettore,...) che caratterizzano la trasformazione

Disegna la figura di cui vuoi la trasformata e gli oggetti (asse o centro di simmetria, vettore,...) che caratterizzano la trasformazione LE TRASFORMAZIONI IN CABRI Per ottenere la figura immagine di una figura data in una trasformazione Disegna la figura di cui vuoi la trasformata e gli oggetti (asse o centro di simmetria, vettore,...)

Dettagli

LA CIRCONFERENZA e IL CERCHIO

LA CIRCONFERENZA e IL CERCHIO LA CIRCONFERENZA e IL CERCHIO La circonferenza è un poligono regolare con un numero infinito di lati Bisogna fare innanzitutto una distinzione: la circonferenza è la misura del perimetro; C (se sono più

Dettagli

VERIFICA DI MATEMATICA 11 febbraio 2016 classe 2 a D. Nome...Cognome... ARITMETICA

VERIFICA DI MATEMATICA 11 febbraio 2016 classe 2 a D. Nome...Cognome... ARITMETICA VERIFICA DI MATEMATICA 11 febbraio 016 classe a D Nome...Cognome... ARITMETICA 1. Scrivi l enunciato delle proprietà fondamentale, dell invertire e del permutare. Applicale alla seguente proporzione, dimostrando

Dettagli

Risposte ai quesiti D E H D

Risposte ai quesiti D E H D Perugia, dic. 2009/gen. 2010 Risposte ai quesiti 1. Dati i quadrati CD e C D, come in figura, provare che la perpendicolare uscente da alla retta DD passa per il punto medio del segmento quale che sia

Dettagli

Domande di Analisi Matematica tratte dai Test di autovalutazione o di recupero dei debiti formativi.

Domande di Analisi Matematica tratte dai Test di autovalutazione o di recupero dei debiti formativi. Domande di Analisi Matematica tratte dai Test di autovalutazione o di recupero dei debiti formativi. (1) Sia A l insieme dei numeri dispari minori di 56 e divisibili per 3. Quale delle seguenti affermazioni

Dettagli

Riprendiamo la discussione dei sette punti in cui abbiamo suddiviso il Libro I di Euclide a partire dal secondo punto.

Riprendiamo la discussione dei sette punti in cui abbiamo suddiviso il Libro I di Euclide a partire dal secondo punto. QUARTA LEZIONE: i triangoli Riprendiamo la discussione dei sette punti in cui abbiamo suddiviso il Libro I di Euclide a partire dal secondo punto. Punto 2: primo criterio di uguaglianza dei triangoli Il

Dettagli

piastrelle piastrelle piastrelle

piastrelle piastrelle piastrelle Perché le celle delle api hanno una struttura esagonale regolare? Università delle Liberetà 2008 09 appunti di marinella bassi 1 2 Il tessuto di molti vegetali e il pigmento della retina nei nostri occhi

Dettagli

Costruzioni inerenti i triangoli

Costruzioni inerenti i triangoli Costruzioni inerenti i triangoli D ora in poi indicheremo con a, b e c i tre lati del triangolo di vertici A, B e C, in modo che a sia opposto al vertice A, b al vertice B e c al vertice C Costruzione

Dettagli

Introduzione alla geometria iperbolica: come si può ricoprire il piano con piastrelle ottagonali?

Introduzione alla geometria iperbolica: come si può ricoprire il piano con piastrelle ottagonali? Introduzione alla geometria iperbolica: come si può ricoprire il piano con piastrelle ottagonali? Enrico Schlesinger Laboratorio FDS Milano, 13 novembre, 2013 Decorazioni Alhambra Escher Sky and water

Dettagli

Le sezioni piane del cubo

Le sezioni piane del cubo Le sezioni piane del cubo Versione provvisoria 11 dicembre 006 1 Simmetrie del cubo e sezioni speciali Sezioni speciali si presentano in corrispondenza di piani perpendicolari agli assi di simmetria del

Dettagli

1B GEOMETRIA. Gli elementi fondamentali della geometria. Esercizi supplementari di verifica

1B GEOMETRIA. Gli elementi fondamentali della geometria. Esercizi supplementari di verifica Gli elementi fondamentali della geometria Esercizi supplementari di verifica Esercizio 1 a) V F Si dice linea retta una qualsiasi linea che non ha né un inizio né una fine. b) V F Il punto è una figura

Dettagli

LA CAMERA DEGLI SPECCHI

LA CAMERA DEGLI SPECCHI LA CAMERA DEGLI SPECCHI Alunna: Prisca Iacovone (Classe 2B, a. s. 2013 2014, scuola secondaria di primo grado, G. Mezzanotte, Chieti, Ch) Referente: Prof.ssa Diana Cipressi Un architetto deve costruire

Dettagli

01. Se il raggio di un cerchio dimezza, la sua area diventa: a) 1/3 b) 1/4 c) 3/2 d) 1/5

01. Se il raggio di un cerchio dimezza, la sua area diventa: a) 1/3 b) 1/4 c) 3/2 d) 1/5 GEOMETRIA 01. Se il raggio di un cerchio dimezza, la sua area diventa: 1/ b) 1/4 c) / d) 1/5 0. Quanto misura il lato di un quadrato la cui area è equivalente a quella di un triangolo che ha la base di

Dettagli

Università degli Studi di Roma Tor Vergata. Principio di induzione matematica

Università degli Studi di Roma Tor Vergata. Principio di induzione matematica Università degli Studi di Roma Tor Vergata. Principio di induzione matematica Il Principio di induzione matematica è una tecnica di dimostrazione che permette la dimostrazione simultanea di infinite affermazioni.

Dettagli

METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA. Lezione n 11

METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA. Lezione n 11 METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA Lezione n 11 In questa lezione percorriamo gli argomenti della geometria che interessano la scuola primaria, in modo essenziale, o meglio ancora

Dettagli

IL TEOREMA DI PITAGORA

IL TEOREMA DI PITAGORA IN CLASSE IL TEOREMA DI PITAGORA Preparazione Per questi esercizi con GeoGebra dovrai utilizzare i seguenti pulsanti. Leggi sempre le procedure di esecuzione nella zona in alto a destra, accanto alla barra

Dettagli

Due rette si dicono INCIDENTI se hanno esattamente un punto in comune, altrimenti si dicono PARALLELE.

Due rette si dicono INCIDENTI se hanno esattamente un punto in comune, altrimenti si dicono PARALLELE. Riepilogo di Geometria: Assioma A1 Per tutte le coppie di punti P,Q dell insieme S è assegnato un numero reale (=)> 0, che si dice distanza di P da Q e si indica don d(p,q) 1- Se i punti P,Q sono distinti

Dettagli

1) Quale delle due figure ha maggior perimetro? Quali delle due figure ha maggior superficie? cm 8

1) Quale delle due figure ha maggior perimetro? Quali delle due figure ha maggior superficie? cm 8 1) Quale delle due figure ha maggior perimetro? Quali delle due figure ha maggior superficie? cm 8 cm 8 cm 10 cm 10 2) I quadrati della figura hanno lunghezza 1 cm., qual è l area del rettangolo inclinato?

Dettagli

Un approccio costruttivo alle trasformazioni geometriche del piano

Un approccio costruttivo alle trasformazioni geometriche del piano Un approccio costruttivo alle trasformazioni geometriche del piano Le cosiddette trasformazioni geometriche elementari del piano sono corrispondenze bigettive, del piano su se stesso, caratterizzate dalla

Dettagli

MATEMATICA CON LA TARTARUGA

MATEMATICA CON LA TARTARUGA PERCORSO DIDATTICO DUE ORE SETTIMANALI CON 12 ALUNNI DELLE PRIME CLASSI L'INZIO DELL'ATTIVITA' DIDATTICA HA RIGUARDATO L'APPROCCIO ALLA RETE DIDATTICA E AL COMPUTER SPIEGAZIONE DEL SOFTWARE E DELLE SUE

Dettagli

Lavoro individuale: leggi attentamente il testo e completa il testo che trovi al termine del stesso. (10 )

Lavoro individuale: leggi attentamente il testo e completa il testo che trovi al termine del stesso. (10 ) Testo 1: Lavoro individuale: leggi attentamente il testo e completa il testo che trovi al termine del stesso. (10 ) Lavoro di gruppo T1: discuti assieme ai tuoi compagni il significato di quanto hai letto

Dettagli

3 Omotetie del piano. 4 Omotetie del piano. Fondamenti e didattica della matematica B. Geometria delle similitudini. k = 3.

3 Omotetie del piano. 4 Omotetie del piano. Fondamenti e didattica della matematica B. Geometria delle similitudini. k = 3. 1 2 Fondamenti e didattica della matematica B 5 marzo 2007 Geometria delle similitudini Marina Bertolini (marina.bertolini@mat.unimi.it) Dipartimento di Matematica F.Enriques Università degli Studi di

Dettagli

Attività - I Dadi. Proposta dal prof. Pasquale Cozza, insegnante di matematica, del Liceo Scientifico Pitagora di Rende

Attività - I Dadi. Proposta dal prof. Pasquale Cozza, insegnante di matematica, del Liceo Scientifico Pitagora di Rende Attività - I Dadi Proposta dal prof. Pasquale Cozza, insegnante di matematica, del Liceo Scientifico Pitagora di Rende Ci proponiamo l obiettivo di studiare le regole di costruzione dei dadi per progettare

Dettagli

Circonferenza e cerchio

Circonferenza e cerchio Circonferenza e cerchio è il luogo dei punti che hanno dal centro una distanza assegnata. La figura costituita da tutti i punti di una circonferenza e dai suoi punti interni si chiama Prendi uno spago,

Dettagli

DIEDRI. Un diedro è convesso se è una figura convessa, concavo se non lo è.

DIEDRI. Un diedro è convesso se è una figura convessa, concavo se non lo è. DIEDRI Si definisce diedro ciascuna delle due parti di spazio delimitate da due semipiani che hanno la stessa origine, compresi i semipiani stessi. I due semipiani prendono il nome di facce del diedro

Dettagli

CONOSCENZE 1. gli elementi e le caratteristiche

CONOSCENZE 1. gli elementi e le caratteristiche GEOMETRIA PREREQUISITI l conoscere le caratteristiche del sistema decimale l conoscere le proprietaá delle quattro operazioni e saper operare con esse l conoscere gli enti fondamentali della geometria

Dettagli

LA CIRCONFERENZA, I POLIGONI INSCRITTI E CIRCOSCRITTI

LA CIRCONFERENZA, I POLIGONI INSCRITTI E CIRCOSCRITTI LA CIRCONFERENZA, I POLIGONI INSCRITTI E CIRCOSCRITTI 1. La circonferenza e il cerchio ESERCIZI 1 A Disegna un triangolo ABC di altezza CH relativa ad AB. Fissa un segmento ED minore di CH. Determina il

Dettagli

Kangourou della Matematica 2006 finale nazionale italiana Mirabilandia, 8 maggio 2006

Kangourou della Matematica 2006 finale nazionale italiana Mirabilandia, 8 maggio 2006 LIVELLO ÉCOLIER E1. (5 punti ) Qual è il multiplo di 11 più vicino a 1000? E2. (7 punti ) Le lettere della parola ELA sono tutte distinte fra loro. Fa corrispondere ad ogni lettera di questa parola una

Dettagli

I quadrilateri Punti notevoli di un triangolo

I quadrilateri Punti notevoli di un triangolo I quadrilateri Capitolo Quadrilateri 1 erifica per la classe prima COGME............................... ME............................. Quesiti 1.a ero o falso? 1. La somma degli angoli interni di un ottagono

Dettagli

Costruzioni geometriche. ( Teoria pag , esercizi 141 )

Costruzioni geometriche. ( Teoria pag , esercizi 141 ) Costruzioni geometriche. ( Teoria pag. 81-96, esercizi 141 ) 1) Costruzione con squadra e riga. a) Rette parallele. Ricorda ; due rette sono parallele quando.... oppure quando hanno la stessa. Matematicamente

Dettagli

CONCETTI DI GEOMETRIA

CONCETTI DI GEOMETRIA LA GEOMETRIA EUCLIDEA SI BASA SU TRE CONCETTI INTUITIVI: IL PUNTO, LA RETTA, IL PIANO IL PUNTO E' UN ENTE GEOMETRICO PRIVO DI DIMENSIONI. LA RETTA E' UN INSIEME DI PUNTI ALLINEATI. IL PIANO E' UN INSIEME

Dettagli

POTENZIAMENTO VISUO-SPAZIALE

POTENZIAMENTO VISUO-SPAZIALE POTENZIAMENTO VISUO-SPAZIALE Spunti ricavati dalla bozza (fornita da Marta) per potenziare le carenze visuo-spaziali di alunni di seconda media Docente Gisella Maculan Obiettivo : Con questa sezione si

Dettagli

I solidi. Un solido è una parte di spazio delimitata da una superficie chiusa. I solidi delimitati da poligoni vengono chiamati poliedri.

I solidi. Un solido è una parte di spazio delimitata da una superficie chiusa. I solidi delimitati da poligoni vengono chiamati poliedri. I solidi Un solido è una parte di spazio delimitata da una superficie chiusa. I solidi delimitati da poligoni vengono chiamati poliedri. I solidi che hanno superfici curve vengono chiamati solidi rotondi.

Dettagli

LE TRASFORMAZIONI GEOMETRICHE

LE TRASFORMAZIONI GEOMETRICHE pag. 1 LE TRASFORMAZIONI GEOMETRICHE Trasformazione geometrica Movimento rigido Traslazione Simmetria Costruzione di due punti simmetrici rispetto ad una retta Poligoni aventi assi di simmetria Rotazione

Dettagli

Kangourou della Matematica 2009 finale nazionale italiana Mirabilandia, 11 maggio 2009

Kangourou della Matematica 2009 finale nazionale italiana Mirabilandia, 11 maggio 2009 Kangourou della Matematica 2009 finale nazionale italiana Mirabilandia, 11 maggio 2009 LIVELLO JUNIOR J1. (5 punti ) Un asta lunga 10 metri va spezzata in modo che sia possibile riporre (eventualmente

Dettagli

Le figure geometriche

Le figure geometriche La geometria In Egitto nel XIV secolo a.c. la geometria nasce per misurare la terra (geometria = misura della terra) perché il Nilo con le sue piene, cancellava spesso i limiti fra i campi. E dunque una

Dettagli

Test A Teoria dei numeri e Combinatoria

Test A Teoria dei numeri e Combinatoria Test A Teoria dei numeri e Combinatoria Problemi a risposta secca 1. Determinare con quanti zeri termina la scrittura in base 12 del fattoriale di 2002. 2. Determinare quante sono le coppie (x, y) di interi

Dettagli

La somma degli angoli interni di un triangolo è uguale a un angolo piatto (180 ).

La somma degli angoli interni di un triangolo è uguale a un angolo piatto (180 ). Il triangolo (UbiLearning) - 1 Triangoli Un triangolo è un poligono formato da tre lati. Rappresenta la più semplice figura piana formata dal minimo numero di lati utili a chiudere una superficie piana.

Dettagli

LA PERPENDICOLARITA NELLO SPAZIO. Nello spazio si definiscono la perpendicolarità sia tra una retta e un piano sia tra due piani.

LA PERPENDICOLARITA NELLO SPAZIO. Nello spazio si definiscono la perpendicolarità sia tra una retta e un piano sia tra due piani. 1 LA PERPENDICOLARITA NELLO SPAZIO Nello spazio si definiscono la perpendicolarità sia tra una retta e un piano sia tra due piani. 2.1 La perpendicolarità retta piano Nel piano la perpendicolarità tra

Dettagli

METODO DEI SEGMENTINI (Prof. Daniele Baldissin)

METODO DEI SEGMENTINI (Prof. Daniele Baldissin) METODO DEI SEGMENTINI (Prof. Daniele Baldissin) Il metodo dei segmentini costituisce una procedura di soluzione di particolari problemi che si incontrano spesso in geometria e nella vita di tutti i giorni.

Dettagli

Liceo Scientifico G. Salvemini Corso di preparazione per la gara provinciale delle OLIMPIADI DELLA MATEMATICA INTRO GEOMETRIA

Liceo Scientifico G. Salvemini Corso di preparazione per la gara provinciale delle OLIMPIADI DELLA MATEMATICA INTRO GEOMETRIA Liceo Scientifico G. Salvemini Corso di preparazione per la gara provinciale delle OLIMPIADI DELLA MATEMATICA INTRO GEOMETRIA TRIANGOLI Criteri di congruenza Due triangoli sono congruenti se hanno congruenti:

Dettagli

Gli enti geometrici fondamentali

Gli enti geometrici fondamentali capitolo 1 Gli enti geometrici fondamentali 1. Introduzione 1 2. La geometria euclidea come sistema ipotetico-deduttivo 2 Teoremi e dimostrazioni, 3 3. Postulati di appartenenza 4 4. Postulati di ordinamento

Dettagli

FIGURE SOLIDE OSSERVANDO LE FIGURE DELLO SPAZIO CHE CI CIRCONDANO NOTIAMO CHE:

FIGURE SOLIDE OSSERVANDO LE FIGURE DELLO SPAZIO CHE CI CIRCONDANO NOTIAMO CHE: FIGURE SOLIDE OSSERVANDO LE FIGURE DELLO SPAZIO CHE CI CIRCONDANO NOTIAMO CHE: IL CUBO IL PARALLELEPIPEDO LA PIRAMIDE HANNO LA SUPERFICIE COSTITUITA DA POLIGONI (QUADRATO, RETTANGOLO, TRIANGOLO) E PRENDONO

Dettagli

1 L'omotetia. 2 Il teorema del rapporto dei perimetri e delle aree di due triangoli simili

1 L'omotetia. 2 Il teorema del rapporto dei perimetri e delle aree di due triangoli simili 1 L'omotetia Per definire un'omotetia bisogna disegnare una generica figura nel piano (nel nostro caso utilizzeremo un triangolo), un punto (il centro dell'omotetia) e un numero (il rapporto k dell'omotetia).

Dettagli

Agnese De Rito, Rosemma Cairo, Egidia Fusani Dell associazione Matematica in Gioco. Poligoni stellati

Agnese De Rito, Rosemma Cairo, Egidia Fusani Dell associazione Matematica in Gioco. Poligoni stellati Agnese De Rito, Rosemma Cairo, Egidia Fusani Dell associazione Matematica in Gioco Poligoni stellati I poligoni regolari che abbiamo incontrato finora sono tutti poligoni convessi; esistono anche dei particolari

Dettagli

I TRIANGOLI AB < AC + BC

I TRIANGOLI AB < AC + BC I TRIANGOLI Il triangolo è un poligono formato da tre angoli e da tre lati: rappresenta la figura più semplice in assoluto, in quanto 3 è il numero minimo di segmenti necessari per delimitare una superficie

Dettagli

Geometria euclidea dello spazio Presentazione n. 5 Poliedri Prof. Daniele Ippolito Liceo Scientifico Amedeo di Savoia di Pistoia

Geometria euclidea dello spazio Presentazione n. 5 Poliedri Prof. Daniele Ippolito Liceo Scientifico Amedeo di Savoia di Pistoia Geometria euclidea dello spazio Presentazione n. 5 Poliedri Prof. Daniele Ippolito Liceo Scientifico Amedeo di Savoia di Pistoia Poliedri Un poliedro è un solido delimitato da una superficie formata da

Dettagli

Geogebra. a. La lancetta è ruotata? SI NO. Se sì attorno a quale punto?

Geogebra. a. La lancetta è ruotata? SI NO. Se sì attorno a quale punto? Geogebra L ANGOLO 1. Nel programma Geogebra, fai doppio clic sull icona e scegli Circonferenza dati centro e raggio. 2. Posizionati al centro della finestra di geometria e fai clic. Nella finestra che

Dettagli

Didattiche disciplinari integrate SSIS A.A. 2008/2009 Modulo di Matematica Docente L. Parenti

Didattiche disciplinari integrate SSIS A.A. 2008/2009 Modulo di Matematica Docente L. Parenti Didattiche disciplinari integrate SSIS A.A. 2008/2009 Modulo di Matematica Docente L. Parenti SCHEDE LAVORO La seguente rassegna di esempi deve essere analizzata nella duplice chiave di lettura: - aspetti

Dettagli