I vettori. a b. 180 α B A. Un segmento orientato è un segmento su cui è stato fissato un verso. di percorrenza, da verso oppure da verso.

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "I vettori. a b. 180 α B A. Un segmento orientato è un segmento su cui è stato fissato un verso. di percorrenza, da verso oppure da verso."

Transcript

1 I vettor B Un segmento orentto è un segmento su cu è stto fssto un verso B d percorrenz, d verso oppure d verso. A A Il segmento orentto d verso è ndcto con l smolo. Due segment orentt che hnno l stess drezone (oss che gccono su due rette prllele), lo stesso verso e l stess lunghezz s dcono segment equpollent. Nell'nseme de segment orentt, l relzone d equpollenz è un relzone d equvlenz, perché gode delle propretà rflessv, smmetrc e trnstv. L'equpollenz pertnto determn un suddvsone d tutt segment orentt del pno n clss d equvlenz. Cscun d queste clss d equvlenz è chmt vettore e contene tutt e sol segment fr loro equpollent. Un vettore è ndcto con un letter sormontt d un frecc,, oppure con l segmento orentto che lo rppresent,. Un vettore è crtterzzto d: l modulo oss l msur dell lunghezz del segmento rspetto un'untà prefsst; l drezone, coè l drezone dell rett cu pprtene l segmento; l verso. Il vettore nullo è l vettore che h come rppresentnt segment null. Il vettore nullo vene ndcto con 0, h modulo zero e drezone e verso ndetermnt. Il vettore opposto d un vettore AB è l vettore BA, oss l vettore che h lo stesso modulo d, l stess drezone, m verso contrro. Il vettore opposto del vettore è ndcto con. A B A B SOMMA DI DUE VETTORI L somm d due vettor e s ottene con l regol del prllelogrmmo. Il suo modulo vle 2 DIFFERENZA DI DUE VETTORI L dfferenz d due vettor e s ottene eseguendo l somm del vettore con l vettore. α α α 180 α 180 α In defntv 2 PRODOTTO DI UN VETTORE PER UNO SCALARE Sno un numero rele e un vettore, l prodotto del numero per l vettore è defnto nel seguente modo: se 0 l prodotto è l vettore che h l stess drezone e lo stesso verso d e modulo ugule. se 0 l prodotto è l vettore che h l stess drezone d, verso opposto quello d e modulo ugule. se 0 l prodotto è l vettore 0. Mtemtc 1

2 PRODOTTO SCALARE DI DUE VETTORI Il prodotto sclre d due vettor e è l prodotto d un vettore per l componente dell ltro vettore lungo l drezone del prmo. Il prodotto sclre d due vettor è uno sclre e non un vettore. Il prodotto sclre d due vettor è: postvo se α è cuto negtvo se α è ottuso. I In smol coè: cos α Osservzone: Il prodotto sclre d due vettor ortogonl è zero (perché cos α I PRODOTTO VETTORIALE DI DUE VETTORI Il prodotto vettorle d due vettor e, che s ndc con, e s legge vettore, è un vettore vente per modulo l re del prllelogrmmo costruto su due vettor, per drezone quell perpendcolre l pno ndvduto d e e verso tle che, rspetto d esso, l vettore per sovrppors, descrvendo un ngolo mnore d 180, deve ruotre n senso ntorro. B Il modulo del prodotto vettorle è:. Osservzone: l prodotto vettorle d due vettor prllel è zero. α H REGOLA DELLA MANO DESTRA Tenendo l mno destr n modo tle che le dt pegte seguno l rotzone del vettore verso, l pollce ndc l drezone e l verso del prodotto vettorle. COMPONENTI DI UN VETTORE Le component crtesne del vettore sono le proezon del vettore lungo l sse e lungo lsse. In smol: OA cos e OA sen OA e OA Consderndo versor e (vettor untr drett come gl ss) s h: OA e OA d cu s ottene l espressone crtesn del vettore Dll fgur s h che l modulo del vettore mentre l ngolo 2 2 A O α A A rctg. SOMMA DI DUE VETTORI TRAMITE LE LORO COMPONENTI Le component del vettore somm (dfferenz) d due vettor ugul ll somm (dfferenz) delle component omonme de due vettor. e sono Dmostrzone Mtemtc 2

3 Mtemtc 3 PRODOTTO SCALARE DI DUE VETTORI TRAMITE LE LORO COMPONENTI Il prodotto sclre d due vettor e è ugule ll somm de prodott delle component omonme de due vettor. Dmostrzone Essendo 1 e 0 s h: PRODOTTO VETTORIALE DI DUE VETTORI TRAMITE LE LORO COMPONENTI Il prodotto vettorle d due vettor e gcent sullo stesso pno α è l vettore dretto secondo l versore k ortogonle l pno α, nello stesso verso d k oppure verso opposto, secondo che l componente n tle drezone rsult postv oppure negtv e vente modulo. In smol k. Dmostrzone Essendo 0 e k k s h: k K k K k

4 Le sometre TRASFORMAZIONI GEOMETRICHE Un trsformzone geometrc è un funzone unvoc che ssoc ogn punto del pno un ltro punto del pno. Il punto che corrsponde nell trsformzone s ndc con e s dce corrspondente (o mmgne o trsformto) d nell. Un fgur s dce unt rspetto d un dt trsformzone se l fgur trsformt concde con quell d prtenz. Un segmento s dce unto rspetto d un dt trsformzone se l segmento trsformto concde con quello d prtenz. Un rett s dce unt rspetto d un dt trsformzone se l rett trsformt concde con quell d prtenz. Un punto s dce unto rspetto d un dt trsformzone se l punto trsformto concde con quello d prtenz. ISOMETRIE Un sometr è un trsformzone geometrc che conserv l dstnz. PROPRIETÀ DELLE ISOMETRIE TEOREMA Un sometr trsform rette n rette. Dmostrzone Dmostrre che l'mmgne d un rett è un rett equvle dmostrre che le mmgn A', B', C' d tre punt llnet A, B e C sono ncor tre punt llnet. Supponmo A, B, C ordnt come nell fgur. Rsult che: Poché un sometr conserv le dstnze, srà:,, Qund:. Tle relzone mplc che A', B', C' sono llnet. (se non fossero llnet, per l dsuguglnz trngolre, dovree rsultre che: A'B' + B'C' > A'C'). COROLLARIO Un sometr trsform semrette n semrette e segment n segment. TEOREMA Un sometr trsform un copp d rette prllele n un copp d rette prllele. IPOTESI TESI è un sometr; Dmostrzone Se e concdono, l tes è nle. Consdermo qund l cso n cu e sono prllele dstnte. Supponmo, per ssurdo, che le due rette r e s sno ncdent n P. L contrommgne d pprterree ll rett r (poché ) e ll rett s (poché ). Qund e dovreero vere n comune l punto. M cò contrddce l'potes che e sno prllele dstnte. Dunque, domo concludere che nche e sono prllele. Mtemtc 4

5 TEOREMA Un'sometr trsform un copp d rette ncdent n un copp d rette ncdent e l punto d'ntersezone dell prm copp d rette h come mmgne nell'sometr l punto d'ntersezone delle rette corrspondent nell'sometr. IPOTESI TESI è un sometr; Dmostrzone Sccome Sccome Pertnto e hnno n comune lmeno l punto. Se per ssurdo, e vessero n comune un ltro punto, questo sree mmgne d un punto d ntersezone d e. Le rette e, vendo n comune due punt dstnt, e, concdereero. M cò contrddce l'potes che e sno ncdent. S conclude che:. TEOREMA Un sometr trsform un ngolo n un ngolo esso congruente. I lt e l vertce dell'ngolo trsformto sono le mmgn de lt e del vertce dell'ngolo orgnro. IPOTESI TESI Dmostrzone è un sometr; Pres due punt e su lt e dell'ngolo, e sono loro corrspondent nell'sometr. Per l teorem precedente s h: 0 0. Poché le sometre conservno le dstnze, trngol e hnno tre lt ordntmente congruent, qund sono congruent per l terzo crtero d congruenz. In prtcolre hnno gl ngol. COROLLARIO Un sometr trsform rette perpendcolr n rette perpendcolr. Mtemtc 5

6 Smmetre ssl SIMMETRICO DI UN PUNTO RISPETTO AD UNA RETTA Il smmetrco d un punto rspetto d un rett r è l punto: stesso t.c.l sse d s l rett SIMMETRIA ASSIALE L smmetr ssle rspetto un dt rett r è l trsformzone che ssoc ogn punto del pno l punto, smmetrco d rspetto. L rett s chm sse d smmetr. Se un fgur è unvocmente determnt d un certo numero d punt (un segmento è ndvduto d due punt estrem; un trngolo è ndvduto d suo tre vertc), per determnre l su corrspondente nell smmetr rspetto un rett è suffcente determnre smmetrc d quest punt. Per determnre l rett smmetrc d rspetto, st sceglere due punt e sull rett e determnrne punt smmetrc. L smmetr ssle è un trsformzone nvolutor. (l'nvers d un smmetr ssle è l trsformzone stess). TEOREMA Ogn smmetr ssle è un sometr. IPOTESI AB è un segmento del pno; r è un rett; A B smmetrco d AB rspetto ll rett r TESI A B AB Dmostrzone I cs che s possono presentre sono quttro: I II III IV e gccono nello stesso sempno d orgne e gccono n sempn oppost rspetto ll orgne Mtemtc 6

7 Dmostrmo soltnto l III cso. Le dmostrzon degl ltr cs s effettuno con lo stesso procedmento. Indct con e, rspettvmente, punt d'ntersezone d e con l rett. I due trngol rettngol e sono congruent per l I crtero d congruenz de trngol rettngol. Inftt: HK è n comune perché e sono punt smmetrc rspetto ll rett Avendo dmostrto che. I trngol e sono congruent per l I crtero d congruenz de trngol. Inftt: per l dmostrzone precedente perché e sono punt smmetrc rspetto ll rett perché complementr degl ngol congruent e. In defntv s conclude che:. PROPRIETÀ INVARIANTI DI UNA SIMMETRIA ASSIALE Le smmetre ssl, essendo delle sometre, conservno: l'llnemento de punt; l'ncdenz e l prllelsmo tr le rette; l lunghezz de segment; l'mpezz degl ngol. L smmetr ssle non conserv le drezon L smmetr ssle nonn conserv l' orentmento delle fgure ELEMENTI UNITI DI UNA SIMMETRIA ASSIALE Tutt e sol punt pprtenent ll'sse d smmetr sono unt. Pertnto l'sse d smmetr è un rett unt. Ogn rett perpendcolre ll'sse d smmetr è unt; ess però non è costtut d punt unt. FIGURE SIMMETRICHE Un fgur s dce smmetrc rspetto ll rett se rsult unt nell smmetr rspetto un rett. L rett s chm sse d smmetr dell fgur. Fgure con un sse d smmetr Fgure con due ss d smmetr Fgure con pù ss d smmetr Mtemtc 7

8 Smmetre centrl SIMMETRICO DI UN PUNTO RISPETTO AD UN PUNTO l punto stesso Il smmetrco d un punto rspetto d un punto è l punto t. c. l punto medo d PP s SIMMETRIA CENTRALE L smmetr centrle d centro è l trsformzone che ssoc ogn punto P del pno l suo smmetrco rspetto l centro O. Ess è ndct con. Per ndvdure l fgur trsformt n un smmetr centrlee è suffcente determnre smmetrc rspetto l punto O de punt che ndvduno l fgur. TEOREMA Ogn smmetr centrle è un sometr. IPOTESI AB è un segmento del pno è l centro dell smmetr A B smmetrco d AB rspetto d O Dmostrzone I trngol per l I crtero d congruenz. Inftt: perché e smmetrc rspetto d O perché e smmetrc rspetto d O perché ngol oppost l vertce. L congruenz A B AB. TESI A B AB PROPRIETÀ INVARIANTI DI UNA SIMMETRIA CENTRALE Le smmetre centrl, essendo delle sometre, conservno: l'llnemento de punt; l'ncdenz e l prllelsmo tr le rette; l lunghezz de segment; l'mpezz degl ngol. Le smmetre centrl conservno le drezon, ovvero un rett vene trsformt n un rett prllel Le smmetre centrl conservno l'orentmento delle fgure Mtemtc 8

9 ELEMENTI UNITI DI UNA SIMMETRIA CENTRALE L'unco punto unto dell smmetr centrle è l centro dell smmetr. Ogn rett pssnte per l centro dell smmetr è un rett unt; esse però non sono costtute d punt unt. FIGURE SIMMETRICHE Un fgur s dce smmetrc se l fgur corrspondente n un smmetr centrle è l fgur stess (l fgur rsult unt rspetto ll smmetr). Il punto O s chm centro d smmetr dell fgur. Fgure con un centro d smmetr Fgure con nfnt centr d smmetr Mtemtc 9

10 Trslzon TRASLAZIONE L trslzone d vettore è l trsformzone che ssoc ogn punto del pno l punto tle che l stess drezone, lo stesso verso e lo stesso modulo del vettore. Ess è ndct con l smolo. L trslzone d vettore nullo concde con l'denttà. L'nvers d un trslzone d vettore è l trslzone ndvdut dl vettore opposto d. TEOREMA L trslzone è un sometr. IPOTESI AB è un segmento del pno è un trslzone d vettore A B trslto d AB d un vettore Dmostrzone è un prllelogrmm. Inftt: perché hnno l stess drezone del vettore perché hnno lo stesso modulo del vettore Avendo dmostrto che è un prllelogrmm, esso h lt oppost sono congruent. In prtcolre A B AB. TESI A B AB PROPRIETÀ INVARIANTI DI UNA SIMMETRIA ASSIALE Le trslzon, essendo delle sometre, conservno: l'llnemento de punt; l'ncdenz e l prllelsmo tr le rette; l lunghezz de segment e l'mpezz degl ngol. Le trslzon conservno le drezon, ovvero un rett vene trsformt n un rett prllel Le trslzon conservno l'orentmento delle fgure ELEMENTI UNITI DI UNA TASLAZIONE L trslzone, d eccezone dell denttà, non h punt unt. Tutte le rette del pno che hnno l stess drezone del vettore sono rette unte. Nessun punto d queste rette è unto nell trslzone. Mtemtc 10

11 Rotzon ANGOLO ORIENTATO Un ngolo orentto è un ngolo n cu è stto stlto qule de due lt è consderto come prmo lto. A second del lto scelto l'ngolo rsult orentto n senso orro o ntorro. ROTAZIONE L rotzone d centro e ngolo d rotzone è l trsformzone che ssoc ogn punto l punto tle che: l'ngolo, orentto n modo che s l prmo lto, h l stess mpezz e lo stesso orentmento d. CASI PARTICOLARI Un rotzone d ngolo d rotzone nullo concde con l trsformzone dentc. Un rotzone d 180 o d 180 concde con un smmetr vente centro nel centro dell rotzone. TEOREMA Ogn rotzone è un sometr. IPOTESI AB è un segmento del pno, è un rotzone d centro O e ngolo A B trsformto d AB nell rotzone, TESI A B AB Dmostrzone S hnno 4 cs. Dmostrmo l II cso. Le dmostrzon degl ltr cs s effettuno con lo stesso procedmento. I trngol AOB A OB per l I crtero d congruenz. Inftt: e perché, è un rotzone perché dfferenze d ngol congruent. Avendo dmostrto che A B AB. PROPRIETÀ INVARIANTI DELLE ROTAZIONI Le rotzon, essendo sometre, conservno le lunghezze de segment, le mpezze degl ngol, l'llnemento de punt, l prllelsmo e l'ncdenz tr le rette. Conservno, noltre, l'orentmento delle fgure. Le rotzon non conservno nvece le drezon. ELEMENTI UNITI DELLE ROTAZIONI L'unco punto unto d un rotzone è l centro d rotzone. Nessun rett è unt rspetto un rotzone, d eccezone dell'denttà e dell smmetr centrle. Mtemtc 11

12 Isometre nel pno crtesno In questo cptolo studmo lcune sometre nel pno crtesno. Nello specfco, determnmo le equzon delle trsformzon: quelle formule che consentono d pssre dlle coordnte, d un punto lle coordnte ; del suo punto corrspondente. SIMMETRIE ASSIALI Smmetr rspetto ll sse Smmetr rspetto ll sse ' ' ' ' Smmetr rspetto ll settrcee Smmetr rspetto ll settrce '= '= '= '= Smmetr rspetto ll rett q Smmetr rspetto ll rett p ' ' 2 q ' 2p ' Mtemtc 12

13 SIMMETRIE CENTRALI Smmetr rspetto ll orgne O( 0 ; 0) Smmetr rspetto l punto C (p;q) ' ' ' 2p ' 2q TRASLAZIONI In un pno crtesno ortogonle, è possle ssegnre un vettore mednte un copp ordnt d numer rel,, dett component del vettore. Il vettore d component e è l vettore rppresentto dl segmento orentto, dove ;. Dto un punto ;, le coordnte del punto ;, corrspondente d nell trslzone d vettore ; sono: ESEMPIO Dto l trngolo d vertc 4; 5, 1; 7, 3; 3, determn le coordnte de vertc del suo corrspondente nell trslzone d vettore 5; 2. Soluzone Applcndo le equzon dell trslzone s ottene: : ; : ; : 352 ; 321 Mtemtc 13

14 NOTA Nell dmostrzone d un teorem, n genere, convene rcorrere lle sometre qundo un fgur present un centro o un sse d smmetr. In quest cs, le propretà d conservzone delle sometre permettono spesso d snellre le dmostrzon. Mtemtc 14

I vettori. Grandezze scalari: Grandezze vettoriali

I vettori. Grandezze scalari: Grandezze vettoriali Grndee sclr: I ettor engono defnte dl loro lore numerco esemp: lunghe d un segmento, re d un fgur pn, tempertur d un corpo, ecc. Grndee ettorl engono defnte, oltre che dl loro lore numerco, d un dreone

Dettagli

MATEMATICA FINANZIARIA 5. VALUTAZIONE DI PROGETTI ECONOMICO-FINANZIARI

MATEMATICA FINANZIARIA 5. VALUTAZIONE DI PROGETTI ECONOMICO-FINANZIARI MATEMATICA FINANZIARIA Pro. Andre Berrd 999 5. VALUTAZIONE DI PROGETTI ECONOMICO-FINANZIARI Corso d Mtemtc Fnnzr 999 d Andre Berrd Sezone 5 PROGETTO ECONOMICO-FINANZIARIO Un progetto economco-nnzro è un

Dettagli

ROTAZIONI ( E TEOREMA DI PITAGORA

ROTAZIONI ( E TEOREMA DI PITAGORA ROTAZIONI ( E TEOREMA DI PITAGORA ) Defnzone Defnmo rotzone nel pno R un funzone (,) --> f(,) = (',') R, tle che : ) f(,) = f(,) + ort(f(,), per ogn (,) R dove : ort(,b) := (-b,) "ortogonle (ntorro)" d

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2003

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2003 ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. Il cndidto risolv uno dei due problemi e 5 dei quesiti in cui si rticol il questionrio. PROBLEMA Nel pino sono dti: il cerchio di dimetro OA,

Dettagli

Modellazione e Identificazione Dinamica della Cupola della Basilica di S. Gaudenzio in Novara

Modellazione e Identificazione Dinamica della Cupola della Basilica di S. Gaudenzio in Novara Modellzone e Identfczone Dnmc dell Cupol dell Bslc d S. Gudenzo n Novr Ing. Slvno Erlcher Sommro Nell prm prte dell rtcolo s present un modello gl element fnt dell Cupol dell Bslc d S. Gudenzo. S mostrno

Dettagli

Università di Napoli Parthenope Facoltà di Ingegneria

Università di Napoli Parthenope Facoltà di Ingegneria Unverstà d Npol Prthenope Fcoltà d Ingegner Corso d Trsmssone Numerc docente: Prof. Vto Psczo 3 Lezone: /0/004 4 Lezone: /0/004 Sommro Quntzzzone sclre (unforme e non unforme) Quntzzzone vettorle (VQ)

Dettagli

Teoremi su correnti e tensioni

Teoremi su correnti e tensioni Teorem su corrent e tenson 1) ombnzone lnere efnzone: n un crcuto, ogn corrente e tensone è dt un combnzone lnere d genertor: V = K 1 $ g 1 K 2 $ g 2 K 3 $ g 3... I = K 1 $ g 1 K 2 $ g 2 K 3 $ g 3... oe

Dettagli

UNIVERSITÀ DEGLI STUDI DI BERGAMO. Facoltà di Ingegneria. Istituzioni di Economia Laurea Triennale in Ingegneria Gestionale

UNIVERSITÀ DEGLI STUDI DI BERGAMO. Facoltà di Ingegneria. Istituzioni di Economia Laurea Triennale in Ingegneria Gestionale Gnmr Mrtn UNIVERSITÀ DEGLI STUDI DI BERGAMO Fcoltà d Ingegner Isttuzon d Econom Lure Trennle n Ingegner Gestonle Lezone 9 Domnd del mercto Prof. Gnmr Mrtn Unverstà degl Stud d Bergmo Fcoltà d Ingegner

Dettagli

dr Valerio Curcio Le affinità omologiche Le affinità omologiche

dr Valerio Curcio Le affinità omologiche Le affinità omologiche 1 Le ffinità omologiche 2 Tringoli omologici: Due tringoli si dicono omologici se le rette congiungenti i punti omologhi dei due tringoli si incontrno in un medesimo punto. Principio dei tringoli omologici

Dettagli

3. Funzioni iniettive, suriettive e biiettive (Ref p.14)

3. Funzioni iniettive, suriettive e biiettive (Ref p.14) . Funzioni iniettive, suriettive e iiettive (Ref p.4) Dll definizione di funzione si ricv che, not un funzione y f( ), comunque preso un vlore di pprtenente l dominio di f( ) esiste un solo vlore di y

Dettagli

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n.

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n. AUTOVALORI ED AUTOVETTORI Si V uno spzio vettorile di dimensione finit n. Dicesi endomorfismo di V ogni ppliczione linere f : V V dello spzio vettorile in sé. Se f è un endomorfismo di V in V, considert

Dettagli

30 quesiti. 1 Febbraio 2011. Scuola... Classe... Alunno... Copyright 2011 Zanichelli Editore SpA, Bologna

30 quesiti. 1 Febbraio 2011. Scuola... Classe... Alunno... Copyright 2011 Zanichelli Editore SpA, Bologna verso LA RILEVAZIONE INVALSI SCUOLA SECONDARIA DI secondo GRADO PROVA DI Mtemtic 30 quesiti Febbrio 0 Scuol... Clsse... Alunno... e b sono numeri reli che verificno quest uguglinz: Qunto vle il loro prodotto?

Dettagli

Il procedimento di linearizzazione consiste nell'usare una funzione delle variabili anziché le variabili stesse.

Il procedimento di linearizzazione consiste nell'usare una funzione delle variabili anziché le variabili stesse. Y Lnerzzzone Il dgrmm d dspersone suggersce che le funzone d nterpolzone de dt non sono lner, m presentno un ndmento che n un cso (dots ner) potree essere d tpo esponenzle, mentre nell ltro cso (dots ross)

Dettagli

La parabola. Fuoco. Direttrice y

La parabola. Fuoco. Direttrice y L prol Definizione: si definise prol il luogo geometrio dei punti del pino equidistnti d un punto fisso detto fuoo e d un rett fiss dett direttrie. Un rppresentzione grfi inditiv dell prol nel pino rtesino

Dettagli

MATEMATICA Classe Prima

MATEMATICA Classe Prima Liceo Clssico di Treiscce Esercizi per le vcnze estive 0 MATEMATICA Clsse Prim Cpitolo Numeri nturli Primi ogni pgin del cpitolo Cpitolo Numeri nturli Primi ogni pgin del cpitolo Per gli llievi promossi

Dettagli

Analisi sistematica delle strutture. Rigidezza

Analisi sistematica delle strutture. Rigidezza Anls sstemt elle strutture Rgezz u U x y v Trve nel pno v Vettore forze nol Vettore spostment nol θ u θ u U u V v Tre gr lertà per noo Due no per elemento x U θ u Se gr lertà per elemento V v tre rgezz

Dettagli

Macchine. 5 Esercitazione 5

Macchine. 5 Esercitazione 5 ESERCITAZIONE 5 Lavoro nterno d una turbomacchna. Il lavoro nterno massco d una turbomacchna può essere determnato not trangol d veloctà che s realzzano all'ngresso e all'uscta della macchna stessa. Infatt

Dettagli

Introduciamo il concetto di trasformazione geometrica prendendo come esempio una rotazione.

Introduciamo il concetto di trasformazione geometrica prendendo come esempio una rotazione. Le trsformzioni geometriche ITL 7 TERI Letture llo specchio! Ingegni, ossesso, nilin: tre esempi di plindromi, ovvero di prole che si possono leggere si d sinistr verso destr, si d destr verso sinistr.

Dettagli

Moduli su un dominio a ideali principali Maurizio Cornalba versione 15/5/2013

Moduli su un dominio a ideali principali Maurizio Cornalba versione 15/5/2013 Modul su un domno a deal prncpal Maurzo Cornalba versone 15/5/2013 Sa A un anello commutatvo con 1. Indchamo con A k l modulo somma dretta d k cope d A. Un A-modulo fntamente generato M s dce lbero se

Dettagli

Vettori - Definizione

Vettori - Definizione Vettori - Definizione z Verso Origine Modulo Direzione V y Form geometri x Form nliti Un vettore è un ente geometrio definito d: - Direzione: rett sull qule gie il vettore, he ne indi l orientmento nello

Dettagli

Calcolo della concentrazione e della densità del Silicio Monocristallino

Calcolo della concentrazione e della densità del Silicio Monocristallino Clcolo dell concentrzone e dell denstà del Slco Monocrstllno Clcolo del numero d tom per cell Contrbuto de vertc: 8 1 8 1 Contrbuto delle superfc: 6 1 2 3 Contrbuto tom ntern: 4 1 4 Totle: 8 tom equvlent

Dettagli

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x Appunti elorti dll prof.ss Biondin Gldi Funzione integrle Si y = f() un funzione continu in un intervllo [; ] e si 0 [; ]; l integrle 0 f()d si definisce Funzione Integrle; si chim funzione integrle in

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione straordinaria

ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2002 Sessione straordinaria ESAME DI STAT DI LICE SCIENTIFIC CRS DI RDINAMENT 00 Sessione strordinri Il cndidto risolv uno dei due problemi e 5 dei 0 quesiti in cui si rticol il questionrio. PRBLEMA Con riferimento un sistem monometrico

Dettagli

Principi di ingegneria elettrica. Lezione 6 a. Analisi delle reti resistive

Principi di ingegneria elettrica. Lezione 6 a. Analisi delle reti resistive Prncp d ngegnera elettrca Lezone 6 a Anals delle ret resste Anals delle ret resste L anals d una rete elettrca (rsoluzone della rete) consste nel determnare tutte le corrent ncognte ne ram e tutt potenzal

Dettagli

CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI

CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI Cenn sulle macchne seuenzal CAPITOLO IV CENNI SULLE MACCHINE SEQUENZIALI 4.) La macchna seuenzale. Una macchna seuenzale o macchna a stat fnt M e' un automatsmo deale a n ngress e m uscte defnto da: )

Dettagli

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito.

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito. Integrli de niti. Il problem di clcolre l re di un regione pin delimitt d gr ci di funzioni si può risolvere usndo l integrle de nito. L integrle de nito st l problem del clcolo di ree come l equzione

Dettagli

Liceo Scientifico Sperimentale anno 2002-2003 Problema 1 Bernardo Pedone. ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PNI anno 2002-2003

Liceo Scientifico Sperimentale anno 2002-2003 Problema 1 Bernardo Pedone. ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PNI anno 2002-2003 Liceo Scientifico Sperimentle nno - Problem Bernrdo Pedone ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE PNI nno - PROBLEMA Nel pino sono dti: il cerchio γ di dimetro OA =, l rett t tngente γ

Dettagli

TRASFORMAZIONI GEOMETRICHE DEL PIANO

TRASFORMAZIONI GEOMETRICHE DEL PIANO TRASFORMAZIONI GEOMETRICHE DEL PIANO INTRODUZIONE Per trsformzione geometric pin si intende un corrispondenz iunivoc fr i punti di un pino, ossi un funzione iiettiv che ssoci d ogni punto P del pino un

Dettagli

VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE

VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE Soluzioni di quesiti e prolemi trtti dl Corso Bse Blu di Mtemti volume 5 [] (Es. n. 8 pg. 9 V) Dell prol f ( ) si hnno le seguenti informzioni, tutte

Dettagli

Trasformazioni Geometriche 1 Roberto Petroni, 2011

Trasformazioni Geometriche 1 Roberto Petroni, 2011 1 Trasformazioni Geometriche 1 Roberto etroni, 2011 Trasformazioni Geometriche sul piano euclideo 1) Introduzione Def: si dice trasformazione geometrica una corrispondenza biunivoca che associa ad ogni

Dettagli

Dai circuiti ai grafi

Dai circuiti ai grafi Da crcut a graf Il grafo è una schematzzazone grafca semplfcata che rappresenta le propretà d nterconnessone del crcuto ad esso assocato Il grafo è costtuto da un nseme d nod e d lat Se lat sono orentat

Dettagli

Simulazione seconda prova Tema assegnato all esame di stato per l'abilitazione alla professione di geometra, 2006

Simulazione seconda prova Tema assegnato all esame di stato per l'abilitazione alla professione di geometra, 2006 Smulazone seconda prova Tema assegnato all esame d stato per l'abltazone alla professone d geometra, 006 roposte per lo svolgmento pubblcate sul ollettno SIFET (Socetà Italana d Fotogrammetra e Topografa)

Dettagli

I vettori. Grandezze scalari: Grandezze vettoriali

I vettori. Grandezze scalari: Grandezze vettoriali I etto Gndee scl: engono defnte dl loo loe numeco esemp: lunghe d un segmento, e d un fgu pn, tempetu d un copo, ecc. Gndee ettol engono defnte, olte che dl loo loe numeco, d un deone e d un eso esemp:

Dettagli

f : A A = f (A) In altre parole f è una funzione che associa a un punto del piano un altro punto del piano e che si può invertire.

f : A A = f (A) In altre parole f è una funzione che associa a un punto del piano un altro punto del piano e che si può invertire. Consideriamo l insieme P dei punti del piano e una f funzione biiettiva da P in P: f : { P P A A = f (A) In altre parole f è una funzione che associa a un punto del piano un altro punto del piano e che

Dettagli

MISURE DELL ACCELERAZIONE DI GRAVITÁ g 1) PENDOLO REVERSIBILE DI KATER

MISURE DELL ACCELERAZIONE DI GRAVITÁ g 1) PENDOLO REVERSIBILE DI KATER MISURE DELL ACCELERAZIONE DI GRAVIÁ In questo espermento s vuole msurre l ccelerzone d rvtà. Dvers sono mod possl. S consderno qu le oscllzon d un pendolo fsco e l cdut ler d pllne d cco. All fne del esperment

Dettagli

Esercizi della 8 lezione sulla Geomeria Linere ESERCIZI SULLA CIRCONFERENZA ESERCIZI SULLA PARABOLA ESERCIZI SULL' ELLISSE ERCIZI SULL' IPERBOLE

Esercizi della 8 lezione sulla Geomeria Linere ESERCIZI SULLA CIRCONFERENZA ESERCIZI SULLA PARABOLA ESERCIZI SULL' ELLISSE ERCIZI SULL' IPERBOLE Eserizi dell lezione sull Geomeri Linere ESERCIZI SULLA CIRCONFERENZA ESERCIZI SULLA PARABOLA ESERCIZI SULL' ELLISSE ES ERCIZI SULL' IPERBOLE ESERCIZI SULLA CIRCONFERENZA. Determinre l equzione dell ironferenz

Dettagli

Università degli Studi Federico II di Napoli Facoltà di Architettura

Università degli Studi Federico II di Napoli Facoltà di Architettura Unverstà degl Stud Federco II d Npol Fcoltà d Archtettur Ferdnndo Csolro - Ivno Csolro Appunt del corso d Geometr CAPITOLO I - LA GEOMETRIA ANALITICA. - CENNI STORICI.2 - INTRODUZIONE ALLE COORDINATE CARTESIANE.3

Dettagli

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo:

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo: Sistemi lineri Un equzione linere nelle n incognite x 1, x 2, x,, x n è un equzione nell qule le incognite ppiono solo con esponente 1, ossi del tipo: 1 x 1 + 2 x 2 + x +!+ n x n = b con 1, 2,,, n numeri

Dettagli

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i.

Algebra 2. 6 4. Sia A un anello commutativo. Si ricorda che in un anello commutativo vale il teorema binomiale, cioè. (a + b) n = a i b n i i. Testo Fac-smle 2 Durata prova: 2 ore 8 1. Un gruppo G s dce semplce se suo unc sottogrupp normal sono 1 e G stesso. Sa G un gruppo d ordne pq con p e q numer prm tal che p < q. (a) Il gruppo G può essere

Dettagli

I Teoremi di Green, della divergenza (o di Gauss) e di Stokes

I Teoremi di Green, della divergenza (o di Gauss) e di Stokes I Teoremi di Green, dell divergenz o di Guss e di Stokes In R Si un sottoinsieme limitto di R semplice rispetto d entrmbi gli ssi crtesini con costituit dll unione di un numero finito di sostegni di curve

Dettagli

Studio grafico-analitico di una funzioni reale in una variabile reale

Studio grafico-analitico di una funzioni reale in una variabile reale Studo grafco-analtco d una funzon reale n una varable reale f : R R a = f ( ) n Sequenza de pass In pratca 1 Stablre l tpo d funzone da studare es. f ( ) Determnare l domno D (o campo d esstenza) della

Dettagli

( x) a) La simmetrica della parabola rispetto all origine è tale che: La parabola di equazione y = x + ax a ha vertice V = = mentre la parabola y S

( x) a) La simmetrica della parabola rispetto all origine è tale che: La parabola di equazione y = x + ax a ha vertice V = = mentre la parabola y S Sessione ordinri 996 Liceo di ordinmento Soluzione di De Ros Nicol ) In un pino, riferito d un sistem di ssi crtesini ortogonli (O), sono ssegnte le prbole di equzione:, dove è un numero rele positivo.

Dettagli

Vettori. Le grandezze fisiche sono: scalari; vettoriali;

Vettori. Le grandezze fisiche sono: scalari; vettoriali; Vetto 1 Le gndee fsche sono: scl; vettol; Def: Gnde scle defnt unvocmente d un numeo (postvo o negtvo) (con oppotun untà d msu) es.: tempo, mss, tempetu, cc elettc, Def: Gnde vettole (vd. pgn seguente)

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2005 Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2005 Sessione suppletiva ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 005 Sessione suppletiv Il cndidto risolv uno dei due problemi e 5 dei 0 quesiti in cui si rticol il questionrio. PROBLEMA Sono dti un pirmide

Dettagli

Progetto Lauree Scientifiche. La corrente elettrica

Progetto Lauree Scientifiche. La corrente elettrica Progetto Lauree Scentfche La corrente elettrca Conoscenze d base Forza elettromotrce Corrente Elettrca esstenza e resstvtà Legge d Ohm Crcut 2 Una spra d rame n equlbro elettrostatco In un crcuto semplce

Dettagli

Liceo Scientifico Statale A. Volta, Torino Anno scolastico 2014 / 2015

Liceo Scientifico Statale A. Volta, Torino Anno scolastico 2014 / 2015 Leo Sentfo Sttle A. Volt, Torno Anno solsto 0 / 0 Cognome e Nome: LOGARITMI ED ESPONENZIALI Complet on l equone d sun funone: A) B) C) D) 0) Qule funone pss per l punto ( ; ) ed è sempre postv? 0) L funone

Dettagli

Definizioni fondamentali

Definizioni fondamentali Definizioni fondmentli Sistem scisse su un rett 1 Un rett si ce orientt qundo su ess è fissto un verso percorrenz Dti due punti qulsisi A e B un rett orientt r, il segmento AB che può essere percorso d

Dettagli

COGNOME..NOME CLASSE.DATA

COGNOME..NOME CLASSE.DATA COGNOME..NOME CLASSE.DATA FUNZIONE ESPONENZIALE - VERIFICA OBIETTIVI Sper definire un funzione esponenzile. Sper rppresentre un funzione esponenzile. Sper individure le crtteristiche del grfico di un funzione

Dettagli

Ing. Alessandro Pochì

Ing. Alessandro Pochì Dispense di Mtemtic clsse quint -Gli integrli Quest oper è distriuit con: Licenz Cretive Commons Attriuzione - Non commercile - Non opere derivte. Itli Ing. Alessndro Pochì Appunti di lezione svolti ll

Dettagli

LE GRANDEZZE FISICHE. estensive. Grandezze. intensive non dipendono dalla quantità di materia temperatura, peso specifico

LE GRANDEZZE FISICHE. estensive. Grandezze. intensive non dipendono dalla quantità di materia temperatura, peso specifico LE GRANDEZZE FISICHE estensive dipendono dll quntità di mteri mss, volume, lunghezz Grndezze intensive non dipendono dll quntità di mteri tempertur, peso specifico LA MISURA DI UNA GRANDEZZA FISICA Per

Dettagli

Il modello markoviano per la rappresentazione del Sistema Bonus Malus. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti

Il modello markoviano per la rappresentazione del Sistema Bonus Malus. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti Il modello marovano per la rappresentazone del Sstema Bonus Malus rof. Cercara Rocco Roberto Materale e Rferment. Lucd dstrbut n aula. Lemare 995 (pag.6- e pag. 74-78 3. Galatoto G. 4 (tt del VI Congresso

Dettagli

Calcolo delle Probabilità

Calcolo delle Probabilità alcolo delle Probabltà Quanto è possble un esto? La verosmglanza d un esto è quantfcata da un numero compreso tra 0 e. n partcolare, 0 ndca che l esto non s verfca e ndca che l esto s verfca senza dubbo.

Dettagli

TRASFORMAZIONI GEOMETRICHE NEL PIANO. Parte 1

TRASFORMAZIONI GEOMETRICHE NEL PIANO. Parte 1 TRASFORMAZIONI GEOMETRICHE NEL PIANO Parte 1 La geometria è la scienza che studia la forma e l estensione dei corpi e le trasformazioni che questi possono subire. In generale per trasformazione geometrica

Dettagli

Teoremi di geometria piana

Teoremi di geometria piana l congruenz teoremi sugli ngoli γ teorem sugli ngoli complementri Se due ngoli sono complementri di uno stesso ngolo α β In generle: Se due ngoli sono complementri di due ngoli congruenti α γ β teorem

Dettagli

5. Coperture in acciaio: applicazione

5. Coperture in acciaio: applicazione 5. Coperture n cco: pplczone Le coperture n cco, d solto rservte costruzon non bttve, hnno tpologe costruttve bbstnz tpche ( FIGURA 1). Gl element costruttv ordnr sono: sol; le trv, sezone pen (rcrecc)

Dettagli

Lezione 16. Costruibilità con riga e compasso.

Lezione 16. Costruibilità con riga e compasso. Lezone 6 Prerequst: Lezon 9, 5. Costrubltà on rg e ompsso. Defnzone 6. S F un mpo, e s K un su estensone. Un elemento ostruble su F se esste un estensone -rdle d F ontenente α. α K s de Quest defnzone

Dettagli

Lezione 27. La legge di reciprocità quadratica.

Lezione 27. La legge di reciprocità quadratica. Lezone 7 Prereust: Congruenze modulo un ntero L legge d recroctà udrtc Dedchmo uest ultmo ctolo llo studo dell rsolubltà delle congruenze udrtche del to x (mod ), (*) dove è un ulss ntero e è un numero

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2012-2013 Esercitazione: 4 aprile 2013

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2012-2013 Esercitazione: 4 aprile 2013 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2012-2013 Eserctazone: 4 aprle 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/41? Aula "Ranzan B" 255 post 1 2 3 4 5 6 7 8 9

Dettagli

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica Nome Cognome cls 5D 18 Mrzo 01 Problem Verific di mtemtic In un sistem di riferimento crtesino Oy, si consideri l funzione: ln f ( > 0 0 e si determini il vlore del prmetro rele in modo tle che l funzione

Dettagli

Facoltà di Economia - Università di Sassari Anno Accademico 2004-2005. Dispense Corso di Econometria Docente: Luciano Gutierrez.

Facoltà di Economia - Università di Sassari Anno Accademico 2004-2005. Dispense Corso di Econometria Docente: Luciano Gutierrez. Fcoltà di Economi - Università di Sssri Anno Accdemico 2004-2005 Dispense Corso di Econometri Docente: Lucino Gutierrez Algebr Linere Progrmm: 1.1 Definizione di mtrice e vettore 1.2 Addizione e sottrzione

Dettagli

Misure Topografiche Tradizionali

Misure Topografiche Tradizionali Msure Topografche Tradzonal Grandezze da levare ngol Dstanze Gonometr Dstanzometro Stazone Totale Prsma Dslvell Lvello Stada Msure Strettamente Necessare Soluzone geometrca Msure Sovrabbondant Compensazone

Dettagli

Problemi e rappresentazione di problemi di geometria dello spazio - Claudio Cereda febbraio 2001 pag. 1

Problemi e rappresentazione di problemi di geometria dello spazio - Claudio Cereda febbraio 2001 pag. 1 Prolemi e rppresentzione di prolemi di geometri dello spzio - ludio ered ferio 00 pg. onvenzioni di disegno e di rppresentzione Nel corso dell trttzione si dotternno le seguenti convenzioni simoliche:

Dettagli

Scrivere 2.1 cm implica dire che la misura sia compresa nell intervallo mm

Scrivere 2.1 cm implica dire che la misura sia compresa nell intervallo mm Il lto d un ddo è pr. cm. Usndo le cfre sgnfctve per stmre l errore clcolre l volume del cuo. Supponendo che l devzone stndrd nell msur del lto s d mm clcolre l devzone stndrd che ssoct ll msur del volume.

Dettagli

Calcolo letterale. 1) Operazioni con i monomi. a) La moltiplicazione. b) La divisione. c) Risolvi le seguenti espressioni con i monomi.

Calcolo letterale. 1) Operazioni con i monomi. a) La moltiplicazione. b) La divisione. c) Risolvi le seguenti espressioni con i monomi. Clcolo letterle. ) Operzioni con i monomi. ) L moltipliczione. ) L divisione. c) Risolvi le seguenti espressioni con i monomi. ) I polinomi. ) Clcol le seguenti somme di polinomi. ) Applic l proprietà

Dettagli

Lezione 7: Rette e piani nello spazio

Lezione 7: Rette e piani nello spazio Lezione 7: Rette e pini nello spzio In quest lezione i metteremo in un riferimento rtesino ortonormle dello spzio. I primi oggetti geometrii he individuimo sono le rette e i pini. Per qunto rigurd le rette

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa 2012-2013 lezione 13: 24 aprile 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa 2012-2013 lezione 13: 24 aprile 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 13: 24 aprle 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/23? reammortamento uò accadere che, dopo l erogazone

Dettagli

Definizione. Si chiama similitudine una corrispondenza biunivoca dal piano in sé tale che,

Definizione. Si chiama similitudine una corrispondenza biunivoca dal piano in sé tale che, CAPITOLO 6 LE SIMILITUDINI 6 Rihimi i teori Definizione Si him similituine un orrisponenz iunivo l pino in sé tle he presi ue punti qulunque A B el pino e etti A B i loro orrisponenti si h he esiste un

Dettagli

Meccanica dei Solidi. Vettori

Meccanica dei Solidi. Vettori Meccnic dei Solidi Prof. Ing. Stefno Avers Università di Npoli Prthenope.. 2005-06 Lezione 2 Vettori Definizione: Un grndezz vettorile (o un vettore) è un grndezz fisic crtterizzt oltre che d un numero

Dettagli

Il Primo Principio della Termodinamica non fornisce alcuna indicazione riguardo ad alcuni aspetti pratici.

Il Primo Principio della Termodinamica non fornisce alcuna indicazione riguardo ad alcuni aspetti pratici. Il Primo Principio dell Termodinmic non fornisce lcun indiczione rigurdo d lcuni spetti prtici. l evoluzione spontne delle trsformzioni; non individu cioè il verso in cui esse possono vvenire. Pistr cld

Dettagli

SUGLI INSIEMI. 1.Insiemi e operazioni su di essi

SUGLI INSIEMI. 1.Insiemi e operazioni su di essi SUGLI INSIEMI 1.Insiemi e operzioni su di essi Il concetto di insieme è primitivo ed è sinonimo di clsse, totlità. Si A un insieme di elementi qulunque. Per indicre che è un elemento di A scriveremo A.

Dettagli

" Osservazione. 6.1 Integrale indefinito. R Definizione (Primitiva) E Esempio 6.1 CAPITOLO 6

 Osservazione. 6.1 Integrale indefinito. R Definizione (Primitiva) E Esempio 6.1 CAPITOLO 6 CAPITOLO 6 Clcolo integrle 6. Integrle indefinito L nozione fondmentle del clcolo integrle è quell di funzione primitiv di un funzione f (). Tle nozione è in qulche modo speculre ll nozione di funzione

Dettagli

Corrente elettrica e circuiti

Corrente elettrica e circuiti Corrente elettrca e crcut Generator d forza elettromotrce Intenstà d corrente Legg d Ohm esstenza e resstvtà esstenze n sere e n parallelo Effetto termco della corrente Legg d Krchhoff Corrente elettrca

Dettagli

Unità Didattica N 5 Il riferimento cartesiano

Unità Didattica N 5 Il riferimento cartesiano 01 Mtemtc Lceo \ Untà Ddttc N 5 : l femento ctesno 1 Untà Ddttc N 5 Il femento ctesno 01) Coodnt scss 0) Coodnte ctesne nel pno 03) Ve spece d sstem d femento 04) Rppesentzone ctesn d un vettoe 05) Le

Dettagli

Es1 Es2 Es3 Es4 Es5 tot

Es1 Es2 Es3 Es4 Es5 tot Ottore lsse E Verifi sommtiv Cognome Nome rgomenti: onihe, funzione esponenzile e grfii derivti Tempo disposizione: ore Voto Es Es Es Es Es tot.... Considert l ellisse vente ome sse fole l sse, eentriità

Dettagli

Definiamo ora alcuni vettori particolarmente importanti detti versori.

Definiamo ora alcuni vettori particolarmente importanti detti versori. Prof. A. Di Mro I versori Definimo or lcni vettori prticolrmente importnti detti versori. Un versore è semplicemente n vettore di modlo nitrio. Normlmente gli ssi, e z vengono ssociti i versori i ˆ, ˆj,

Dettagli

INTERVALLI NELL INSIEME R

INTERVALLI NELL INSIEME R INTEVALLI NELL INSIEME Lo studio dell topologi (1) (dl greco "nlysis situs" ossi "studio del luogo") dell'insieme è di fondmentle importnz per gli rgomenti e i prolemi di nlisi infinitesimle. Il "luogo"

Dettagli

Intorduzione alla teoria delle Catene di Markov

Intorduzione alla teoria delle Catene di Markov Intorduzone alla teora delle Catene d Markov Mchele Ganfelce a.a. 2014/2015 Defnzone 1 Sa ( Ω, F, {F n } n 0, P uno spazo d probabltà fltrato. Una successone d v.a. {ξ n } n 0 defnta su ( Ω, F, {F n }

Dettagli

Che tipo di linee riconosci in questi quadri? Ripassale con una matita colorata e, con la stessa tinta, colora il pallino corrispondente.

Che tipo di linee riconosci in questi quadri? Ripassale con una matita colorata e, con la stessa tinta, colora il pallino corrispondente. Linee Che tipo di linee riconosci in questi quadri? Ripassale con una matita colorata e, con la stessa tinta, colora il pallino corrispondente. a. curva spezzata retta mista aperta chiusa b. curva spezzata

Dettagli

Corso di Analisi Matematica Calcolo integrale per funzioni di una variabile

Corso di Analisi Matematica Calcolo integrale per funzioni di una variabile Corso di Anlisi Mtemtic Clcolo integrle per funzioni di un vribile Lure in Informtic e Comuniczione Digitle A.A. 2013/2014 Università di Bri ICD (Bri) Anlisi Mtemtic 1 / 40 1 L integrle come limite di

Dettagli

5. Baricentro di sezioni composte

5. Baricentro di sezioni composte 5. Barcentro d sezon composte Barcentro del trapezo Il barcentro del trapezo ( FIURA ) s trova sull asse d smmetra oblqua (medana) della fgura; è suffcente, qund, determnare la sola ordnata. A tal fne,

Dettagli

LE TRASFORMAZIONI GEOMETRICHE NEL PIANO

LE TRASFORMAZIONI GEOMETRICHE NEL PIANO LE TRASFORMAZIONI GEOMETRICHE NEL PIANO Una trasformazione geometrica è una funzione che fa corrispondere a ogni punto del piano un altro punto del piano stesso Si può pensare come MOVIMENTO di punti e

Dettagli

La rappresentazione per elencazione consiste nell elencare tutte le coppie ordinate che verificano la relazione

La rappresentazione per elencazione consiste nell elencare tutte le coppie ordinate che verificano la relazione RELAZIONI E FUNZIONI Relzioni inrie Dti ue insiemi non vuoti e (he possono eventulmente oiniere), si ie relzione tr e un qulsisi legge he ssoi elementi elementi. L insieme A è etto insieme i prtenz. L

Dettagli

Fondamenti di Visione Artificiale (Seconda Parte) Corso di Robotica Prof.ssa Giuseppina Gini Anno Acc.. 2006/2007

Fondamenti di Visione Artificiale (Seconda Parte) Corso di Robotica Prof.ssa Giuseppina Gini Anno Acc.. 2006/2007 Fondament d Vsone Artfcale (Seconda Parte PhD. Ing. Mchele Folgherater Corso d Robotca Prof.ssa Guseppna Gn Anno Acc.. 006/007 Caso Bdmensonale el caso bdmensonale, per ndvduare punt d contorno degl oggett

Dettagli

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma INTEGRALI IMPROPRI. Integrli impropri su intervlli itti Dt un funzione f() continu in [, b), ponimo ε f() = f() ε + qundo il ite esiste. Se tle ite esiste finito, l integrle improprio si dice convergente

Dettagli

Maturità scientifica, corso di ordinamento, sessione ordinaria 2000-2001

Maturità scientifica, corso di ordinamento, sessione ordinaria 2000-2001 Mtemtic per l nuov mturità scientific A. Bernrdo M. Pedone Mturità scientific, corso di ordinmento, sessione ordinri 000-001 PROBLEMA 1 Si consideri l seguente relzione tr le vribili reli x, y: 1 1 1 +

Dettagli

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x).

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x). OMINI NORMALI. efinizione Sino α(), β() due funzioni continue in un intervllo [, b] IR tli che L insieme del pino (figur 5. pg. ) α() β(). = {(, ) [, b] IR : α() β()} si chim dominio normle rispetto ll

Dettagli

Vertici opposti. Fig. C6.1 Definizioni relative ai quadrilateri.

Vertici opposti. Fig. C6.1 Definizioni relative ai quadrilateri. 6. Quadrilateri 6.1 efinizioni Un poligono di 4 lati è detto quadrilatero. I lati di un quadrilatero che hanno un vertice in comune sono detti consecutivi. I lati di un quadrilatero non consecutivi tra

Dettagli

Capitolo 7. La «sintesi neoclassica» e il modello IS-LM. 2. La curva IS

Capitolo 7. La «sintesi neoclassica» e il modello IS-LM. 2. La curva IS Captolo 7 1. Il modello IS-LM La «sntes neoclassca» e l modello IS-LM Defnzone: ndvdua tutte le combnazon d reddto e saggo d nteresse per le qual l mercato de ben (curva IS) e l mercato della moneta (curva

Dettagli

-STRUTTURE DI LEWIS SIMBOLI DI LEWIS

-STRUTTURE DI LEWIS SIMBOLI DI LEWIS STRUTTURE DI LEWIS SIMBLI DI LEWIS ELETTRI DI VALEZA: sono gli elettroni del guscio esterno, i responsbili principli delle proprietà chimiche di un tomo e quindi dell ntur dei legmi chimici che vengono

Dettagli

3. Componenti adinamici

3. Componenti adinamici 3. Comonen dnmc Ssem rsolene d un crcuo. elzone cosu d un comonene. Clssfczon: comonene lnere/non lnere, dnmco/dnmco, con memor/senz memor, emo nrne/emo rne, omogeneo/non omogeneo, mresso/non mresso, sso,

Dettagli

LA COMPATIBILITA tra due misure:

LA COMPATIBILITA tra due misure: LA COMPATIBILITA tra due msure: 0.4 Due msure, supposte affette da error casual, s dcono tra loro compatbl quando la loro dfferenza può essere rcondotta ad una pura fluttuazone statstca attorno al valore

Dettagli

Esercitazioni di Elettrotecnica: doppi-bipoli

Esercitazioni di Elettrotecnica: doppi-bipoli . Mffucc: serctzon su dopp-pol er.-9 Unerstà degl tud d ssno serctzon d lettrotecnc: dopp-pol prof. ntono Mffucc er.. ottore 9 . Mffucc: serctzon su dopp-pol er.-9. opp-pol n rege stzonro.. on rferento

Dettagli

Economie di scala, concorrenza imperfetta e commercio internazionale

Economie di scala, concorrenza imperfetta e commercio internazionale Sanna-Randacco Lezone n. 14 Econome d scala, concorrenza mperfetta e commerco nternazonale Non v è vantaggo comparato (e qund non v è commerco nter-ndustrale). S vuole dmostrare che la struttura d mercato

Dettagli

Determinare la posizione del centro di taglio della seguente sezione aperta di spessore sottile b << a

Determinare la posizione del centro di taglio della seguente sezione aperta di spessore sottile b << a Determinre l posizione del centro di tglio dell seguente sezione pert di spessore sottile

Dettagli

Grandezze scalari e vettoriali

Grandezze scalari e vettoriali Grandezze scalari e vettoriali 01 - Grandezze scalari e grandezze vettoriali. Le grandezze fisiche, gli oggetti di cui si occupa la fisica, sono grandezze misurabili. Altri enti che non sono misurabili

Dettagli

Elettricità e circuiti

Elettricità e circuiti Elettrctà e crcut Generator d forza elettromotrce Intenstà d corrente Legg d Ohm esstenza e resstvtà Effetto termco della corrente esstenze n sere e n parallelo Legg d Krchoff P. Maestro Elettrctà e crcut

Dettagli

Verifica termoigrometrica delle pareti

Verifica termoigrometrica delle pareti Unverstà Medterranea d Reggo Calabra Facoltà d Archtettura Corso d Tecnca del Controllo Ambentale A.A. 2009-200 Verfca termogrometrca delle paret Prof. Marna Mstretta ANALISI IGROTERMICA DEGLI ELEMENTI

Dettagli

Esercizi sulle curve in forma parametrica

Esercizi sulle curve in forma parametrica Esercizi sulle curve in form prmetric Esercizio. L Elic Cilindric. Dt l curv di equzioni prmetriche: xt cos t yt sin t t 0 T ] > 0 b IR zt bt trovre: versore tngente normle binormle vettore curvtur rggio

Dettagli

Capitolo 5. Il Sistema Satellitare GPS

Capitolo 5. Il Sistema Satellitare GPS Cptolo 5 Il stem telltre GP 5. Descrzone del sstem L nvgzone stelltre nsce con l lnco dello putn d prte dell U nell ottobre 957; l osservzone dello shft-doppler sull frequenz delle converszon dllo putn

Dettagli

Il moto rettilineo uniformemente accelerato è un moto che avviene su una retta con accelerazione costante. a = costante

Il moto rettilineo uniformemente accelerato è un moto che avviene su una retta con accelerazione costante. a = costante Prof.. Di Muro Moto rettilineo uniformemente ccelerto ( m.r.u.. ) Il moto rettilineo uniformemente ccelerto è un moto che iene su un rett con ccelerzione costnte. Dll definizione di ccelerzione t t t t

Dettagli