I vettori. a b. 180 α B A. Un segmento orientato è un segmento su cui è stato fissato un verso. di percorrenza, da verso oppure da verso.

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "I vettori. a b. 180 α B A. Un segmento orientato è un segmento su cui è stato fissato un verso. di percorrenza, da verso oppure da verso."

Transcript

1 I vettor B Un segmento orentto è un segmento su cu è stto fssto un verso B d percorrenz, d verso oppure d verso. A A Il segmento orentto d verso è ndcto con l smolo. Due segment orentt che hnno l stess drezone (oss che gccono su due rette prllele), lo stesso verso e l stess lunghezz s dcono segment equpollent. Nell'nseme de segment orentt, l relzone d equpollenz è un relzone d equvlenz, perché gode delle propretà rflessv, smmetrc e trnstv. L'equpollenz pertnto determn un suddvsone d tutt segment orentt del pno n clss d equvlenz. Cscun d queste clss d equvlenz è chmt vettore e contene tutt e sol segment fr loro equpollent. Un vettore è ndcto con un letter sormontt d un frecc,, oppure con l segmento orentto che lo rppresent,. Un vettore è crtterzzto d: l modulo oss l msur dell lunghezz del segmento rspetto un'untà prefsst; l drezone, coè l drezone dell rett cu pprtene l segmento; l verso. Il vettore nullo è l vettore che h come rppresentnt segment null. Il vettore nullo vene ndcto con 0, h modulo zero e drezone e verso ndetermnt. Il vettore opposto d un vettore AB è l vettore BA, oss l vettore che h lo stesso modulo d, l stess drezone, m verso contrro. Il vettore opposto del vettore è ndcto con. A B A B SOMMA DI DUE VETTORI L somm d due vettor e s ottene con l regol del prllelogrmmo. Il suo modulo vle 2 DIFFERENZA DI DUE VETTORI L dfferenz d due vettor e s ottene eseguendo l somm del vettore con l vettore. α α α 180 α 180 α In defntv 2 PRODOTTO DI UN VETTORE PER UNO SCALARE Sno un numero rele e un vettore, l prodotto del numero per l vettore è defnto nel seguente modo: se 0 l prodotto è l vettore che h l stess drezone e lo stesso verso d e modulo ugule. se 0 l prodotto è l vettore che h l stess drezone d, verso opposto quello d e modulo ugule. se 0 l prodotto è l vettore 0. Mtemtc 1

2 PRODOTTO SCALARE DI DUE VETTORI Il prodotto sclre d due vettor e è l prodotto d un vettore per l componente dell ltro vettore lungo l drezone del prmo. Il prodotto sclre d due vettor è uno sclre e non un vettore. Il prodotto sclre d due vettor è: postvo se α è cuto negtvo se α è ottuso. I In smol coè: cos α Osservzone: Il prodotto sclre d due vettor ortogonl è zero (perché cos α I PRODOTTO VETTORIALE DI DUE VETTORI Il prodotto vettorle d due vettor e, che s ndc con, e s legge vettore, è un vettore vente per modulo l re del prllelogrmmo costruto su due vettor, per drezone quell perpendcolre l pno ndvduto d e e verso tle che, rspetto d esso, l vettore per sovrppors, descrvendo un ngolo mnore d 180, deve ruotre n senso ntorro. B Il modulo del prodotto vettorle è:. Osservzone: l prodotto vettorle d due vettor prllel è zero. α H REGOLA DELLA MANO DESTRA Tenendo l mno destr n modo tle che le dt pegte seguno l rotzone del vettore verso, l pollce ndc l drezone e l verso del prodotto vettorle. COMPONENTI DI UN VETTORE Le component crtesne del vettore sono le proezon del vettore lungo l sse e lungo lsse. In smol: OA cos e OA sen OA e OA Consderndo versor e (vettor untr drett come gl ss) s h: OA e OA d cu s ottene l espressone crtesn del vettore Dll fgur s h che l modulo del vettore mentre l ngolo 2 2 A O α A A rctg. SOMMA DI DUE VETTORI TRAMITE LE LORO COMPONENTI Le component del vettore somm (dfferenz) d due vettor ugul ll somm (dfferenz) delle component omonme de due vettor. e sono Dmostrzone Mtemtc 2

3 Mtemtc 3 PRODOTTO SCALARE DI DUE VETTORI TRAMITE LE LORO COMPONENTI Il prodotto sclre d due vettor e è ugule ll somm de prodott delle component omonme de due vettor. Dmostrzone Essendo 1 e 0 s h: PRODOTTO VETTORIALE DI DUE VETTORI TRAMITE LE LORO COMPONENTI Il prodotto vettorle d due vettor e gcent sullo stesso pno α è l vettore dretto secondo l versore k ortogonle l pno α, nello stesso verso d k oppure verso opposto, secondo che l componente n tle drezone rsult postv oppure negtv e vente modulo. In smol k. Dmostrzone Essendo 0 e k k s h: k K k K k

4 Le sometre TRASFORMAZIONI GEOMETRICHE Un trsformzone geometrc è un funzone unvoc che ssoc ogn punto del pno un ltro punto del pno. Il punto che corrsponde nell trsformzone s ndc con e s dce corrspondente (o mmgne o trsformto) d nell. Un fgur s dce unt rspetto d un dt trsformzone se l fgur trsformt concde con quell d prtenz. Un segmento s dce unto rspetto d un dt trsformzone se l segmento trsformto concde con quello d prtenz. Un rett s dce unt rspetto d un dt trsformzone se l rett trsformt concde con quell d prtenz. Un punto s dce unto rspetto d un dt trsformzone se l punto trsformto concde con quello d prtenz. ISOMETRIE Un sometr è un trsformzone geometrc che conserv l dstnz. PROPRIETÀ DELLE ISOMETRIE TEOREMA Un sometr trsform rette n rette. Dmostrzone Dmostrre che l'mmgne d un rett è un rett equvle dmostrre che le mmgn A', B', C' d tre punt llnet A, B e C sono ncor tre punt llnet. Supponmo A, B, C ordnt come nell fgur. Rsult che: Poché un sometr conserv le dstnze, srà:,, Qund:. Tle relzone mplc che A', B', C' sono llnet. (se non fossero llnet, per l dsuguglnz trngolre, dovree rsultre che: A'B' + B'C' > A'C'). COROLLARIO Un sometr trsform semrette n semrette e segment n segment. TEOREMA Un sometr trsform un copp d rette prllele n un copp d rette prllele. IPOTESI TESI è un sometr; Dmostrzone Se e concdono, l tes è nle. Consdermo qund l cso n cu e sono prllele dstnte. Supponmo, per ssurdo, che le due rette r e s sno ncdent n P. L contrommgne d pprterree ll rett r (poché ) e ll rett s (poché ). Qund e dovreero vere n comune l punto. M cò contrddce l'potes che e sno prllele dstnte. Dunque, domo concludere che nche e sono prllele. Mtemtc 4

5 TEOREMA Un'sometr trsform un copp d rette ncdent n un copp d rette ncdent e l punto d'ntersezone dell prm copp d rette h come mmgne nell'sometr l punto d'ntersezone delle rette corrspondent nell'sometr. IPOTESI TESI è un sometr; Dmostrzone Sccome Sccome Pertnto e hnno n comune lmeno l punto. Se per ssurdo, e vessero n comune un ltro punto, questo sree mmgne d un punto d ntersezone d e. Le rette e, vendo n comune due punt dstnt, e, concdereero. M cò contrddce l'potes che e sno ncdent. S conclude che:. TEOREMA Un sometr trsform un ngolo n un ngolo esso congruente. I lt e l vertce dell'ngolo trsformto sono le mmgn de lt e del vertce dell'ngolo orgnro. IPOTESI TESI Dmostrzone è un sometr; Pres due punt e su lt e dell'ngolo, e sono loro corrspondent nell'sometr. Per l teorem precedente s h: 0 0. Poché le sometre conservno le dstnze, trngol e hnno tre lt ordntmente congruent, qund sono congruent per l terzo crtero d congruenz. In prtcolre hnno gl ngol. COROLLARIO Un sometr trsform rette perpendcolr n rette perpendcolr. Mtemtc 5

6 Smmetre ssl SIMMETRICO DI UN PUNTO RISPETTO AD UNA RETTA Il smmetrco d un punto rspetto d un rett r è l punto: stesso t.c.l sse d s l rett SIMMETRIA ASSIALE L smmetr ssle rspetto un dt rett r è l trsformzone che ssoc ogn punto del pno l punto, smmetrco d rspetto. L rett s chm sse d smmetr. Se un fgur è unvocmente determnt d un certo numero d punt (un segmento è ndvduto d due punt estrem; un trngolo è ndvduto d suo tre vertc), per determnre l su corrspondente nell smmetr rspetto un rett è suffcente determnre smmetrc d quest punt. Per determnre l rett smmetrc d rspetto, st sceglere due punt e sull rett e determnrne punt smmetrc. L smmetr ssle è un trsformzone nvolutor. (l'nvers d un smmetr ssle è l trsformzone stess). TEOREMA Ogn smmetr ssle è un sometr. IPOTESI AB è un segmento del pno; r è un rett; A B smmetrco d AB rspetto ll rett r TESI A B AB Dmostrzone I cs che s possono presentre sono quttro: I II III IV e gccono nello stesso sempno d orgne e gccono n sempn oppost rspetto ll orgne Mtemtc 6

7 Dmostrmo soltnto l III cso. Le dmostrzon degl ltr cs s effettuno con lo stesso procedmento. Indct con e, rspettvmente, punt d'ntersezone d e con l rett. I due trngol rettngol e sono congruent per l I crtero d congruenz de trngol rettngol. Inftt: HK è n comune perché e sono punt smmetrc rspetto ll rett Avendo dmostrto che. I trngol e sono congruent per l I crtero d congruenz de trngol. Inftt: per l dmostrzone precedente perché e sono punt smmetrc rspetto ll rett perché complementr degl ngol congruent e. In defntv s conclude che:. PROPRIETÀ INVARIANTI DI UNA SIMMETRIA ASSIALE Le smmetre ssl, essendo delle sometre, conservno: l'llnemento de punt; l'ncdenz e l prllelsmo tr le rette; l lunghezz de segment; l'mpezz degl ngol. L smmetr ssle non conserv le drezon L smmetr ssle nonn conserv l' orentmento delle fgure ELEMENTI UNITI DI UNA SIMMETRIA ASSIALE Tutt e sol punt pprtenent ll'sse d smmetr sono unt. Pertnto l'sse d smmetr è un rett unt. Ogn rett perpendcolre ll'sse d smmetr è unt; ess però non è costtut d punt unt. FIGURE SIMMETRICHE Un fgur s dce smmetrc rspetto ll rett se rsult unt nell smmetr rspetto un rett. L rett s chm sse d smmetr dell fgur. Fgure con un sse d smmetr Fgure con due ss d smmetr Fgure con pù ss d smmetr Mtemtc 7

8 Smmetre centrl SIMMETRICO DI UN PUNTO RISPETTO AD UN PUNTO l punto stesso Il smmetrco d un punto rspetto d un punto è l punto t. c. l punto medo d PP s SIMMETRIA CENTRALE L smmetr centrle d centro è l trsformzone che ssoc ogn punto P del pno l suo smmetrco rspetto l centro O. Ess è ndct con. Per ndvdure l fgur trsformt n un smmetr centrlee è suffcente determnre smmetrc rspetto l punto O de punt che ndvduno l fgur. TEOREMA Ogn smmetr centrle è un sometr. IPOTESI AB è un segmento del pno è l centro dell smmetr A B smmetrco d AB rspetto d O Dmostrzone I trngol per l I crtero d congruenz. Inftt: perché e smmetrc rspetto d O perché e smmetrc rspetto d O perché ngol oppost l vertce. L congruenz A B AB. TESI A B AB PROPRIETÀ INVARIANTI DI UNA SIMMETRIA CENTRALE Le smmetre centrl, essendo delle sometre, conservno: l'llnemento de punt; l'ncdenz e l prllelsmo tr le rette; l lunghezz de segment; l'mpezz degl ngol. Le smmetre centrl conservno le drezon, ovvero un rett vene trsformt n un rett prllel Le smmetre centrl conservno l'orentmento delle fgure Mtemtc 8

9 ELEMENTI UNITI DI UNA SIMMETRIA CENTRALE L'unco punto unto dell smmetr centrle è l centro dell smmetr. Ogn rett pssnte per l centro dell smmetr è un rett unt; esse però non sono costtute d punt unt. FIGURE SIMMETRICHE Un fgur s dce smmetrc se l fgur corrspondente n un smmetr centrle è l fgur stess (l fgur rsult unt rspetto ll smmetr). Il punto O s chm centro d smmetr dell fgur. Fgure con un centro d smmetr Fgure con nfnt centr d smmetr Mtemtc 9

10 Trslzon TRASLAZIONE L trslzone d vettore è l trsformzone che ssoc ogn punto del pno l punto tle che l stess drezone, lo stesso verso e lo stesso modulo del vettore. Ess è ndct con l smolo. L trslzone d vettore nullo concde con l'denttà. L'nvers d un trslzone d vettore è l trslzone ndvdut dl vettore opposto d. TEOREMA L trslzone è un sometr. IPOTESI AB è un segmento del pno è un trslzone d vettore A B trslto d AB d un vettore Dmostrzone è un prllelogrmm. Inftt: perché hnno l stess drezone del vettore perché hnno lo stesso modulo del vettore Avendo dmostrto che è un prllelogrmm, esso h lt oppost sono congruent. In prtcolre A B AB. TESI A B AB PROPRIETÀ INVARIANTI DI UNA SIMMETRIA ASSIALE Le trslzon, essendo delle sometre, conservno: l'llnemento de punt; l'ncdenz e l prllelsmo tr le rette; l lunghezz de segment e l'mpezz degl ngol. Le trslzon conservno le drezon, ovvero un rett vene trsformt n un rett prllel Le trslzon conservno l'orentmento delle fgure ELEMENTI UNITI DI UNA TASLAZIONE L trslzone, d eccezone dell denttà, non h punt unt. Tutte le rette del pno che hnno l stess drezone del vettore sono rette unte. Nessun punto d queste rette è unto nell trslzone. Mtemtc 10

11 Rotzon ANGOLO ORIENTATO Un ngolo orentto è un ngolo n cu è stto stlto qule de due lt è consderto come prmo lto. A second del lto scelto l'ngolo rsult orentto n senso orro o ntorro. ROTAZIONE L rotzone d centro e ngolo d rotzone è l trsformzone che ssoc ogn punto l punto tle che: l'ngolo, orentto n modo che s l prmo lto, h l stess mpezz e lo stesso orentmento d. CASI PARTICOLARI Un rotzone d ngolo d rotzone nullo concde con l trsformzone dentc. Un rotzone d 180 o d 180 concde con un smmetr vente centro nel centro dell rotzone. TEOREMA Ogn rotzone è un sometr. IPOTESI AB è un segmento del pno, è un rotzone d centro O e ngolo A B trsformto d AB nell rotzone, TESI A B AB Dmostrzone S hnno 4 cs. Dmostrmo l II cso. Le dmostrzon degl ltr cs s effettuno con lo stesso procedmento. I trngol AOB A OB per l I crtero d congruenz. Inftt: e perché, è un rotzone perché dfferenze d ngol congruent. Avendo dmostrto che A B AB. PROPRIETÀ INVARIANTI DELLE ROTAZIONI Le rotzon, essendo sometre, conservno le lunghezze de segment, le mpezze degl ngol, l'llnemento de punt, l prllelsmo e l'ncdenz tr le rette. Conservno, noltre, l'orentmento delle fgure. Le rotzon non conservno nvece le drezon. ELEMENTI UNITI DELLE ROTAZIONI L'unco punto unto d un rotzone è l centro d rotzone. Nessun rett è unt rspetto un rotzone, d eccezone dell'denttà e dell smmetr centrle. Mtemtc 11

12 Isometre nel pno crtesno In questo cptolo studmo lcune sometre nel pno crtesno. Nello specfco, determnmo le equzon delle trsformzon: quelle formule che consentono d pssre dlle coordnte, d un punto lle coordnte ; del suo punto corrspondente. SIMMETRIE ASSIALI Smmetr rspetto ll sse Smmetr rspetto ll sse ' ' ' ' Smmetr rspetto ll settrcee Smmetr rspetto ll settrce '= '= '= '= Smmetr rspetto ll rett q Smmetr rspetto ll rett p ' ' 2 q ' 2p ' Mtemtc 12

13 SIMMETRIE CENTRALI Smmetr rspetto ll orgne O( 0 ; 0) Smmetr rspetto l punto C (p;q) ' ' ' 2p ' 2q TRASLAZIONI In un pno crtesno ortogonle, è possle ssegnre un vettore mednte un copp ordnt d numer rel,, dett component del vettore. Il vettore d component e è l vettore rppresentto dl segmento orentto, dove ;. Dto un punto ;, le coordnte del punto ;, corrspondente d nell trslzone d vettore ; sono: ESEMPIO Dto l trngolo d vertc 4; 5, 1; 7, 3; 3, determn le coordnte de vertc del suo corrspondente nell trslzone d vettore 5; 2. Soluzone Applcndo le equzon dell trslzone s ottene: : ; : ; : 352 ; 321 Mtemtc 13

14 NOTA Nell dmostrzone d un teorem, n genere, convene rcorrere lle sometre qundo un fgur present un centro o un sse d smmetr. In quest cs, le propretà d conservzone delle sometre permettono spesso d snellre le dmostrzon. Mtemtc 14

Unità Didattica N 32. Le trasformazioni geometriche

Unità Didattica N 32. Le trasformazioni geometriche 1 Untà Ddttc N Le trsformzon geometrche 1) Le trsformzon del pno n sé ) L smmetr centrle ) L smmetr ssle 4) L trslzone 5) L trslzone degl ss crtesn 6) L ' ffntà 7) L smltudne 8) L omotet 09) Le sometre

Dettagli

I vettori. Grandezze scalari: Grandezze vettoriali

I vettori. Grandezze scalari: Grandezze vettoriali Grndee sclr: I ettor engono defnte dl loro lore numerco esemp: lunghe d un segmento, re d un fgur pn, tempertur d un corpo, ecc. Grndee ettorl engono defnte, oltre che dl loro lore numerco, d un dreone

Dettagli

Convenzione Il vettore di modulo 0 é indicato con 0. Definizione Un vettore di modulo 1 é chiamato versore

Convenzione Il vettore di modulo 0 é indicato con 0. Definizione Un vettore di modulo 1 é chiamato versore Vettor. Un vettore è ndvduto nello spo o nel pno ssegnndo tre grndee: Lunghe o Modulo o Intenstà: defnt d un numero rele non negtvo Dreone nlnone d un rett rspetto gl ss rtesn Verso Può rppresentto d segment

Dettagli

I vettori. Grandezze scalari: Grandezze ve9oriali

I vettori. Grandezze scalari: Grandezze ve9oriali I ettor Grndee sclr: engono defnte dl loro lore numerco esemp: lunghe d un segmento, re d un fgur pn, tempertur d un corpo, ecc. Grndee e9orl engono defnte, oltre che dl loro lore numerco, d un dreone

Dettagli

N 10 I NUMERI COMPLESSI

N 10 I NUMERI COMPLESSI Untà Ddttc N 0 I NUMERI COMPLESSI 0) Introduzone dell untà mmgnr 0) Introduzone elementre de numer compless 0) Alcune operzon su numer compless 0) Rppresentzone geometrc de numer compless 05) Rppresentzone

Dettagli

Convenzione Il vettore di modulo 0 é indicato con 0. Definizione Un vettore di modulo 1 é chiamato versore

Convenzione Il vettore di modulo 0 é indicato con 0. Definizione Un vettore di modulo 1 é chiamato versore Vettor. Un vettore è ndvduto nello spo o nel pno ssegnndo tre grndee: Lunghe o Modulo o Intenstà: defnt d un numero rele non negtvo Dreone nlnone d un rett rspetto gl ss rtesn Verso Può rppresentto d segment

Dettagli

I segmenti orientati

I segmenti orientati I vettor Untà Pgn 1 d 5 I egment orentt Dll geometr euclde ppmo che l egmento è l prte fnt d rett delmtt d due punt dett etrem del egmento. Defnmo egmento orentto un qul egmento ul qule è tto fto un vero

Dettagli

3.1 Ridisegnando il circuito senza incroci e applicando la trasformazione triangolo-stella si ottengono gli schemi seguenti.

3.1 Ridisegnando il circuito senza incroci e applicando la trasformazione triangolo-stella si ottengono gli schemi seguenti. . dsegnndo l crcuto senz ncroc e pplcndo l trsformzone trngolostell s ottengono gl schem seguent. Ω Ω eq Ω Ω Ω Ω Ω Ω eq Ω Ω Ω Ω eq Ω eq // Ω. S trsform l stell edenzt n rosso n un trngolo (le resstenze

Dettagli

Geometria Analitica. Parabola (asse verticale) Geometria Analitica La retta. ; y2. x = y = y = ax parabola passante per l origine e con asse l asse y

Geometria Analitica. Parabola (asse verticale) Geometria Analitica La retta. ; y2. x = y = y = ax parabola passante per l origine e con asse l asse y Geometr Anlt Dstnz tr due punt nel pno rtesno P ( x x ) + ( y ) P y Punto medo d due punt nel pno rtesno M x + x y + ( x ; y ) ; M M y Are d un trngolo nel pno rtesno prtre dlle oordnte de suo x y punt

Dettagli

3. Funzioni iniettive, suriettive e biiettive (Ref p.14)

3. Funzioni iniettive, suriettive e biiettive (Ref p.14) . Funzioni iniettive, suriettive e iiettive (Ref p.4) Dll definizione di funzione si ricv che, not un funzione y f( ), comunque preso un vlore di pprtenente l dominio di f( ) esiste un solo vlore di y

Dettagli

ROTAZIONI ( E TEOREMA DI PITAGORA

ROTAZIONI ( E TEOREMA DI PITAGORA ROTAZIONI ( E TEOREMA DI PITAGORA ) Defnzone Defnmo rotzone nel pno R un funzone (,) --> f(,) = (',') R, tle che : ) f(,) = f(,) + ort(f(,), per ogn (,) R dove : ort(,b) := (-b,) "ortogonle (ntorro)" d

Dettagli

Si noti che da questa definizione segue che il punto C è il punto medio del segmento PP'. Figura 1

Si noti che da questa definizione segue che il punto C è il punto medio del segmento PP'. Figura 1 APITOLO 3 LE SIMMETRIE 3. Richimi di teori Definizione. Si dto un punto del pino; si chim simmetri centrle di centro (che si indic con il simbolo s ) l corrispondenz dl pino in sé che d ogni punto P del

Dettagli

MATEMATICA FINANZIARIA 5. VALUTAZIONE DI PROGETTI ECONOMICO-FINANZIARI

MATEMATICA FINANZIARIA 5. VALUTAZIONE DI PROGETTI ECONOMICO-FINANZIARI MATEMATICA FINANZIARIA Pro. Andre Berrd 999 5. VALUTAZIONE DI PROGETTI ECONOMICO-FINANZIARI Corso d Mtemtc Fnnzr 999 d Andre Berrd Sezone 5 PROGETTO ECONOMICO-FINANZIARIO Un progetto economco-nnzro è un

Dettagli

Strutture cristalline 1

Strutture cristalline 1 Chmc fsc de mterl Strutture crstllne Sergo Brutt Impcchettmento comptto n 2D Esstono 2 dfferent mod d rrngre n un pno 2D crconferenze dentche n modo d tssellre n modo comptto lo spzo dmensonle: Impcchettmento

Dettagli

UNIVERSITÀ DEGLI STUDI DI BERGAMO. Facoltà di Ingegneria. Istituzioni di Economia Laurea Triennale in Ingegneria Gestionale

UNIVERSITÀ DEGLI STUDI DI BERGAMO. Facoltà di Ingegneria. Istituzioni di Economia Laurea Triennale in Ingegneria Gestionale Gnmr Mrtn UNIVERSITÀ DEGLI STUDI DI BERGAMO Fcoltà d Ingegner Isttuzon d Econom Lure Trennle n Ingegner Gestonle Lezone 9 Domnd del mercto Prof. Gnmr Mrtn Unverstà degl Stud d Bergmo Fcoltà d Ingegner

Dettagli

Interpolazione dei dati

Interpolazione dei dati Unverstà degl Stud d Br Dprtmento d Chmc 9 gugno 0 F.Mvell Lortoro d Chmc Fsc I.. 0-0 Interpolzone Curve Interpolzone de dt Qundo s conosce l legge fsc che mette n relzone tr loro due vrl e, mednte prmetr,,

Dettagli

Teoremi su correnti e tensioni

Teoremi su correnti e tensioni Teorem su corrent e tenson 1) ombnzone lnere efnzone: n un crcuto, ogn corrente e tensone è dt un combnzone lnere d genertor: V = K 1 $ g 1 K 2 $ g 2 K 3 $ g 3... I = K 1 $ g 1 K 2 $ g 2 K 3 $ g 3... oe

Dettagli

corrispondenza dal piano in sé, che ad ogni punto P del piano fa corrispondere il punto P' in

corrispondenza dal piano in sé, che ad ogni punto P del piano fa corrispondere il punto P' in Cpitolo 5 Le omotetie 5. Richimi di teori Definizione Sino fissti un punto C del pino ed un numero rele. Si chim omoteti di centro C e rpporto ( che si indic con il simolo O, ) l corrispondenz dl pino

Dettagli

f : A A = f (A) In altre parole f è una funzione che associa a un punto del piano un altro punto del piano e che si può invertire.

f : A A = f (A) In altre parole f è una funzione che associa a un punto del piano un altro punto del piano e che si può invertire. Consideriamo l insieme P dei punti del piano e una f funzione biiettiva da P in P: f : { P P A A = f (A) In altre parole f è una funzione che associa a un punto del piano un altro punto del piano e che

Dettagli

TRASFORMAZIONI GEOMETRICHE NEL PIANO. Parte 1

TRASFORMAZIONI GEOMETRICHE NEL PIANO. Parte 1 TRASFORMAZIONI GEOMETRICHE NEL PIANO Parte 1 La geometria è la scienza che studia la forma e l estensione dei corpi e le trasformazioni che questi possono subire. In generale per trasformazione geometrica

Dettagli

DETERMINAZIONE GRAFICA DEL BARICENTRO

DETERMINAZIONE GRAFICA DEL BARICENTRO DETERMNZONE GRFC DEL BRCENTRO (SSTEM D MSSE) Geometria delle masse 1/75 L BRCENTRO D UN SSTEM D MSSE È L CENTRO D UN QULSS SSTEM D VETTOR PRLLEL E CONCORD (DETT VETTOR MSS), PPLCT N CORRSPONDENZ DELLE

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2003

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2003 ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. Il cndidto risolv uno dei due problemi e 5 dei quesiti in cui si rticol il questionrio. PROBLEMA Nel pino sono dti: il cerchio di dimetro OA,

Dettagli

dr Valerio Curcio Le affinità omologiche Le affinità omologiche

dr Valerio Curcio Le affinità omologiche Le affinità omologiche 1 Le ffinità omologiche 2 Tringoli omologici: Due tringoli si dicono omologici se le rette congiungenti i punti omologhi dei due tringoli si incontrno in un medesimo punto. Principio dei tringoli omologici

Dettagli

Teoremi dei circuiti

Teoremi dei circuiti Teorem de crcut www.de.ng.uno.t/pers/mstr/ddttc.tm (ersone del 9-3-0) Teorem d Tellegen Ipotes: Crcuto con n nod e l lt ers d rfermento scelt per tutt lt secondo l conenzone dell utlzztore {,..., l } =

Dettagli

Macchine. 5 Esercitazione 5

Macchine. 5 Esercitazione 5 ESERCITAZIONE 5 Lavoro nterno d una turbomacchna. Il lavoro nterno massco d una turbomacchna può essere determnato not trangol d veloctà che s realzzano all'ngresso e all'uscta della macchna stessa. Infatt

Dettagli

DETERMINAZIONE GRAFICA DEL BARICENTRO

DETERMINAZIONE GRAFICA DEL BARICENTRO DETERMNZONE GRFC DEL BRCENTRO (SSTEM D MSSE) Geometria delle masse 1/97 L BRCENTRO D UN SSTEM D MSSE È L CENTRO D UN QULSS SSTEM D VETTOR PRLLEL E CONCORD (DETT VETTOR MSS), PPLCT N CORRSPONDENZ DELLE

Dettagli

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n.

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n. AUTOVALORI ED AUTOVETTORI Si V uno spzio vettorile di dimensione finit n. Dicesi endomorfismo di V ogni ppliczione linere f : V V dello spzio vettorile in sé. Se f è un endomorfismo di V in V, considert

Dettagli

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU)

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU) Corso di Lure in Scienze e Tecnologie Agrrie Corso Integrto: Mtemtic e Sttistic Modulo: Mtemtic (6 CFU) (4 CFU Lezioni + CFU Esercitzioni) Corso di Lure in Tutel e Gestione del territorio e del Pesggio

Dettagli

Regressione Lineare Semplice

Regressione Lineare Semplice reressone lnere Reressone nere Semplce Per ottenere l veloctà d un corpo s msur l su poszone vr temp. Spendo che l relzone tr l poszone del corpo s l tempo t è dt dll lee s = v t trovre con l reressone

Dettagli

La parabola. Fuoco. Direttrice y

La parabola. Fuoco. Direttrice y L prol Definizione: si definise prol il luogo geometrio dei punti del pino equidistnti d un punto fisso detto fuoo e d un rett fiss dett direttrie. Un rppresentzione grfi inditiv dell prol nel pino rtesino

Dettagli

Trasformazioni Geometriche 1 Roberto Petroni, 2011

Trasformazioni Geometriche 1 Roberto Petroni, 2011 1 Trasformazioni Geometriche 1 Roberto etroni, 2011 Trasformazioni Geometriche sul piano euclideo 1) Introduzione Def: si dice trasformazione geometrica una corrispondenza biunivoca che associa ad ogni

Dettagli

riferimento (assi coordinati) monodimensionale (retta orientata, x), bidimensionale (piano, xy) tridimensionale (spazio tridim.

riferimento (assi coordinati) monodimensionale (retta orientata, x), bidimensionale (piano, xy) tridimensionale (spazio tridim. I vettori rppresentti come segmenti orientti (rppresentzione geometric) si intendono con l origine coincidente con l origine del sistem di riferimento (ssi coordinti) eccetto nei csi in cui si prli di

Dettagli

Università di Napoli Parthenope Facoltà di Ingegneria

Università di Napoli Parthenope Facoltà di Ingegneria Unverstà d Npol Prthenope Fcoltà d Ingegner Corso d Trsmssone Numerc docente: Prof. Vto Psczo 3 Lezone: /0/004 4 Lezone: /0/004 Sommro Quntzzzone sclre (unforme e non unforme) Quntzzzone vettorle (VQ)

Dettagli

Lezione 7. Numeri primi. Teorema Fondamentale dell'aritmetica.

Lezione 7. Numeri primi. Teorema Fondamentale dell'aritmetica. Lezone 7 Prereqst: L'nseme de nmer nter Lezone 6 Nmer prm Teorem Fondmentle dell'artmetc Defnzone 7 Un nmero ntero p dverso d 0 e s dce prmo se per ogn b Z Altrment p s dce composto p b p oppre p b Defnzone

Dettagli

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x Appunti elorti dll prof.ss Biondin Gldi Funzione integrle Si y = f() un funzione continu in un intervllo [; ] e si 0 [; ]; l integrle 0 f()d si definisce Funzione Integrle; si chim funzione integrle in

Dettagli

Università del Sannio

Università del Sannio Università del Snnio Corso di Fisic 1 Leione 2 Vettori Prof.ss Stefni Petrcc Corso di Fisic 1 - Le. 02 - Vettori 1 Definiione dei vettori I vettori rppresentno grndee per le quli il vlore, misurto con

Dettagli

Vettori e scalari. Grandezze scalari. Grandezze vettoriali

Vettori e scalari. Grandezze scalari. Grandezze vettoriali Vettori e sclri Vengono definite dl loro lore numerico. Esempi: l lunghezz di un segmento, l re di un figur pin; l tempertur di un stnz Grndezze sclri Grndezze ettorili Vengono definite dl loro lore numerico

Dettagli

Modellazione e Identificazione Dinamica della Cupola della Basilica di S. Gaudenzio in Novara

Modellazione e Identificazione Dinamica della Cupola della Basilica di S. Gaudenzio in Novara Modellzone e Identfczone Dnmc dell Cupol dell Bslc d S. Gudenzo n Novr Ing. Slvno Erlcher Sommro Nell prm prte dell rtcolo s present un modello gl element fnt dell Cupol dell Bslc d S. Gudenzo. S mostrno

Dettagli

Analisi Matematica Lezione 26, 25 novembre 2014 Integrale di Riemann

Analisi Matematica Lezione 26, 25 novembre 2014 Integrale di Riemann Dprtmento d Scenze Sttstche Anls Mtemtc Lezone 26, 25 novembre 2014 Integrle d Remnn prof. Dnele Rtell dnele.rtell@unbo.t 1/28? Teorem du Bos-Reymond e Drboux Condzone necessr e suffcente ffnché f R ([,

Dettagli

Lez.9 Teoremi sulle reti 2. Università di Napoli Federico II, CdL Ing. Meccanica, A.A , Elettrotecnica. Lezione 9 Pagina 1

Lez.9 Teoremi sulle reti 2. Università di Napoli Federico II, CdL Ing. Meccanica, A.A , Elettrotecnica. Lezione 9 Pagina 1 Lez.9 Teorem sulle ret 2 Unverstà d Npol Federco II, CdL Ing. Meccnc, A.A. 207-208, Elettrotecnc. Lezone 9 Pgn Teorem d non mplfczone In un rete costtut d sol pol, n cu è presente un unco polo che erog

Dettagli

Principi di ingegneria elettrica. Lezione 6 a. Analisi delle reti resistive

Principi di ingegneria elettrica. Lezione 6 a. Analisi delle reti resistive Prncp d ngegnera elettrca Lezone 6 a Anals delle ret resste Anals delle ret resste L anals d una rete elettrca (rsoluzone della rete) consste nel determnare tutte le corrent ncognte ne ram e tutt potenzal

Dettagli

Unità Didattica N 32E Le trasformazioni geometriche. Le isometrie

Unità Didattica N 32E Le trasformazioni geometriche. Le isometrie 33 possono essere introdotte in diverse mniere. Prim definizione di isometri Dicesi isometri un similitudine vente come rpporto di similitudine l unità, cioè vente k det A. Questo ci induce d ffermre che

Dettagli

y x x 20 e gli assi delle ascisse e delle ordinate. Tracce assegnate durante l anno scolastico

y x x 20 e gli assi delle ascisse e delle ordinate. Tracce assegnate durante l anno scolastico Tracce assegnate durante l anno scolastco. Dsegna nel pano cartesano la retta d equazone, dopo averla scrtta n orma esplcta. Stablsc, sa gracamente ce analtcamente, se l B ; 3 appartene alla retta. punto.

Dettagli

Risultati esame scritto Fisica 2 del 03/10/2016 orali: 11/10/2016 alle ore presso aula H

Risultati esame scritto Fisica 2 del 03/10/2016 orali: 11/10/2016 alle ore presso aula H sultt esme scrtto Fsc del //6 orl: //6 lle ore. presso ul H gl student nteresst vsonre lo scrtto sono pregt d presentrs l gorno dell'orle mtrcol voto 98 7 mmesso 8 7 mmesso 7 7 mmesso 6 7 mmesso 9 7 mmesso

Dettagli

Analisi sistematica delle strutture. Rigidezza

Analisi sistematica delle strutture. Rigidezza Anls sstemt elle strutture Rgezz u U x y v Trve nel pno v Vettore forze nol Vettore spostment nol θ u θ u U u V v Tre gr lertà per noo Due no per elemento x U θ u Se gr lertà per elemento V v tre rgezz

Dettagli

LAVORO PER IL RECUPERO DEL DEBITO MATEMATICA CLASSI 3 S.M. DA CONSEGNARE IL PRIMO GIORNO DI ATTIVITA DI SPORTELLO

LAVORO PER IL RECUPERO DEL DEBITO MATEMATICA CLASSI 3 S.M. DA CONSEGNARE IL PRIMO GIORNO DI ATTIVITA DI SPORTELLO LAVORO PER IL RECUPERO DEL DEBITO MATEMATICA CLAI.M. DA CONEGNARE IL PRIMO GIORNO DI ATTIVITA DI PORTELLO DEVI RIOLVERE PRIMA DI TUTTO I PROBLEMI E GLI EERCIZI QUI ELENCATI. TERMINATI QUETI, RIOLVI ALCUNI

Dettagli

Progetto Lauree Scientifiche. La corrente elettrica

Progetto Lauree Scientifiche. La corrente elettrica Progetto Lauree Scentfche La corrente elettrca Conoscenze d base Forza elettromotrce Corrente Elettrca esstenza e resstvtà Legge d Ohm Crcut 2 Una spra d rame n equlbro elettrostatco In un crcuto semplce

Dettagli

Grandezze scalari e vettoriali

Grandezze scalari e vettoriali Grandezze scalari e vettoriali Esempio vettore spostamento: Esistono due tipi di grandezze fisiche. a) Grandezze scalari specificate da un valore numerico (positivo negativo o nullo) e (nel caso di grandezze

Dettagli

Appunti su. Elementi fondamentali di Algebra Lineare

Appunti su. Elementi fondamentali di Algebra Lineare CORSO DI RICERC OPERTIV ppunt su Element fondmentl d lger Lnere cur del Prof. Guseppe runo Ultmo ggornmento: prle VETTORI, MTRICI E DETERMINNTI. Defnzon generl Un mtrce d dmensone o ordne (m n) è un nseme

Dettagli

MATEMATICA Classe Prima

MATEMATICA Classe Prima Liceo Clssico di Treiscce Esercizi per le vcnze estive 0 MATEMATICA Clsse Prim Cpitolo Numeri nturli Primi ogni pgin del cpitolo Cpitolo Numeri nturli Primi ogni pgin del cpitolo Per gli llievi promossi

Dettagli

Vettori - Definizione

Vettori - Definizione Vettori - Definizione z Verso Origine Modulo Direzione V y Form geometri x Form nliti Un vettore è un ente geometrio definito d: - Direzione: rett sull qule gie il vettore, he ne indi l orientmento nello

Dettagli

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica Nome Cognome cls 5D 18 Mrzo 01 Problem Verific di mtemtic In un sistem di riferimento crtesino Oy, si consideri l funzione: ln f ( > 0 0 e si determini il vlore del prmetro rele in modo tle che l funzione

Dettagli

30 quesiti. 1 Febbraio 2011. Scuola... Classe... Alunno... Copyright 2011 Zanichelli Editore SpA, Bologna

30 quesiti. 1 Febbraio 2011. Scuola... Classe... Alunno... Copyright 2011 Zanichelli Editore SpA, Bologna verso LA RILEVAZIONE INVALSI SCUOLA SECONDARIA DI secondo GRADO PROVA DI Mtemtic 30 quesiti Febbrio 0 Scuol... Clsse... Alunno... e b sono numeri reli che verificno quest uguglinz: Qunto vle il loro prodotto?

Dettagli

TRASFORMAZIONI GEOMETRICHE DEL PIANO

TRASFORMAZIONI GEOMETRICHE DEL PIANO TRASFORMAZIONI GEOMETRICHE DEL PIANO INTRODUZIONE Per trsformzione geometric pin si intende un corrispondenz iunivoc fr i punti di un pino, ossi un funzione iiettiv che ssoci d ogni punto P del pino un

Dettagli

Il procedimento di linearizzazione consiste nell'usare una funzione delle variabili anziché le variabili stesse.

Il procedimento di linearizzazione consiste nell'usare una funzione delle variabili anziché le variabili stesse. Y Lnerzzzone Il dgrmm d dspersone suggersce che le funzone d nterpolzone de dt non sono lner, m presentno un ndmento che n un cso (dots ner) potree essere d tpo esponenzle, mentre nell ltro cso (dots ross)

Dettagli

Che tipo di linee riconosci in questi quadri? Ripassale con una matita colorata e, con la stessa tinta, colora il pallino corrispondente.

Che tipo di linee riconosci in questi quadri? Ripassale con una matita colorata e, con la stessa tinta, colora il pallino corrispondente. Linee Che tipo di linee riconosci in questi quadri? Ripassale con una matita colorata e, con la stessa tinta, colora il pallino corrispondente. a. curva spezzata retta mista aperta chiusa b. curva spezzata

Dettagli

Esercizi della 8 lezione sulla Geomeria Linere ESERCIZI SULLA CIRCONFERENZA ESERCIZI SULLA PARABOLA ESERCIZI SULL' ELLISSE ERCIZI SULL' IPERBOLE

Esercizi della 8 lezione sulla Geomeria Linere ESERCIZI SULLA CIRCONFERENZA ESERCIZI SULLA PARABOLA ESERCIZI SULL' ELLISSE ERCIZI SULL' IPERBOLE Eserizi dell lezione sull Geomeri Linere ESERCIZI SULLA CIRCONFERENZA ESERCIZI SULLA PARABOLA ESERCIZI SULL' ELLISSE ES ERCIZI SULL' IPERBOLE ESERCIZI SULLA CIRCONFERENZA. Determinre l equzione dell ironferenz

Dettagli

del prodotto cartesiano A B. Diremo che un elemento a A è in relazione con un elemento b B, e scriveremo a b se, e solo se, ( a,

del prodotto cartesiano A B. Diremo che un elemento a A è in relazione con un elemento b B, e scriveremo a b se, e solo se, ( a, Relzon bnre Un relzone bnr d un nseme A d un nseme B è un sottonseme R del prodotto crtesno A B Dremo che un elemento A è n relzone con un elemento b B, e scrveremo b se, e solo se, (, b) R Rppresentzone

Dettagli

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito.

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito. Integrli de niti. Il problem di clcolre l re di un regione pin delimitt d gr ci di funzioni si può risolvere usndo l integrle de nito. L integrle de nito st l problem del clcolo di ree come l equzione

Dettagli

Analisi Matematica di circuiti elettrici

Analisi Matematica di circuiti elettrici Analisi Matematica di circuiti elettrici Eserciziario A cura del Prof. Marco Chirizzi 2011/2012 Cap.5 Numeri complessi 5.1 Definizione di numero complesso Si definisce numero complesso un numero scritto

Dettagli

Come si indica un punto? Un punto si indica (distingue) con una lettera maiuscola dell alfabeto italiano.

Come si indica un punto? Un punto si indica (distingue) con una lettera maiuscola dell alfabeto italiano. Il punto Il punto è un elemento geometrico fondamentale privo di dimensioni ed occupa solo una posizione. Come si indica un punto? Un punto si indica (distingue) con una lettera maiuscola dell alfabeto

Dettagli

La rappresentazione per elencazione consiste nell elencare tutte le coppie ordinate che verificano la relazione

La rappresentazione per elencazione consiste nell elencare tutte le coppie ordinate che verificano la relazione RELAZIONI E FUNZIONI Relzioni inrie Dti ue insiemi non vuoti e (he possono eventulmente oiniere), si ie relzione tr e un qulsisi legge he ssoi elementi elementi. L insieme A è etto insieme i prtenz. L

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa 2012-2013 lezione 13: 24 aprile 2013

Dipartimento di Statistica Università di Bologna. Matematica finanziaria aa 2012-2013 lezione 13: 24 aprile 2013 Dpartmento d Statstca Unverstà d Bologna Matematca fnanzara aa 2012-2013 lezone 13: 24 aprle 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/23? reammortamento uò accadere che, dopo l erogazone

Dettagli

Grandezze scalari e vettoriali

Grandezze scalari e vettoriali Grandezze scalari e vettoriali 01 - Grandezze scalari e grandezze vettoriali. Le grandezze fisiche, gli oggetti di cui si occupa la fisica, sono grandezze misurabili. Altri enti che non sono misurabili

Dettagli

Esercizi estivi per la classe seconda

Esercizi estivi per la classe seconda Esercii estivi per l clsse second ) Risolvere le seguenti disequioni: [nessun soluione] R f) R i) l) n) ) Risolvere i seguenti sistemi di disequioni: ) Risolvi i seguenti sistemi con il metodo di sostituione:,,,

Dettagli

GIROSCOPIO. Scopo dell esperienza: Teoria fisica. Verificare la relazione: ω p = bmg/iω

GIROSCOPIO. Scopo dell esperienza: Teoria fisica. Verificare la relazione: ω p = bmg/iω GIROSCOPIO Scopo dell esperienza: Verificare la relazione: ω p = bmg/iω dove ω p è la velocità angolare di precessione, ω è la velocità angolare di rotazione, I il momento principale d inerzia assiale,

Dettagli

Ellisse riferita al centro degli assi

Ellisse riferita al centro degli assi Appunti delle lezioni tenute in clsse: ellisse e iperole Ellisse riferit l centro degli ssi Dti due punti F ed F detti fuochi, l ellisse è il luogo geometrico dei punti P del pino per cui è costnte l somm

Dettagli

Vertici opposti. Fig. C6.1 Definizioni relative ai quadrilateri.

Vertici opposti. Fig. C6.1 Definizioni relative ai quadrilateri. 6. Quadrilateri 6.1 efinizioni Un poligono di 4 lati è detto quadrilatero. I lati di un quadrilatero che hanno un vertice in comune sono detti consecutivi. I lati di un quadrilatero non consecutivi tra

Dettagli

MECCANICA TEORICA E APPLICATA RICHIAMI SULLE UNITÀ DI MISURA E ELEMENTI DI CALCOLO VETTORIALE

MECCANICA TEORICA E APPLICATA RICHIAMI SULLE UNITÀ DI MISURA E ELEMENTI DI CALCOLO VETTORIALE UNIVERSITÀ DEGLI STUDI DI BERGAMO MECCANICA TEORICA E APPLICATA RICHIAMI SULLE UNITÀ DI MISURA E ELEMENTI DI CALCOLO VETTORIALE Sistem Internzionle di unità di misur (S.I.) Il Sistem Internzionle di unità

Dettagli

Le trasformazioni geometriche

Le trasformazioni geometriche Le trasformazioni geometriche Le trasformazioni geometriche Le trasformazioni affini del piano o affinità Le similitudini Le isometrie Le traslazioni Le rotazioni Le simmetrie assiale e centrale Le omotetie

Dettagli

x = Il problema del calcolo delle aree Suddivisione dell intervallo [a,b] in sottointervalli che ne costituiscono una partizione

x = Il problema del calcolo delle aree Suddivisione dell intervallo [a,b] in sottointervalli che ne costituiscono una partizione Integrle Dento. Il prolem del clcolo delle ree Suddvsone dell ntervllo [,] n sottontervll che ne costtuscono un prtzone De. Prtzone S chm prtzone P dell ntervllo [,] un nseme d n+ punt <

Dettagli

Studio grafico-analitico di una funzioni reale in una variabile reale

Studio grafico-analitico di una funzioni reale in una variabile reale Studo grafco-analtco d una funzon reale n una varable reale f : R R a = f ( ) n Sequenza de pass In pratca 1 Stablre l tpo d funzone da studare es. f ( ) Determnare l domno D (o campo d esstenza) della

Dettagli

x 2 + y2 4 = 1 x = cos(t), y = 2 sin(t), t [0, 2π] Al crescere di t l ellisse viene percorsa in senso antiorario.

x 2 + y2 4 = 1 x = cos(t), y = 2 sin(t), t [0, 2π] Al crescere di t l ellisse viene percorsa in senso antiorario. Le soluzioni del foglio 2. Esercizio Calcolare il lavoro compiuto dal campo vettoriale F = (y + 3x, 2y x) per far compiere ad una particella un giro dell ellisse 4x 2 + y 2 = 4 in senso orario... Soluzione.

Dettagli

La simmetria centrale

La simmetria centrale La simmetria centrale Una simmetria centrale di centro O è una isometria che associa al punto O se stesso e ad ogni altro punto P del piano il punto P in modo che O sia il punto medio del segmento PP.

Dettagli

Campi Elettromagnetici e Circuiti I Parametri di diffusione

Campi Elettromagnetici e Circuiti I Parametri di diffusione Fcoltà d Ingegner Unverstà degl stud d Pv Corso d Lure Trennle n Ingegner Elettronc e Informtc Cmp Elettromgnetc e Crcut I Prmetr d dffusone Cmp Elettromgnetc e Crcut I.. 05/6 Prof. Luc Perregrn Prmetr

Dettagli

1. Determinare e rappresentare nel piano cartesiano il luogo dei vertici delle parabole della famiglia.

1. Determinare e rappresentare nel piano cartesiano il luogo dei vertici delle parabole della famiglia. . Dt l'equzione: rppresentt in un sistem di oordinte rtesine ortogonli d prbole on sse prllelo ll'sse, determinre -in funzione del oeffiiente - i oeffiienti b e he individuno l fmigli delle prbole pssnti

Dettagli

Problemi di Fisica. Principio conservazione momento angolare

Problemi di Fisica. Principio conservazione momento angolare www.lceoweb.t Prnc d Conserzone Problem d Fsc Prnco conserzone momento ngolre www.lceoweb.t Prnc d Conserzone TEORIA Per un coro untorme m che ruot su un crconerenz d rggo R con eloctà costnte, l momento

Dettagli

Analisi dimensionale e omogeneità delle equazioni

Analisi dimensionale e omogeneità delle equazioni Anlisi dimensionle e omogeneità delle equzioni Anlisi Dimensionle v = spzio / tempo [v] = [LT -1 ] S.I: m/s C.G.S.: cm/s U = mgh [U] = [ML 2 T -2 ] [mgh] = [MLT -2 L]=[ML 2 T -2 ] 1 Multipli e sottomultipli

Dettagli

IL CAMPO A Il campo dei numeri complessi. Consideriamo l'equazione: x 2 = a, a IR. (1)

IL CAMPO A Il campo dei numeri complessi. Consideriamo l'equazione: x 2 = a, a IR. (1) A IL CAMPO Il cmpo de numer compless Consdermo l'equone: x, IR () Indcto con S l'nseme soluone dell () n IR, s rconosce suto che: S {}, > S {, }, < S Al fne d costrure un mplmento d IR n cu l'equone ()

Dettagli

Versione 20 dicembre. Integrali curvilinei. 2.1 Curve nel piano e nello spazio

Versione 20 dicembre. Integrali curvilinei. 2.1 Curve nel piano e nello spazio 2 Integrl curvlne 2. Curve nel pno e nello spzo S I un qulunque ntervllo dell rett rele e s : I R 3 un funzone. Indchmo con (t) = ( x(t), y(t), z(t) ) R 3 l punto mmgne d t I ttrverso. Dcmo che è un funzone

Dettagli

Esercitazioni Capitolo 8-9 Impianti di riscaldamento

Esercitazioni Capitolo 8-9 Impianti di riscaldamento Eserctzon Cptolo 8-9 Impnt d rscldmento 1) In un locle rscldto (volume V 400 m 3 ) l rnnovo d r è n 5 (1/h). Nell potes d un tempertur estern t e - 5 C qunto vle l flusso termco per ventlzone v. ssumere:

Dettagli

Introduciamo il concetto di trasformazione geometrica prendendo come esempio una rotazione.

Introduciamo il concetto di trasformazione geometrica prendendo come esempio una rotazione. Le trsformzioni geometriche ITL 7 TERI Letture llo specchio! Ingegni, ossesso, nilin: tre esempi di plindromi, ovvero di prole che si possono leggere si d sinistr verso destr, si d destr verso sinistr.

Dettagli

F (r(t)), d dt r(t) dt

F (r(t)), d dt r(t) dt Cmpi vettorili Un cmpo vettorile è un funzione vlori vettorili F : A R, con A R n, ove in questo cso l imensione el ominio e el coominio è l stess. F ( 1, 2,..., n ) (f 1 ( 1, 2,..., n ), f 2 ( 1, 2,...,

Dettagli

Fisica Generale - Modulo Fisica I Ingegneria Meccanica - Edile - Informatica Esercitazione 1 RAPPRESENTAZIONE E COMPOSIZIONE DI VETTORI

Fisica Generale - Modulo Fisica I Ingegneria Meccanica - Edile - Informatica Esercitazione 1 RAPPRESENTAZIONE E COMPOSIZIONE DI VETTORI RAPPRESENTAZIONE E COMPOSIZIONE DI VETTORI A1. Il ettore h modlo 5, è diretto come l erticle ed è scomposto secondo de direzioni, n formnte n ngolo di 30 con l orizzontle e n ltr formnte n ngolo di 60

Dettagli

LA COMPATIBILITA tra due misure:

LA COMPATIBILITA tra due misure: LA COMPATIBILITA tra due msure: 0.4 Due msure, supposte affette da error casual, s dcono tra loro compatbl quando la loro dfferenza può essere rcondotta ad una pura fluttuazone statstca attorno al valore

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2012-2013 Esercitazione: 4 aprile 2013

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2012-2013 Esercitazione: 4 aprile 2013 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2012-2013 Eserctazone: 4 aprle 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/41? Aula "Ranzan B" 255 post 1 2 3 4 5 6 7 8 9

Dettagli

LE TRASFORMAZIONI GEOMETRICHE NEL PIANO

LE TRASFORMAZIONI GEOMETRICHE NEL PIANO LE TRASFORMAZIONI GEOMETRICHE NEL PIANO Una trasformazione geometrica è una funzione che fa corrispondere a ogni punto del piano un altro punto del piano stesso Si può pensare come MOVIMENTO di punti e

Dettagli

Il lemma di ricoprimento di Vitali

Il lemma di ricoprimento di Vitali Il lemm di ricoprimento di Vitli Si I = {I} un fmigli di intervlli ciusi contenuti in R. Diremo ce l fmigli I ricopre l insieme E nel senso di Vitli (oppure ce I è un ricoprimento di Vitli di E) se per

Dettagli

Università degli Studi Federico II di Napoli Facoltà di Architettura

Università degli Studi Federico II di Napoli Facoltà di Architettura Unverstà degl Stud Federco II d Npol Fcoltà d Archtettur Ferdnndo Csolro - Ivno Csolro Appunt del corso d Geometr CAPITOLO I - LA GEOMETRIA ANALITICA. - CENNI STORICI.2 - INTRODUZIONE ALLE COORDINATE CARTESIANE.3

Dettagli

Vettori e scalari. Grandezze scalari. Grandezze vettoriali

Vettori e scalari. Grandezze scalari. Grandezze vettoriali Vettori e sclri Vengono definite dl loro lore numerico. Esempi: l lunghezz di un segmento, l re di un figur pin; l tempertur di un stnz Grndezze sclri Grndezze ettorili Vengono definite dl loro lore numerico

Dettagli

Calcolo della concentrazione e della densità del Silicio Monocristallino

Calcolo della concentrazione e della densità del Silicio Monocristallino Clcolo dell concentrzone e dell denstà del Slco Monocrstllno Clcolo del numero d tom per cell Contrbuto de vertc: 8 1 8 1 Contrbuto delle superfc: 6 1 2 3 Contrbuto tom ntern: 4 1 4 Totle: 8 tom equvlent

Dettagli

d x Campi magnetici e forze magnetiche nel vuoto Esercitazione n 7 FISICA SPERIMENTALE II (C.L. Ing. Mecc. A/L) (Prof. Gabriele Fava) A.A.

d x Campi magnetici e forze magnetiche nel vuoto Esercitazione n 7 FISICA SPERIMENTALE II (C.L. Ing. Mecc. A/L) (Prof. Gabriele Fava) A.A. Eserctzone n 7 ISICA SPERIMENTALE II (CL Ing Mecc A/L) (Prof Gbree v) AA / Cmp mgnetc e forze mgnetche ne vuoto Due f rettne ndefnt, fss e pre, post dstnz d, sono percors de corrent e rspettvmente Ne pno

Dettagli

(figura - 3.0a) (figura - 3.0b) TH TH AB L AB L TH

(figura - 3.0a) (figura - 3.0b) TH TH AB L AB L TH ESEZO.0: egnto l crcuto d fgur.0, relzzto trmte l collegmento d pol lner, determn l equvlente d Thévenn del polo d morett e pendo che con l retenz L 45 W, conne morett, mur 90, mentre con L non conne mur

Dettagli

01 Matematica Liceo \ Unità Didattica N 7 Le proprietà della retta 1

01 Matematica Liceo \ Unità Didattica N 7 Le proprietà della retta 1 Mtetic Liceo \ Unità Didttic N 7 Le proprietà dell rett Unità Didttic N 7 Le proprietà dell rett ) Rette prllele ) Rett pssnte per un punto dto e prllel d un rett dt 3) Rette perpendicolri 4) Rett pssnte

Dettagli

operazioni con vettori

operazioni con vettori omposizione e somposizione + = operzioni on vettori = + = + Se un vettore può essere dto dll omposizione di due o più vettori, questi vettori omponenti possono essere selti lungo direzioni ortogonli fr

Dettagli

CAPITOLO 2 LEGGI DI CONSERVAZIONE

CAPITOLO 2 LEGGI DI CONSERVAZIONE CAPITOLO LEGGI DI CONSERVAZIONE 6. Energ. Qundo un sstem meccnco è n moto le s grndezze q e ( = 1. s) che determnno l suo stto vrno col tempo. Esstono tuttv delle funzon d queste grndezze che conservno

Dettagli

VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE

VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE Soluzioni di quesiti e prolemi trtti dl Corso Bse Blu di Mtemti volume 5 [] (Es. n. 8 pg. 9 V) Dell prol f ( ) si hnno le seguenti informzioni, tutte

Dettagli

CORSO DI LAUREA IN INGEGNERIA.

CORSO DI LAUREA IN INGEGNERIA. CORSO DI LAUREA IN INGEGNERIA. FOGLIO DI ESERCIZI 4 GEOMETRIA E ALGEBRA LINEARE 2010/11 Esercizio 4.1 (2.2). Determinare l equazione parametrica e Cartesiana della retta dello spazio (a) Passante per i

Dettagli