I vettori. a b. 180 α B A. Un segmento orientato è un segmento su cui è stato fissato un verso. di percorrenza, da verso oppure da verso.

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "I vettori. a b. 180 α B A. Un segmento orientato è un segmento su cui è stato fissato un verso. di percorrenza, da verso oppure da verso."

Transcript

1 I vettor B Un segmento orentto è un segmento su cu è stto fssto un verso B d percorrenz, d verso oppure d verso. A A Il segmento orentto d verso è ndcto con l smolo. Due segment orentt che hnno l stess drezone (oss che gccono su due rette prllele), lo stesso verso e l stess lunghezz s dcono segment equpollent. Nell'nseme de segment orentt, l relzone d equpollenz è un relzone d equvlenz, perché gode delle propretà rflessv, smmetrc e trnstv. L'equpollenz pertnto determn un suddvsone d tutt segment orentt del pno n clss d equvlenz. Cscun d queste clss d equvlenz è chmt vettore e contene tutt e sol segment fr loro equpollent. Un vettore è ndcto con un letter sormontt d un frecc,, oppure con l segmento orentto che lo rppresent,. Un vettore è crtterzzto d: l modulo oss l msur dell lunghezz del segmento rspetto un'untà prefsst; l drezone, coè l drezone dell rett cu pprtene l segmento; l verso. Il vettore nullo è l vettore che h come rppresentnt segment null. Il vettore nullo vene ndcto con 0, h modulo zero e drezone e verso ndetermnt. Il vettore opposto d un vettore AB è l vettore BA, oss l vettore che h lo stesso modulo d, l stess drezone, m verso contrro. Il vettore opposto del vettore è ndcto con. A B A B SOMMA DI DUE VETTORI L somm d due vettor e s ottene con l regol del prllelogrmmo. Il suo modulo vle 2 DIFFERENZA DI DUE VETTORI L dfferenz d due vettor e s ottene eseguendo l somm del vettore con l vettore. α α α 180 α 180 α In defntv 2 PRODOTTO DI UN VETTORE PER UNO SCALARE Sno un numero rele e un vettore, l prodotto del numero per l vettore è defnto nel seguente modo: se 0 l prodotto è l vettore che h l stess drezone e lo stesso verso d e modulo ugule. se 0 l prodotto è l vettore che h l stess drezone d, verso opposto quello d e modulo ugule. se 0 l prodotto è l vettore 0. Mtemtc 1

2 PRODOTTO SCALARE DI DUE VETTORI Il prodotto sclre d due vettor e è l prodotto d un vettore per l componente dell ltro vettore lungo l drezone del prmo. Il prodotto sclre d due vettor è uno sclre e non un vettore. Il prodotto sclre d due vettor è: postvo se α è cuto negtvo se α è ottuso. I In smol coè: cos α Osservzone: Il prodotto sclre d due vettor ortogonl è zero (perché cos α I PRODOTTO VETTORIALE DI DUE VETTORI Il prodotto vettorle d due vettor e, che s ndc con, e s legge vettore, è un vettore vente per modulo l re del prllelogrmmo costruto su due vettor, per drezone quell perpendcolre l pno ndvduto d e e verso tle che, rspetto d esso, l vettore per sovrppors, descrvendo un ngolo mnore d 180, deve ruotre n senso ntorro. B Il modulo del prodotto vettorle è:. Osservzone: l prodotto vettorle d due vettor prllel è zero. α H REGOLA DELLA MANO DESTRA Tenendo l mno destr n modo tle che le dt pegte seguno l rotzone del vettore verso, l pollce ndc l drezone e l verso del prodotto vettorle. COMPONENTI DI UN VETTORE Le component crtesne del vettore sono le proezon del vettore lungo l sse e lungo lsse. In smol: OA cos e OA sen OA e OA Consderndo versor e (vettor untr drett come gl ss) s h: OA e OA d cu s ottene l espressone crtesn del vettore Dll fgur s h che l modulo del vettore mentre l ngolo 2 2 A O α A A rctg. SOMMA DI DUE VETTORI TRAMITE LE LORO COMPONENTI Le component del vettore somm (dfferenz) d due vettor ugul ll somm (dfferenz) delle component omonme de due vettor. e sono Dmostrzone Mtemtc 2

3 Mtemtc 3 PRODOTTO SCALARE DI DUE VETTORI TRAMITE LE LORO COMPONENTI Il prodotto sclre d due vettor e è ugule ll somm de prodott delle component omonme de due vettor. Dmostrzone Essendo 1 e 0 s h: PRODOTTO VETTORIALE DI DUE VETTORI TRAMITE LE LORO COMPONENTI Il prodotto vettorle d due vettor e gcent sullo stesso pno α è l vettore dretto secondo l versore k ortogonle l pno α, nello stesso verso d k oppure verso opposto, secondo che l componente n tle drezone rsult postv oppure negtv e vente modulo. In smol k. Dmostrzone Essendo 0 e k k s h: k K k K k

4 Le sometre TRASFORMAZIONI GEOMETRICHE Un trsformzone geometrc è un funzone unvoc che ssoc ogn punto del pno un ltro punto del pno. Il punto che corrsponde nell trsformzone s ndc con e s dce corrspondente (o mmgne o trsformto) d nell. Un fgur s dce unt rspetto d un dt trsformzone se l fgur trsformt concde con quell d prtenz. Un segmento s dce unto rspetto d un dt trsformzone se l segmento trsformto concde con quello d prtenz. Un rett s dce unt rspetto d un dt trsformzone se l rett trsformt concde con quell d prtenz. Un punto s dce unto rspetto d un dt trsformzone se l punto trsformto concde con quello d prtenz. ISOMETRIE Un sometr è un trsformzone geometrc che conserv l dstnz. PROPRIETÀ DELLE ISOMETRIE TEOREMA Un sometr trsform rette n rette. Dmostrzone Dmostrre che l'mmgne d un rett è un rett equvle dmostrre che le mmgn A', B', C' d tre punt llnet A, B e C sono ncor tre punt llnet. Supponmo A, B, C ordnt come nell fgur. Rsult che: Poché un sometr conserv le dstnze, srà:,, Qund:. Tle relzone mplc che A', B', C' sono llnet. (se non fossero llnet, per l dsuguglnz trngolre, dovree rsultre che: A'B' + B'C' > A'C'). COROLLARIO Un sometr trsform semrette n semrette e segment n segment. TEOREMA Un sometr trsform un copp d rette prllele n un copp d rette prllele. IPOTESI TESI è un sometr; Dmostrzone Se e concdono, l tes è nle. Consdermo qund l cso n cu e sono prllele dstnte. Supponmo, per ssurdo, che le due rette r e s sno ncdent n P. L contrommgne d pprterree ll rett r (poché ) e ll rett s (poché ). Qund e dovreero vere n comune l punto. M cò contrddce l'potes che e sno prllele dstnte. Dunque, domo concludere che nche e sono prllele. Mtemtc 4

5 TEOREMA Un'sometr trsform un copp d rette ncdent n un copp d rette ncdent e l punto d'ntersezone dell prm copp d rette h come mmgne nell'sometr l punto d'ntersezone delle rette corrspondent nell'sometr. IPOTESI TESI è un sometr; Dmostrzone Sccome Sccome Pertnto e hnno n comune lmeno l punto. Se per ssurdo, e vessero n comune un ltro punto, questo sree mmgne d un punto d ntersezone d e. Le rette e, vendo n comune due punt dstnt, e, concdereero. M cò contrddce l'potes che e sno ncdent. S conclude che:. TEOREMA Un sometr trsform un ngolo n un ngolo esso congruente. I lt e l vertce dell'ngolo trsformto sono le mmgn de lt e del vertce dell'ngolo orgnro. IPOTESI TESI Dmostrzone è un sometr; Pres due punt e su lt e dell'ngolo, e sono loro corrspondent nell'sometr. Per l teorem precedente s h: 0 0. Poché le sometre conservno le dstnze, trngol e hnno tre lt ordntmente congruent, qund sono congruent per l terzo crtero d congruenz. In prtcolre hnno gl ngol. COROLLARIO Un sometr trsform rette perpendcolr n rette perpendcolr. Mtemtc 5

6 Smmetre ssl SIMMETRICO DI UN PUNTO RISPETTO AD UNA RETTA Il smmetrco d un punto rspetto d un rett r è l punto: stesso t.c.l sse d s l rett SIMMETRIA ASSIALE L smmetr ssle rspetto un dt rett r è l trsformzone che ssoc ogn punto del pno l punto, smmetrco d rspetto. L rett s chm sse d smmetr. Se un fgur è unvocmente determnt d un certo numero d punt (un segmento è ndvduto d due punt estrem; un trngolo è ndvduto d suo tre vertc), per determnre l su corrspondente nell smmetr rspetto un rett è suffcente determnre smmetrc d quest punt. Per determnre l rett smmetrc d rspetto, st sceglere due punt e sull rett e determnrne punt smmetrc. L smmetr ssle è un trsformzone nvolutor. (l'nvers d un smmetr ssle è l trsformzone stess). TEOREMA Ogn smmetr ssle è un sometr. IPOTESI AB è un segmento del pno; r è un rett; A B smmetrco d AB rspetto ll rett r TESI A B AB Dmostrzone I cs che s possono presentre sono quttro: I II III IV e gccono nello stesso sempno d orgne e gccono n sempn oppost rspetto ll orgne Mtemtc 6

7 Dmostrmo soltnto l III cso. Le dmostrzon degl ltr cs s effettuno con lo stesso procedmento. Indct con e, rspettvmente, punt d'ntersezone d e con l rett. I due trngol rettngol e sono congruent per l I crtero d congruenz de trngol rettngol. Inftt: HK è n comune perché e sono punt smmetrc rspetto ll rett Avendo dmostrto che. I trngol e sono congruent per l I crtero d congruenz de trngol. Inftt: per l dmostrzone precedente perché e sono punt smmetrc rspetto ll rett perché complementr degl ngol congruent e. In defntv s conclude che:. PROPRIETÀ INVARIANTI DI UNA SIMMETRIA ASSIALE Le smmetre ssl, essendo delle sometre, conservno: l'llnemento de punt; l'ncdenz e l prllelsmo tr le rette; l lunghezz de segment; l'mpezz degl ngol. L smmetr ssle non conserv le drezon L smmetr ssle nonn conserv l' orentmento delle fgure ELEMENTI UNITI DI UNA SIMMETRIA ASSIALE Tutt e sol punt pprtenent ll'sse d smmetr sono unt. Pertnto l'sse d smmetr è un rett unt. Ogn rett perpendcolre ll'sse d smmetr è unt; ess però non è costtut d punt unt. FIGURE SIMMETRICHE Un fgur s dce smmetrc rspetto ll rett se rsult unt nell smmetr rspetto un rett. L rett s chm sse d smmetr dell fgur. Fgure con un sse d smmetr Fgure con due ss d smmetr Fgure con pù ss d smmetr Mtemtc 7

8 Smmetre centrl SIMMETRICO DI UN PUNTO RISPETTO AD UN PUNTO l punto stesso Il smmetrco d un punto rspetto d un punto è l punto t. c. l punto medo d PP s SIMMETRIA CENTRALE L smmetr centrle d centro è l trsformzone che ssoc ogn punto P del pno l suo smmetrco rspetto l centro O. Ess è ndct con. Per ndvdure l fgur trsformt n un smmetr centrlee è suffcente determnre smmetrc rspetto l punto O de punt che ndvduno l fgur. TEOREMA Ogn smmetr centrle è un sometr. IPOTESI AB è un segmento del pno è l centro dell smmetr A B smmetrco d AB rspetto d O Dmostrzone I trngol per l I crtero d congruenz. Inftt: perché e smmetrc rspetto d O perché e smmetrc rspetto d O perché ngol oppost l vertce. L congruenz A B AB. TESI A B AB PROPRIETÀ INVARIANTI DI UNA SIMMETRIA CENTRALE Le smmetre centrl, essendo delle sometre, conservno: l'llnemento de punt; l'ncdenz e l prllelsmo tr le rette; l lunghezz de segment; l'mpezz degl ngol. Le smmetre centrl conservno le drezon, ovvero un rett vene trsformt n un rett prllel Le smmetre centrl conservno l'orentmento delle fgure Mtemtc 8

9 ELEMENTI UNITI DI UNA SIMMETRIA CENTRALE L'unco punto unto dell smmetr centrle è l centro dell smmetr. Ogn rett pssnte per l centro dell smmetr è un rett unt; esse però non sono costtute d punt unt. FIGURE SIMMETRICHE Un fgur s dce smmetrc se l fgur corrspondente n un smmetr centrle è l fgur stess (l fgur rsult unt rspetto ll smmetr). Il punto O s chm centro d smmetr dell fgur. Fgure con un centro d smmetr Fgure con nfnt centr d smmetr Mtemtc 9

10 Trslzon TRASLAZIONE L trslzone d vettore è l trsformzone che ssoc ogn punto del pno l punto tle che l stess drezone, lo stesso verso e lo stesso modulo del vettore. Ess è ndct con l smolo. L trslzone d vettore nullo concde con l'denttà. L'nvers d un trslzone d vettore è l trslzone ndvdut dl vettore opposto d. TEOREMA L trslzone è un sometr. IPOTESI AB è un segmento del pno è un trslzone d vettore A B trslto d AB d un vettore Dmostrzone è un prllelogrmm. Inftt: perché hnno l stess drezone del vettore perché hnno lo stesso modulo del vettore Avendo dmostrto che è un prllelogrmm, esso h lt oppost sono congruent. In prtcolre A B AB. TESI A B AB PROPRIETÀ INVARIANTI DI UNA SIMMETRIA ASSIALE Le trslzon, essendo delle sometre, conservno: l'llnemento de punt; l'ncdenz e l prllelsmo tr le rette; l lunghezz de segment e l'mpezz degl ngol. Le trslzon conservno le drezon, ovvero un rett vene trsformt n un rett prllel Le trslzon conservno l'orentmento delle fgure ELEMENTI UNITI DI UNA TASLAZIONE L trslzone, d eccezone dell denttà, non h punt unt. Tutte le rette del pno che hnno l stess drezone del vettore sono rette unte. Nessun punto d queste rette è unto nell trslzone. Mtemtc 10

11 Rotzon ANGOLO ORIENTATO Un ngolo orentto è un ngolo n cu è stto stlto qule de due lt è consderto come prmo lto. A second del lto scelto l'ngolo rsult orentto n senso orro o ntorro. ROTAZIONE L rotzone d centro e ngolo d rotzone è l trsformzone che ssoc ogn punto l punto tle che: l'ngolo, orentto n modo che s l prmo lto, h l stess mpezz e lo stesso orentmento d. CASI PARTICOLARI Un rotzone d ngolo d rotzone nullo concde con l trsformzone dentc. Un rotzone d 180 o d 180 concde con un smmetr vente centro nel centro dell rotzone. TEOREMA Ogn rotzone è un sometr. IPOTESI AB è un segmento del pno, è un rotzone d centro O e ngolo A B trsformto d AB nell rotzone, TESI A B AB Dmostrzone S hnno 4 cs. Dmostrmo l II cso. Le dmostrzon degl ltr cs s effettuno con lo stesso procedmento. I trngol AOB A OB per l I crtero d congruenz. Inftt: e perché, è un rotzone perché dfferenze d ngol congruent. Avendo dmostrto che A B AB. PROPRIETÀ INVARIANTI DELLE ROTAZIONI Le rotzon, essendo sometre, conservno le lunghezze de segment, le mpezze degl ngol, l'llnemento de punt, l prllelsmo e l'ncdenz tr le rette. Conservno, noltre, l'orentmento delle fgure. Le rotzon non conservno nvece le drezon. ELEMENTI UNITI DELLE ROTAZIONI L'unco punto unto d un rotzone è l centro d rotzone. Nessun rett è unt rspetto un rotzone, d eccezone dell'denttà e dell smmetr centrle. Mtemtc 11

12 Isometre nel pno crtesno In questo cptolo studmo lcune sometre nel pno crtesno. Nello specfco, determnmo le equzon delle trsformzon: quelle formule che consentono d pssre dlle coordnte, d un punto lle coordnte ; del suo punto corrspondente. SIMMETRIE ASSIALI Smmetr rspetto ll sse Smmetr rspetto ll sse ' ' ' ' Smmetr rspetto ll settrcee Smmetr rspetto ll settrce '= '= '= '= Smmetr rspetto ll rett q Smmetr rspetto ll rett p ' ' 2 q ' 2p ' Mtemtc 12

13 SIMMETRIE CENTRALI Smmetr rspetto ll orgne O( 0 ; 0) Smmetr rspetto l punto C (p;q) ' ' ' 2p ' 2q TRASLAZIONI In un pno crtesno ortogonle, è possle ssegnre un vettore mednte un copp ordnt d numer rel,, dett component del vettore. Il vettore d component e è l vettore rppresentto dl segmento orentto, dove ;. Dto un punto ;, le coordnte del punto ;, corrspondente d nell trslzone d vettore ; sono: ESEMPIO Dto l trngolo d vertc 4; 5, 1; 7, 3; 3, determn le coordnte de vertc del suo corrspondente nell trslzone d vettore 5; 2. Soluzone Applcndo le equzon dell trslzone s ottene: : ; : ; : 352 ; 321 Mtemtc 13

14 NOTA Nell dmostrzone d un teorem, n genere, convene rcorrere lle sometre qundo un fgur present un centro o un sse d smmetr. In quest cs, le propretà d conservzone delle sometre permettono spesso d snellre le dmostrzon. Mtemtc 14

MATEMATICA FINANZIARIA 5. VALUTAZIONE DI PROGETTI ECONOMICO-FINANZIARI

MATEMATICA FINANZIARIA 5. VALUTAZIONE DI PROGETTI ECONOMICO-FINANZIARI MATEMATICA FINANZIARIA Pro. Andre Berrd 999 5. VALUTAZIONE DI PROGETTI ECONOMICO-FINANZIARI Corso d Mtemtc Fnnzr 999 d Andre Berrd Sezone 5 PROGETTO ECONOMICO-FINANZIARIO Un progetto economco-nnzro è un

Dettagli

Università di Napoli Parthenope Facoltà di Ingegneria

Università di Napoli Parthenope Facoltà di Ingegneria Unverstà d Npol Prthenope Fcoltà d Ingegner Corso d Trsmssone Numerc docente: Prof. Vto Psczo 3 Lezone: /0/004 4 Lezone: /0/004 Sommro Quntzzzone sclre (unforme e non unforme) Quntzzzone vettorle (VQ)

Dettagli

Modellazione e Identificazione Dinamica della Cupola della Basilica di S. Gaudenzio in Novara

Modellazione e Identificazione Dinamica della Cupola della Basilica di S. Gaudenzio in Novara Modellzone e Identfczone Dnmc dell Cupol dell Bslc d S. Gudenzo n Novr Ing. Slvno Erlcher Sommro Nell prm prte dell rtcolo s present un modello gl element fnt dell Cupol dell Bslc d S. Gudenzo. S mostrno

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2003

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2003 ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. Il cndidto risolv uno dei due problemi e 5 dei quesiti in cui si rticol il questionrio. PROBLEMA Nel pino sono dti: il cerchio di dimetro OA,

Dettagli

UNIVERSITÀ DEGLI STUDI DI BERGAMO. Facoltà di Ingegneria. Istituzioni di Economia Laurea Triennale in Ingegneria Gestionale

UNIVERSITÀ DEGLI STUDI DI BERGAMO. Facoltà di Ingegneria. Istituzioni di Economia Laurea Triennale in Ingegneria Gestionale Gnmr Mrtn UNIVERSITÀ DEGLI STUDI DI BERGAMO Fcoltà d Ingegner Isttuzon d Econom Lure Trennle n Ingegner Gestonle Lezone 9 Domnd del mercto Prof. Gnmr Mrtn Unverstà degl Stud d Bergmo Fcoltà d Ingegner

Dettagli

3. Funzioni iniettive, suriettive e biiettive (Ref p.14)

3. Funzioni iniettive, suriettive e biiettive (Ref p.14) . Funzioni iniettive, suriettive e iiettive (Ref p.4) Dll definizione di funzione si ricv che, not un funzione y f( ), comunque preso un vlore di pprtenente l dominio di f( ) esiste un solo vlore di y

Dettagli

30 quesiti. 1 Febbraio 2011. Scuola... Classe... Alunno... Copyright 2011 Zanichelli Editore SpA, Bologna

30 quesiti. 1 Febbraio 2011. Scuola... Classe... Alunno... Copyright 2011 Zanichelli Editore SpA, Bologna verso LA RILEVAZIONE INVALSI SCUOLA SECONDARIA DI secondo GRADO PROVA DI Mtemtic 30 quesiti Febbrio 0 Scuol... Clsse... Alunno... e b sono numeri reli che verificno quest uguglinz: Qunto vle il loro prodotto?

Dettagli

La parabola. Fuoco. Direttrice y

La parabola. Fuoco. Direttrice y L prol Definizione: si definise prol il luogo geometrio dei punti del pino equidistnti d un punto fisso detto fuoo e d un rett fiss dett direttrie. Un rppresentzione grfi inditiv dell prol nel pino rtesino

Dettagli

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n.

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n. AUTOVALORI ED AUTOVETTORI Si V uno spzio vettorile di dimensione finit n. Dicesi endomorfismo di V ogni ppliczione linere f : V V dello spzio vettorile in sé. Se f è un endomorfismo di V in V, considert

Dettagli

Introduciamo il concetto di trasformazione geometrica prendendo come esempio una rotazione.

Introduciamo il concetto di trasformazione geometrica prendendo come esempio una rotazione. Le trsformzioni geometriche ITL 7 TERI Letture llo specchio! Ingegni, ossesso, nilin: tre esempi di plindromi, ovvero di prole che si possono leggere si d sinistr verso destr, si d destr verso sinistr.

Dettagli

Moduli su un dominio a ideali principali Maurizio Cornalba versione 15/5/2013

Moduli su un dominio a ideali principali Maurizio Cornalba versione 15/5/2013 Modul su un domno a deal prncpal Maurzo Cornalba versone 15/5/2013 Sa A un anello commutatvo con 1. Indchamo con A k l modulo somma dretta d k cope d A. Un A-modulo fntamente generato M s dce lbero se

Dettagli

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x

si definisce Funzione Integrale; si chiama funzione integrale in quanto il suo * x Appunti elorti dll prof.ss Biondin Gldi Funzione integrle Si y = f() un funzione continu in un intervllo [; ] e si 0 [; ]; l integrle 0 f()d si definisce Funzione Integrle; si chim funzione integrle in

Dettagli

f : A A = f (A) In altre parole f è una funzione che associa a un punto del piano un altro punto del piano e che si può invertire.

f : A A = f (A) In altre parole f è una funzione che associa a un punto del piano un altro punto del piano e che si può invertire. Consideriamo l insieme P dei punti del piano e una f funzione biiettiva da P in P: f : { P P A A = f (A) In altre parole f è una funzione che associa a un punto del piano un altro punto del piano e che

Dettagli

Trasformazioni Geometriche 1 Roberto Petroni, 2011

Trasformazioni Geometriche 1 Roberto Petroni, 2011 1 Trasformazioni Geometriche 1 Roberto etroni, 2011 Trasformazioni Geometriche sul piano euclideo 1) Introduzione Def: si dice trasformazione geometrica una corrispondenza biunivoca che associa ad ogni

Dettagli

VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE

VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE VERSO L ESAME DI STATO LA DERIVATA DI UNA FUNZIONE Soluzioni di quesiti e prolemi trtti dl Corso Bse Blu di Mtemti volume 5 [] (Es. n. 8 pg. 9 V) Dell prol f ( ) si hnno le seguenti informzioni, tutte

Dettagli

I Teoremi di Green, della divergenza (o di Gauss) e di Stokes

I Teoremi di Green, della divergenza (o di Gauss) e di Stokes I Teoremi di Green, dell divergenz o di Guss e di Stokes In R Si un sottoinsieme limitto di R semplice rispetto d entrmbi gli ssi crtesini con costituit dll unione di un numero finito di sostegni di curve

Dettagli

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito.

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito. Integrli de niti. Il problem di clcolre l re di un regione pin delimitt d gr ci di funzioni si può risolvere usndo l integrle de nito. L integrle de nito st l problem del clcolo di ree come l equzione

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2005 Sessione suppletiva

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2005 Sessione suppletiva ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 005 Sessione suppletiv Il cndidto risolv uno dei due problemi e 5 dei 0 quesiti in cui si rticol il questionrio. PROBLEMA Sono dti un pirmide

Dettagli

Calcolo delle Probabilità

Calcolo delle Probabilità alcolo delle Probabltà Quanto è possble un esto? La verosmglanza d un esto è quantfcata da un numero compreso tra 0 e. n partcolare, 0 ndca che l esto non s verfca e ndca che l esto s verfca senza dubbo.

Dettagli

Esercizi della 8 lezione sulla Geomeria Linere ESERCIZI SULLA CIRCONFERENZA ESERCIZI SULLA PARABOLA ESERCIZI SULL' ELLISSE ERCIZI SULL' IPERBOLE

Esercizi della 8 lezione sulla Geomeria Linere ESERCIZI SULLA CIRCONFERENZA ESERCIZI SULLA PARABOLA ESERCIZI SULL' ELLISSE ERCIZI SULL' IPERBOLE Eserizi dell lezione sull Geomeri Linere ESERCIZI SULLA CIRCONFERENZA ESERCIZI SULLA PARABOLA ESERCIZI SULL' ELLISSE ES ERCIZI SULL' IPERBOLE ESERCIZI SULLA CIRCONFERENZA. Determinre l equzione dell ironferenz

Dettagli

Definizioni fondamentali

Definizioni fondamentali Definizioni fondmentli Sistem scisse su un rett 1 Un rett si ce orientt qundo su ess è fissto un verso percorrenz Dti due punti qulsisi A e B un rett orientt r, il segmento AB che può essere percorso d

Dettagli

Ing. Alessandro Pochì

Ing. Alessandro Pochì Dispense di Mtemtic clsse quint -Gli integrli Quest oper è distriuit con: Licenz Cretive Commons Attriuzione - Non commercile - Non opere derivte. Itli Ing. Alessndro Pochì Appunti di lezione svolti ll

Dettagli

5. Coperture in acciaio: applicazione

5. Coperture in acciaio: applicazione 5. Coperture n cco: pplczone Le coperture n cco, d solto rservte costruzon non bttve, hnno tpologe costruttve bbstnz tpche ( FIGURA 1). Gl element costruttv ordnr sono: sol; le trv, sezone pen (rcrecc)

Dettagli

Studio grafico-analitico di una funzioni reale in una variabile reale

Studio grafico-analitico di una funzioni reale in una variabile reale Studo grafco-analtco d una funzon reale n una varable reale f : R R a = f ( ) n Sequenza de pass In pratca 1 Stablre l tpo d funzone da studare es. f ( ) Determnare l domno D (o campo d esstenza) della

Dettagli

Lezione 7: Rette e piani nello spazio

Lezione 7: Rette e piani nello spazio Lezione 7: Rette e pini nello spzio In quest lezione i metteremo in un riferimento rtesino ortonormle dello spzio. I primi oggetti geometrii he individuimo sono le rette e i pini. Per qunto rigurd le rette

Dettagli

Fondamenti di Visione Artificiale (Seconda Parte) Corso di Robotica Prof.ssa Giuseppina Gini Anno Acc.. 2006/2007

Fondamenti di Visione Artificiale (Seconda Parte) Corso di Robotica Prof.ssa Giuseppina Gini Anno Acc.. 2006/2007 Fondament d Vsone Artfcale (Seconda Parte PhD. Ing. Mchele Folgherater Corso d Robotca Prof.ssa Guseppna Gn Anno Acc.. 006/007 Caso Bdmensonale el caso bdmensonale, per ndvduare punt d contorno degl oggett

Dettagli

Trigger di Schmitt. e +V t

Trigger di Schmitt. e +V t CORSO DI LABORATORIO DI OTTICA ED ELETTRONICA Scopo dell esperenza è valutare l ampezza dell steres d un trgger d Schmtt al varare della frequenza e dell ampezza del segnale d ngresso e confrontarla con

Dettagli

Progetto Lauree Scientifiche. La corrente elettrica

Progetto Lauree Scientifiche. La corrente elettrica Progetto Lauree Scentfche La corrente elettrca Conoscenze d base Forza elettromotrce Corrente Elettrca esstenza e resstvtà Legge d Ohm Crcut 2 Una spra d rame n equlbro elettrostatco In un crcuto semplce

Dettagli

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica

Nome.Cognome classe 5D 18 Marzo 2014. Verifica di matematica Nome Cognome cls 5D 18 Mrzo 01 Problem Verific di mtemtic In un sistem di riferimento crtesino Oy, si consideri l funzione: ln f ( > 0 0 e si determini il vlore del prmetro rele in modo tle che l funzione

Dettagli

La rappresentazione per elencazione consiste nell elencare tutte le coppie ordinate che verificano la relazione

La rappresentazione per elencazione consiste nell elencare tutte le coppie ordinate che verificano la relazione RELAZIONI E FUNZIONI Relzioni inrie Dti ue insiemi non vuoti e (he possono eventulmente oiniere), si ie relzione tr e un qulsisi legge he ssoi elementi elementi. L insieme A è etto insieme i prtenz. L

Dettagli

LE TRASFORMAZIONI GEOMETRICHE NEL PIANO

LE TRASFORMAZIONI GEOMETRICHE NEL PIANO LE TRASFORMAZIONI GEOMETRICHE NEL PIANO Una trasformazione geometrica è una funzione che fa corrispondere a ogni punto del piano un altro punto del piano stesso Si può pensare come MOVIMENTO di punti e

Dettagli

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2012-2013 Esercitazione: 4 aprile 2013

Dipartimento di Statistica Università di Bologna. Matematica Finanziaria aa 2012-2013 Esercitazione: 4 aprile 2013 Dpartmento d Statstca Unverstà d Bologna Matematca Fnanzara aa 2012-2013 Eserctazone: 4 aprle 2013 professor Danele Rtell www.unbo.t/docent/danele.rtell 1/41? Aula "Ranzan B" 255 post 1 2 3 4 5 6 7 8 9

Dettagli

Corso di Analisi Matematica Calcolo integrale per funzioni di una variabile

Corso di Analisi Matematica Calcolo integrale per funzioni di una variabile Corso di Anlisi Mtemtic Clcolo integrle per funzioni di un vribile Lure in Informtic e Comuniczione Digitle A.A. 2013/2014 Università di Bri ICD (Bri) Anlisi Mtemtic 1 / 40 1 L integrle come limite di

Dettagli

Che tipo di linee riconosci in questi quadri? Ripassale con una matita colorata e, con la stessa tinta, colora il pallino corrispondente.

Che tipo di linee riconosci in questi quadri? Ripassale con una matita colorata e, con la stessa tinta, colora il pallino corrispondente. Linee Che tipo di linee riconosci in questi quadri? Ripassale con una matita colorata e, con la stessa tinta, colora il pallino corrispondente. a. curva spezzata retta mista aperta chiusa b. curva spezzata

Dettagli

Università degli Studi di Urbino Facoltà di Economia

Università degli Studi di Urbino Facoltà di Economia Unverstà degl Stud d Urbno Facoltà d Economa Lezon d Statstca Descrttva svolte durante la prma parte del corso d corso d Statstca / Statstca I A.A. 004/05 a cura d: F. Bartolucc Lez. 8/0/04 Statstca descrttva

Dettagli

Vietata la pubblicazione, la riproduzione e la divulgazione a scopo di lucro.

Vietata la pubblicazione, la riproduzione e la divulgazione a scopo di lucro. Viett l pubbliczione, l riprouzione e l ivulgzione scopo i lucro. GA00001 Qul è l mpiezz ell ngolo che si ottiene ) 95 b) 275 c) 265 ) 5 b sottreno 85 un ngolo giro? GA00002 Due ngoli ll circonferenz che

Dettagli

Corrente elettrica e circuiti

Corrente elettrica e circuiti Corrente elettrca e crcut Generator d forza elettromotrce Intenstà d corrente Legg d Ohm esstenza e resstvtà esstenze n sere e n parallelo Effetto termco della corrente Legg d Krchhoff Corrente elettrca

Dettagli

Capitolo 7. La «sintesi neoclassica» e il modello IS-LM. 2. La curva IS

Capitolo 7. La «sintesi neoclassica» e il modello IS-LM. 2. La curva IS Captolo 7 1. Il modello IS-LM La «sntes neoclassca» e l modello IS-LM Defnzone: ndvdua tutte le combnazon d reddto e saggo d nteresse per le qual l mercato de ben (curva IS) e l mercato della moneta (curva

Dettagli

geometriche. Parte Sesta Trasformazioni isometriche

geometriche. Parte Sesta Trasformazioni isometriche Parte Sesta Trasformazioni isometriche In questa sezione di programma di matematica parliamo della geometria delle trasformazioni che studia le figure geometriche soggette a movimenti. Tali movimenti,

Dettagli

Elementi di stereochimica. La simmetria

Elementi di stereochimica. La simmetria Elementi di stereochimic L simmetri Tutto il corso di Stereochimic rgnic verte essenzilmente su due concetti fondmentli che sono quelli di chirlità e di stereogenicità. Prim di rrivre definire, comprendere

Dettagli

GEOMETRIA I Corso di Geometria I (seconda parte)

GEOMETRIA I Corso di Geometria I (seconda parte) Corso di Geometria I (seconda parte) anno acc. 2009/2010 Cambiamento del sistema di riferimento in E 3 Consideriamo in E 3 due sistemi di riferimento ortonormali R e R, ed un punto P (x, y, z) in R. Lo

Dettagli

La rappresentazione dei numeri. La rappresentazione dei numeri. Aritmetica dei calcolatori. La rappresentazione dei numeri

La rappresentazione dei numeri. La rappresentazione dei numeri. Aritmetica dei calcolatori. La rappresentazione dei numeri Artmetca de calcolator Rappresentazone de numer natural e relatv Addzone e sommator: : a propagazone d rporto, veloce, con segno Moltplcazone e moltplcator: senza segno, con segno e algortmo d Booth Rappresentazone

Dettagli

Corso di laurea in Ingegneria Meccatronica. DINAMICI CA - 04 ModiStabilita

Corso di laurea in Ingegneria Meccatronica. DINAMICI CA - 04 ModiStabilita Automaton Robotcs and System CONTROL Unverstà degl Stud d Modena e Reggo Emla Corso d laurea n Ingegnera Meccatronca MODI E STABILITA DEI SISTEMI DINAMICI CA - 04 ModStablta Cesare Fantuzz (cesare.fantuzz@unmore.t)

Dettagli

Variabili statistiche - Sommario

Variabili statistiche - Sommario Varabl statstche - Sommaro Defnzon prelmnar Statstca descrttva Msure della tendenza centrale e della dspersone d un campone Introduzone La varable statstca rappresenta rsultat d un anals effettuata su

Dettagli

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) =

1 b a. f(x) dx. Osservazione 1.2. Se indichiamo con µ il valore medio di f su [a, b], abbiamo che. f(x) dx = µ(b a) = Note ed esercizi di Anlisi Mtemtic - (Fosci) Ingegneri dell Informzione - 28-29. Lezione del 7 novembre 28. Questi esercizi sono reperibili dll pgin web del corso ttp://utenti.unife.it/dmino.fosci/didttic/mii89.tml

Dettagli

La velocità massima espressa in metri al secondo e l accelerazione voluta sono: 1000

La velocità massima espressa in metri al secondo e l accelerazione voluta sono: 1000 Diesioeto di ssi di otore correte cotiu Si idividuio i pretri pricipli di u cchi correte cotiu eccitzioe idipedete i rdo di uovere u tr veloce ote che sio le seueti specifiche: Tesioe di lietzioe dell

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne Metod e Modell per l Ottmzzazone Combnatora Progetto: Metodo d soluzone basato su generazone d colonne Lug De Govann Vene presentato un modello alternatvo per l problema della turnazone delle farmace che

Dettagli

F (r(t)), d dt r(t) dt

F (r(t)), d dt r(t) dt Cmpi vettorili Un cmpo vettorile è un funzione vlori vettorili F : A R, con A R n, ove in questo cso l imensione el ominio e el coominio è l stess. F ( 1, 2,..., n ) (f 1 ( 1, 2,..., n ), f 2 ( 1, 2,...,

Dettagli

Valore attuale di una rendita. Valore attuale in Excel: funzione VA

Valore attuale di una rendita. Valore attuale in Excel: funzione VA Valore attuale d una rendta Nella scorsa lezone c samo concentrat sul problema del calcolo del alore attuale d una rendta S che è dato n generale da V ( S) { R ; t, 0,,,..., n,... } n 0 R ( t ), doe (t

Dettagli

Il volume del cilindro è dato dal prodotto della superficie di base per l altezza, quindi

Il volume del cilindro è dato dal prodotto della superficie di base per l altezza, quindi Mtemtic per l nuov mturità scientific A. Bernrdo M. Pedone 3 Questionrio Quesito 1 Provre che un sfer è equivlente i /3 del cilindro circoscritto. r 4 3 Il volume dell sfer è 3 r Il volume del cilindro

Dettagli

Il Circuito Elementare

Il Circuito Elementare Corso d IMPIEGO INDUSRIALE dell ENERGIA L ener, ont, trsormzon ed us nl Impnt vpore I enertor d vpore Impnt turbos Ccl combnt e coenerzone Il mercto dell ener 1 Corso d IMPIEGO INDUSRIALE dell ENERGIA

Dettagli

METODO VOLTAMPEROMETRICO

METODO VOLTAMPEROMETRICO METODO OLTAMPEOMETCO Tle etodo consente di isrre indirettente n resistenz elettric ed ipieg l definizione stess di resistenz : doe rppresent l tensione i cpi dell resistenz e l corrente che l ttrers coe

Dettagli

Le trasformazioni geometriche

Le trasformazioni geometriche Le trasformazioni geometriche Le trasformazioni geometriche Le trasformazioni affini del piano o affinità Le similitudini Le isometrie Le traslazioni Le rotazioni Le simmetrie assiale e centrale Le omotetie

Dettagli

Problemi di collegamento delle strutture in acciaio

Problemi di collegamento delle strutture in acciaio 1 Problemi di collegmento delle strutture in cciio Unioni con bulloni soggette tglio Le unioni tglio vengono generlmente utilizzte negli elementi compressi, quli esempio le unioni colonn-colonn soggette

Dettagli

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x).

Siano α(x), β(x) due funzioni continue in un intervallo [a, b] IR tali che. α(x) β(x). OMINI NORMALI. efinizione Sino α(), β() due funzioni continue in un intervllo [, b] IR tli che L insieme del pino (figur 5. pg. ) α() β(). = {(, ) [, b] IR : α() β()} si chim dominio normle rispetto ll

Dettagli

LA COMPATIBILITA tra due misure:

LA COMPATIBILITA tra due misure: LA COMPATIBILITA tra due msure: 0.4 Due msure, supposte affette da error casual, s dcono tra loro compatbl quando la loro dfferenza può essere rcondotta ad una pura fluttuazone statstca attorno al valore

Dettagli

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma

INTEGRALI IMPROPRI. f(x) dx. e la funzione f(x) si dice integrabile in senso improprio su (a, b]. Se tale limite esiste ma INTEGRALI IMPROPRI. Integrli impropri su intervlli itti Dt un funzione f() continu in [, b), ponimo ε f() = f() ε + qundo il ite esiste. Se tle ite esiste finito, l integrle improprio si dice convergente

Dettagli

7. TERMODINAMICA RICHIAMI DI TEORIA

7. TERMODINAMICA RICHIAMI DI TEORIA 7. ERMODINMI RIHIMI DI EORI Introduzone ermodnamca: è lo studo delle trasformazon dell energa da un sstema all altro e da una forma all altra. Sstema termodnamco: è una defnta e dentfcable quanttà d matera

Dettagli

Il lemma di ricoprimento di Vitali

Il lemma di ricoprimento di Vitali Il lemm di ricoprimento di Vitli Si I = {I} un fmigli di intervlli ciusi contenuti in R. Diremo ce l fmigli I ricopre l insieme E nel senso di Vitli (oppure ce I è un ricoprimento di Vitli di E) se per

Dettagli

Conversione A/D e D/A. Quantizzazione

Conversione A/D e D/A. Quantizzazione Conversione A/D e D/A Per il trttmento dei segnli sempre più vengono preferite soluzioni di tipo digitle. È quindi necessrio, in fse di cquisizione, impiegre dispositivi che convertno i segnli nlogici

Dettagli

Unità Didattica N 25. La corrente elettrica

Unità Didattica N 25. La corrente elettrica Untà Ddattca N 5 : La corrente elettrca 1 Untà Ddattca N 5 La corrente elettrca 01) Il problema dell elettrocnetca 0) La corrente elettrca ne conduttor metallc 03) Crcuto elettrco elementare 04) La prma

Dettagli

www.scuolainweb.altervista.org Problemi di Fisica La Cinematica Moti unidimensionali Moti nel piano 1. Moti unidimensionali

www.scuolainweb.altervista.org Problemi di Fisica La Cinematica Moti unidimensionali Moti nel piano 1. Moti unidimensionali Problemi di Fisic Moti unidimensionli Moti nel pino. Moti unidimensionli Problem N. Rppresentre grficmente le seguenti leggi del moto rettilineo uniforme e commentrle: ) S 0 -t ) S 5t 3) S -0 + 3t 4) S

Dettagli

Calcolo della caduta di tensione con il metodo vettoriale

Calcolo della caduta di tensione con il metodo vettoriale Calcolo della caduta d tensone con l metodo vettorale Esempo d rete squlbrata ed effett del neutro nel calcolo. In Ampère le cadute d tensone sono calcolate vettoralmente. Per ogn utenza s calcola la caduta

Dettagli

Il gruppo dei vettori

Il gruppo dei vettori Capitolo Terzo Il gruppo dei vettori 3.1. Le strutture di gruppo e di corpo Un operazione binaria (1) definita in un insieme è un applicazione fra il quadrato cartesiano dell insieme e l insieme stesso,

Dettagli

E. Il campo magnetico

E. Il campo magnetico - 64 - - 65 - E. Il campo magnetco V è un mportante effetto che accompagna sempre la presenza d una corrente elettrca e s manfesta sa all nterno del conduttore sa al suo esterno: alla corrente elettrca

Dettagli

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione 1 La Regressone Lneare (Semplce) Relazone funzonale e statstca tra due varabl Modello d regressone lneare semplce Stma puntuale de coeffcent d regressone Decomposzone della varanza Coeffcente d determnazone

Dettagli

L INTEGRALE DEFINITO b f (x) d x a 1

L INTEGRALE DEFINITO b f (x) d x a 1 L INTEGRALE DEFINITO ( ) d ARGOMENTI. Il Trpezoide re del Trpezoide. L itegrle deiito de. Di Riem. Proprietà dell itegrle deiito teorem dell medi. L uzioe itegrle teorem di Torricelli-Brrow e corollrio

Dettagli

Lezione n.13. Regime sinusoidale

Lezione n.13. Regime sinusoidale Lezone 3 Regme snusodale Lezone n.3 Regme snusodale. Rcham sulle funzon snusodal. etodo de fasor e fasor. mpedenza ed ammettenza. Dagramm fasoral 3. Potenza n regme snusodale 3. Potenza attva e reattva

Dettagli

MATEMATICA C3 ALGEBRA 2 8. TRASFORMAZIONI GEOMETRICHE PIANE

MATEMATICA C3 ALGEBRA 2 8. TRASFORMAZIONI GEOMETRICHE PIANE MATEMATICA C3 ALGEBRA 2 8. TRASFORMAZIONI GEOMETRICHE PIANE La danza degli stormi, foto di _Pek_ http://www.flickr.com/photos/_pek_/4113244536 1. Generalità sulle trasformazioni geometriche piane...2 2.

Dettagli

Problemi variazionali invarianti 1

Problemi variazionali invarianti 1 Problem varazonal nvarant 1 A F. Klen per l cnquantesmo annversaro del dottorato. Emmy Noether a Gottnga. Comuncazone presentata da F. Klen nella seduta del 26 luglo 1918 2. 1 Invarante Varatonsprobleme,

Dettagli

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari Captolo 3 Covaranza, correlazone, bestft lnear e non lnear ) Covaranza e correlazone Ad un problema s assoca spesso pù d una varable quanttatva (es.: d una persona possamo determnare peso e altezza, oppure

Dettagli

9.6 Struttura quaternaria

9.6 Struttura quaternaria 9.6 Struttura quaternara L'ultmo lvello strutturale é la struttura quaternara. Non per tutte le protene è defnble una struttura quaternara. Infatt l esstenza d una struttura quaternara é condzonata alla

Dettagli

Antonio Licciulli, Antonio Greco Corso di scienza e ingegneria dei materiali. Microstrutture, equilibrio e diagrammi di fase

Antonio Licciulli, Antonio Greco Corso di scienza e ingegneria dei materiali. Microstrutture, equilibrio e diagrammi di fase Antono Lccull, Antono Greco Corso d scenza e ngegnera de materal Mcrostrutture, equlbro e dagramm d fase 1 Fase Fase d un sstema è una parte d esso nella quale la composzone (natura e concentrazone delle

Dettagli

13. EQUAZIONI ALGEBRICHE

13. EQUAZIONI ALGEBRICHE G. Smmito, A. Bernrdo, Formulrio di mtemti Equzioni lgerihe F. Cimolin, L. Brlett, L. Lussrdi. EQUAZIONI ALGEBRICHE. Prinipi di equivlenz Si die identità un'uguglinz tr due espressioni ontenenti un o più

Dettagli

Economie di scala, concorrenza imperfetta e commercio internazionale

Economie di scala, concorrenza imperfetta e commercio internazionale Sanna-Randacco Lezone n. 14 Econome d scala, concorrenza mperfetta e commerco nternazonale Non v è vantaggo comparato (e qund non v è commerco nter-ndustrale). S vuole dmostrare che la struttura d mercato

Dettagli

Cenni di matematica finanziaria Unità 61

Cenni di matematica finanziaria Unità 61 Prerequst: - Rsolvere equazon algebrche d 1 grado ed equazon esponenzal Questa untà è rvolta al 2 benno del seguente ndrzzo dell Isttuto Tecnco, settore Tecnologco: Agrara, Agroalmentare e Agrondustra.

Dettagli

Concetti principale della lezione precedente

Concetti principale della lezione precedente Corso d Statstca medca e applcata 6 a Lezone Dott.ssa Donatella Cocca Concett prncpale della lezone precedente I concett prncpal che sono stat presentat sono: I fenomen probablstc RR OR ROC-curve Varabl

Dettagli

A. AUMENTO DELLA SPESA PUBBLICA FINANZIATO ESCLUSIVAMENTE TRAMITE INDEBITAMENTO

A. AUMENTO DELLA SPESA PUBBLICA FINANZIATO ESCLUSIVAMENTE TRAMITE INDEBITAMENTO 4. SCHMI ALTRNATIVI DI FINANZIAMNTO DLLA SPSA PUBBLICA. Se l Governo decde d aumentare la Spesa Pubblca G (o Trasferment TR), allora deve anche reperre fond necessar per fnanzare questa sua maggore spesa.

Dettagli

Integrali curvilinei e integrali doppi

Integrali curvilinei e integrali doppi Integrli curvilinei e integrli doppi Integrli curvilinei di prim specie Prim di inizire l trttzione di questo rgomento dimo l definizione di curv. Per curv nello 3 3 spzio R intendimo un sottoinsieme di

Dettagli

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria Superiore Classe Prima. Scuola... Classe... Alunno...

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria Superiore Classe Prima. Scuola... Classe... Alunno... VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA Suol Seonri Superiore Clsse Prim Suol..........................................................................................................................................

Dettagli

Leggere i dati da file

Leggere i dati da file Esempo %soluzon d una equazone d secondo grado dsp('soluzon d a^+b+c') anput('damm l coeffcente a '); bnput('damm l coeffcente b '); cnput('damm l coeffcente c '); deltab^-4*a*c; f delta0 dsp('soluzon

Dettagli

Come si indica un punto? Un punto si indica (distingue) con una lettera maiuscola dell alfabeto italiano.

Come si indica un punto? Un punto si indica (distingue) con una lettera maiuscola dell alfabeto italiano. Il punto Il punto è un elemento geometrico fondamentale privo di dimensioni ed occupa solo una posizione. Come si indica un punto? Un punto si indica (distingue) con una lettera maiuscola dell alfabeto

Dettagli

Liceo Scientifico G. Galilei Trebisacce

Liceo Scientifico G. Galilei Trebisacce Liceo Scientifico G. Galilei Trebisacce Anno Scolastico 2011-2012 Prova di Matematica : Relazioni + Geometria Alunno: Classe: 1 C 05.06.2012 prof. Mimmo Corrado 1. Dati gli insiemi =2,3,5,7 e =2,4,6, rappresenta

Dettagli

Misura della distanza focale. di una lente convergente. Metodo di Bessel

Misura della distanza focale. di una lente convergente. Metodo di Bessel Zuccarello Francesco Laboratoro d Fsca II Msura della dstanza focale d una lente convergente Metodo d Bessel A.A. 003-004 Indce Introduzone..pag. 3 Presuppost Teorc.pag. 4 Anals de dat.pag. 8. Modo d operare...pag.

Dettagli

Ministero della Salute D.G. della programmazione sanitaria --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA

Ministero della Salute D.G. della programmazione sanitaria --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA Mnstero della Salute D.G. della programmazone santara --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA La valutazone del coeffcente d varabltà dell mpatto economco consente d ndvduare gl ACC e DRG

Dettagli

Induzione elettromagnetica

Induzione elettromagnetica Induzone elettromagnetca L esperenza d Faraday L'effetto d produzone d corrente elettrca n un crcuto prvo d generatore d tensone fu scoperto dal fsco nglese Mchael Faraday nel 83. Egl studò la relazone

Dettagli

IRRAGGIAMENTO: APPLICAZIONI ED ESERCIZI

IRRAGGIAMENTO: APPLICAZIONI ED ESERCIZI Elis Gonizzi N mtricol: 3886 Lezione del -- :3-:3 IRRAGGIAMENO: APPLICAZIONI ED EERCIZI E utile l fine di comprendere meglio le ppliczioni e gli esercizi ricordre cos si intend con i termini CORPI NERI

Dettagli

MACROECONOMIA A.A. 2014/2015

MACROECONOMIA A.A. 2014/2015 MACROECONOMIA A.A. 2014/2015 ESERCITAZIONE 2 MERCATO MONETARIO E MODELLO /LM ESERCIZIO 1 A) Un economa sta attraversando un perodo d profonda crs economca. Le banche decdono d aumentare la quota d depost

Dettagli

Per il seminario di cultura formale - Dottorato GIA

Per il seminario di cultura formale - Dottorato GIA Per l semnaro d cultura formale - Dottorato GIA Luca Mar, dcembre 003 Lezone 1: la matematca come strumento per pensare Cnque ncontr, da 1 ora e mezza cascuno. Con questo tempo complessvo a dsposzone,

Dettagli

5. Il lavoro di un gas perfetto

5. Il lavoro di un gas perfetto 5. Il lavoro d un gas perfetto ome s esprme l energa nterna d un gas perfetto? Un gas perfetto è l sstema pù semplce che possamo mmagnare: le nterazon a dstanza fra le molecole sono così debol da essere

Dettagli

8.1 Sintesi, descrizione, interpretazione

8.1 Sintesi, descrizione, interpretazione 8.1 Sntes, descrzone, nterpretazone Molte duse tecnche d anals statstca multvarata consentono d studare smultaneamente un numero elevato d varabl sntetzzandone l azone snergca attraverso un numero rdotto

Dettagli

CAPITOLO 3 Incertezza di misura Pagina 26

CAPITOLO 3 Incertezza di misura Pagina 26 CAPITOLO 3 Incertezza d msura Pagna 6 CAPITOLO 3 INCERTEZZA DI MISURA Le operazon d msurazone sono tutte nevtablmente affette da ncertezza e coè da un grado d ndetermnazone con l quale l processo d msurazone

Dettagli

ESERCIZI IN PIÙ ESERCIZI DI FINE CAPITOLO

ESERCIZI IN PIÙ ESERCIZI DI FINE CAPITOLO L RLZIONI L FUNZIONI serizi in più SRIZI IN PIÙ SRIZI I FIN PITOLO TST Nell insieme ell figur, l relzione rppresentt goe ell o elle proprietà: TST L relzione «essere isenente i», efinit nell insieme egli

Dettagli

Analisi ammortizzata. Illustriamo il metodo con due esempi. operazioni su di una pila Sia P una pila di interi con le solite operazioni:

Analisi ammortizzata. Illustriamo il metodo con due esempi. operazioni su di una pila Sia P una pila di interi con le solite operazioni: Anals ammortzzata Anals ammortzzata S consdera l tempo rchesto per esegure, nel caso pessmo, una ntera sequenza d operazon. Se le operazon costose sono relatvamente meno frequent allora l costo rchesto

Dettagli

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria di Primo Grado Classe Prima. Scuola... Classe... Alunno...

VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA. Scuola Secondaria di Primo Grado Classe Prima. Scuola... Classe... Alunno... VALUTAZIONE DELLE CONOSCENZE E DELLE ABILITÀ DI BASE PROVA DI MATEMATICA Suol Seonri i Primo Gro Clsse Prim Suol..........................................................................................................................................

Dettagli

La statistica nei test Invalsi

La statistica nei test Invalsi L sttisti nei test Invlsi 1) Osserv il grfio seguente he rppresent l distriuzione perentule di fmiglie per numero di omponenti, in se l ensimento 2001.. Qul è l perentule di fmiglie on 2 omponenti? Rispost:..%.

Dettagli

Fondamenti di Fisica Acustica

Fondamenti di Fisica Acustica Fondament d Fsca Acustca Pro. Paolo Zazzn - DSSARR Archtettura Pescara Anals n requenza de segnal sonor, bande d ottava e terz d ottava. Rumore banco e rumore rosa. Lvello equvalente. Fsologa dell apparato

Dettagli

Geometria nel piano complesso

Geometria nel piano complesso Geometria nel piano complesso Giorgio Ottaviani Contents Un introduzione formale del piano complesso 2 Il teorema di Napoleone 5 L inversione circolare 6 4 Le trasformazioni di Möbius 7 5 Il birapporto

Dettagli

Introduzione al Machine Learning

Introduzione al Machine Learning Introduzone al Machne Learnng Note dal corso d Machne Learnng Corso d Laurea Magstrale n Informatca aa 2010-2011 Prof Gorgo Gambos Unverstà degl Stud d Roma Tor Vergata 2 Queste note dervano da una selezone

Dettagli

DOTTORATO DI RICERCA IN GEOFISICA-XXIIICICLO/ EQUAZIONI ALLE DERIVATE PARZIALI (Prof. BONAFEDE)

DOTTORATO DI RICERCA IN GEOFISICA-XXIIICICLO/ EQUAZIONI ALLE DERIVATE PARZIALI (Prof. BONAFEDE) DOTTORATO DI RICERCA IN GEOFISICA-XXIIICICLO/ EQUAZIONI ALLE DERIVATE PARZIALI (Prof. BONAFEDE) Mggi C. & Bccesci P. Soluzioe problem V Puto 1: T Clcolre l soluzioe stziori dell (1) euivle d imporre l

Dettagli