Gli errori nella verifica delle ipotesi

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Gli errori nella verifica delle ipotesi"

Transcript

1 Gli errori nella verifica delle ipotesi Nella statistica inferenziale si cerca di dire qualcosa di valido in generale, per la popolazione o le popolazioni, attraverso l analisi di uno o più campioni E chiaro però che esiste comunque la possibilità di giungere a conclusioni errate, appunto perché i miei dati rappresentano solo una parte dell evento che sto analizzando Formalizziamo brevemente il concetto, in parte già visto, di errore (di errori) nel processo di verifica delle ipotesi Premessa (riassunto di argomenti già trattati) PRIMA di effettuare un test statistico viene scelto un livello di significatività, α Questo livello di significatività determina i valori critici della statistica test (z, t, chi-quadro, ecc). I valori critici definiscono nella distribuzione teorica della statistica, distribuzione attesa nel caso sia vera l ipotesi nulla (la distribuzione nulla, appunto), le regioni di accettazione e di rifiuto Il livello di significatività prescelto viene anche utilizzato come confronto se si segue l approccio del p-value: il p-value calcolato viene confrontato con α

2 Supponiamo ora di aver scelto α =0.05 (scelta tipica), e supponiamo di condurre un test bidirezionale (a due code) La regione di rifiuto nella distribuzione nulla include il 5% dei valori più estremi della statistica (2,5% dalla parte dei valori molto grandi, e 2,5% dalla parte dei valori molto piccoli) Questi sono valori estremi che comunque possiamo otterremmo, con una probabilità del 5%, anche se fosse vera l ipotesi nulla Se ripetessimo tante volte il test su campioni diversi, e l ipotesi nulla fosse sempre vera, il 5% dei test porterebbe ad un valore della statistica test all interno della zona di rifiuto (e ad un p-value inferiore a 0.05) Quindi, nel 5% di questi test, rifiuteremmo l ipotesi nulla vera Distribuzione nulla per la statistica test z. Se è vera l ipotesi nulla, e ripetessi il test molte volte su campioni diversi, α x 100 delle volte quest ipotesi vera verrebbe erroneamente rifiutata

3 In pratica, se la statistica calcolata in un singolo test cade nella regione di rifiuto, o il p-value <α, la conclusione del test è quella di rifiutare l ipotesi nulla. Ma, per quello che abbiamo appena detto, l ipotesi nulla potrebbe anche essere vera ma per puro effetto del caso (errore di campionamento) i dati portano ad una statistica test significativa (che cade cioè nella regione di rifiuto e che ha un p-value <α) L errore che si compie rifiutando un ipotesi nulla vera si chiama o errore di prima specie, o errore do tipo I Errore di primo tipo La probabilità di compiere un errore di primo tipo è data dal livello di significatività α prescelto E la frazione di volte che viene rifiutata un ipotesi nulla vera se ripetessi tante volte il test su campioni diversi (presi dalla stessa, o dalle stesse, popolazione/i) Scegliendo in anticipo α, definiamo il rischio che siamo disposti ad accettare di compiere un errore di primo tipo Alla fine del test, se le evidenze saranno a favore dell ipotesi alternativa, non sapremo ovviamente se avremo commesso un errore di primo tipo oppure no. Potremo solo dire che la probabilità di averlo commesso, se fosse vera l ipotesi nulla, sarebbe molto bassa (e pari ad α)

4 La probabilità complementare (1- α) viene chiamata livello di protezione di un test, ed è appunto la probabilità di non rifiutare l ipotesi nulla quando l ipotesi nulla è vera. Un test con un altro livello di protezione è detto conservativo Un test molto conservativo può essere visto come un test che vuole rischiare molto poco di fare un errore di primo tipo, che sappiamo essere un errore molto grave perché rifiutare l ipotesi nulla è una decisione forte (come condannare un imputato) mentre non rifiutarla non significa in realtà accettarla (ma solo dire che i dati sono compatibili con essa) Da notare che nel calcolo degli intervalli di confidenza (utilizzati nella stima di un parametro, non nella verifica di ipotesi), il termine 1- α prende il nome di grado di confidenza Riassumendo, se l ipotesi nulla è vera, può succedere che:

5 Vediamo ora un altro tipo di errore che si può commettere nella verifica delle ipotesi Se l ipotesi nulla è falsa, cioè per esempio la media nella popolazione 1 è diversa dalla media nella popolazione 2, giungerò sempre al suo rifiuto analizzando due campioni? Ovviamente no, e anche intuitivamente è facile capirne un motivo: se le medie nelle due popolazioni sono diverse ma molto vicine, è possibile che i dati non siano sufficienti a escludere l ipotesi nulla, visto che l ipotesi nulla viene rifiutata solo in presenza di forti evidenze L errore che si compie quando un ipotesi alternativa è vera ma la conclusione del test è quella che non è possibile escludere l ipotesi nulla, ovvero, l errore che si compie non rifiutando un ipotesi nulla falsa, si chiama Errore di secondo tipo o errore di seconda specie, o errore do tipo II

6 La probabilità di commettere un errore di secondo tipo viene generalmente indicato con il simbolo β La probabilità complementare, (1- β), ossia la probabilità di rifiutare correttamente un ipotesi nulla falsa, si chiama potenza del test Maggiore è la potenza di un test, maggiore sarà la possibilità del test di identificare come corretta l ipotesi alternativa quando questa è effettivamente vera La probabilità di fare un errore di secondo tipo, ovvero il rischio di non rifiutare un ipotesi nulla falsa, e di conseguenza la potenza di un test, non si può stabilire a priori Dipende infatti dalla distanza tra ipotesi nulla e alternativa (per esempio, la differenza tra µ 1 e µ 2 ), distanza che è ignota Dipende dalla varianza delle variabili in gioco, che non può essere modificata La probabilità di fare un errore di secondo tipo, però, dipende anche dal numero di osservazioni e dal livello di significatività α prescelto. Quindi: è possibile ridurre l errore di II tipo (e quindi aumentare la potenza) aumentando la dimensione campionaria è possibile ridurre l errore di II tipo (e quindi aumentare la potenza) aumentando il livello di significatività α (ma questa scelta ci espone a maggiori rischi di errore di tipo I) E possibile studiare la potenza di un test attraverso l analisi della potenza

7 Completiamo intanto la tabella degli errori Cerchiamo ora di capire graficamente l errore di secondo tipo Supponiamo di svolgere un test z a una coda per verificare le seguenti ipotesi H 0 : µ = µ 0 = 1.5 H 1 : µ µ 0 Abbiamo già visto cosa succede quando l ipotesi nulla è effettivamente vera (si rischia di commettere un errore di primo tipo) Vediamo ora cosa succede quando l ipotesi nulla non è vera In questo caso, per capire e calcolare l errore di secondo tipo è necessario assumere che sia vera una ipotesi alternativa precisa. Assumiamo che sia vera l ipotesi alternativa µ = 1.45

8

9 Concentriamoci per ora sulla parte inferiore della figura, specifica per un campione con n = 36 osservazioni con σ =0.1 e α = 0.01 Le due distribuzioni a campana rappresentano le distribuzioni delle medie campionarie secondo l ipotesi nulla (in viola) e secondo l ipotesi alternativa (in blu) Le due linee rosse verticali rappresentano i limiti dell intervallo all interno del quale una media campionaria verrebbe considerata compatibile con l ipotesi nulla Quei limiti, standardizzati, porterebbero ai valori critici nella tabella di z di e L area ombreggiata in giallo è la probabilità di commettere un errore di tipo II Infatti, quando è vera l ipotesi alternativa, la media campionaria ha una probabilità pari all area in giallo di cadere nella regione di accettazione (stabilità ovviamente sulla base della distribuzione nulla) L area ombreggiata in verde è quindi il potere del test, ovvero la probabilità di rifiutare correttamente l ipotesi nulla quando questa è falsa (come nel caso considerato)

10 E facile capire da questo grafico che 1. Maggiore è la distanza tra ipotesi alternativa (che stiamo considerando vera) e l ipotesi nulla (che stiamo considerando falsa), maggiore sarà la potenza del test Logico: se l ipotesi alternativa è molto diversa da quella nulla ipotizzata, sarà facile scoprirlo 2. Minore è la dispersione della variabile, minore sarà la varianza della media campionaria, più strette saranno le corrispondenti distribuzioni, e maggiore sarà la potenza del test Logico: se gli individui sono tutti molto simili, anche pochi sono sufficienti per stimare bene la media della popolazione e verificare se è diversa da µ 0 3. Maggiore è l α prescelto, maggiore sarà la potenza del test Logico: se per rifiutare l ipotesi nulla mi accontento di moderate differenze tra i dati e quanto predetto dall ipotesi nulla, tenderò a rifiutarla maggiormente quando è vera l ipotesi nulla ma anche quando è vera l ipotesi alternativa 4. Maggiore è la dimensione campionaria, minore sarà la varianza della media campionaria, più strette saranno le corrispondenti distribuzioni, e maggiore sarà la potenza del test Logico: con molti dati scovo meglio un ipotesi alternativa vera

11 Attenzione: per ogni dato test statistico, possiamo aumentare la potenza solo agendo su sul punto 3 (ma ciò comporta un aumento del rischio di errore di tipo I) e sul punto 4. I punti 1 e 2 non sono sotto il nostro controllo In realtà, poiché per ogni tipo di problema statistico esistono generalmente più test diversi a disposizione (con caratteristiche diverse), e i test che fanno più assunzioni (per esempio sulla distribuzione della variabile) sono di solito più potenti, è anche possibile aumentare la potenza di un test scegliendo il test più potente (ovviamente se le condizioni imposte da quel test sono soddisfatte dai dati) Provate voi stessi come varia il potere di semplice un test in funzione di α, n, σ, e la distanza tra la µ vera e la µ 0 ipotizzata dall ipotesi nulla:

12 Cosa si poteva vedere nella parte superiore della figura discussa in precedenza?

13 L analisi della potenza e la sua importanza Fare un analisi della potenza significa essenzialmente determinare la potenza di un test in diverse condizioni, ovvero in funzione di α, n, σ, e della distanza tra ipotesi alternativa e ipotesi nulla Nel test appena visto, il calcolo della potenza è semplice (si fa con il calcolatore ma si poteva fare anche a mano). In altri casi è molto più complesso E molto importante perché ci permette di capire quale probabilità abbiamo di accettare erroneamente l ipotesi nulla quando invece è vera una specifica ipotesi alternativa Supponiamo per esempio di avere la possibilità di determinare una certa variabile fisiologica in un gruppo di 5 pazienti, per poterne confrontare la media con l ipotesi nulla che la media nella popolazione sia pari ad un certo valore medio standard, diciamo 12 (sospettando per esempio che la patologia dei pazienti possa aver alterato la variabile fisiologica che vogliamo analizzare). Supponiamo anche di conoscere la deviazione standard della variabile (così che sia possibile applicare un test z) e che questa sia pari a 3

14 Dopo aver fatto l analisi in laboratorio e il test statistico, e aver trovato che l ipotesi nulla non può essere rifiutata, o meglio ancora prima di cominciare le analisi, potremo chiederci: qual è la probabilità di non accorgerci (con un certo α = 0.05) che la media della popolazione da cui abbiamo estratto il campione non è quella specificata dall ipotesi nulla (µ 0 = 12), ma é invece pari ad valore specifico di interesse, per esempio di interesse perché indice di una grave patologia? Ci interessa cioè capire se, nell ipotesi che i pazienti abbiano per esempio un media della variabile studiata alta in maniera preoccupante, per esempio µ = 14, tale differenza verrebbe identificata con il campione a disposizione in generale, la scelta del valore di µ da analizzare nell analisi della potenza dovrebbe identificare un valore di media particolarmente anomalo, che se fosse veramente la media della popolazione dalla quale abbiamo estratto il campione che stiamo analizzando vorremmo che venisse evidenziata con alta probabilità Utilizzando l applet al calcolatore con α = 0,05 n = 5 σ = 3 µ 0 = 12 (valore standard previsto dall ipotesi nulla) µ = 14 (valore ipotizzato per l ipotesi alternativa)

15 La potenza è pari a Questo significa che se la media della popolazione fosse 14, avrei circa il 32% di probabilità di identificare con un campione di 5 individui questa deviazione dall ipotesi nulla. Ma avrei anche una probabilità molto alta (il 68% circa) che pur con una notevole deviazione della popolazione rispetto a quanto previsto dall ipotesi nulla (14 rispetto a 12), questa deviazione non verrebbe identificata Una situazione pericolosa, quindi, ci potrebbe sfuggire con alta probabilità (il 68%), suggerendoci per esempio di aumentare la dimensione campionaria (e aumentare quindi la potenza del test)

Il processo inferenziale consente di generalizzare, con un certo grado di sicurezza, i risultati ottenuti osservando uno o più campioni

Il processo inferenziale consente di generalizzare, con un certo grado di sicurezza, i risultati ottenuti osservando uno o più campioni La statistica inferenziale Il processo inferenziale consente di generalizzare, con un certo grado di sicurezza, i risultati ottenuti osservando uno o più campioni E necessario però anche aggiungere con

Dettagli

IL CONFRONTO TRA LE VARIANZE DI DUE POPOLAZIONI

IL CONFRONTO TRA LE VARIANZE DI DUE POPOLAZIONI IL CONFRONTO TRA LE VARIANZE DI DUE POPOLAZIONI Perchè confrontare le varianze stimate in due campioni? Torniamo all'esempio dei frinosomi Per poter applicare il test t avevamo detto che le varianze, e

Dettagli

STATISTICA ESERCITAZIONE 13

STATISTICA ESERCITAZIONE 13 STATISTICA ESERCITAZIONE 13 Dott. Giuseppe Pandolfo 9 Marzo 2015 Errore di I tipo: si commette se l'ipotesi nulla H 0 viene rifiutata quando essa è vera Errore di II tipo: si commette se l'ipotesi nulla

Dettagli

Lezione 16. Statistica. Alfonso Iodice D Enza Università degli studi di Cassino. Lezione 16. A. Iodice. Ipotesi statistiche

Lezione 16. Statistica. Alfonso Iodice D Enza Università degli studi di Cassino. Lezione 16. A. Iodice. Ipotesi statistiche Statistica Alfonso Iodice D Enza iodicede@unicas.it Università degli studi di Cassino () Statistica 1 / 23 Outline 1 2 3 4 5 6 () Statistica 2 / 23 La verifica delle ipotesi Definizione Un ipotesi statistica

Dettagli

La verifica delle ipotesi

La verifica delle ipotesi La verifica delle ipotesi Se abbiamo un idea di quale possa essere il valore di un parametro incognito possiamo sottoporlo ad una verifica, che sulla base di un risultato campionario, ci permetta di decidere

Dettagli

Test d Ipotesi Introduzione

Test d Ipotesi Introduzione Test d Ipotesi Introduzione Uno degli scopi più importanti di un analisi statistica è quello di utilizzare i dati provenienti da un campione per fare inferenza sulla popolazione da cui è stato estratto

Dettagli

Un esempio. Ipotesi statistica: supposizione riguardante: un parametro della popolazione. la forma della distribuzione della popolazione

Un esempio. Ipotesi statistica: supposizione riguardante: un parametro della popolazione. la forma della distribuzione della popolazione La verifica delle ipotesi In molte circostanze il ricercatore si trova a dover decidere quale, tra le diverse situazioni possibili riferibili alla popolazione, è quella meglio sostenuta dalle evidenze

Dettagli

N.B. Per la risoluzione dei seguenti esercizi, si fa riferimento alle Tabelle riportate alla fine del documento.

N.B. Per la risoluzione dei seguenti esercizi, si fa riferimento alle Tabelle riportate alla fine del documento. N.B. Per la risoluzione dei seguenti esercizi, si fa riferimento alle abelle riportate alla fine del documento. Esercizio 1 La concentrazione media di sostanze inquinanti osservata nelle acque di un fiume

Dettagli

Fondamenti di Psicometria. La statistica è facile!!! VERIFICA DELLE IPOTESI

Fondamenti di Psicometria. La statistica è facile!!! VERIFICA DELLE IPOTESI Fondamenti di Psicometria La statistica è facile!!! VERIFICA DELLE IPOTESI INFERENZA STATISTICA Teoria della verifica dell ipotesi : si verifica, in termini probabilistici, se una certa affermazione relativa

Dettagli

Elementi di Psicometria con Laboratorio di SPSS 1

Elementi di Psicometria con Laboratorio di SPSS 1 Elementi di Psicometria con Laboratorio di SPSS 1 10-Significatività statistica per la correlazione vers. 1.0 (5 novembre 2014) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia, Università

Dettagli

Laboratorio di Didattica di elaborazione dati 5 STIMA PUNTUALE DEI PARAMETRI. x i. SE = n.

Laboratorio di Didattica di elaborazione dati 5 STIMA PUNTUALE DEI PARAMETRI. x i. SE = n. 5 STIMA PUNTUALE DEI PARAMETRI [Adattato dal libro Excel per la statistica di Enzo Belluco] Sia θ un parametro incognito della distribuzione di un carattere in una determinata popolazione. Il problema

Dettagli

Test di ipotesi. Test

Test di ipotesi. Test Test di ipotesi Test E una metodologia statistica che consente di prendere una decisione. Esempio: Un supermercato riceve dal proprio fornitore l assicurazione che non più del 5% delle mele di tipo A dell

Dettagli

Esercitazione 8 del corso di Statistica 2

Esercitazione 8 del corso di Statistica 2 Esercitazione 8 del corso di Statistica Prof. Domenico Vistocco Dott.ssa Paola Costantini 6 Giugno 8 Decisione vera falsa è respinta Errore di I tipo Decisione corretta non è respinta Probabilità α Decisione

Dettagli

Approssimazione normale alla distribuzione binomiale

Approssimazione normale alla distribuzione binomiale Approssimazione normale alla distribuzione binomiale P b (X r) costoso P b (X r) P(X r) per N grande Teorema: Se la variabile casuale X ha una distribuzione binomiale con parametri N e p, allora, per N

Dettagli

05. Errore campionario e numerosità campionaria

05. Errore campionario e numerosità campionaria Statistica per le ricerche di mercato A.A. 01/13 05. Errore campionario e numerosità campionaria Gli schemi di campionamento condividono lo stesso principio di fondo: rappresentare il più fedelmente possibile,

Dettagli

Ulteriori applicazioni del test del Chi-quadrato (χ 2 )

Ulteriori applicazioni del test del Chi-quadrato (χ 2 ) Ulteriori applicazioni del test del Chi-quadrato (χ 2 ) Finora abbiamo confrontato con il χ 2 le numerosità osservate in diverse categorie in un campione con le numerosità previste da un certo modello

Dettagli

Analisi della regressione multipla

Analisi della regressione multipla Analisi della regressione multipla y = β 0 + β 1 x 1 + β 2 x 2 +... β k x k + u 2. Inferenza Assunzione del Modello Classico di Regressione Lineare (CLM) Sappiamo che, date le assunzioni Gauss- Markov,

Dettagli

Distribuzioni e inferenza statistica

Distribuzioni e inferenza statistica Distribuzioni e inferenza statistica Distribuzioni di probabilità L analisi statistica spesso studia i fenomeni collettivi confrontandoli con modelli teorici di riferimento. Tra di essi, vedremo: la distribuzione

Dettagli

SOLUZIONE. a) Calcoliamo il valore medio delle 10 misure effettuate (media campionaria):

SOLUZIONE. a) Calcoliamo il valore medio delle 10 misure effettuate (media campionaria): ESERCIZIO SU TEST STATISTICO (Z, T e χ ) Da una ditta di assemblaggio di PC ci viene chiesto di controllare la potenza media dissipata da un nuovo processore, che causa a volte problemi di sovraccarico

Dettagli

Proprietà della varianza

Proprietà della varianza Proprietà della varianza Proprietà della varianza Proprietà della varianza Proprietà della varianza Intermezzo: ma perché dovremmo darci la pena di studiare come calcolare la varianza nel caso di somme,

Dettagli

Il test (o i test) del Chi-quadrato ( 2 )

Il test (o i test) del Chi-quadrato ( 2 ) Il test (o i test) del Chi-quadrato ( ) I dati: numerosità di osservazioni che cadono all interno di determinate categorie Prima di tutto, è un test per confrontare proporzioni Esempio: confronto tra numero

Dettagli

Metodi statistici per le ricerche di mercato

Metodi statistici per le ricerche di mercato Metodi statistici per le ricerche di mercato Prof.ssa Isabella Mingo A.A. 2015-2016 Facoltà di Scienze Politiche, Sociologia, Comunicazione Corso di laurea Magistrale in «Organizzazione e marketing per

Dettagli

Questo calcolo richiede che si conoscano media e deviazione standard della popolazione.

Questo calcolo richiede che si conoscano media e deviazione standard della popolazione. Università del Piemonte Orientale Corso di laurea in biotecnologie Corso di Statistica Medica La distribuzione t - student 1 Abbiamo visto nelle lezioni precedenti come il calcolo del valore Z, riferito

Dettagli

Università del Piemonte Orientale. Corso di laurea in medicina e chirurgia. Corso di Statistica Medica. La distribuzione t - student

Università del Piemonte Orientale. Corso di laurea in medicina e chirurgia. Corso di Statistica Medica. La distribuzione t - student Università del Piemonte Orientale Corso di laurea in medicina e chirurgia Corso di Statistica Medica La distribuzione t - student 1 Abbiamo visto nelle lezioni precedenti come il calcolo del valore Z,

Dettagli

Capitolo 8. Probabilità: concetti di base

Capitolo 8. Probabilità: concetti di base 1 Capitolo 8 Probabilità: concetti di base Statistica - Metodologie per le scienze economiche e sociali 2/ed S. Borra, A. Di Ciaccio Copyright 2008 The McGraw-Hill Companies srl 2 Concetti primitivi di

Dettagli

Esercitazione 8 maggio 2014

Esercitazione 8 maggio 2014 Esercitazione 8 maggio 2014 Esercizio 2 dal tema d esame del 13.01.2014 (parte II). L età media di n gruppo di 10 studenti che hanno appena conseguito la laurea triennale è di 22 anni. a) Costruire un

Dettagli

Test d ipotesi: confronto fra medie

Test d ipotesi: confronto fra medie Test d ipotesi: confronto fra medie Prof. Giuseppe Verlato Sezione di Epidemiologia e Statistica Medica, Università di Verona CONFRONTO FRA MEDIE 1) confronto fra una media campionaria e una media di popolazione

Dettagli

Elementi di Psicometria con Laboratorio di SPSS 1

Elementi di Psicometria con Laboratorio di SPSS 1 Elementi di Psicometria con Laboratorio di SPSS 1 9-Introduzione alla statistica inferenziale (vers. 1.2, 25 ottobre 2015) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia, Università

Dettagli

Test delle ipotesi sulla media.

Test delle ipotesi sulla media. . Caso di un singolo campione. Varianza nota.. Ipotesi alternativa bilaterale Test delle ipotesi sulla media. Valore medio η e deviazione standard σ della popolazione note. η è il valore stimato dal nostro

Dettagli

Statistica - metodologie per le scienze economiche e sociali /2e S. Borra, A. Di Ciaccio - McGraw Hill

Statistica - metodologie per le scienze economiche e sociali /2e S. Borra, A. Di Ciaccio - McGraw Hill Statistica - metodologie per le scienze economiche e sociali /e S. Borra, A. Di Ciaccio - McGraw Hill Es.. Soluzione degli esercizi del capitolo 4 4. Il sistema d ipotesi è: μ 7, H : μ 7, Essendo 0 : t,

Dettagli

5.5 Procedura generale per la formulazione di un test

5.5 Procedura generale per la formulazione di un test ca e ilprincipale problema per i test di ipotesi consiste nello scegliere la migliore regione "'''illle. In generale si può notare che maggiore è la regione critica maggiore è la probabi- iere un errore

Dettagli

Esercizi di Probabilità e Statistica

Esercizi di Probabilità e Statistica Esercizi di Probabilità e Statistica Samuel Rota Bulò 6 giugno 26 Statistica Esercizio Sia {X n } n una famiglia di v.a. di media µ e varianza σ 2. Verificare che X = n n X i σ 2 = n (X i µ) 2 S 2 = n

Dettagli

Ulteriori conoscenze di informatica Elementi di statistica Esercitazione3

Ulteriori conoscenze di informatica Elementi di statistica Esercitazione3 Ulteriori conoscenze di informatica Elementi di statistica Esercitazione3 Sui PC a disposizione sono istallati diversi sistemi operativi. All accensione scegliere Windows. Immettere Nome utente b## (##

Dettagli

Analisi della varianza: I contrasti e il metodo di Bonferroni

Analisi della varianza: I contrasti e il metodo di Bonferroni Analisi della varianza: I contrasti e il metodo di Bonferroni 1 Contrasti In molti problemi risulta importante stabilire, nel caso venga rifiutata l ipotesi nulla, di uguaglianza delle medie µ j delle

Dettagli

STATISTICHE, DISTRIBUZIONI CAMPIONARIE E INFERENZA

STATISTICHE, DISTRIBUZIONI CAMPIONARIE E INFERENZA Metodi statistici e probabilistici per l ingegneria Corso di Laurea in Ingegneria Civile A.A. 2009-10 Facoltà di Ingegneria, Università di Padova Docente: Dott. L. Corain 1 STATISTICHE, DISTRIBUZIONI CAMPIONARIE

Dettagli

Esame di Statistica (10 o 12 CFU) CLEF 11 febbraio 2016

Esame di Statistica (10 o 12 CFU) CLEF 11 febbraio 2016 Esame di Statistica 0 o CFU) CLEF febbraio 06 Esercizio Si considerino i seguenti dati, relativi a 00 clienti di una banca a cui è stato concesso un prestito, classificati per età e per esito dell operazione

Dettagli

Esame di Statistica del 19 settembre 2006 (Corso di Laurea Triennale in Biotecnologie, Università degli Studi di Padova).

Esame di Statistica del 19 settembre 2006 (Corso di Laurea Triennale in Biotecnologie, Università degli Studi di Padova). Esame di Statistica del 19 settembre 2006 (Corso di Laurea Triennale in Biotecnologie, Università degli Studi di Padova). Cognome Nome Matricola Es. 1 Es. 2 Es. 3 Es. 4 Somma Voto finale Attenzione: si

Dettagli

Statistica Inferenziale

Statistica Inferenziale Statistica Inferenziale a) L Intervallo di Confidenza b) La distribuzione t di Student c) La differenza delle medie d) L intervallo di confidenza della differenza Prof Paolo Chiodini Dalla Popolazione

Dettagli

Quanti soggetti devono essere selezionati?

Quanti soggetti devono essere selezionati? Quanti soggetti devono essere selezionati? Determinare una appropriata numerosità campionaria già in fase di disegno dello studio molto importante è molto Studi basati su campioni troppo piccoli non hanno

Dettagli

Esercizi riassuntivi di Inferenza

Esercizi riassuntivi di Inferenza Esercizi riassuntivi di Inferenza Esercizio 1 Un economista vuole stimare il reddito medio degli abitanti di una cittadina mediante un intervallo al livello di confidenza del 95%. La distribuzione del

Dettagli

Distribuzione Normale

Distribuzione Normale Distribuzione Normale istogramma delle frequenze di un insieme di misure di una grandezza che può variare con continuità popolazione molto numerosa, costituita da una quantità praticamente illimitata di

Dettagli

Dal disegno a due campioni indipendenti al confronto per dati appaiati

Dal disegno a due campioni indipendenti al confronto per dati appaiati Dal disegno a due campioni indipendenti al confronto per dati appaiati Dal disegno a due campioni indipendenti al confronto per dati appaiati Finora abbiamo assunto che tutte le osservazioni siano indipendenti

Dettagli

Schema lezione 5 Intervalli di confidenza

Schema lezione 5 Intervalli di confidenza Schema lezione 5 Intervalli di confidenza Non centrerò quella barca, ne sono convinto al 95% COMPRENDERE: Significato di intervallo di confidenza Uso degli stimatori come quantità di pivot per stime intervallari

Dettagli

Statistica Metodologica

Statistica Metodologica Statistica Metodologica Esercizi di Probabilita e Inferenza Silvia Figini e-mail: silvia.figini@unipv.it Problema 1 Sia X una variabile aleatoria Bernoulliana con parametro p = 0.7. 1. Determinare la media

Dettagli

Statistica. Esercitazione 14. Alfonso Iodice D Enza Università degli studi di Cassino. Statistica. A. Iodice. Verifica di ipotesi

Statistica. Esercitazione 14. Alfonso Iodice D Enza Università degli studi di Cassino. Statistica. A. Iodice. Verifica di ipotesi Esercitazione 14 Alfonso Iodice D Enza iodicede@unicas.it Università degli studi di Cassino () 1 / 14 Ex.1: Verifica Ipotesi sulla media (varianza nota) Le funi prodotte da un certo macchinario hanno una

Dettagli

Statistica Matematica A - Ing. Meccanica, Aerospaziale II prova in itinere - 2 febbraio 2005

Statistica Matematica A - Ing. Meccanica, Aerospaziale II prova in itinere - 2 febbraio 2005 Statistica Matematica A - Ing. Meccanica, Aerospaziale II prova in itinere - 2 febbraio 2005 c I diritti d autore sono riservati. Ogni sfruttamento commerciale non autorizzato sarà perseguito. Esercizio

Dettagli

UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II DIPARTIMENTO DI INGEGNERIA AEROSPAZIALE D.I.A.S. STATISTICA PER L INNOVAZIONE. a.a.

UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II DIPARTIMENTO DI INGEGNERIA AEROSPAZIALE D.I.A.S. STATISTICA PER L INNOVAZIONE. a.a. UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II DIPARTIMENTO DI INGEGNERIA AEROSPAZIALE D.I.A.S. STATISTICA PER L INNOVAZIONE a.a. 2007/2008 1,00 0,90 0,80 0,70 0,60 0,50 0,40 0,30 0,20 0,10 0,00 CDF empirica

Dettagli

Capitolo 5 Variabili aleatorie discrete notevoli Insegnamento: Statistica Applicata Corso di Laurea in "Scienze e Tecnologie Alimentari"

Capitolo 5 Variabili aleatorie discrete notevoli Insegnamento: Statistica Applicata Corso di Laurea in Scienze e Tecnologie Alimentari Levine, Krehbiel, Berenson Statistica Capitolo 5 Variabili aleatorie discrete notevoli Insegnamento: Statistica Applicata Corso di Laurea in "Scienze e Tecnologie Alimentari" Unità Integrata Organizzativa

Dettagli

STATISTICA A K (63 ore) Marco Riani

STATISTICA A K (63 ore) Marco Riani STATISTICA A K (63 ore) Marco Riani mriani@unipr.it http://www.riani.it Verifica d ipotesi Esempio di logica di un test statistico Prova d esame con 10 quesiti a quiz 4 possibili risposte per ogni quesito

Dettagli

CHEMIOMETRIA. CONFRONTO CON VALORE ATTESO (test d ipotesi) CONFRONTO DI VALORI MISURATI (test d ipotesi) CONFRONTO DI RIPRODUCIBILITA (test d ipotesi)

CHEMIOMETRIA. CONFRONTO CON VALORE ATTESO (test d ipotesi) CONFRONTO DI VALORI MISURATI (test d ipotesi) CONFRONTO DI RIPRODUCIBILITA (test d ipotesi) CHEMIOMETRIA Applicazione di metodi matematici e statistici per estrarre (massima) informazione chimica (affidabile) da dati chimici INCERTEZZA DI MISURA (intervallo di confidenza/fiducia) CONFRONTO CON

Dettagli

Capitolo 9 Verifica di ipotesi: test basati su un campione

Capitolo 9 Verifica di ipotesi: test basati su un campione Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 9 Verifica di ipotesi: test basati su un campione Insegnamento: Statistica Corsi di Laurea Triennale in Economia Facoltà di Economia, Università

Dettagli

SOLUZIONI ESERCITAZIONE NR. 8 Test statistici

SOLUZIONI ESERCITAZIONE NR. 8 Test statistici SOLUZIONI ESERCITAZIONE NR. 8 Test statistici ESERCIZIO nr. 1 Un campione casuale di dieci pazienti di sesso maschile in cura per comportamenti aggressivi nell ambito del contesto familiare è stato classificato

Dettagli

Statistical Process Control

Statistical Process Control Statistical Process Control ESERCIZI II Esercizio 1. Una ditta che produce schermi a cristalli liquidi deve tenere in controllo il numero di pixel non funzionanti. Vengono ispezionati venti schermi alla

Dettagli

Matematica II: Calcolo delle Probabilità e Statistica Matematica

Matematica II: Calcolo delle Probabilità e Statistica Matematica Matematica II: Calcolo delle Probabilità e Statistica Matematica ELT A-Z Docente: dott. F. Zucca Esercitazione # 6 1 Test ed intervalli di confidenza per una popolazione Esercizio n. 1 Il calore (in calorie

Dettagli

Università del Piemonte Orientale. Corsi di laurea di area tecnica. Corso di Statistica Medica. Analisi dei dati quantitativi :

Università del Piemonte Orientale. Corsi di laurea di area tecnica. Corso di Statistica Medica. Analisi dei dati quantitativi : Università del Piemonte Orientale Corsi di laurea di area tecnica Corso di Statistica Medica Analisi dei dati quantitativi : Confronto tra due medie Corsi di laurea triennale di area tecnica - Corso di

Dettagli

Gestione ed Analisi Statistica dei dati

Gestione ed Analisi Statistica dei dati Master in Evidence Based Practice e Metodologia della Ricerca clinico-assistenziale assistenziale Gestione ed Analisi Statistica dei dati Daniela Fortuna 12 giugno 2014 TEST di ipotesi Finora abbiamo visto

Dettagli

Distribuzione Normale

Distribuzione Normale Distribuzione Normale istogramma delle frequenze di un insieme di misure relative a una grandezza che può variare con continuità popolazione molto numerosa, costituita da una quantità praticamente illimitata

Dettagli

Z-test, T-test, χ 2 -test

Z-test, T-test, χ 2 -test Z-test, T-test, χ 2 -test Francesco Corrias Chiara Todaro DIMA 13 febbraio 2012 Francesco Corrias Chiara Todaro (DIMA) Z-test, T-test, χ 2 -test 13 febbraio 2012 1 / 19 Verifica d ipotesi Definizione (Test

Dettagli

Corso integrato di informatica, statistica e analisi dei dati sperimentali Esercitazione VII

Corso integrato di informatica, statistica e analisi dei dati sperimentali Esercitazione VII Corso integrato di informatica, statistica e analisi dei dati sperimentali Esercitazione VII Un breve richiamo sul test t-student Siano A exp (a 1, a 2.a n ) e B exp (b 1, b 2.b m ) due set di dati i cui

Dettagli

Caratterizzazione dei consumi energetici (parte 3)

Caratterizzazione dei consumi energetici (parte 3) ESERCITAZIONE 4 Caratterizzazione dei consumi energetici (parte 3) 4.1 CuSum: elementi di analisi statistica Il diagramma delle somme cumulate dei residui in funzione del tempo (CuSum) può essere in generale

Dettagli

ˆp(1 ˆp) n 1 +n 2 totale di successi considerando i due gruppi come fossero uno solo e si costruisce z come segue ˆp 1 ˆp 2. n 1

ˆp(1 ˆp) n 1 +n 2 totale di successi considerando i due gruppi come fossero uno solo e si costruisce z come segue ˆp 1 ˆp 2. n 1 . Verifica di ipotesi: parte seconda.. Verifica di ipotesi per due campioni. Quando abbiamo due insiemi di dati possiamo chiederci, a seconda della loro natura, se i campioni sono simili oppure no. Ci

Dettagli

ESAME. 9 Gennaio 2017 COMPITO B

ESAME. 9 Gennaio 2017 COMPITO B ESAME 9 Gennaio 2017 COMPITO B Cognome Nome Numero di matricola 1) Approssimare tutti i calcoli alla quarta cifra decimale. 2) Ai fini della valutazione si terrà conto solo ed esclusivamente di quanto

Dettagli

Concetti principale della lezione precedente

Concetti principale della lezione precedente Corso di Statistica medica e applicata 9 a Lezione Dott.ssa Donatella Cocca Concetti principale della lezione precedente I concetti principali che sono stati presentati sono: Variabili su scala nominale

Dettagli

Elementi di Psicometria con Laboratorio di SPSS 1

Elementi di Psicometria con Laboratorio di SPSS 1 Elementi di Psicometria con Laboratorio di SPSS 1 13-Il t-test per campioni indipendenti vers. 1.1 (12 novembre 2014) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia, Università di

Dettagli

STATISTICA AZIENDALE Modulo Controllo di Qualità

STATISTICA AZIENDALE Modulo Controllo di Qualità STATISTICA AZIENDALE Modulo Controllo di Qualità A.A. 009/10 - Sottoperiodo PROA DEL 14 MAGGIO 010 Cognome:.. Nome: Matricola:.. AERTENZE: Negli esercizi in cui sono richiesti calcoli riportare tutte la

Dettagli

FENOMENI CASUALI. fenomeni casuali

FENOMENI CASUALI. fenomeni casuali PROBABILITÀ 94 FENOMENI CASUALI La probabilità si occupa di fenomeni casuali fenomeni di cui, a priori, non si sa quale esito si verificherà. Esempio Lancio di una moneta Testa o Croce? 95 DEFINIZIONI

Dettagli

Esercitazioni di Statistica Matematica A Esercitatori: Dott. Fabio Zucca - Dott. Maurizio U. Dini Lezioni del 7/1/2003 e del 14/1/2003

Esercitazioni di Statistica Matematica A Esercitatori: Dott. Fabio Zucca - Dott. Maurizio U. Dini Lezioni del 7/1/2003 e del 14/1/2003 Esercitazioni di Statistica Matematica A Esercitatori: Dott. Fabio Zucca - Dott. Maurizio U. Dini Lezioni del 7/1/003 e del 14/1/003 1 Esercizi 1.1 Test su media (con varianza nota) Esercizio n. 1 Il calore

Dettagli

Distribuzioni campionarie

Distribuzioni campionarie 1 Inferenza Statistica Descrittiva Distribuzioni campionarie Statistica Inferenziale: affronta problemi di decisione in condizioni di incertezza basandosi sia su informazioni a priori sia sui dati campionari

Dettagli

Capitolo 8. Intervalli di confidenza. Statistica. Levine, Krehbiel, Berenson. Casa editrice: Pearson. Insegnamento: Statistica

Capitolo 8. Intervalli di confidenza. Statistica. Levine, Krehbiel, Berenson. Casa editrice: Pearson. Insegnamento: Statistica Levine, Krehbiel, Berenson Statistica Casa editrice: Pearson Capitolo 8 Intervalli di confidenza Insegnamento: Statistica Corso di Laurea Triennale in Economia Dipartimento di Economia e Management, Università

Dettagli

i dati escludono vi sia una relazione tra variabile indipendente e variabile dipendente (rispettivamente

i dati escludono vi sia una relazione tra variabile indipendente e variabile dipendente (rispettivamente TEST DI AUTOVALUTAZIONE - SETTIMANA 6 I diritti d autore sono riservati. Ogni sfruttamento commerciale non autorizzato sarà perseguito. Metodi statistici per la biologia Parte A. La retta di regressione.2

Dettagli

Fondamenti di statistica per il miglioramento genetico delle piante. Antonio Di Matteo Università Federico II

Fondamenti di statistica per il miglioramento genetico delle piante. Antonio Di Matteo Università Federico II Fondamenti di statistica per il miglioramento genetico delle piante Antonio Di Matteo Università Federico II Modulo 2 Variabili continue e Metodi parametrici Distribuzione Un insieme di misure è detto

Dettagli

UNIVERSITÀ di ROMA TOR VERGATA

UNIVERSITÀ di ROMA TOR VERGATA UNIVERSITÀ di ROMA TOR VERGATA Corso di Laurea Magistrale in Scienze della Nutrizione Umana Corso di Statistica Medica, anno 2015-16 P.Baldi Lista di esercizi 4, 11 febbraio 2016. Esercizio 1 Una v.a.

Dettagli

Corso di Psicometria Progredito

Corso di Psicometria Progredito Corso di Psicometria Progredito 4.1 I principali test statistici per la verifica di ipotesi: Il test t Gianmarco Altoè Dipartimento di Pedagogia, Psicologia e Filosofia Università di Cagliari, Anno Accademico

Dettagli

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2006/07

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2006/07 PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 006/07 Esercizio 1 Prova scritta del 16/1/006 In un ufficio postale lavorano due impiegati che svolgono lo stesso compito in maniera indipendente, sbrigando

Dettagli

L indagine campionaria Lezione 3

L indagine campionaria Lezione 3 Anno accademico 2007/08 L indagine campionaria Lezione 3 Docente: prof. Maurizio Pisati Variabile casuale Una variabile casuale è una quantità discreta o continua il cui valore è determinato dal risultato

Dettagli

Dal campione alla popolazione

Dal campione alla popolazione Dal campione alla popolazione Monica Marabelli 20 Novembre 2015 L inferenza statistica La statistica si occupa di studiare le unitá/individui appartenenti alla popolazione statistica. Spesso, peró, non

Dettagli

Capitolo 10 Test delle ipotesi

Capitolo 10 Test delle ipotesi Capitolo 10 Test delle ipotesi 1 Stima e verifica di ipotesi Modello di popolazione e campionamento: La popolazione viene descritta da una variabile aleatoria dipendente da un parametro incognito. Si ipotizza

Dettagli

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 4

CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 4 CORSO DI STATISTICA (parte 2) - ESERCITAZIONE 4 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Esercizio 1. Stimatore media campionaria Il tempo in minuti necessario a un certo impiegato dell anagrafe

Dettagli

Prova Scritta di METODI STATISTICI PER L AMMINISTRAZIONE DELLE IMPRESE (Milano, )

Prova Scritta di METODI STATISTICI PER L AMMINISTRAZIONE DELLE IMPRESE (Milano, ) Università degli Studi di Milano Bicocca Scuola di Economia e Statistica Corso di Laurea in Economia e Amministrazione delle Imprese (ECOAMM) Prova Scritta di METODI STATISTICI PER L AMMINISTRAZIONE DELLE

Dettagli

L AFFIDABILITA NELLA FASE DI PRODUZIONE

L AFFIDABILITA NELLA FASE DI PRODUZIONE 9. L AFFIDABILITA NELLA FASE DI PRODUZIONE Ed.1 del 14/09/98 Rev. 3 del 08/09/00 AFFIDABILITA' DI COMPONENTI E SCHEDE ELETTRONICHE-sez 9 1 L AFFIDABILITA IN PRODUZIONE ATTIVITA CHIAVE PER L AFFIDABILITA

Dettagli

Casa dello Studente. Casa dello Studente

Casa dello Studente. Casa dello Studente Esercitazione - 14 aprile 2016 ESERCIZIO 1 Di seguito si riporta il giudizio (punteggio da 0 a 5) espresso da un gruppo di studenti rispetto alle diverse residenze studentesche di un Ateneo: a) Si calcolino

Dettagli

PSICOMETRIA. Corso di laurea triennale (classe 34) VERIFICA DELL IPOTESI CON DUE CAMPIONI

PSICOMETRIA. Corso di laurea triennale (classe 34) VERIFICA DELL IPOTESI CON DUE CAMPIONI PSICOMETRIA Corso di laurea triennale (classe 34) VERIFICA DELL IPOTESI CON DUE CAMPIONI CAMPIONI INDIPENDENTI Campioni estratti casualmente dalla popolazione con caratteristiche omogenee Assegnazione

Dettagli

DISTRIBUZIONI DI CAMPIONAMENTO

DISTRIBUZIONI DI CAMPIONAMENTO DISTRIBUZIONI DI CAMPIONAMENTO 12 DISTRIBUZIONE DI CAMPIONAMENTO DELLA MEDIA Situazione reale Della popolazione di tutti i laureati in odontoiatria negli ultimi 10 anni, in tutte le Università d Italia,

Dettagli

Ipotesi statistiche (caso uno-dimensionale) Ipotesi poste sulla (distribuzione di) popolazione per raggiungere una decisione sulla popolazione stessa

Ipotesi statistiche (caso uno-dimensionale) Ipotesi poste sulla (distribuzione di) popolazione per raggiungere una decisione sulla popolazione stessa Ipotesi statistiche (caso uno-dimensionale) Ipotesi poste sulla (distribuzione di) popolazione per raggiungere una decisione sulla popolazione stessa L ipotesi che si vuole testare: H 0 (ipotesi nulla)

Dettagli

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI I METODI PER IL CONFRONTO DI MEDIE (Campioni non indipendenti) Prof.ssa G. Serio, Prof. P. Trerotoli, Cattedra di Statistica Medica, Università di Bari

Dettagli

Università degli Studi di Padova. Corso di Laurea in Medicina e Chirurgia - A.A

Università degli Studi di Padova. Corso di Laurea in Medicina e Chirurgia - A.A Università degli Studi di Padova Corso di Laurea in Medicina e Chirurgia - A.A. 015-16 Corso Integrato: Statistica e Metodologia Epidemiologica Disciplina: Statistica e Metodologia Epidemiologica Docenti:

Dettagli

Il test statistico e le ipotesi Regione di accettazione e rifiuto Test con ipotesi nulla semplice Il p-value Errori di I e II tipo Funzione di potenza

Il test statistico e le ipotesi Regione di accettazione e rifiuto Test con ipotesi nulla semplice Il p-value Errori di I e II tipo Funzione di potenza 1 La verifica di ipotesi Il test statistico e le ipotesi Regione di accettazione e rifiuto Test con ipotesi nulla semplice Il p-value Errori di I e II tipo Funzione di potenza Contenuti: Capitolo 13 libro

Dettagli

si tratta del test del chi-quadro di adattamento e di quello di indipendenza. 1 l ipotesi che la popolazione segua una legge fissata;

si tratta del test del chi-quadro di adattamento e di quello di indipendenza. 1 l ipotesi che la popolazione segua una legge fissata; di : dado : normale Finora abbiamo visto test d ipotesi per testare ipotesi differenti, ma tutte concernenti il valore atteso di una o due popolazioni. In questo capitolo vediamo come testare 1 l ipotesi

Dettagli

Parte 1 : Inferenza. *(richiami), **(parte 2), ***(cenni) ! Test d'ipotesi* ! Intervalli di confidenza* ! Test parametrici* ! Calcoli di potenza**

Parte 1 : Inferenza. *(richiami), **(parte 2), ***(cenni) ! Test d'ipotesi* ! Intervalli di confidenza* ! Test parametrici* ! Calcoli di potenza** Parte 1 : Inferenza! Test d'ipotesi*! Intervalli di confidenza*! Test parametrici*! Calcoli di potenza**! Test non parametrici*** *(richiami), **(parte 2), ***(cenni) 27 marzo 2001 ... [omissis]... La

Dettagli

È possibile trovare la popolazione di origine conoscendone un campione? o meglio. partendo dalla conoscenza di n, x e d.s.?

È possibile trovare la popolazione di origine conoscendone un campione? o meglio. partendo dalla conoscenza di n, x e d.s.? Statistica6-06/10/2015 È possibile trovare la popolazione di origine conoscendone un campione? o meglio. È possibile conoscere σ e μ partendo dalla conoscenza di n, x e d.s.? 1 A partire da un campione

Dettagli

TUTORATO 2 Test di significatività e intervalli di confidenza

TUTORATO 2 Test di significatività e intervalli di confidenza TUTORATO 2 Test di significatività e intervalli di confidenza 1) Nel corso della sperimentazione del farmaco si rilevò la frequenza cardiaca in 9 pazienti, prima e dopo il trattamento, riscontrando i valori

Dettagli

TEST NON PARAMETRICO DI MANN-WHITNEY

TEST NON PARAMETRICO DI MANN-WHITNEY TEST NON PARAMETRICO DI MANN-WHITNEY Questo test viene può essere utilizzato come test di confronto tra due campioni in maniera analoga ai test ipotesi parametrici di confronto medie (test Z se la varianza

Dettagli

Tipi di variabili. Indici di tendenza centrale e di dispersione

Tipi di variabili. Indici di tendenza centrale e di dispersione Tipi di variabili. Indici di tendenza centrale e di dispersione L. Boni Variabile casuale In teoria della probabilità, una variabile casuale (o variabile aleatoria o variabile stocastica o random variable)

Dettagli

Verifica di ipotesi. Parte VI. Verifica di ipotesi

Verifica di ipotesi. Parte VI. Verifica di ipotesi Parte VI Verifica di ipotesi Definizione (Sistema di ipotesi) Nell ambito di un modello statistico parametrico, un sistema di ipotesi statistiche è costituito da due congetture, incompatibili, sul parametro

Dettagli

Verifica di ipotesi: approfondimenti

Verifica di ipotesi: approfondimenti 1. Il -value Verifica di iotesi: arofondimenti Il test si uò effettuare: Determinando reventivamente le regioni di accettazione di H 0 e H 1 er lo stimatore considerato (sulla base del livello α e osservando

Dettagli

La valutazione dei rischi. Corso di risk management Prof. Giuseppe D Onza

La valutazione dei rischi. Corso di risk management Prof. Giuseppe D Onza La valutazione dei rischi Corso di risk management Prof. Giuseppe D Onza LA VALUTAZIONE DEI RISCHI E un attività che caratterizza la gestione dei rischi finalizzata ad apprezzare la gravità dei fenomeni

Dettagli

Elementi di Psicometria con Laboratorio di SPSS 1

Elementi di Psicometria con Laboratorio di SPSS 1 Elementi di Psicometria con Laboratorio di SPSS 1 25-Dimensione degli effetti e 26-Metanalisi vers. 1.0 (2 dicembre 2014) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia, Università

Dettagli

Esercitazione # 6. a) Fissato il livello di significatività al 5% si tragga una conclusione circa l opportunità di avviare la campagna comparativa.

Esercitazione # 6. a) Fissato il livello di significatività al 5% si tragga una conclusione circa l opportunità di avviare la campagna comparativa. Statistica Matematica A Esercitazione # 6 DUE MEDIE CON VARIANZE NOTE: Esercizio # Le ditte A e B producono sfere luminose. Una volta attivata la reazione chimica che rende luminosa una di queste sfere,

Dettagli

Minimi quadrati vincolati e test F

Minimi quadrati vincolati e test F Minimi quadrati vincolati e test F Impostazione del problema Spesso, i modelli econometrici che stimiamo hanno dei parametri che sono passibili di interpretazione diretta nella teoria economica. Consideriamo

Dettagli

Americani Inglesi Firenze Roma Provare l ipotesi che la nazionalità non influisca sulla scelta della meta.

Americani Inglesi Firenze Roma Provare l ipotesi che la nazionalità non influisca sulla scelta della meta. TEST D IPOTESI 1 Le resistenze alla rottura delle funi prodotte da una fabbrica hanno una media pari a µ = 1800N ed uno scarto quadratico medio di σ = 100N Immettendo una nuova tecnica nel processo produttivo,

Dettagli