Esponenziali elogaritmi
|
|
- Eva Dolce
- 2 anni fa
- Visualizzazioni
Transcript
1 Esponenziali elogaritmi Potenze ad esponente reale Ricordiamo che per un qualsiasi numero razionale m n prendere n>0) si pone a m n = n a m (in cui si può sempre a patto che a sia un numero reale positivo. Siccome un qualunque numero reale x può essere approssimato tanto bene quanto si vuole tramite numeri razionali q, si riesce a dimostrare che migliorando l approssimazione q le potenze a q approssimano a loro volta un ben preciso numero reale, che viene allora indicato con la scrittura a x. Tale procedimento dà dunque un senso alla potenza a x con a>0 e x reale qualsiasi. Si tratta in generale un numero irrazionale e quindi determinabile solo approssimativamente (ad esempio da un calcolatore); tuttavia ciò non crea eccessivi problemi nel lavorare con potenze ad esponente reale, in quanto si opera spesso tramite le loro proprietà che ricalcano le usuali proprietà delle potenze: se a, b sonorealipositiviedx, y reali qualsiasi, si ha a 0 = e a x = a x a x a y = a x+y a x b x =(ab) x (a x ) y = a xy. e e a x a = y ax y a x ³ a x b x = b Inoltre, valgono le seguenti ulteriori prioprietà. Positività Per ogni x reale ed a>0, siha a x > 0. Monotonia Se è a>, alloralepotenzedia crescono al crescere dell esponente, ossia x<y a x <a y mentre se è 0 < a <, allora le potenze di a decrescono al crescere dell esponente, ossia x<y a x >a y. Invertibilità Per ogni a>0, due potenze di a sono uguali se e solo se sono uguali gli esponenti, cioè a x = a y x = y. M.Guida, S.Rolando, 008
2 . Equazioni esponenziali elementari Per quanto riguarda le equazioni esponenziali (cioè in cui l incognita appare ad esponente), non esiste una metodologia di risoluzione generale, ma la proprietà di invertibilità consente di ricondurre le equazioni che si presentano come uguaglianza di potenze con ugual base (equazioni esponenziali elementari) ad equazioni razionali. Uno strumento per la risoluzione di altri casi sarà fornito dai logaritmi e dalle loro proprietà. Esempio Tramite le proprietà delle potenze e la proprietà di invertibilità, l equazione esponenziale (3 x :3) x =3 x+3 si scrive equivalentemente 3 x 3 x = 3 x+3 3 x x = 3 x+3 3 (x )x = 3 x+3 (x ) x = x +3. ed è quindi equivalente all equazione razionale di secondo grado x x 3 =0, chehalesoluzionix = ed x =3. Logaritmi Dati due numeri reali b>0 e a>0 con a 6=, si può dimostrare che l equazione esponenziale a x = b ammette sempre una ed una sola soluzione; osserviamo che la restrizione a>0 èovviamentenecessariaperdaresensoada x,mentre le richieste b > 0 ed a 6= entrano nel garantire esistenza ed unicità della soluzione.talesoluzioneèdettalogaritmo in base a di b ed è indicata con la scrittura log a b,doveb èdettoargomento del logaritmo. In altri termini, per definizione si ha x =log a b a x = b dove deve essere a>0, a 6= e b>0. Dunque il logaritmo in base a di b èl esponentedaattribuireallabasea per ottenere l argomento b. Esempi Scrivendo l argomento come potenza della base, si ottiene subito - log 8=log 3 =3 - log =log =log = log = log 0 00 =log 0 0 =log 0 0 =. infatti per ogni x reale è a x > 0 e x =;quindia x = b 6 0 sarebbe impossibile, mentre x = b sarebbe possibile (ammettendo però infinite soluzioni) solo se b =
3 Ricorrendo alla definizione di logaritmo si ha x =log 4 6 x 4 =6 4 x =6 4 x =4 x = e dunque log 6 =. 4 Come conseguenze immediate della definizione di logaritmo, si ricavano le seguenti importanti proprietà. Fissato a>0,a 6=,siha log a a z = z per ogni z reale. In particolare, log a a = e log a =0 (in quanto log a =log a a 0 ). Fissato a>0,a 6=,siha a log a b = b per ogni b reale positivo. Fissata una base a>0 con a 6=, sui numeri reali positivi si è dunque definita una nuova operazione, che a partire dal numero b>0 fornisce il log a b come risultato. Tale operazione è detta estrazione di logaritmo ed è l operazione inversa dell elevamento ad esponente reale, nel senso che fornisce l esponente data la potenza. Il risultato è in generale un numero irrazionale e quindi determinabile solo approssimativamente (ad esempio da un calcolatore), ma ciò non crea eccessivi problemi nell operare con i logaritmi in quanto si procede spesso mediante le loro proprietà, che costituiscono una rilettura in termini di logartimi delle proprietà delle potenze: se a, b sono numeri reali positivi diversi daedx, y reali positivi qualunque, allora log a (xy) =log a x +log a y ³ x log a y =log a x log a y log a (x )= log a x per ogni reale log a x = log b x (cambiamento di base). log b a Esempio Se è x>0 (da cui segue anche x +> 0), allora log a (x +) log a x log a = log a (x +) log a x +log a x+ = log a (x +) log a 4x =log a 4x e ciò non è da confondere con l estrazione di radice, che, data la potenza, ne fornisce la base 3
4 per qualsiasi base a>0,a6=. Poiché si è abituati a scrivere i numeri mediante sistema di numerazione decimale, è facile intuire come i logaritmi in base 0 svolgano un ruolo importante in molti contesti. Per ragioni che qui non approfondiamo, come base (per logaritmi e potenze) si è anche portati a privilegiare il numero irrazionale e = (numero di Nepero), tanto da riservare al logaritmo in base e il nome di logaritimo naturale. In questi casi si usano spesso notazioni abbreviate, scrivendo Log in luogo di log 0 ed ln oppure semplicemente log alpostodi log e. Il calcolo dei logaritmi Log ed ln è implementato in ogni calcolatrice scientifica e la proprietà di cambiamento di base consente poi di ricavare il valore (approssimato) del logaritmo in qualsiasi altra base; ad esempio log 3 7 = Log7 Log3 ' '.578 oppure log ln = ln 3 = '.578. Valgono infine le seguenti ulteriori proprietà dei logaritmi in base qualunque. Monotonia Se è a>, allora i logaritmi in base a crescono al crescere dell argomento, ossia 0 <x<y log a x<log a y mentre se è 0 <a<, allora i logaritmi in base a decrescono al crescere dell argomento, ossia 0 <x<y log a x>log a y. Invertibilità Per ogni a > 0,a6=, due logaritmi in base a sono uguali se e solo se sono uguali i loro argomenti, cioè se x e y sono positivi allora log a x =log a y x = y.. Equazioni logaritmiche elementari La proprietà di invertibilità consente subito di risolvere le equazioni logaritmiche (cioè in cui l incognita appare ad argomento di un logaritmo) elementari (cioè che si possono scrivere come uguaglianza di logaritmi con ugual base), riconducendole ad equazioni razionali. Esempio A nchè l equazione logaritmica log 3 x +log 3 (x 8) = abbia senso, gli argomenti di tutti i logaritmi presenti devono essere positivi ed occorre quindi imporre la condizione ½ x>0 x 8 > 0 4
5 cheequivalea x>8. Tramite le proprietà dei logaritmi (tra cui la proprietà di invertibilità), dall equazione segue 3 log 3 [x (x 8)] = log 3 x 8x = log 3 3 x 8x = 9 e le soluzioni dell equazione logaritmica sono quindi da ricercarsi tra le soluzioni dell equazione razionale di secondo grado x 8x 9=0, che ha le soluzioni x = ed x =9. Tra queste, x = va scartata perché non soddisfa la condizione ( ) e l equazione di partenza è dunque risolta solo per x =9. 3 Altre equazioni logaritmiche ed esponenziali Come già preannunciato, invertibilità e proprietà dei logaritmi permettono anche di ricondurre ad equazioni razionali quelle equazioni esponenziali che si presentano come uguaglianza tra prodotti di potenze con basi qualsiasi. Esempio L equazione esponenziale 3 x 5 3 x = x può essere subito equivalentemente riscritta 5 3 x x = +x 5 3 x = x. Poiché ambo i membri sono positivi per ogni x, dalla proprietà di invertibilità segue che l equazione è equivalente a quella ottenuta uguagliando i logaritmi (ad esempio naturali, ma una qualsiasi base farebbe allo scopo) di primo e secondo membro, ossia ln (5 3 x )=ln x che, applicando le proprietà dei logaritmi, equivale a ln 5 + ln 3 x = ln x ln 5 + x ln 3 = x ln x ln 3 x ln = ln 5 (ln 3 ln ) x = ln 5 x = ln 5 ln 3 ln. L equazione di partenza è dunque risolta dal numero ln 5 ln 3 ln ' 3.97 che, volendo, può anche essere scritto ln 5 ln 3 ln = ln 5 ln 3 =log si noti che x>8= x 8x >0 ( ) 5
6 Alcune equazioni logaritmiche o esponenziali sono risolubili mediante cambiamento di incognita. Esse si presentano come uguaglianza tra espressioni in cui l incognita appare solo ad argomento o esponente dello stesso logaritmo o della stessa potenza. Esempio L equazione logaritmica (ln x) +lnx = richiede di imporre la condizione x>0.ponendot =lnx, deveessere t +t = ossia t +t =0, t t 3 =0, t t 3=0, che equivale a t = oppure +t t =3. Si tratta allora di risolvere le equazioni logaritmiche elementari ln x = lnx =3 x = e x = e 3 e l equazione di partenza ha dunque le soluzioni x = e e x = e 3,entrambe accettabili (perchè soddisfacenti la condizione di positività imposta). Esempio Ponendo t = e x,risultae 4x =(e x ) 4 = t 4, e x = t e l equazione esponenziale e 4x 4 e x + +=0 diventa t 4 4 t + + = 0 (t )(t +) t + + = 0 t + = 0 t = 0 chehalesoluzionit = e t =. Si tratta allora di risolvere le equazioni esponenziali elementari e x = e x = impossibile x =0 e l equazione di partenza ha dunque l unica soluzione x =0. Di fronte ad equazioni esponenziali o logaritmiche per cui le tecniche precedenti non siano applicabili, si cerca di procedere per via grafica o per via numerica, tramite metodi che qui non trattiamo ed accontentandosi in genere di soluzioni approssimate. 6
7 4 Curve esponenziali ecurve logaritmiche Con riferimento alle ben note nozioni di piano cartesiano e luogo geometrico, le operazioni di elevamento ad esponente reale e di estrazione di logaritmo sopra introdotte possono essere usate per individuare particolari curve nel piano. Fissata una base a>0, lacurvadiequazione y = a x èdettacurva esponenziale (di base a) ed è costituita da tutti e soli i punti del piano cartesiano le cui coordinate siano del tipo (x, a x ) con x reale qualsiasi. Le ordinate dei punti di una curva esponenziale sono tutte positive (poiché a x > 0) e, viceversa, ogni numero reale positivo y è ordinata del punto (log a y,y) che sta sullacurva(inquantoy = a log a y ). Nella seguente figura sono tracciate le curve esponenziali corrispondenti a diversi valori dalla base a. y = a x con a y = a x con 0 <a Si noti che ad ogni x reale corrisponde uno ed un solo punto (x, a x ) sulla curva esponenziale di base a. Si osservi poi che la proprietà di monotonia sopra citata si riflette nel fatto che l ordinata di un punto che si muova su una curva esponenziale nel verso delle ascisse crescenti (ossia da sinistra a destra ) aumenta se a>ediminuisce se 0<a<. Inoltre, essendo x =per ogni x, la curva esponenziale di base a =si riduce alla retta y =.Infine,tutte le curve esponenziali passano per il punto di coordinate (0, ), inquantoa 0 =per ogni base a. Fissata una base a>0 con a 6=,lacurvadiequazione y =log a x 7
8 è detta curva logaritmica (di base a) ed è costituita da tutti e soli i punti del piano cartesiano le cui coordinate siano del tipo (x, log a x) con x reale positivo (altrimenti log a x non avrebbe senso). Si noti che ogni numero reale y è ordinata del punto (a y,y) che sta sulla curva (in quanto y =log a a y ). Nella seguente figura sono tracciate le curve logaritmiche corrispondenti a diversi valori dalla base a. y =log a x con a> y =log a x con 0 <a< Si noti che ad ogni x reale positivo corrisponde uno ed un solo punto (x, log a x) sulla curva logaritmica di base a. Si osservi inoltre che la proprietà di monotonia sopra citata si riflette nel fatto che l ordinata di un punto che si muova su una curva logaritmica nel verso delle ascisse crescenti (ossia da sinistra a destra ) aumenta se a> e diminuisce se 0 <a<. Infine,tutte le curve logaritmiche passano per il punto di coordinate (, 0), inquantolog a =0per ogni base a. 8
9 Esercizi. Risolvere le seguenti equazioni esponenziali: x 4 x =4 x [x =0;x =] = 4 x = x 4 0 x = [impossibile] 4 3 x x = [x =;x =3] 3 x = 43 [x = 5]. Calcolare i seguenti logaritmi: log 6 =... [ 4] log 7 = e ln 3 =... [3] ln( ) =... [non esiste] Si ricordi che la proprietà log a x =log a x è applicabile solo quando l argomento x è un numero positivo. 3. Determinare x tale che log x =. [x =] 4. Sapendo che è x>0, ridurre ad un unico logaritmo le espressioni 5 log 5+5log x 3log x log 8 x lnx ln x + x +ln(x +). [ln x] 5. Risolvere l equazione log 3 x log 3 (x ) =. x = Risolvere l equazione log [(5 x )(7 x )]=log3. Eliminati i logaritmi, si ponga x = t. [x =;x =3] 7. Risolvere le equazioni 3 x = 3x [x =0] (log x) = x = ; x = e x e x e x +=0. [x =0] 9
Funzione logaritmo con. funzione inversa della funzione di
FUNZIONE LOGARITMO a è la base della funzione logaritmo ed è una costante positiva fissata e diversa da 1 x è l argomento della funzione logaritmo e varia nel dominio Funzione logaritmo con funzione inversa
FUNZIONI / ESERCIZI SVOLTI
ANALISI MATEMATICA I - A.A. 0/0 FUNZIONI / ESERCIZI SVOLTI ESERCIZIO. Data la funzione f () = determinare l insieme f (( +)). Svolgimento. Poiché f (( +)) = { dom f : f () ( +)} = { dom f : f () > } si
Corso di Analisi Matematica. Funzioni reali di variabile reale
a.a. 2011/12 Laurea triennale in Informatica Corso di Analisi Matematica Funzioni reali di variabile reale Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità
11) convenzioni sulla rappresentazione grafica delle soluzioni
2 PARAGRAFI TRATTATI 1)La funzione esponenziale 2) grafici della funzione esponenziale 3) proprietá delle potenze 4) i logaritmi 5) grafici della funzione logaritmica 6) principali proprietá dei logaritmi
Ripasso delle matematiche elementari: esercizi svolti
Ripasso delle matematiche elementari: esercizi svolti I Equazioni e disequazioni algebriche 3 Esercizi su equazioni e polinomi di secondo grado.............. 3 Esercizi sulle equazioni di grado superiore
Coordinate Cartesiane nel Piano
Coordinate Cartesiane nel Piano O = (0,0) origine degli assi ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi, y sistemi dimetrici: unità di misura diverse sui due assi (spesso
Capitolo 5. Funzioni. Grafici.
Capitolo 5 Funzioni. Grafici. Definizione: Una funzione f di una variabile reale,, è una corrispondenza che associa ad ogni numero reale appartenente ad un insieme D f R un unico numero reale, y R, denotato
Funzioni. Capitolo 6. 6.1 Concetto di funzione e definizioni preliminari
Capitolo 6 Funzioni 6. Concetto di funzione e definizioni preliminari Definizione 6. Dati due insiemi non vuoti D e C, si dice applicazione o funzione una qualsiasi legge (relazione) che associa ad ogni
Note di matematica per microeconomia
Note di matematica per microeconomia Luigi Balletta Funzioni di una variabile (richiami) Una funzione di variabile reale ha come insieme di partenza un sottoinsieme di R e come insieme di arrivo un sottoinsieme
Le funzioni elementari. La struttura di R. Sottrazione e divisione
Le funzioni elementari La struttura di R La struttura di R è definita dalle operazioni Addizione e moltiplicazione. Proprietà: Commutativa Associativa Distributiva dell addizione rispetto alla moltiplicazione
FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMICA
FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMICA DEFINIZIONE: Dato un numero reale a che sia a > 0 e a si definisce funzione esponenziale f(x) = a x la relazione che ad ogni valore di x associa uno e un solo
LE FUNZIONI A DUE VARIABILI
Capitolo I LE FUNZIONI A DUE VARIABILI In questo primo capitolo introduciamo alcune definizioni di base delle funzioni reali a due variabili reali. Nel seguito R denoterà l insieme dei numeri reali mentre
LEZIONE 7. Esercizio 7.1. Quale delle seguenti funzioni è decrescente in ( 3, 0) e ha derivata prima in 3 che vale 0? x 3 3 + x2. 2, x3 +2x +3.
7 LEZIONE 7 Esercizio 7.1. Quale delle seguenti funzioni è decrescente in ( 3, 0) e ha derivata prima in 3 che vale 0? x 3 3 + x2 2 6x, x3 +2x 2 6x, 3x + x2 2, x3 +2x +3. Le derivate sono rispettivamente,
Funzione Una relazione fra due insiemi A e B è una funzione se a ogni elemento di A si associa uno e un solo elemento
TERIA CAPITL 9. ESPNENZIALI E LGARITMI. LE FUNZINI Non si ha una funzione se anche a un solo elemento di A non è associato un elemento di B, oppure ne sono associati più di uno. DEFINIZINE Funzione Una
FUNZIONE REALE DI UNA VARIABILE
FUNZIONE REALE DI UNA VARIABILE Funzione: legge che ad ogni elemento di un insieme D (Dominio) tale che D R, fa corrispondere un elemento y R ( R = Codominio ). f : D R : f () = y ; La funzione f(): A
Matematica di base. Lezioni in Aula D5 ogni Venerdi alle 14:30 BLOG: matematicadibase.wordpress.com
Matematica di base Lezioni in Aula D5 ogni Venerdi alle 14:30 BLOG: matematicadibase.wordpress.com Calendario 21 Ottobre Aritmetica ed algebra elementare 28 Ottobre Geometria elementare 4 Novembre Insiemi
4 FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMO
4 FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMO 4.0. Esponenziale. Nella prima sezione abbiamo definito le potenze con esponente reale. Vediamo ora in dettaglio le proprietà della funzione esponenziale a,
MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni.
MATEMATICA. Sistemi lineari in due equazioni due incognite. Date due equazioni lineari nelle due incognite x, y come ad esempio { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un
Indicando con x i minuti di conversazione effettuati in un mese, con la spesa totale nel mese e con il costo medio al minuto:
PROBLEMA 1. Il piano tariffario proposto da un operatore telefonico prevede, per le telefonate all estero, un canone fisso di 10 euro al mese, più 10 centesimi per ogni minuto di conversazione. Indicando
Esercizi svolti sui numeri complessi
Francesco Daddi - ottobre 009 Esercizio 1 Risolvere l equazione z 1 + i = 1. Soluzione. Moltiplichiamo entrambi i membri per 1 + i in definitiva la soluzione è z 1 + i 1 + i = 1 1 + i z = 1 1 i. : z =
Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria).
Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria). Aprile 20 Indice Serie numeriche. Serie convergenti, divergenti, indeterminate.....................
1 Grafico di una funzione reale 1. 2 Funzioni elementari 2 2.1 Funzione potenza... 2 2.2 Funzione esponenziale... 3 2.3 Funzione logaritmica...
UNIVR Facoltà di Economia Sede di Vicenza Corso di Matematica Funzioni reali di variabile reale Indice Grafico di una funzione reale 2 Funzioni elementari 2 2. Funzione potenza................................................
FUNZIONI ELEMENTARI - ESERCIZI SVOLTI
FUNZIONI ELEMENTARI - ESERCIZI SVOLTI 1) Determinare il dominio delle seguenti funzioni di variabile reale: (a) f(x) = x 4 (c) f(x) = 4 x x + (b) f(x) = log( x + x) (d) f(x) = 1 4 x 5 x + 6 ) Data la funzione
FUNZIONI ESPONENZIALE E LOGARITMICA
FUNZIONI ESPONENZIALE E LOGARITMICA Le potenze con esponente reale La potenza a x di un numero reale a è definita se a>0 per ogni x R se a=0 per tutti e soli i numeri reali positivi ( x R + ) se a
Anno 5 4 Funzioni reali. elementari
Anno 5 4 Funzioni reali elementari 1 Introduzione In questa lezione studieremo alcune funzioni molto comuni, dette per questo funzioni elementari. Al termine di questa lezione sarai in grado di definire
Funzione reale di variabile reale
Funzione reale di variabile reale Siano A e B due sottoinsiemi non vuoti di. Si chiama funzione reale di variabile reale, di A in B, una qualsiasi legge che faccia corrispondere, a ogni elemento A x A
EQUAZIONI E DISEQUAZIONI LOGARITMICHE Esercizi risolti Classi quarte
EQUAZIONI E DISEQUAZIONI LOGARITMICHE Esercizi risolti Classi quarte La presente dispensa riporta la risoluzione di alcuni esercizi inerenti equazioni e disequazioni logaritmiche. N.B. In questa dispensa,
Anno 4 Grafico di funzione
Anno 4 Grafico di funzione Introduzione In questa lezione impareremo a disegnare il grafico di una funzione reale. Per fare ciò è necessario studiare alcune caratteristiche salienti della funzione che
Basi di matematica per il corso di micro
Basi di matematica per il corso di micro Microeconomia (anno accademico 2006-2007) Lezione del 21 Marzo 2007 Marianna Belloc 1 Le funzioni 1.1 Definizione Una funzione è una regola che descrive una relazione
ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 2004
ESAME DI STATO DI LICEO SCIENTIFICO CORSO DI ORDINAMENTO 004 Il candidato risolva uno dei due problemi e 5 dei 10 quesiti in cui si articola il questionario. PROBLEMA 1 Sia f la funzione definita da: f
Diagrammi di Bode. I Diagrammi di Bode sono due: 1) il diagramma delle ampiezze rappresenta α = ln G(jω) in funzione
0.0. 3.2 Diagrammi di Bode Possibili rappresentazioni grafiche della funzione di risposta armonica F (ω) = G(jω) sono: i Diagrammi di Bode, i Diagrammi di Nyquist e i Diagrammi di Nichols. I Diagrammi
DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia
DERIVATE DELLE FUNZIONI esercizi proposti dal Prof. Gianluigi Trivia Incremento della variabile indipendente e della funzione. Se, sono due valori della variabile indipendente, y f ) e y f ) le corrispondenti
4. Funzioni elementari
ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 4. Funzioni elementari A. A. 2014-2015 L.Doretti 1 Funzioni elementari Sono dette elementari un insieme di funzioni dalle quali si ottengono, mediante
Corrispondenze e funzioni
Corrispondenze e funzioni L attività fondamentale della mente umana consiste nello stabilire corrispondenze e relazioni tra oggetti; è anche per questo motivo che il concetto di corrispondenza è uno dei
Esponenziali e logaritmi
Istituto d Istruzione Superiore A Tilgher Ercolano (Na) Prof Amendola Alfonso Premessa Esponenziali e logaritmi Questa breve trattazione non vuole costituire una guida completa ed esauriente sull argomento,
Appunti sulle disequazioni
Premessa Istituto d Istruzione Superiore A. Tilgher Ercolano (Na) Appunti sulle disequazioni Questa breve trattazione non vuole costituire una guida completa ed esauriente sull argomento, ma vuole fornire
4 Dispense di Matematica per il biennio dell Istituto I.S.I.S. Gaetano Filangieri di Frattamaggiore EQUAZIONI FRATTE E SISTEMI DI EQUAZIONI
119 4 Dispense di Matematica per il biennio dell Istituto I.S.I.S. Gaetano Filangieri di Frattamaggiore EQUAZIONI FRATTE E SISTEMI DI EQUAZIONI Indice degli Argomenti: TEMA N. 1 : INSIEMI NUMERICI E CALCOLO
Scale Logaritmiche SCALA LOGARITMICA:
Scale Logaritmiche SCALA LOGARITMICA: sull asse prescelto (ad es. asse x) si rappresenta il punto di ascissa 1 = 10 0 nella direzione positiva si rappresentano, a distanze uguali fra di loro, i punti di
Elementi di topologia della retta
Elementi di topologia della retta nome insieme definizione l insieme è un concetto primitivo che si accetta come intuitivamente noto secondo George Cantor, il padre della teoria degli insiemi: Per insieme
1.2 Funzioni, dominio, codominio, invertibilità elementare, alcune identità trigonometriche
. Funzioni, dominio, codominio, invertibilità elementare, alcune identità trigonometriche Per le definizioni e teoremi si fa riferimento ad uno qualsiasi dei libri M.Bertsch - R.Dal Passo Lezioni di Analisi
Corso di Analisi Matematica. Successioni e serie numeriche
a.a. 2011/12 Laurea triennale in Informatica Corso di Analisi Matematica Successioni e serie numeriche Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità
( x) ( x) 0. Equazioni irrazionali
Equazioni irrazionali Definizione: si definisce equazione irrazionale un equazione in cui compaiono uno o più radicali contenenti l incognita. Esempio 7 Ricordiamo quanto visto sulle condizioni di esistenza
ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA
ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA Francesco Bottacin Padova, 24 febbraio 2012 Capitolo 1 Algebra Lineare 1.1 Spazi e sottospazi vettoriali Esercizio 1.1. Sia U il sottospazio di R 4 generato dai
+... + a n. a 0 x n + a 1 x n 1. b 0 x m + b 1 x m 1. +... + b m 0. Funzioni reali di variabile reale. Definizione classica. Funzioni razionali
Funzioni reali di variabile reale Una reale di variabile reale è una funzione nella quale il dominio d è un sottoinsieme di r e il condominio c è anch esso un sottoinsieme di r. F:r r Definizione classica.
Parte 2. Determinante e matrice inversa
Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice
Funzioni e loro invertibilità
Funzioni e loro invertibilità Una proposta didattica di Ettore Limoli Definizione di funzione Sono dati due insiemi non vuoti A (dominio) e B (codominio) Diremo che y=f(x) è una funzione, definita in A
Teoria in sintesi 10. Attività di sportello 1, 24 - Attività di sportello 2, 24 - Verifica conclusiva, 25. Teoria in sintesi 26
Indice L attività di recupero 6 Funzioni Teoria in sintesi 0 Obiettivo Ricerca del dominio e del codominio di funzioni note Obiettivo Ricerca del dominio di funzioni algebriche; scrittura del dominio Obiettivo
TEMATICA 1 - FUNZIONI ED EQUAZIONI
Docente Materia Classe Cristina Frescura Matematica 4B Programmazione Preventiva Anno Scolastico 2012-2013 Data 28 novembre 2012 Obiettivi Cognitivi Nota bene: gli obiettivi minimi sono sottolineati U.D.
Funzioni trascendenti
Funzioni trascendenti Lucia Perissinotto I.T.I.S. V.Volterra San Donà di Piave Beatrice Hitthaler I.T.I.S. V.Volterra San Donà di Piave 17 novembre 007 Sommario Esponiamo la teoria fondamentale delle funzioni
Studio di funzioni ( )
Studio di funzioni Effettuare uno studio qualitativo e tracciare un grafico approssimativo delle seguenti funzioni. Si studi in particolare anche la concavità delle funzioni e si indichino esplicitamente
STUDIO DI UNA FUNZIONE
STUDIO DI UNA FUNZIONE OBIETTIVO: Data l equazione Y = f(x) di una funzione a variabili reali (X R e Y R), studiare l andamento del suo grafico. PROCEDIMENTO 1. STUDIO DEL DOMINIO (CAMPO DI ESISTENZA)
0 < a < 1 a > 1. In entrambi i casi la funzione y = log a (x) si può studiare per punti e constatare che essa presenta i seguenti andamenti y
INTRODUZIONE Osserviamo, in primo luogo, che le funzioni logaritmiche sono della forma y = log a () con a costante positiva diversa da (il caso a = è banale per cui non sarà oggetto del nostro studio).
1. Distribuzioni campionarie
Università degli Studi di Basilicata Facoltà di Economia Corso di Laurea in Economia Aziendale - a.a. 2012/2013 lezioni di statistica del 3 e 6 giugno 2013 - di Massimo Cristallo - 1. Distribuzioni campionarie
Studio grafico-analitico delle funzioni reali a variabile reale
Studio grafico-analitico delle funzioni reali a variabile reale Sequenza dei passi Classificazione In pratica Classifica il tipo di funzione: Funzione razionale: intera / fratta Funzione irrazionale: intera
Funzioni esponenziali e logaritmiche. Mauro Saita. e-mail maurosaita@tiscalinet.it Versione provvisoria. Febbraio 2014
Funzioni esponenziali e logaritmiche. Mauro Saita. e-mail maurosaita@tiscalinet.it Versione provvisoria. Febbraio 2014 Indice 1 Esponenziali 1 1.1 Funzioni esponenziali con dominio Z.......................
Esercizi di Analisi Matematica I
Esercizi di Analisi Matematica I Andrea Corli e Alessia Ascanelli gennaio 9 Indice Introduzione iii Nozioni preliminari. Fattoriali e binomiali..................................... Progressioni..........................................
Numeri Complessi. 4. Ricordando che, se z è un numero complesso, zz è un numero reale, mettere sotto la forma. z 2 + 2z + 2 = 0. z 2 + 2z + 6 = 0.
Numeri Complessi. Siano z = + i e z 2 = i. Calcolare z + z 2, z z 2, z z 2 e z z 2. 2. Siano z = 2 5 + i 2 e z 2 = 5 2 2i. Calcolare z + z 2, z z 2, z z 2 e z z 2. 3. Ricordando che, se z è un numero complesso,
Master della filiera cereagricola. Impresa e mercati. Facoltà di Agraria Università di Teramo. Giovanni Di Bartolomeo Stefano Papa
Master della filiera cereagricola Giovanni Di Bartolomeo Stefano Papa Facoltà di Agraria Università di Teramo Impresa e mercati Parte prima L impresa L impresa e il suo problema economico L economia studia
ESERCITAZIONE: ESPONENZIALI E LOGARITMI
ESERCITAZIONE: ESPONENZIALI E LOGARITMI e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Esercizio 1 In una coltura batterica, il numero di batteri triplica ogni ora. Se all inizio dell osservazione
Limiti e continuità delle funzioni reali a variabile reale
Limiti e continuità delle funzioni reali a variabile reale Roberto Boggiani Versione 4.0 9 dicembre 2003 1 Esempi che inducono al concetto di ite Per introdurre il concetto di ite consideriamo i seguenti
Logaritmi ed esponenziali
Logaritmi ed esponenziali definizioni, proprietà ITIS Feltrinelli anno scolastico 2007-2008 A cosa servono i logaritmi I logaritmi rendono possibile trasformare prodotti in somme, quozienti in differenze,
x ( 3) + Inoltre (essendo il grado del numeratore maggiore del grado del denominatore, d ancora dallo studio del segno),
6 - Grafici di funzioni Soluzioni Esercizio. Studiare il grafico della funzione f(x) = x x + 3. ) La funzione è definita per x 3. ) La funzione non è né pari, né dispari, né periodica. 3) La funzione è
09 - Funzioni reali di due variabili reali
Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 09 - Funzioni reali di due variabili reali Anno Accademico 2013/2014
Cos è una funzione? (x,y) Є f o y=f(x)
Cos è una funzione? Dati gli insiemi X e Y non vuoti, si chiama funzione da in una relazione f tale che per ogni x Є X esiste uno ed un solo elemento y Є Y tale che (x,y) Є f. Data la funzione f:x->r,
SULLE FUNZIONI REALI DI VARIABILE REALE E LORO GRAFICI
SULLE FUNZIONI REALI DI VARIABILE REALE E LORO GRAFICI.Definizioni e insieme di definizione. Una funzione o applicazione f è una legge che ad ogni elemento di un insieme D ( dominio )fa corrispondere un
Università degli studi di Brescia Facoltà di Medicina e Chirurgia Corso di Laurea in Infermieristica. Corso propedeutico di Matematica e Informatica
Università degli studi di Brescia Facoltà di Medicina e Chirurgia Corso di Laurea in Infermieristica a.a. 2006/2007 Docente Ing. Andrea Ghedi Lezione 2 IL PIANO CARTESIANO 1 Il piano cartesiano In un piano
Esponenziali e logaritmi
Esponenziali e logaritmi Corso di accompagnamento in matematica Lezione 4 Sommario 1 La funzione esponenziale Proprietà Grafico 2 La funzione logaritmo Grafico Proprietà 3 Equazioni / disequazioni esponenziali
Studio di una funzione ad una variabile
Studio di una funzione ad una variabile Lo studio di una funzione ad una variabile ha come scopo ultimo quello di pervenire a un grafico della funzione assegnata. Questo grafico non dovrà essere preciso
Svolgimento di alcuni esercizi del libro Matematica di Angelo Guerraggio
Svolgimento di alcuni esercizi del libro Matematica di Angelo Guerraggio. Funzioni e insiemi numerici.4 Verificare che (A B) (A B) = (A A ) B. ) Sia (a, b) (A B) (A B). Allora a (A A ) e b B, da cui (a,
Grafico qualitativo di una funzione reale di variabile reale
Grafico qualitativo di una funzione reale di variabile reale Mauro Saita 1 Per commenti o segnalazioni di errori scrivere, per favore, a: maurosaita@tiscalinet.it Dicembre 2014 Indice 1 Qualè il grafico
b) Il luogo degli estremanti in forma cartesiana è:
Soluzione della simulazione di prova del 9/5/ PROBLEMA È data la funzione di equazione: k f( ). a) Determinare i valori di k per cui la funzione ammette punti di massimo e minimo relativi. b) Scrivere
Guida pratica per la prova scritta di matematica della maturità scientifica
Giulio Donato Broccoli Guida pratica per la prova scritta di matematica della maturità scientifica Comprende: Metodi matematici fondamentali per affrontare i temi assegnati Esercizi interamente svolti
Definisci il Campo di Esistenza ( Dominio) di una funzione reale di variabile reale e, quindi, determinalo per la funzione:
Verso l'esame di Stato Definisci il Campo di Esistenza ( Dominio) di una funzione reale di variabile reale e, quindi, determinalo per la funzione: y ln 5 6 7 8 9 0 Rappresenta il campo di esistenza determinato
Le equazioni. Diapositive riassemblate e rielaborate da prof. Antonio Manca da materiali offerti dalla rete.
Le equazioni Diapositive riassemblate e rielaborate da prof. Antonio Manca da materiali offerti dalla rete. Definizione e caratteristiche Chiamiamo equazione l uguaglianza tra due espressioni algebriche,
G3. Asintoti e continuità
G3 Asintoti e continuità Un asintoto è una retta a cui la funzione si avvicina sempre di più senza mai toccarla Non è la definizione formale, ma sicuramente serve per capire il concetto di asintoto Nei
4. Funzioni elementari algebriche
ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 4. Funzioni elementari algebriche A. A. 2013-2014 1 Funzioni elementari Sono dette elementari un insieme di funzioni dalle quali si ottengono, mediante
Se log a. b = c allora: A) a b = c B) c a = b C) c b = a D) b c = a E) a c = b. L espressione y = log b x significa che:
MATEMATICA 2005 Se log a b = c allora: A) a b = c B) c a = b C) c b = a D) b c = a E) a c = b L espressione y = log b x significa che: A) y é l esponente di una potenza di base b e di valore x B) x è l
CURRICOLO MATEMATICA ABILITA COMPETENZE
CURRICOLO MATEMATICA 1) Operare con i numeri nel calcolo aritmetico e algebrico, scritto e mentale, anche con riferimento a contesti reali. Per riconoscere e risolvere problemi di vario genere, individuando
Il valore assoluto. F. Battelli Università Politecnica delle Marche, Ancona. Pesaro, Precorso di Analisi 1, 22-28 Settembre 2005 p.
Il valore assoluto F Battelli Università Politecnica delle Marche Ancona Pesaro Precorso di Analisi 1 22-28 Settembre 2005 p1/23 Il valore assoluto Si definisce il valore assoluto di un numero reale l
Marco Tolotti - Corso di Esercitazioni di Matematica 12 Cfu - A.A. 2010/2011 1
Marco Tolotti - Corso di Esercitazioni di Matematica 1 Cfu - A.A. 010/011 1 Esercitazione 1: 4/09/010 1. Determinare il dominio delle seguenti funzioni: log a) f() = 5 ( 1). b) g() = log 3 (3 6) log 13.
Potenze, esponenziali e logaritmi 1 / 34
Potenze, esponenziali e logaritmi / 34 Grafico della funzione x 2 e x 2 / 34 y f(x)=x 2 y=x f (x)= x x Le funzioni potenza 3 / 34 Più in generale, si può considerare, per n N, n>0, n pari, la funzione
Competenza chiave europea: MATEMATICA. Scuola Primaria. DISCIPLINE DI RIFERIMENTO: MATEMATICA DISCIPLINE CONCORRENTI: tutte
Competenza chiave europea: MATEMATICA Scuola Primaria DISCIPLINE DI RIFERIMENTO: MATEMATICA DISCIPLINE CONCORRENTI: tutte TAB. A TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE al termine della Scuola Primaria
modulo A1.1 modulo A1.2 livello A1 modulo A2.1 modulo A2.2 matematica livello A2 livello A3
livello A1 modulo A1.1 modulo A1.2 matematica livello A2 modulo A2.1 modulo A2.2 livello A insiemi e appartenenza interpretazione grafica nel piano traslazioni proprietà commutatività associatività elemento
Le funzioni elementari. Corsi di Laurea in Tecniche di Radiologia... A.A. 2010-2011 - Analisi Matematica - Le funzioni elementari - p.
Le funzioni elementari Corsi di Laurea in Tecniche di Radiologia... A.A. 200-20 - Analisi Matematica - Le funzioni elementari - p. /43 Funzioni lineari e affini Potenze ad esponente naturale Confronto
Numeri Complessi. 4. Ricordando che, se z è un numero complesso, zz è un numero reale, mettere sotto la forma. z 2 + 2z + 2 = 0. z 2 + 2z + 6 = 0.
Numeri Complessi. Siano z = + i e z 2 = i. Calcolare z + z 2, z z 2, z z 2 e z z 2. 2. Siano z = 2 5 + i 2 e z 2 = 5 2 2i. Calcolare z + z 2, z z 2, z z 2 e z z 2. 3. Ricordando che, se z è un numero complesso,
CONTINUITÀ E DERIVABILITÀ Esercizi proposti. 1. Determinare lim M(sinx) (M(t) denota la mantissa di t)
CONTINUITÀ E DERIVABILITÀ Esercizi proposti 1. Determinare lim M(sin) (M(t) denota la mantissa di t) kπ/ al variare di k in Z. Ove tale limite non esista, discutere l esistenza dei limiti laterali. Identificare
RDefinizione (Funzione) . y. . x CAPITOLO 2
CAPITOLO 2 Funzioni reali di variabile reale Nel capitolo precedente è stata introdotta la nozione generale di funzione f : A B, con A e B insiemi arbitrari. Nel presente capitolo si analizzeranno più
In laboratorio si useranno fogli di carta millimetrata con scale lineari oppure logaritmiche.
GRAFICI Servono per dare immediatamente e completamente le informazioni, che riguardano l andamento di una variabile in funzione dell altra. La Geometria Analitica c insegna che c è una corrispondenza
Esercizi di Analisi Matematica
Esercizi di Analisi Matematica CAPITOLO 1 LE FUNZIONI Exercise 1.0.1. Risolvere le seguenti disuguaglianze: (1) x 1 < 3 () x + 1 > (3) x + 1 < 1 (4) x 1 < x + 1 x 1 < 3 x + 1 < 3 x < 4 Caso: (a): x 1
I Numeri Complessi. Si verifica facilmente che, per l operazione di somma in definita dalla (1), valgono le seguenti
Y T T I Numeri Complessi Operazioni di somma e prodotto su Consideriamo, insieme delle coppie ordinate di numeri reali, per cui si ha!"# $&% '( e )("+* Introduciamo in tale insieme una operazione di somma,/0"#123045"#
Applicazioni del calcolo differenziale allo studio delle funzioni
Capitolo 9 9.1 Crescenza e decrescenza in piccolo; massimi e minimi relativi Sia y = f(x) una funzione definita nell intervallo A; su di essa non facciamo, per ora, alcuna particolare ipotesi (né di continuità,
0. Piano cartesiano 1
0. Piano cartesiano Per piano cartesiano si intende un piano dotato di due assi (che per ragioni pratiche possiamo scegliere ortogonali). Il punto in comune ai due assi è detto origine, e funziona da origine
AREA MATEMATICO-SCIENTIFICO-TECNOLOGICA MATEMATICA
AREA MATEMATICO-SCIENTIFICO-TECNOLOGICA MATEMATICA TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE AL TERMINE DELLA SCUOLA SECONDARIA DI PRIMO GRADO. L alunno ha rafforzato un atteggiamento positivo rispetto
a) Il campo di esistenza di f(x) è dato da 2x 0, ovvero x 0. Il grafico di f(x) è quello di una iperbole -1 1
LE FUNZIONI EALI DI VAIABILE EALE Soluzioni di quesiti e problemi estratti dal Corso Base Blu di Matematica volume 5 Q[] Sono date le due funzioni: ) = e g() = - se - se = - Determina il campo di esistenza
Funzioni inverse Simmetrie rispetto alla bisettrice dei quadranti dispari. Consideriamo la trasformazione descritta dalle equazioni : = y
Funzioni inverse Simmetrie rispetto alla bisettrice dei quadranti dispari. Consideriamo la trasformazione descritta dalle equazioni : ' = y y' = Consideriamo il punto P(,5) se eseguiamo tra trasformazione
a. 10 4 b. 10-15 c. 10 25 d. 10-4 a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori a. 10-5 b. 10 +5 c. 10 +15 d.
1) Il valore di 5 10 20 è: a. 10 4 b. 10-15 c. 10 25 d. 10-4 2) Il valore del rapporto (2,8 10-4 ) / (6,4 10 2 ) è: a. 4,375 10-7 b. 3,625 10-6 c. 4,375 10 2 d. nessuno dei precedenti valori 3) La quantità
B9. Equazioni di grado superiore al secondo
B9. Equazioni di grado superiore al secondo Le equazioni di terzo grado hanno una, due o tre soluzioni, risolvibili algebricamente con formule molto più complesse di quelle dell equazione di secondo grado.
I tre concetti si possono descrivere in modo unitario dicendo che f e iniettiva, suriettiva, biiettiva se e solo se per ogni b B l equazione
Lezioni del 29 settembre e 1 ottobre. 1. Funzioni iniettive, suriettive, biiettive. Sia f : A B una funzione da un insieme A ad un insieme B. Sia a A e sia b = f (a) B l elemento che f associa ad a, allora
Anno 5 4. Funzioni reali: il dominio
Anno 5 4 Funzioni reali: il dominio 1 Introduzione In questa lezione impareremo a definire cos è una funzione reale di variabile reale e a ricercarne il dominio. Al termine di questa lezione sarai in grado
Geometria analitica di base (prima parte)
SAPERE Al termine di questo capitolo, avrai appreso: come fissare un sistema di riferimento cartesiano ortogonale il significato di equazione di una retta il significato di coefficiente angolare di una