Parte Seconda. Prova di selezione culturale

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Parte Seconda. Prova di selezione culturale"

Transcript

1 Parte Seconda Prova di selezione culturale

2

3 TEORIA DEGLI INSIEMI MATEMATICA ARITMETICA Insieme = gruppo di elementi di cui si può stabilire inequivocabilmente almeno una caratteristica in comune. Esempi: le vocali dell alfabeto italiano costituiscono un insieme; i libri più interessanti della biblioteca non costituiscono un insieme, perché non lo si può stabilire con certezza un insieme si indica con la lettera maiuscola gli elementi dell insieme con la lettera minuscola Simboli relativi agli insiemi A = B (uguaglianza): gli insiemi A e B sono uguali A = { a, b, c, d, e } b A (appartenenza): l elemento b appartiene all insieme A b A (non appartenenza): l elemento b non appartiene all insieme A A = : l insieme A è vuoto CORRISPONDENZE TRA INSIEMI A B : l insieme A è un sottoinsieme di B ciò vuol dire che ogni elemento di A appartiene anche a B, ma non viceversa; es. A è l insieme delle città della Lombardia, B l insieme delle città italiane C = A B (intersezione): l insieme C è costituito dagli elementi in comune tra A e B C = A B (somma): l insieme C è costituito dalla somma degli insiemi A e B Gli elementi di due differenti insiemi possono essere in relazione tra loro. Questa relazione si chiama corrispondenza. Es. l insieme A degli abbonati telefonici e l insieme B dei numeri telefonici: a ogni abbonato è abbinato un numero; perciò si dice che A e B sono in corrispondenza. Tipi di corrispondenze Univoca Si ha quando a ogni elemento del primo insieme corrisponde un solo elemento del secondo, ma non viceversa (a un elemento del secondo insieme possono corrispondere anche più elementi del primo). Biunivoca Si ha quando a ogni elemento del primo insieme corrisponde un solo elemento del secondo insieme e viceversa.

4 40 I NUMERI Parte Seconda - Prova di selezione culturale I numeri sono classificati in insiemi, quindi, indicati ognuno con una lettera maiuscola. Ogni insieme di numeri ha le sue operazioni (addizione, sottrazione etc.) che possono essere di 2 tipi: operazione interna Si ha quando il risultato dell operazione è un numero che appartiene allo stesso insieme di partenza. Es. la somma di due numeri naturali è sempre un numero naturale: = 7 operazione non interna Si ha quando il risultato dell operazione non è sempre un numero che appartiene allo stesso insieme. Es. la sottrazione di due numeri naturali: 4 3 = 1 (dà un numero naturale), ma 3 4 = 1 (dà un numero relativo) Insiemi numerici Numeri Naturali (N) Numeri interi positivi, compreso lo zero (0, 1, 2, 3, 4, 5 etc.) operazioni interne: addizione, moltiplicazione Numeri Relativi (Z) Sono i numeri positivi (Z + ) e negativi (Z - ) 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5 etc. operazioni interne: addizione, sottrazione, moltiplicazione, divisione Numeri Razionali (Q) Possono essere indicati o come frazione,, o come parte intera + parte decimale (1,5; 0,7; 4,8) operazioni interne: addizione, sottrazione, moltiplicazione, divisione Numeri Irrazionali (J) Non possono essere trasformati in un numero razionale. Es. 2 (dà un valore dalla cifra decimale infinita: 1, ) Numeri Reali (R) Sono l unione tra Q e J. Quindi R = Q J Come si vede, gli insiemi numerici sono in relazione fra loro. Es. N è un sottoinsieme di Z(N Z); Z è a sua volta un sottoinsieme di Q(Z Q); tutti sono un sottoinsieme di R. addizione LE OPERAZIONI CON I NUMERI NATURALI (N) Interna si Descrizione produce la somma fra due numeri chiamati addendi Proprietà proprietà commutativa una somma non cambia se si cambia l ordine degli addendi es = Segue

5 Matematica - Aritmetica 41 sottrazione moltiplicazione divisione no si no produce la differenza tra due numeri il primo dei quali si chiama minuendo e il secondo sottraendo calcola il prodotto tra due numeri detti fattori; il prodotto è la somma di tanti addendi uguali al primo quante sono le unità del secondo es. 2 3 = calcola il quoziente tra due numeri detti il primo dividendo e il secondo divisore; il quoziente è il numero che moltiplicato per il divisore dà come prodotto il dividendo proprietà associativa: la somma di più addendi non cambia, se a due o più di essi si sostituisce la loro somma es. (4 + 7) + 1 = 4 + (7 + 1) proprietà invariantiva: aggiungendo o togliendo uno stesso numero sia al minuendo che al sottraendo, la differenza non cambia es. 5 3 = (5 + 2) (3 + 2) proprietà commutativa: il prodotto non cambia se si inverte l ordine dei fattori es. 2 3 = 3 2 proprietà associativa: il prodotto di più fattori non cambia, se a due o più di essi si sostituisce il loro prodotto es. (4 7) 2 = 4 (7 2) proprietà distributiva: per moltiplicare una somma per un numero, si possono moltiplicare per quel numero i singoli addendi e sommare i prodotti ottenuti es. ( ) 7 = (3 7) + (5 7) + (2 7) proprietà distributiva rispetto all addizione: per dividere una somma per un numero, si può anche dividere per quel numero i singoli addendi e sommare i quozienti es. (4 + 8) : 2 = (4 : 2) + (8 : 2) proprietà distributiva rispetto alla moltiplicazione: per dividere un prodotto per un numero si può dividere uno solo dei fattori per quel numero e moltiplicare il quoziente per gli altri fattori es. (5 2 6) : 3 = 5 2 (6 : 3) proprietà invariantiva: il quoziente di due numeri non cambia se si moltiplica o si divide per uno stesso numero ciascuno di essi es. 4 : 2 = (4 3) : (2 3) Osservazioni moltiplicando un numero per 1 si ottiene lo stesso numero: 3 1 = 3 moltiplicando un numero per 0 si ottiene 0 : 3 0 = 0 nella divisione, quando non esiste un quoziente appartenente ai numeri naturali, si produce il quoziente approssimato più il resto; es. 52 : 10 = 50 (quoziente appr.) + 2 (resto) nelle espressioni con più operazioni, ove non indicato dalle parentesi, si effettuano prima le moltiplicazioni e le divisioni: : 2 = (4 5) + (6 : 2) = = 23

6 42 LE POTENZE Potenza di un numero = prodotto di più fattori uguali a quel numero il 4 si chiama base 4 2 = 4 4 = 16 il 16 è la potenza il 2 si chiama esponente l operazione si chiama elevazione a potenza Parte Seconda - Prova di selezione culturale L esponente indica quante volte la base deve essere moltiplicata per se stessa per ottenere la potenza. Nota Le potenze con esponente 2 si chiamano elevazione al quadrato ; perciò 3 2 si legge tre al quadrato Le potenze con esponente 3 si chiamano elevazione al cubo ; perciò 4 3 si legge quattro al cubo In tutti gli altri casi si usa il numero cardinale relativo: 2 5 = due alla quinta, 3 4 = tre alla quarta etc. Qualunque potenza con esponente 1 è uguale alla base: 7 1 = 7, 8 1 = 8 etc. Qualunque potenza con esponente 0 è uguale a 1: 3 0 = 1, 4 0 = 1 etc. Le potenze con base 10 sono semplici da calcolare: corrispondono a una cifra con tanti zeri quanti indica l esponente es = 100, 10 6 = etc. Operazioni con le potenze il prodotto di due o più potenze aventi la medesima base è uguale a un al tra potenza della stessa base che ha per esponente la somma degli esponenti. Es = = 2 5 il quoziente di due potenze aventi la medesima base è uguale a un altra potenza della stessa base che ha per esponente la differenza degli esponenti. Es. 2 5 : 2 3 = = 2 2 la potenza di una potenza è un altra potenza della stessa base che ha per esponente il prodotto degli esponenti. es. (2 3 ) 2 = = 2 6 per elevare a potenza un prodotto di più fattori basta elevare a potenza i singoli fattori. Es. (3 2) 2 = per elevare a potenza un quoziente basta elevare a quella potenza il dividendo ed il divisore. Es. (12 : 4) 2 = 12 2 : 4 2 LA RADICE QUADRATA E LA RADICE CUBICA Estrazione della radice quadrata = operazione inversa dell elevazione al quadrato quindi 4 = 2 perché 2 2 = 4. Il 4 all interno della radice si dice radicando ed il 2 si dice radice quadrata.

7 Matematica - Aritmetica 43 Estrazione della radice cubica = operazione inversa dell elevazione al cubo 3 quindi 9 = 3 perché 3 3 = 9. Il 9 all interno della radice si dice radicando ed il 3 si dice radice cubica Nota L estrazione della radice non è sempre possibile nell insieme dei numeri naturali; vale a dire che è un operazione non interna all insieme N. È possibile soltanto con numeri che vengono rispettivamente chiamati: quadrati perfetti: numeri N la cui radice quadrata è a sua volta un numero N cubi perfetti: numeri N la cui radice cubica è a sua volta un numero N Nella seguente tabella, come esempio, riportiamo i primi quindici numeri naturali con i rispettivi quadrati e cubi. La seconda e la terza colonna contengono perciò i primi quadrati perfetti e cubi perfetti. LA DIVISIBILITÀ n n 2 n Come detto, la divisione non è sempre possibile nell insieme N. Per capire quando è possibile bisogna partire dal concetto di multiplo. Multiplo: un numero è multiplo di un altro se è il prodotto di questo numero per un terzo. Es. 52 è multiplo di 26 perché 52 = 26 2 quindi: la divisione tra due numeri N è possibile solo se il dividendo è multiplo del divisore Es. è possibile perché è un multiplo di (infatti ) Esistono alcuni metodi per calcolare rapidamente se un numero è divisibile per un altro

8 44 Criteri di divisibilità I NUMERI PRIMI sono divisibili per 2: tutti i numeri pari Parte Seconda - Prova di selezione culturale sono divisibili per 3: tutti i numeri la somma delle cui cifre dà un multiplo di 3 es. 861 è divisibile per 3 perché = 15 che è un multiplo di 3 sono divisibili per 4: tutti i numeri le cui ultime due cifre sono 0 o un multiplo di 4 es. 100 è divisibile per 4 perché le ultime due cifre sono 00 ; 112 è divisibile anch esso per 4 perché le ultime due cifre sono 12, un multiplo di 4 sono divisibili per 5: tutti i numeri che terminano con la cifra 0 o 5. es. lo sono 10, 25, 140, 155 etc. sono divisibili per 9: tutti i numeri la somma delle cui cifre dà un multiplo di 9 es è divisibile per 9 perché = 18 che è un multiplo di 9 sono divisibili per 10: tutti i numeri che terminano con uno o più 0 es. 10, 20, 300, etc. sono divisibili per 11: si esegue la seguente operazione si sommano le cifre di posto pari si sommano le cifre di posto dispari si fa la sottrazione fra il maggiore e il minore dei numeri ottenuti se il risultato è un multiplo di 11, il numero di partenza è divisibile es è divisibile per 11 perché (6+8+8) (0 + 0) = 22 0 = 22, che è multiplo di 11 sono divisibili per 25: tutti i numeri le cui ultime due cifre sono 00 o un numero divisibile per 25 es. 50, 125, 150, 175 etc. Numero primo: numero che può essere diviso soltanto per se stesso o per 1 es. 1, 7, 23 etc. I numeri primi sono infiniti e si desumono da una speciale tabella. Di seguito riportiamo soltanto i primi quindici fra essi. Numeri Primi etc.

9 Matematica - Aritmetica 45 Ne consegue che l insieme N può essere diviso in 2 sottoinsiemi: Sottoinsiemi dell insieme N Numeri primi possono essere divisi soltanto per sé o per 1 Numeri composti sono il risultato della moltiplicazione fra più numeri primi es. (6 è un numero composto perché 6 = 3 2) Ogni numero composto può perciò essere scomposto in fattori primi. SCOMPOSIZIONE DI UN NUMERO IN FATTORI PRIMI Si effettua dividendo il numero per il più piccolo numero primo che sia suo divisore ed effettuando la stessa operazione al risultato finché non si ottiene 1. La scomposizione sarà il prodotto di tutti i numeri primi adoperati come divisori. Es. scomponiamo è multiplo di 3 perché = 18; quindi 855 : 3 = è multiplo di 3 perché = 18; quindi 285 : 3 = è multiplo di 5 quindi 95 : 5 = è un numero primo quindi può essere diviso solo per se stesso: 19 : 19 = 1 Per ottenere 1 abbiamo usato i divisori 3, 3, 5 e 19; quindi diremo che la scomposizione in fattori primi di 855 è: MASSIMO COMUNE DIVISORE (M.C.D.) Il massimo comune divisore fra due numeri N è il maggiore tra i divisori che i due numeri hanno in comune. Es. consideriamo gli insiemi dei divisori di 24 e 40: D 24 = {1, 2, 3, 4, 6, 8, 12, 24} D 40 = {1, 2, 4, 5, 8, 10, 20, 40} I due numeri hanno in comune i divisori 1, 2, 4, 8. Perciò 8 è il M.C.D. Per calcolare il M.C.D. si utilizza la scomposizione in fattori primi: Calcolo del Massimo Comune Divisore il M.C.D. di due o più numeri si trova scomponendo i numeri in fattori primi e moltiplicando fra loro i fattori comuni, presi una sola volta con il minimo esponente con cui compaiono nella scomposizione

10 46 Es. troviamo il M.C.D. tra 840 e 900. Parte Seconda - Prova di selezione culturale Scomponiamo i numeri in fattori primi e otteniamo che: 840 = = Adesso moltiplichiamo fra loro i fattori primi che hanno in comune col minimo esponente, quindi è perciò il M.C.D. MINIMO COMUNE MULTIPLO (m.c.m.) Il minimo comune multiplo fra due o più numeri è il più piccolo fra i multipli che tali numeri hanno in comune. Es. consideriamo gli insiemi dei multipli di 4 e 10: M 4 = {4, 8, 12, 16, 20, 24, 28, etc.} D 40 = {10, 20, 30, 40, 50, 60, etc.} Come si vede, il primo multiplo in comune che troviamo è 20. Perciò 20 è il minimo comune multiplo o m.c.m. Per calcolare il m.c.m. si utilizza la scomposizione in fattori primi: Calcolo del minimo comune multiplo Es. troviamo il m.c.m. tra 504 e il m.c.m. di due o più numeri si trova scomponendo i numeri in fattori primi e moltiplicando fra loro i fattori comuni e non comuni, presi una sola volta con il massimo esponente con cui compaiono nella scomposizione Scomponiamo i numeri in fattori primi e otteniamo che: 504 = = Adesso moltiplichiamo fra loro tutti i fattori primi col massimo esponente, quindi = è perciò il m.c.m. Questo vale per i numeri più grandi. Per quelli più piccoli esistono alcuni metodi per un calcolo rapido. Calcolo rapido del m.c.m. Se due numeri sono primi, il m.c.m. è il loro prodotto quindi il m.c.m. tra 8 e 15 è 8 15 = 120 Dati due o più numeri, se il maggiore di loro è multiplo di tutti gli altri, è il m.c.m. quindi il m.c.m. tra 2, 5, 30 è 30

Moltiplicazione. Divisione. Multipli e divisori

Moltiplicazione. Divisione. Multipli e divisori Addizione Sottrazione Potenze Moltiplicazione Divisione Multipli e divisori LE QUATTRO OPERAZIONI Una operazione aritmetica è quel procedimento che fa corrispondere ad una coppia ordinata di numeri (termini

Dettagli

Richiami di aritmetica (1)

Richiami di aritmetica (1) Richiami di aritmetica (1) Operazioni fondamentali e loro proprietà Elevamento a potenza e proprietà potenze Espressioni aritmetiche Scomposizione: M.C.D. e m.c.m Materia: Matematica Autore: Mario De Leo

Dettagli

ESERCIZIARIO DI MATEMATICA

ESERCIZIARIO DI MATEMATICA Dipartimento di rete matematica ESERCIZIARIO DI MATEMATICA PER PREPARARSI ALLA SCUOLA SUPERIORE progetto Continuità SCUOLA SECONDARIA DI I GRADO Istituti comprensivi: Riva Riva Arco Dro Valle dei Laghi

Dettagli

4 + 7 = 11. Possiamo quindi dire che:

4 + 7 = 11. Possiamo quindi dire che: Consideriamo due numeri naturali, per esempio 4 e 7. Contando successivamente, dopo le unità del primo, le unità del secondo si esegue l operazione aritmetica detta addizione, il cui simbolo è + ; 4 +

Dettagli

Le quattro operazioni fondamentali

Le quattro operazioni fondamentali Le quattro operazioni fondamentali ADDIZIONE Def: Si dice ADDIZIONE l operazione con la quale si calcola la somma; i numeri da addizionare si dicono ADDENDI e il risultato si dice SOMMA o TOTALE. Proprietà:

Dettagli

1 (UNO) INDICA LA QUANTITÀ DI ELEMENTI DELL INSIEME UNITARIO B = (CLASSI CHE HANNO LA LIM) SOLO LA 4ª A HA LA LIM QUINDI L INSIEME È UNITARIO.

1 (UNO) INDICA LA QUANTITÀ DI ELEMENTI DELL INSIEME UNITARIO B = (CLASSI CHE HANNO LA LIM) SOLO LA 4ª A HA LA LIM QUINDI L INSIEME È UNITARIO. I NUMERI NATURALI DEFINIAMO NUMERI NATURALI I NUMERI A CUI CORRISPONDE UN INSIEME. 0 (ZERO) INDICA LA QUANTITÀ DI ELEMENTI DELL INSIEME VUOTO. A = (ALUNNI DI 4ª A CON I CAPELLI ROSSI) NESSUN ALUNNO HA

Dettagli

Il Sistema di numerazione decimale

Il Sistema di numerazione decimale Il Sistema di numerazione decimale Il NUMERO è un oggetto astratto, rappresentato da un simbolo (o cifra) ed è usato per contare e misurare. I numeri usati per contare, 0,1,2,3,4,5,. sono detti NUMERI

Dettagli

COMPITI VACANZE ESTIVE 2017 MATEMATICA Scuola Media Montessori Cardano al Campo (VA)

COMPITI VACANZE ESTIVE 2017 MATEMATICA Scuola Media Montessori Cardano al Campo (VA) COMPITI VACANZE ESTIVE 2017 MATEMATICA Scuola Media Montessori Cardano al Campo (VA) Nel presente documento sono elencati gli esercizi da svolgere nel corso delle vacanze estive 2017 da parte degli studenti

Dettagli

Richiami di aritmetica

Richiami di aritmetica Richiami di aritmetica I numeri naturali L insieme dei numeri naturali, che si indica con N, comprende tutti i numeri interi maggiori di zero. Operazioni fondamentali OPERAZIONE SIMBOLO RISULTATO TERMINI

Dettagli

Le quattro operazioni fondamentali

Le quattro operazioni fondamentali 1. ADDIZIONE Le quattro operazioni fondamentali Def: Si dice ADDIZIONE l operazione con la quale si calcola la somma; i numeri da addizionare si dicono ADDENDI e il risultato si dice SOMMA o TOTALE. Proprietà:

Dettagli

MAPPA 1 NUMERI. Strumenti e rappresentazioni grafiche

MAPPA 1 NUMERI. Strumenti e rappresentazioni grafiche MAPPA 1 Strumenti e rappresentazioni grafiche Tabella a doppia entrata Una tabella a doppia entrata è formata da righe e colonne. Per convenzione, si legge in senso orario (nel verso indicato dalla freccia).

Dettagli

1 Multipli di un numero

1 Multipli di un numero Multipli di un numero DEFINIZIONE. I multipli di un numero sono costituiti dall insieme dei prodotti ottenuti moltiplicando quel numero per la successione dei numeri naturali. I multipli del numero 4 costituiscono

Dettagli

LEZIONE 1. del 10 ottobre 2011

LEZIONE 1. del 10 ottobre 2011 LEZIONE 1 del 10 ottobre 2011 CAPITOLO 1: Numeri naturali N e numeri interi Z I numeri naturali sono 0, 1, 2, 3, 4, 5, Questi hanno un ordine. Di ogni numero naturale, escluso lo 0, esistono il precedente

Dettagli

Operazioni in N Le quattro operazioni Definizioni e Proprietà

Operazioni in N Le quattro operazioni Definizioni e Proprietà Operazioni in N Le quattro operazioni Definizioni e Proprietà Prof.Enrico Castello Concetto di Operazione NUMERO NUMERO OPERAZIONE RISULTATO PROCEDIMENTO CHE PERMETTE DI ASSOCIARE A DUE NUMERI, DATI IN

Dettagli

Le operazioni fondamentali con i numeri relativi

Le operazioni fondamentali con i numeri relativi SINTESI Unità Le operazioni fondamentali con i numeri relativi Addizione La somma di due numeri relativi concordi è il numero relativo che ha lo stesso segno degli addendi e come valore assoluto la somma

Dettagli

Le operazioni fondamentali in R

Le operazioni fondamentali in R La REGOLA DEI SEGNI: 1. ADDIZIONE Le operazioni fondamentali in R + per + dà + per dà + + per dà per + dà Esempi: (+5) + (+9) = + 5 + 9 = + 14 (+5) + ( 3) = + 5 3 = + 2 ( 5) + ( 9) = 5 9 = 14 ( 5) + (+3)

Dettagli

= < < < < < Matematica 1

= < < < < < Matematica  1 NUMERI NATURALI N I numeri naturali sono: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,... L insieme dei numeri naturali è indicato con la lettera. Si ha cioè: N= 0,1,2,3,4,5,6,7,.... L insieme dei naturali privato

Dettagli

Le quattro operazioni fondamentali

Le quattro operazioni fondamentali SINTESI Unità 3 Le quattro operazioni fondamentali Addizione Si dice somma di due numeri naturali il numero che si ottiene contando di seguito al primo tanti numeri consecutivi quante sono le unità del

Dettagli

posso assicurare che le mie sono ancora maggiori

posso assicurare che le mie sono ancora maggiori PROF. SSA G. CAFAGNA CLASSI: 1 B, 1 G, 1 I, 1 M, 1 N Non preoccuparti delle difficoltà che incontri in matematica, ti posso assicurare che le mie sono ancora maggiori (Albert Einstein) ADDIZIONE I due

Dettagli

Logica matematica e ragionamento numerico

Logica matematica e ragionamento numerico 5 Logica matematica e ragionamento numerico Abilità di calcolo! I quiz raccolti in questo capitolo sono finalizzati alla valutazione della rapidità e della precisione con cui esegui i calcoli matematici:

Dettagli

Monomi L insieme dei monomi

Monomi L insieme dei monomi Monomi 10 10.1 L insieme dei monomi Definizione 10.1. Un espressione letterale in cui numeri e lettere sono legati dalla sola moltiplicazione si chiama monomio. Esempio 10.1. L espressione nelle due variabili

Dettagli

x + y = t x y = t x y = t x : y = t a b c = a (b c) (a b) : c = a (b: c) b : c am bn = (ab) m+n a : b

x + y = t x y = t x y = t x : y = t a b c = a (b c) (a b) : c = a (b: c) b : c am bn = (ab) m+n a : b Vero Falso 1. L addizione è sempre possibile in N. 2. La sottrazione è sempre possibile in N. 3. Se x + y = t, x e y si chiamano fattori. 4. Se x y = t, t si chiama differenza. 5. Se x y = t, t si chiama

Dettagli

CORSO ZERO DI MATEMATICA per Ing. Chimica e Ing. delle Telecomunicazioni MONOMI E POLINOMI Prof. Erasmo Modica

CORSO ZERO DI MATEMATICA per Ing. Chimica e Ing. delle Telecomunicazioni MONOMI E POLINOMI Prof. Erasmo Modica CORSO ZERO DI MATEMATICA per Ing. Chimica e Ing. delle Telecomunicazioni MONOMI E POLINOMI Prof. Erasmo Modica erasmo@galois.it MONOMI In una formula si dicono variabili le lettere alle quali può essere

Dettagli

Conoscenze. 1. L addizione è l operazione che associa a due numeri, detti, un... numero, detto, che si ottiene...

Conoscenze. 1. L addizione è l operazione che associa a due numeri, detti, un... numero, detto, che si ottiene... Conoscenze 1. L addizione è l operazione che associa a due numeri, detti, un... numero, detto, che si ottiene...... 2. La sottrazione è l operazione che associa a due numeri, detti rispettivamente... e..,

Dettagli

Gli insiemi numerici. Operazioni e loro proprietà

Gli insiemi numerici. Operazioni e loro proprietà Gli insiemi numerici N= 0, 1,, 3 Insieme dei numeri naturali Z=, 1, 0, 1,, 3 Insieme dei numeri interi relativi Q= m/n mεz, nεz con n 0 Insieme dei numeri razionali Operazioni e loro proprietà ADDIZIONE

Dettagli

Prontuario degli argomenti di Algebra

Prontuario degli argomenti di Algebra Prontuario degli argomenti di Algebra NUMERI RELATIVI Un numero relativo è un numero preceduto da un segno + o - indicante la posizione rispetto ad un punto di riferimento a cui si associa il valore 0.

Dettagli

MAPPA MULTIPLI E DIVISORI

MAPPA MULTIPLI E DIVISORI MAPPA MULTIPLI E DIVISORI 1 MULTIPLI E DIVISORI divisibilità definizione di multiplo criteri di divisibilità definizione di divisore numeri primi e numeri composti scomposizione in fattori primi calcolo

Dettagli

APPUNTI DI MATEMATICA ALGEBRA \ CALCOLO LETTERALE \ MONOMI (1)

APPUNTI DI MATEMATICA ALGEBRA \ CALCOLO LETTERALE \ MONOMI (1) LGEBR \ CLCOLO LETTERLE \ MONOMI (1) Un monomio è un prodotto di numeri e lettere; gli (eventuali) esponenti delle lettere sono numeri naturali (0 incluso). Ogni numero (reale) può essere considerato come

Dettagli

LE OPERAZIONI CON I NUMERI

LE OPERAZIONI CON I NUMERI ARITMETICA PREREQUISITI l conoscere le caratteristiche del sistema di numerazione decimale CONOSCENZE 1. il concetto di somma 2. le proprietaá dell'addizione 3. il concetto di differenza 4. la proprietaá

Dettagli

Si dice multiplo di un numero a diverso da zero, ogni numero naturale che si ottiene moltiplicando a per ciascun elemento di N.

Si dice multiplo di un numero a diverso da zero, ogni numero naturale che si ottiene moltiplicando a per ciascun elemento di N. MULTIPLI E DIVISORI Si dice multiplo di un numero a diverso da zero, ogni numero naturale che si ottiene moltiplicando a per ciascun elemento di N. Poiché N = 0,1,2,3...7...95,..104.. Zero è multiplo di

Dettagli

radicando. Si ottiene 5 RADICALI Termini a x = indice della radice y = esponente del radicando Esempi: 25 = 5 perché 5 = 25

radicando. Si ottiene 5 RADICALI Termini a x = indice della radice y = esponente del radicando Esempi: 25 = 5 perché 5 = 25 RADICALI Termini x y a x = indice della radice y = esponente del radicando 25 = 5 perché 5 = 25 5 indica la radice quadrata di 5, non è un numero intero, è decimale, illimitato e non periodico. 16 = 2

Dettagli

DEFINIZIONE. L unità frazionaria 1n (con n 0) rappresenta una sola delle n parti uguali in cui è stato diviso l intero.

DEFINIZIONE. L unità frazionaria 1n (con n 0) rappresenta una sola delle n parti uguali in cui è stato diviso l intero. L unità frazionaria DEFINIZIONE. L unità frazionaria n con n 0 rappresenta una sola delle n parti uguali in cui è stato diviso l intero. Sono unità frazionarie: ognuna di esse indica che l intero è stato

Dettagli

LEZIONE N 3 METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA

LEZIONE N 3 METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA LEZIONE N 3 METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA GLI INSIEMI NUMERICI N Numeri naturali Z : Numeri interi Q : Numeri razionali R : Numeri reali Q A meno di isomorfismi!!! R 5 π 2 3 11

Dettagli

1. OPERAZIONE DI ESTRAZIONE DELLA RADICE DI UN NUMERO

1. OPERAZIONE DI ESTRAZIONE DELLA RADICE DI UN NUMERO 1. OPERAZIONE DI ESTRAZIONE DELLA RADICE DI UN NUMERO L'estrazione della radice di un numero è una delle due operazioni inverse dell'operazione di elevamento a potenza attraverso la quale si calcola la

Dettagli

La tabella è completa perché l'addizione è un'operazione sempre possibile.

La tabella è completa perché l'addizione è un'operazione sempre possibile. Operazioni aritmetiche fondamentali in N Addizione Operazione che a due numeri (addendi) ne associa un terzo (somma) ottenuto contando di seguito al primo tante unità quante ne rappresenta il secondo.

Dettagli

NUMERO RELATIVO. È caratterizzato da: segno positivo (+) o negativo (-) parte numerica che è detta valore assoluto

NUMERO RELATIVO. È caratterizzato da: segno positivo (+) o negativo (-) parte numerica che è detta valore assoluto NUMERI RELATIVI NUMERO RELATIVO È caratterizzato da: segno positivo (+) o negativo (-) 2 3 2 parte numerica che è detta valore assoluto 3 NUMERI RELATIVI Numeri interi relativi (N) Numeri razionali relativi

Dettagli

Scheda per il recupero 1

Scheda per il recupero 1 A Ripasso Le operazioni in N e le loro proprietà OPERAZIONE PROPRIETÀ ESEMPI Addizione Interna a N (ovvero la somma di due numeri naturali è sempre un numero naturale) Commutativa a þ b ¼ b þ a Associativa

Dettagli

Dott. Dallavalle Riccardo UNITA DIATTICA nr. 5 Gli argomenti di oggi:

Dott. Dallavalle Riccardo UNITA DIATTICA nr. 5 Gli argomenti di oggi: Gli argomenti di oggi: Le operazioni matematiche con i numeri INTERI RELATIVI Come facciamo a fare la ADDIZIONE con i numeri interi relativi? Consideriamo un esempio: (+5) + (+7) =? Come potrei fare? Prova

Dettagli

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA RADICALI Dr. Erasmo Modica erasmo@galois.it LE RADICI Abbiamo visto che l insieme dei numeri reali è costituito da tutti

Dettagli

GLOSSARIO MATEMATICO. ,0,, 2, 3,,... = {razionali e irrazionali}

GLOSSARIO MATEMATICO. ,0,, 2, 3,,... = {razionali e irrazionali} GLOSSARIO MATEMATICO SIMBOLI MATEMATICI N insieme dei naturali { 0,,,,,... } Z insieme dei interi relativi {...,,,0,,,... } Q insieme dei razionali...,,,0, +, +,... 7 Q a insieme dei razionali positivi

Dettagli

Ampliamento di N: le frazioni

Ampliamento di N: le frazioni L insieme dei numeri Razionali ITIS Feltrinelli anno scolastico 2007-2008 R. Folgieri 2007-2008 1 Ampliamento di N: le frazioni Nell insieme N non possiamo fare operazioni quali 13:5 perché il risultato

Dettagli

ESTRAZIONE DI RADICE

ESTRAZIONE DI RADICE ESTRAZIONE DI RADICE La radice è l operazione inversa dell elevamento a potenza e quando si calcola non si dice fare la radice, ma si dice estrarre la radice. Le particolarità della radice sono: l esponente

Dettagli

ESERCIZI DI PREPARAZIONE E CONSOLIDAMENTO PER I FUTURI STUDENTI DEL PRIMO LEVI

ESERCIZI DI PREPARAZIONE E CONSOLIDAMENTO PER I FUTURI STUDENTI DEL PRIMO LEVI ESERCIZI DI PREPARAZIONE E CONSOLIDAMENTO PER I FUTURI STUDENTI DEL PRIMO LEVI si campa anche senza sapere che cos è un equazione, senza sapere suonare uno strumento musicale, senza conoscere il nome del

Dettagli

LABORATORIO Costruzione di un ipertesto. Studio delle varie specie di numeri dai numeri naturali ai numeri reali

LABORATORIO Costruzione di un ipertesto. Studio delle varie specie di numeri dai numeri naturali ai numeri reali LABORATORIO Costruzione di un ipertesto Studio delle varie specie di numeri dai numeri naturali ai numeri reali Ideato dal corsista prof. Gerardo Mazzeo Nocera Inferiore - 27/04/2002 SCHEMA DI LAVORO PREMESSA

Dettagli

Richiami di aritmetica(2)

Richiami di aritmetica(2) Richiami di aritmetica() Frazioni definizioni, operazioni, espressioni Numeri decimali Rapporti e proporzioni Percentuali Materia Matematica Autore Mario De Leo Le frazioni La frazione è un operatore che

Dettagli

Argomenti della lezione. Criteri di divisibilità fattorizzazione m.c.m. e M.C.D. frazioni ed espressioni

Argomenti della lezione. Criteri di divisibilità fattorizzazione m.c.m. e M.C.D. frazioni ed espressioni Argomenti della lezione Criteri di divisibilità fattorizzazione m.c.m. e M.C.D. frazioni ed espressioni Quale cifra deve assumere la lettera c affinché i numeri 821c e 82c1 siano divisibili per 2? Un numero

Dettagli

Frazioni algebriche. Osserviamo che un espressione di questo tipo si ottiene talvolta quando ci si propone di ottenere il quoziente di due monomi.

Frazioni algebriche. Osserviamo che un espressione di questo tipo si ottiene talvolta quando ci si propone di ottenere il quoziente di due monomi. Frazioni algebriche 14 14.1 Definizione di frazione algebrica Diamo la seguente definizione: Definizione 14.1. Si definisce frazione algebrica un espressione del tipo A B polinomi. dove A e B sono Osserviamo

Dettagli

METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA. Lezione n 4 2016

METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA. Lezione n 4 2016 METODI E TECNOLOGIE PER L INSEGNAMENTO DELLA MATEMATICA Lezione n 4 2016 GLI INSIEMI NUMERICI N Numeri naturali Z : Numeri interi Q : Numeri razionali R : Numeri reali Q A meno di isomorfismi!!! R 5 π

Dettagli

1 L estrazione di radice

1 L estrazione di radice 1 L estrazione di radice Consideriamo la potenza 3 2 = 9 di cui conosciamo: Esponente 3 2 = 9 Valore della potenza Base L operazione di radice quadrata consiste nel chiedersi qual è quel numero x che elevato

Dettagli

INSIEMI ED INSIEMI NUMERICI Prof. Erasmo Modica

INSIEMI ED INSIEMI NUMERICI Prof. Erasmo Modica INSIEMI ED INSIEMI NUMERICI Prof. Erasmo Modica erasmo@galois.it SIMBOLI MATEMATICI Poiché in queste pagine verranno utilizzati differenti simboli matematici, è bene elencarne subito i principali. SIMBOLO

Dettagli

1 Multipli e sottomultipli. Divisibilità

1 Multipli e sottomultipli. Divisibilità Multipli e sottomultipli. Divisibilità LA TEORIA Se la divisione fra due numeri naturali è propria (cioè il resto è uguale a 0) i due numeri si dicono divisibili. Per esempio, nella divisione 8 : diciamo

Dettagli

Calcolo algebrico. Maria Simonetta Bernabei & Horst Thaler

Calcolo algebrico. Maria Simonetta Bernabei & Horst Thaler Calcolo algebrico Maria Simonetta Bernabei & Horst Thaler CALCOLO LETTERALE Perché? E opportuno rappresentare i numeri con lettere dell alfabeto per fare affermazioni che valgono indipendentemente dal

Dettagli

Definizione: Due monomi si dicono simili se hanno la stessa parte letterale.

Definizione: Due monomi si dicono simili se hanno la stessa parte letterale. CALCOLO LETTERALE Definizione: Data una formula si dicono variabili le lettere alle quali può essere sostituito qualsiasi valore numerico; i numeri si dicono, invece, costanti. Nella formula per il calcolo

Dettagli

Elementi di Algebra e di Matematica Discreta Numeri interi, divisibilità, numerazione in base n

Elementi di Algebra e di Matematica Discreta Numeri interi, divisibilità, numerazione in base n Elementi di Algebra e di Matematica Discreta Numeri interi, divisibilità, numerazione in base n Cristina Turrini UNIMI - 2016/2017 Cristina Turrini (UNIMI - 2016/2017) Elementi di Algebra e di Matematica

Dettagli

Università degli Studi di Palermo Facoltà di Medicina e Chirurgia Anno Accademico 2011/12. Corso di Fisica(0) per il recupero dell OFA

Università degli Studi di Palermo Facoltà di Medicina e Chirurgia Anno Accademico 2011/12. Corso di Fisica(0) per il recupero dell OFA Università degli Studi di Palermo Facoltà di Medicina e Chirurgia Anno Accademico 2011/12 Corso di Fisica(0) per il recupero dell OFA Tutor: Dott. Stefano Panepinto Simbologia matematica Simbologia matematica

Dettagli

7 2 =7 2=3,5. Casi particolari. Definizione. propria se < impropria se > e non è multiplo di b. apparente se è un multiplo di. Esempi.

7 2 =7 2=3,5. Casi particolari. Definizione. propria se < impropria se > e non è multiplo di b. apparente se è un multiplo di. Esempi. NUMERI RAZIONALI Q Nell insieme dei numeri naturali e nell insieme dei numeri interi relativi non è sempre possibile effettuare l operazione di divisione. Infatti, eseguendo la divisione 7 2 si ottiene

Dettagli

MONOMI. Donatella Candelo 13/11/2004 1

MONOMI. Donatella Candelo 13/11/2004 1 Donatella Candelo 1/11/00 1 MONOMI Un monomio è una qualunque espressione algebrica intera data dal prodotto di fattori qualsiasi, numerici o letterali. Praticamente in ogni monomio si può distinguere

Dettagli

OPERAZIONI IN Q = + = = = =

OPERAZIONI IN Q = + = = = = OPERAZIONI IN Q A proposito delle operazioni tra numeri razionali, affinché il passaggio da N a vero e proprio ampliamento è necessario che avvengano tre cose: Q risulti un ) le proprietà di ciascuna operazione

Dettagli

A1. Calcolo in Q. A1.1 Tabelline e potenze. A1.2 Scomposizione in fattori di numeri interi MCD e mcm

A1. Calcolo in Q. A1.1 Tabelline e potenze. A1.2 Scomposizione in fattori di numeri interi MCD e mcm A. Calcolo in Q Questo capitolo tratta argomenti che solitamente sono già stati svolti alle scuole medie ed elementari. Tali argomenti sono necessari per affrontare il programma delle scuole superiori.

Dettagli

Conclusione? Verifica la proprietà commutativa per le altre operazioni.

Conclusione? Verifica la proprietà commutativa per le altre operazioni. Le proprietà delle operazioni.( teoria / esercizi pag. 15 24) Proprietà: Sono delle regole che permettono di svolgere dei calcoli più semplicemente. Operazioni: Tu conosci le operazioni numeriche:, 1)

Dettagli

L insieme dei numeri naturali e le quattro operazioni aritmetiche

L insieme dei numeri naturali e le quattro operazioni aritmetiche n L insieme dei numeri naturali e le quattro operazioni aritmetiche [p. 23] n Le potenze [p. 27] n Espressioni [p. 30] n Divisibilità, numeri primi, MCD e mcm [p. 34] L insieme dei numeri naturali e le

Dettagli

Insiemistica. Capitolo 1. Prerequisiti. Obiettivi. Gli insiemi numerici di base Divisibilità e fattorizzazione nei numeri interi

Insiemistica. Capitolo 1. Prerequisiti. Obiettivi. Gli insiemi numerici di base Divisibilità e fattorizzazione nei numeri interi Capitolo 1 Insiemistica Prerequisiti Gli insiemi numerici di base Divisibilità e fattorizzazione nei numeri interi Obiettivi Sapere utilizzare opportunamente le diverse rappresentazioni insiemistiche Sapere

Dettagli

5 + 8 = 13 5,2 + 8,4 = 13,6

5 + 8 = 13 5,2 + 8,4 = 13,6 concetto di addizione i termini dell addizione sono gli addendi il risultato è la somma addendo addendo 5 + 8 = 13 somma 5,2 + 8,4 = 13,6 proprietà commutativa se cambio l ordine degli addendi il risultato

Dettagli

Algebra. I numeri relativi

Algebra. I numeri relativi I numeri relativi I numeri relativi sono quelli preceduti dal segno > o dal segno . I numeri positivi sono quelli preceduti dal segno + (zero escluso). I numeri negativi sono quelli preceduti

Dettagli

Primo modulo: Aritmetica

Primo modulo: Aritmetica Primo modulo: Aritmetica Obiettivi 1. ordinamento e confronto di numeri;. riconoscere la rappresentazione di un numero in base diversa dalla base 10; 3. conoscere differenza tra numeri razionali e irrazionali;

Dettagli

Precorso di Matematica

Precorso di Matematica Precorso di Matematica Maria Margherita Obertino mariamargherita.obertino@unito.it Davide Ricauda davide.ricauda@unito.ii Obiettivi del precorso: rapido ripasso degli argomenti di base, già trattati nelle

Dettagli

Le tecniche di calcolo mentale rapido usano alcune proprietà delle operazioni. Le principali proprietà utilizzate sono: 3 + 2 = 2 + 3 3 2 = 2 3

Le tecniche di calcolo mentale rapido usano alcune proprietà delle operazioni. Le principali proprietà utilizzate sono: 3 + 2 = 2 + 3 3 2 = 2 3 Calcolo mentale rapido Proprietà delle operazioni Le tecniche di calcolo mentale rapido usano alcune proprietà delle operazioni. Le principali proprietà utilizzate sono: Proprietà commutativa dell addizione

Dettagli

Un polinomio è un espressione algebrica data dalla somma di più monomi.

Un polinomio è un espressione algebrica data dalla somma di più monomi. 1 I polinomi 1.1 Terminologia sui polinomi Un polinomio è un espressione algebrica data dalla somma di più monomi. I termini di un polinomio sono i monomi che compaiono come addendi nel polinomio. Il termine

Dettagli

Introduzione all algebra

Introduzione all algebra Introduzione all algebra E. Modica http://dida.orizzontescuola.it Didattica OrizzonteScuola Espressioni letterali come modelli nei problemi Espressioni come modello di calcolo Esempio di decodifica Premessa

Dettagli

Scomposizione in fattori di un polinomio. Prof. Walter Pugliese

Scomposizione in fattori di un polinomio. Prof. Walter Pugliese Scomposizione in fattori di un polinomio Prof. Walter Pugliese La scomposizione in fattori dei polinomi Scomporre in fattori un polinomio significa scriverlo sotto forma di prodotto di polinomi di grado

Dettagli

TORINO, FEBBRAIO 2012 COMPENDIO ALGEBRA. di BART VEGLIA

TORINO, FEBBRAIO 2012 COMPENDIO ALGEBRA. di BART VEGLIA TORINO, FEBBRAIO 2012 COMPENDIO DI ALGEBRA di BART VEGLIA 1 2 1.1 I NUMERI E LE OPERAZIONI CON ESSI Comprendono i numeri assoluti, i frazionari, i relativi, i razionali, gli irrazionali, i reali, gli immaginari,

Dettagli

Operatori di confronto:

Operatori di confronto: Operatori di confronto: confrontano tra loro due numeri e come risultato danno come risposta o operatore si legge esempio risposta = uguale a diverso da > maggiore di < minore di maggiore o uguale a minore

Dettagli

Parte Seconda - Argomenti della prova scritta di Cultura Generale INTRODUZIONE

Parte Seconda - Argomenti della prova scritta di Cultura Generale INTRODUZIONE 302 INTRODUZIONE L aritmetica è l arte dei numeri. Infatti, contare e numerare è l operazione che si compie per stabilire quanti sono gli oggetti che costituiscono il gruppo; nell attribuire a ogni oggetto

Dettagli

NUMERI INTERI, RAZIONALI E IRRAZIONALI DOTATI DI SEGNO (POSITIVO O NEGATIVO)

NUMERI INTERI, RAZIONALI E IRRAZIONALI DOTATI DI SEGNO (POSITIVO O NEGATIVO) NUMERI RELATIVI NUMERI INTERI, RAZIONALI E IRRAZIONALI DOTATI DI SEGNO (POSITIVO O NEGATIVO) L INSIEME DEI NUMERI RELATIVI Z COMPRENDE I NUMERI INTERI POSITIVI E NEGATIVI RAPPRESENTAZIONE SULLA RETTA DEI

Dettagli

OPERAZIONI CON LE FRAZIONI

OPERAZIONI CON LE FRAZIONI OPERAZIONI CON LE FRAZIONI ADDIZIONE prima di eseguire l operazione si riducono le frazioni (se è possibile) ai minimi termini. Si riconoscono tre situazioni. Le frazioni hanno lo stesso denominatore si

Dettagli

PROGRAMMA DI MATEMATICA Anno scolastico

PROGRAMMA DI MATEMATICA Anno scolastico PROGRAMMA DI MATEMATICA Anno scolastico 2011-2012 Aritmetica UNITÀ 1 - STRUMENTI DI BASE UTILIZZIAMO I NUMERI Numeri e operazioni in colonna Numeri e cifre Operazioni in colonna (addizione, sottrazione,

Dettagli

CORSO DI AZZERAMENTO DI MATEMATICA

CORSO DI AZZERAMENTO DI MATEMATICA CORSO DI AZZERAMENTO DI MATEMATICA 1 LE BASI FONDAMENTALI INSIEMI INSIEMI NUMERICI (naturali, interi, razionali e reali) CALCOLO LETTERALE RICHIAMI DI TRIGONOMETRIA I NUMERI COMPLESSI ELEMENTI DI GEOMETRIA

Dettagli

64=8 radice perché 8 2 = 64

64=8 radice perché 8 2 = 64 RADICI E NUMERI IRRAZIONALI 1. Che cosa vuol dire estrarre la radice quadrata di un numero? Estrarre la radice quadrata di un numero vuol dire calcolare quel numero, che elevato al quadrato, dà per risultato

Dettagli

I RADICALI QUADRATICI

I RADICALI QUADRATICI I RADICALI QUADRATICI 1. Radici quadrate Definizione di radice quadrata: Si dice radice quadrata di un numero reale positivo o nullo a, e si indica con a, il numero reale positivo o nullo (se esiste) che,

Dettagli

Ricorda: i termini dell addizione sono detti.. il risultato Proprietà dell addizione: Commutativa: = in generale a + b = b + a

Ricorda: i termini dell addizione sono detti.. il risultato Proprietà dell addizione: Commutativa: = in generale a + b = b + a Le operazioni numeriche Le proprietà delle operazioni. ( teoria 13 24 es. 105 112 ) 1) L addizione ( + ). 342 + === Addenti 3,42+ 879 87,9 === Somma Ricorda: i termini dell addizione sono detti.. il risultato

Dettagli

Minimo Comune multiplo

Minimo Comune multiplo Minimo Comune multiplo Il minimo comune multiplo (si scrive anche mcm) è il più piccolo numero che sia divisibile per tutti i numeri dati. Che significa? Se io ho tre numeri, il mcm è, tra i tanti possibili

Dettagli

( ) ( ) 2 + 3( a + b) = ( ) + b( x 1) = ( ) ( ) b( x + y) = ( ) x 2 ( a + b) y 2 + ( a + b) = ( ) + ( a b) = ( ) a( 4x + 7) = ( ) + 3a( 2 5y) =

( ) ( ) 2 + 3( a + b) = ( ) + b( x 1) = ( ) ( ) b( x + y) = ( ) x 2 ( a + b) y 2 + ( a + b) = ( ) + ( a b) = ( ) a( 4x + 7) = ( ) + 3a( 2 5y) = 1 Scomposizione in fattori di un polinomio Scomporre in fattori un polinomio significa trasformare il polinomio, che è una somma algebrica di monomi, nel prodotto di fattori con il grado più basso possibile.

Dettagli

Numeri relativi: numeri il cui valore dipende dal segno che li precede.

Numeri relativi: numeri il cui valore dipende dal segno che li precede. . Definizioni e proprietà Numeri relativi: numeri il cui valore dipende dal segno che li precede. + 4 è un numero positivo, cioè maggiore di 0, perché preceduto dal segno + (il segno + davanti ai numeri

Dettagli

L insieme dei numeri razionali Q Prof. Walter Pugliese

L insieme dei numeri razionali Q Prof. Walter Pugliese L insieme dei numeri razionali Q Prof. Walter Pugliese Concetto di frazione Abbiamo visto che la divisione non è un operazione interna né in N né in Z. L esigenza di renderla sempre possibile ci porterà

Dettagli

1 La frazione come numero razionale assoluto

1 La frazione come numero razionale assoluto 1 La frazione come numero razionale assoluto DEFINIZIONE. La frazione che dà origine ad un numero decimale si dice frazione generatrice. Consideriamo le frazioni e determiniamo i corrispondenti valori

Dettagli

ESERCIZI DI MATEMATICA PER GLI ISCRITTI ALLE CLASSI PRIME DELLA SEZIONE TECNICA

ESERCIZI DI MATEMATICA PER GLI ISCRITTI ALLE CLASSI PRIME DELLA SEZIONE TECNICA ISTITUTO DI ISTRUZIONE SUPERIORE Liceo Scientifico Istituto Tecnico Industriale ALDO MORO Via Gallo Pecca n. 4/6 10086 RIVAROLO CANAVESE Via Gallo Pecca n. 4/6-10086 Rivarolo Canavese Via Gallo Pecca n.

Dettagli

per un altro; le più importanti sono quelle di seguito elencate.

per un altro; le più importanti sono quelle di seguito elencate. 2 Abilità di calcolo I quiz raccolti in questo capitolo sono finalizzati alla valutazione della rapidità e della precisione con cui esegui i calcoli matematici. Prima di cimentarti con i test proposti,

Dettagli

Indice. Unità 1 Frazioni e numeri decimali 1. Unità 2. Il numero. La radice quadrata 22

Indice. Unità 1 Frazioni e numeri decimali 1. Unità 2. Il numero. La radice quadrata 22 Indice Il numero Unità 1 Frazioni e numeri decimali 1 I numeri decimali 2 Dalla frazione al numero decimale 4 Dal numero decimale alla frazione 6 Operazioni con i numeri decimali 7 Le conoscenze essenziali

Dettagli

DISPENSE SU TEORIA DEGLI INSIEMI E NUMERI

DISPENSE SU TEORIA DEGLI INSIEMI E NUMERI FACOLTA' DI ECONOMIA UNIVERSITA DELLA CALABRIA Corso di Modelli Matematici per l Azienda a.a. 2011-2012 DISPENSE SU TEORIA DEGLI INSIEMI E NUMERI Prof. Fabio Lamantia INSIEMI INSIEME= gruppo di oggetti

Dettagli

Progetto Matematica in Rete - Numeri naturali - I numeri naturali

Progetto Matematica in Rete - Numeri naturali - I numeri naturali I numeri naturali Quali sono i numeri naturali? I numeri naturali sono : 0,1,,3,4,5,6,7,8,9,10,11 I numeri naturali hanno un ordine cioè dati due numeri naturali distinti a e b si può sempre stabilire

Dettagli

LE RADICI QUADRATE 9=3. è il simbolo dell operazione e prende il nome di segno di radice

LE RADICI QUADRATE 9=3. è il simbolo dell operazione e prende il nome di segno di radice LE RADICI QUADRATE L ESTRAZIONE DI RADICE È L OPERAZIONE INVERSA DELL OPERAZIONE DI ELEVAMENTO A POTENZA INDICE 9=3 RADICE QUADRATA SEGNO DI RADICE RADICANDO 9 è il numero di cui vogliamo calcolare la

Dettagli

Ragionamento numerico, critico-numerico e numerico-deduttivo

Ragionamento numerico, critico-numerico e numerico-deduttivo Capitolo 2 Ragionamento numerico, critico-numerico e numerico-deduttivo 1. I test di ragionamento critico-numerico Per rendere più agevole la lettura di una distribuzione di dati, raggrupparne sezioni

Dettagli

LA FRAZIONE. apparente: se il numeratore è multiplo o uguale al denominatore e il valore della frazione è un numero intero.

LA FRAZIONE. apparente: se il numeratore è multiplo o uguale al denominatore e il valore della frazione è un numero intero. LA FRAZIONE Una frazione è un modo per esprimere una quantità basandosi sulla divisione di un oggetto in un certo numero di parti della stessa dimensione. ES: Il denominatore: indica il numero totale di

Dettagli

BREVE RIEPILOGO SULLE FRAZIONI

BREVE RIEPILOGO SULLE FRAZIONI BREVE RIEPILOGO SULLE FRAZIONI ---> Numeratore = numero di parti uguali considerate Linea di frazione Denominatore = numero di parti uguali in cui è diviso l'intero la frazione si

Dettagli

CLASSE 1 SEZIONE A PROGRAMMA DI MATEMATICA DOCENTE ENRICO PILI

CLASSE 1 SEZIONE A PROGRAMMA DI MATEMATICA DOCENTE ENRICO PILI ISTITUTO D ISTRUZIONE SECONDARIA SUPERIORE I.T.C.G. L. EINAUDI LICEO SCIENTIFICO G. BRUNO CLASSE 1 SEZIONE A PROGRAMMA DI MATEMATICA DOCENTE ENRICO PILI ANNO SCOLASTICO 2016/2017 RICHIAMI DI ARITMETICA

Dettagli

MATEMATICA DI BASE 1

MATEMATICA DI BASE 1 MATEMATICA DI BASE 1 Francesco Oliveri Dipartimento di Matematica, Università di Messina 30 Agosto 2010 MATEMATICA DI BASE MODULO 1 Insiemi Logica Numeri Insiemi Intuitivamente, con il termine insieme

Dettagli

Si ottiene facendo precedere i numeri naturali dal segno + o dal segno -.

Si ottiene facendo precedere i numeri naturali dal segno + o dal segno -. I numeri naturali non sono adatti per risolvere tutti i problemi. Esempio. La temperatura atmosferica di un mattino estivo, sopra lo zero, viene indicata con un numero preceduto dal segno + (+19 C, +25

Dettagli

ELEMENTI di TEORIA degli INSIEMI

ELEMENTI di TEORIA degli INSIEMI ELEMENTI di TEORI degli INSIEMI & 1. Nozioni fondamentali. ssumeremo come primitivi il concetto di insieme e di elementi di un insieme. Nel seguito gli insiemi saranno indicati con lettere maiuscole (,,C,...)

Dettagli

Radicali. Consideriamo la funzione che associa ad un numero reale il suo quadrato:

Radicali. Consideriamo la funzione che associa ad un numero reale il suo quadrato: Radicali Radice quadrata Consideriamo la funzione che associa ad un numero reale il suo quadrato: il cui grafico è il seguente: Il grafico della funzione si trova al di sopra dell asse delle x ed è simmetrico

Dettagli

La divisione di numeri naturali: esercizi svolti

La divisione di numeri naturali: esercizi svolti La divisione di numeri naturali: esercizi svolti Come abbiamo fatto per la sottrazione, ci chiediamo adesso se, effettuata una operazione di moltiplicazione, sia possibile definire (trovare) una operazione

Dettagli