Cos è l infinito? Verso l'infinito... e oltre

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Cos è l infinito? Verso l'infinito... e oltre"

Transcript

1

2 Cos è l infinito? Infinito: che è assolutamente privo di determinazioni spaziali o temporali. l infinito è molto difficile da immaginare nel suo complesso: possiamo avere un accenno ammirando un cielo stellato e limpido o solo un piccolo richiamo osservando la distesa del mare fino all orizzonte. Quindi l infinito è tutto ciò che non ha limite in estensione, quantità, durata. La parola stessa lo ammette, così come avviene per molte lingue: in-finito, a - peiron dove il prefisso ha lo scopo di negare il significato della radice della parola che indica limite.

3 La nascita del simbolo Il simbolo matematico di infinito venne utilizzato per la prima volta in epoca moderna da John Wallis nel Probabilmente egli lo scelse come trasformazione con legatura della lettera M, che nel sistema di numerazione romano indicava un numero "grandissimo" ed equivalente a 1000: M m

4 L infinito nella filosofia Anassimandro: concepiva l apeiron non come una miscela di elementi, ma piuttosto un'unica materia nella quale i vari elementi non sono ancora distinti. Tale materia dà origine a ogni cosa, e perciò non può possedere le caratteristiche di nessuna cosa specifica. Secondo Anassimandro, quindi, l apeiron è una materia indeterminata, oltre che infinita. Pitagorici: secondo i Pitagorici il concetto di infinito assumeva un valore negativo poiché ritenevano che solo ciò che è finito è perfetto in quanto compiuto, diversamente l infinito era imperfetto poiché non ha mai fine e non sarà mai terminato. Anassimandro

5 I paradossi di Zenone: Attorno al 500 a.c. Zenone di Elea fu artefice di uno dei paradossi più famosi sull infinito: quello di Achille e la Tartaruga. Supponiamo che Achille sia due volte più veloce della tartaruga e che entrambi gareggino su un percorso di un metro. Supponiamo inoltre che Achille dia mezzo metro di vantaggio alla tartaruga. Quando Achille avrà percorso mezzo metro, la tartaruga si troverà un quarto di metro più avanti; quando Achille avrà percorso un quarto di metro, la tartaruga un ottavo a così via all infinito: Achille non raggiungerà mai paradossalmente la tartaruga. Da questo paradosso sono stati dedotti diversi concetti importanti: innanzi tutto, che la somma di infinite quantità può risultare finita.

6 Galileo e l infinito Nel Seicento, il fiorentino Galileo Galilei ( ) considerato il fondatore della scienza moderna, fu uno dei primi scienziati a mettere in discussione il concetto d infinito elaborato dalla filosofia greca. Ammettendo l esistenza dell infinito attuale, Galilei andò, però, incontro a diversi paradossi che non riuscì a risolvere come il paradosso dei quadrati o quello della ruota.

7 Paradosso dei quadrati La situazione paradossale rappresentata da Galilei è la seguente: i quadrati sono solo una parte dei numeri; è possibile stabilire una corrispondenza tra l'insieme N dei numeri e quello Q dei suoi quadrati, in modo che ad ogni numero corrisponda un solo quadrato e viceversa, e quindi, i quadrati, parte dei numeri interi, sono "tanti quanti" sono tutti i numeri! Cioè se i numeri naturali sono infiniti anche i quadrati sono infiniti! Questo si visualizza molto bene secondo lo schema:

8 Cavalieri e l infinito Un altro importante passo è compiuto da Bonaventura Cavalieri ( ) che introdusse il famoso metodo degli indivisibili, basato sulla concezione delle linee come insiemi infiniti di punti e, analogamente, delle regioni piane come insieme di linee e dei solidi come insieme di superfici.

9 I paradossi sull infinito: Hilbert Il Paradosso del Grand Hotel è un celebre paradosso inventato dal matematico David Hilbert per mostrare alcune caratteristiche del concetto di infinito, e le differenze fra operazioni con insiemi finiti ed infiniti. Hilbert immagina un hotel con infinite stanze, tutte occupate, ed afferma che qualsiasi sia il numero di altri ospiti che sopraggiungano, sarà sempre possibile ospitarli tutti, anche se il loro numero è infinito. Nel caso semplice, arriva un singolo nuovo ospite. Il furbo albergatore sposterà tutti i clienti nella camera successiva (l'ospite della 1 alla 2, quello della 2 alla 3, etc.); in questo modo, benché l'albergo fosse pieno è comunque, essendo infinito, possibile sistemare il nuovo ospite.

10 I frattali Verso la fine del XXI sec., quando ci si era convinti che i concetti di continuità e di infinito fossero stati finalmente chiariti, nuovi dubbi nacquero da numerose scoperte in ambito geometrico: i frattali. I frattali sono figure geometriche caratterizzate dal ripetersi sino all'infinito di uno stesso motivo su scala sempre più ridotta. Ma la cosa più sorprendente dei frattali è il fatto che essi siano largamente presenti in natura, quasi si trattasse di una sorta di linguaggio naturale. Prendiamo ad esempio la spirale. Questa figura geometrica è un frattale molto semplice e si può dire che le spirali siano alla base del mondo vivente. Il nucleo cellulare è costituito da una lunga catena a spirale, il DNA, riportante l intero codice genetico.

11 I frattali alcuni esempi

12 Infinito nell arte Il celebre pittore olandese Van Gogh esclamò di rappresentare l infinito nell atto di dipingere sulla sua tela le immense pianure della Francia settentrionale. Egli e molti altri, tra pittori, scrittori, filosofi, matematici ed esploratori, aspirarono sempre a raggiungere l infinito, ad assaporarne un poco della sua immensità.

13 Infinito nella letteratura Il poeta e filosofo italiano Giacomo Leopardi dedicò una sua poesia, forse la sua più bella, all infinito. Si tratta di un componimento che prende spunto dalla natura. Per Leopardi, l infinito non è nulla di trascendentale ed è paragonabile alla quiete, al silenzio e la morte è vista come il passaggio verso l infinito. Questo componimento inizia con una semplice osservazione della natura del colle vicino a casa sua e attraverso diversi effetti stilistici, viene riprodotto l effetto di estensione, d infinito.

14

15 Universo e infinito L Universo è finito o infinito? Per secoli filosofi e teologi hanno tentato di rispondere a questa domanda senza tuttavia riuscire a sciogliere il dubbio. Attualmente non sappiamo se l'universo sia finito o infinito. Prendendo in considerazione il moto delle galassie è possibile determinare se l'universo sia spazialmente finito, e quindi un giorno collasserà su sé stesso, oppure sia infinito, e quindi si espanderà per sempre.

16 Due cose sono infinite: l'universo e la stupidità umana, ma riguardo l'universo ho ancora dei dubbi. Albert Einstein

17 Sitografia:

Infinito, scienza, e paradosso. G. Aldo Antonelli Dipartimento di logica e filosofia della scienza Università della California, Irvine

Infinito, scienza, e paradosso. G. Aldo Antonelli Dipartimento di logica e filosofia della scienza Università della California, Irvine Infinito, scienza, e paradosso G. Aldo Antonelli Dipartimento di logica e filosofia della scienza Università della California, Irvine L infinito nell antichità L infinito fa irruzione prepotentemente con

Dettagli

L insieme N dei numeri naturali è infinito?

L insieme N dei numeri naturali è infinito? L insieme N dei numeri naturali è infinito? L infinito! Nessun altro problema ha mai scosso così profondamente lo spirito umano; nessuna altra idea ha stimolato così proficuamente il suo intelletto; e

Dettagli

Il fascino dell Infinito

Il fascino dell Infinito Il fascino dell Infinito Infinito e cardinalità. Simbolo del nodo d amore, Wallis 1655 Prof. Resta Lorenza Faenza, mercoledì 14 Marzo Alcuni termini Insiemi equipotenti Insieme infinito ed insieme finito

Dettagli

Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria).

Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria). Politecnico di Milano. Facoltà di Ingegneria Industriale. Corso di Analisi e Geometria 2. Sezione D-G. (Docente: Federico Lastaria). Aprile 20 Indice Serie numeriche. Serie convergenti, divergenti, indeterminate.....................

Dettagli

INFINITO & CARDINALITÀ

INFINITO & CARDINALITÀ SAPIENZA - UNIVERSITÀ DI ROMA TFA-A059 Didattica della Matematica II INFINITO & CARDINALITÀ A cura di: Andrei Catalioto Docente: Prof. Paolo Piccinni ANNO ACCADEMICO 2014-2015 Il Paradosso del Hotel Infinito

Dettagli

La nascita della filosofia in Grecia

La nascita della filosofia in Grecia La nascita della filosofia in Grecia Zenone di Elea o di Cizio Socrate Platone Aristotele Anassimandro Parmenide Empedocle Pitagora Filosofi PRESOCRATICI??? Eraclito Filosofi PRESOFISTI?? Filosofi PREPLATONICI???

Dettagli

L infinito nell aritmetica. Edward Nelson Dipartimento di matematica Università di Princeton

L infinito nell aritmetica. Edward Nelson Dipartimento di matematica Università di Princeton L infinito nell aritmetica Edward Nelson Dipartimento di matematica Università di Princeton Poi lo condusse fuori e gli disse: . E soggiunse:

Dettagli

Corso di Analisi Matematica Serie numeriche

Corso di Analisi Matematica Serie numeriche Corso di Analisi Matematica Serie numeriche Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 25 1 Definizione e primi esempi 2 Serie a

Dettagli

1. Particolari terne numeriche e teorema di PITAGORA. 2. Le terne pitagoriche 3. Applicazioni i idel teorema di Pitagora.

1. Particolari terne numeriche e teorema di PITAGORA. 2. Le terne pitagoriche 3. Applicazioni i idel teorema di Pitagora. TEOREMA DI PITAGORA Contenuti 1. Particolari terne numeriche e teorema di PITAGORA. Le terne pitagoriche 3. Applicazioni i idel teorema di Pitagora Competenze 1. Sapere il significato di terna pitagorica

Dettagli

I filosofi greci del IV secolo a.c. come Platone e Aristotele ritenevano che le stelle fossero oggetti celesti eterni e immutabili, che ruotavano

I filosofi greci del IV secolo a.c. come Platone e Aristotele ritenevano che le stelle fossero oggetti celesti eterni e immutabili, che ruotavano Corso di Astronomia I filosofi greci del IV secolo a.c. come Platone e Aristotele ritenevano che le stelle fossero oggetti celesti eterni e immutabili, che ruotavano attorno alla Terra con orbite circolari.

Dettagli

La scuola pitagorica - Storia 1. Gianluigi Bellin

La scuola pitagorica - Storia 1. Gianluigi Bellin La scuola pitagorica - Storia 1 Gianluigi Bellin December 22, 2010 Storia. Di Pitagora sappiamo che nacque a Samo intorno al 570 ac., che viaggiò molto, anche in Egitto ed a Crotone, nel golfo di Taranto,

Dettagli

LA CLASSE II B AL MUSEO GIARDINO DI ARCHIMEDE

LA CLASSE II B AL MUSEO GIARDINO DI ARCHIMEDE stituto Comprensivo Galileo Galilei di Pieve a Nievole LA CLASSE B AL MUSEO GARDNO D ARCHMEDE Firenze - 8 Marzo 2013 by Paolo Sturlini Fonti utilizzate: wikipedia, fotografie Alla scoperta del Giardino

Dettagli

I SISTEMI DI NUMERAZIONE

I SISTEMI DI NUMERAZIONE ISTITUTO DI ISTRUZIONE SUPERIORE G. M. ANGIOY CARBONIA I SISTEMI DI NUMERAZIONE Prof. G. Ciaschetti Fin dall antichità, l uomo ha avuto il bisogno di rappresentare le quantità in modo simbolico. Sono nati

Dettagli

PROGRESSIONI ARITMETCHE E GEOMETRICHE

PROGRESSIONI ARITMETCHE E GEOMETRICHE PROGRESSIONI ARITMETCHE E GEOMETRICHE Prof. Domenico RUGGIERO In questa trattazione, esponiamo i pricipali concetti ed applicazioni di particolari successioni meglio note come progressioni (aritmetiche

Dettagli

1. L efficacia della Matematica per l interpretazione della realtà fisica

1. L efficacia della Matematica per l interpretazione della realtà fisica La Matematica e le sue attrattive per i giovani di oggi 2200 caratteri a pagina di Margherita Guida e Carlo Sbordone 1. L efficacia della Matematica per l interpretazione della realtà fisica Alcuni enti

Dettagli

Patrimonio dell' Umanità dell'unesco SOFIA SILVIA ZAIN TIZIANO

Patrimonio dell' Umanità dell'unesco SOFIA SILVIA ZAIN TIZIANO Patrimonio dell' Umanità dell'unesco SOFIA SILVIA ZAIN TIZIANO Patrimonio dell' Unesco quando e perché Firenze è la città artistica per eccellenza, patria di molti personaggi che hanno fatto la storia

Dettagli

Sistema di numerazione binario, operazioni relative e trasformazione da base due a base dieci e viceversa di Luciano Porta

Sistema di numerazione binario, operazioni relative e trasformazione da base due a base dieci e viceversa di Luciano Porta Sistema di numerazione binario, operazioni relative e trasformazione da base due a base dieci e viceversa di Luciano Porta Anche se spesso si afferma che il sistema binario, o in base 2, fu inventato in

Dettagli

MANDALA PER BAMBINI COLORARE INCOLLARE DISEGNARE SCIENZA E NATURA

MANDALA PER BAMBINI COLORARE INCOLLARE DISEGNARE SCIENZA E NATURA MANDALA PER BAMBINI COLORARE INCOLLARE DISEGNARE SCIENZA E NATURA PROGETTO MANDALA PER BAMBINI CONOSCERSI, GIOCANDO CON IL MANDALA E possibile imparare la geometria, le scienze, un metodo di studio e rappresentare

Dettagli

INTRODUZIONE ALLE SERIE DI FOURIER. poi più in generale la somma dei termini da 0 ad n (che chiamerò s n )

INTRODUZIONE ALLE SERIE DI FOURIER. poi più in generale la somma dei termini da 0 ad n (che chiamerò s n ) INTRODUZIONE ALLE SERIE DI FOURIER. Definizione di Serie Data una successione di numeri reali a k posso considerare la somma dei numeri da 0 a 5 (che chiamerò s 5 ): 5 s 5 = a k = a 0 + a + a + a 3 + a

Dettagli

un nastro di carta prolungabile a piacere e suddiviso in celle vuote o contenenti al più un unico carattere;

un nastro di carta prolungabile a piacere e suddiviso in celle vuote o contenenti al più un unico carattere; Algoritmi 3 3.5 Capacità di calcolo Il matematico inglese Alan Turing (1912-1954) descrisse nel 1936 un tipo di automi, oggi detti macchine di Turing, e fornì una della prime definizioni rigorose di esecuzione

Dettagli

Codici Numerici. Modifica dell'informazione. Rappresentazione dei numeri.

Codici Numerici. Modifica dell'informazione. Rappresentazione dei numeri. Codici Numerici. Modifica dell'informazione. Rappresentazione dei numeri. A partire da questa lezione, ci occuperemo di come si riescono a codificare con sequenze binarie, quindi con sequenze di 0 e 1,

Dettagli

LE COSTANTI E LE LEGGI FISICHE DIPENDONO DAL TEMPO

LE COSTANTI E LE LEGGI FISICHE DIPENDONO DAL TEMPO Pagina 1 di 8 LE COSTANTI E LE LEGGI FISICHE DIPENDONO DAL TEMPO Ing. Pier Franz Roggero, Dott. Michele Nardelli, P.A. Francesco Di Noto Abstract: This paper explains that all physical constants and consequently

Dettagli

Categoria e concetto di numero

Categoria e concetto di numero Due nozioni Università degli Studi di Milano Categoria e concetto di numero Sandro Zucchi 2012-2013 Prima di passare ad esaminare le capacità numeriche degli animali, dobbiamo distinguere due nozioni (e

Dettagli

Alessandro Magno e la civiltà ellenistica, ovvero dalla Macedonia all Impero Universale

Alessandro Magno e la civiltà ellenistica, ovvero dalla Macedonia all Impero Universale 1 e la civiltà ellenistica, ovvero dalla Macedonia all Impero Universale Alla morte di Filippo II, avvenuta nel 336 a.c., salì sul trono della Macedonia il figlio Alessandro. Il giovane ventenne era colto

Dettagli

I SISTEMI DI NUMERAZIONE E LA NUMERAZIONE BINARIA

I SISTEMI DI NUMERAZIONE E LA NUMERAZIONE BINARIA I SISTEMI DI NUMERAZIONE E LA NUMERAZIONE BINARIA Indice Introduzione Il sistema decimale Il sistema binario Conversione di un numero da base 10 a base 2 e viceversa Conversione in altri sistemi di numerazione

Dettagli

*UDQGH]]HUDSSRUWLPLVXUH

*UDQGH]]HUDSSRUWLPLVXUH $OHVVDQGUR&RUGHOOL *UDQGH]]HJHRPHWULFKH I concetti di grandezza e di misura appartengono all esperienza quotidiana. Detto in termini molto semplici, misurare una grandezza significa andare a vedere quante

Dettagli

Pitagora e la scoperta delle grandezze incommensurabili

Pitagora e la scoperta delle grandezze incommensurabili Pitagora e la scoperta delle grandezze incommensurabili Periodo della scoperta: V sec. a.c. Autore della scoperta: Pitagora? Pitagora iniziò la trattazione delle grandezze irrazionali (Proclo). Ippaso

Dettagli

Scuola Primaria C. Collodi - 5 Circolo di Cesena Origami... che passione!!! Classi VA e VB a.s. 2011/12 Insegnanti: Chiara Cola e Giorgetta Giorgetti Il termine origami deriva dalle parole giapponesi Oru

Dettagli

Nascita e morte delle stelle

Nascita e morte delle stelle Nascita e morte delle stelle Se la materia che componeva l universo primordiale fosse stata tutta perfettamente omogenea e diffusa in modo uguale, non esisterebbero né stelle né pianeti. C erano invece

Dettagli

A Ferrara, 14 miliardi di anni fa

A Ferrara, 14 miliardi di anni fa A Ferrara, 14 miliardi di anni fa 1 L eredità di Copernico Quale è la relazione fra l uomo e l universo per ciò che riguarda: x : lo spazio t : il tempo m: la materia m t C X 2 Un viaggio nel tempo t di

Dettagli

3.1 Successioni. R Definizione (Successione numerica) E Esempio 3.1 CAPITOLO 3

3.1 Successioni. R Definizione (Successione numerica) E Esempio 3.1 CAPITOLO 3 CAPITOLO 3 Successioni e serie 3. Successioni Un caso particolare di applicazione da un insieme numerico ad un altro insieme numerico è quello delle successioni, che risultano essere definite nell insieme

Dettagli

LE COMPETENZE ESSENZIALI DI DISEGNO E STORIA DELL ARTE

LE COMPETENZE ESSENZIALI DI DISEGNO E STORIA DELL ARTE LE ESSENZIALI DI DISEGNO E classe prima Liceo scientifico utilizzare regole e tecniche grafiche progettare un minimo percorso grafico costruire un disegno geometrico, impiegando in maniera appropriata

Dettagli

LABORATORIO GIOCHI MATEMATICI ANNO SCOLASTICO 2010/2011 PRIMO QUADRIMESTRE

LABORATORIO GIOCHI MATEMATICI ANNO SCOLASTICO 2010/2011 PRIMO QUADRIMESTRE LABORATORIO GIOCHI MATEMATICI ANNO SCOLASTICO 2010/2011 PRIMO QUADRIMESTRE Le immagini contenute in questa presentazione sono estratte da pagine web, se qualcuno dovesse trovare immagini coperte da copyright,

Dettagli

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Fondamenti di calcolo booleano

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Fondamenti di calcolo booleano Breve introduzione storica Nel 1854, il prof. Boole pubblica un trattato ormai famosissimo: Le leggi del pensiero. Obiettivo finale del trattato è di far nascere la matematica dell intelletto umano, un

Dettagli

BIOMECCANICA Prof. Alessandro Stranieri. Lezione n. 3

BIOMECCANICA Prof. Alessandro Stranieri. Lezione n. 3 LA BIOMECCANICA Prof. Alessandro Stranieri Lezione n. 3 La MECCANICA teorica include tutte le leggi fondamentali del movimento meccanico di corpi solidi inanimati Verso la fine del XVII secolo la teoria

Dettagli

ᵩ LA SEZIONE AUREA Misura dell'armonia matematica

ᵩ LA SEZIONE AUREA Misura dell'armonia matematica ᵩ LA SEZIONE AUREA Misura dell'armonia matematica Il bello della matematica... LA SINTESI: ambiti completamente diversi della matematica convergono nello stesso argomento o concetto i e =0 IL DIVERTIMENTO:

Dettagli

Pitagora, fondatore della stessa scuola che ne prende il nome, nasce a Samo nel 580 a. C.. Compie alcuni viaggi in Egitto dove apprende elementi

Pitagora, fondatore della stessa scuola che ne prende il nome, nasce a Samo nel 580 a. C.. Compie alcuni viaggi in Egitto dove apprende elementi Scuola Pitagoric a Pitagora, fondatore della stessa scuola che ne prende il nome, nasce a Samo nel 580 a. C.. Compie alcuni viaggi in Egitto dove apprende elementi della geometria; in seguito si reca a

Dettagli

La trigonometria prima della trigonometria. Maurizio Berni

La trigonometria prima della trigonometria. Maurizio Berni La trigonometria prima della trigonometria Maurizio Berni 9 maggio 2010 Negli istituti tecnici agrari la trigonometria viene affrontata: nella seconda classe in Disegno e Topografia (risoluzione di triangoli

Dettagli

I LICEO prof. Francesco Barberis

I LICEO prof. Francesco Barberis I LICEO prof. Francesco Barberis Ma guardare che cosa? La REALTA,, i FENOMENI Nel tentativo di coglierne i nessi, i meccanismi, le funzioni e quindi, in ultimo, di coglierne il VERO Il bello è lo splendore

Dettagli

LA FORZA E IL MOTO: ISACC NEWTON UN RE SCONTROSO

LA FORZA E IL MOTO: ISACC NEWTON UN RE SCONTROSO WebQuest Studentessa Guidi Elisabetta Corso Laurea Scienze Formazione Primaria Università di Urbino Carlo Bo LA FORZA E IL MOTO: ISACC NEWTON UN RE SCONTROSO 1) INTRODUZIONE Il 1642 è un anno storico per

Dettagli

Se analizziamo quel segnale luminoso possiamo capire parecchie cose sulla sorgente che lo ha emesso (che si chiama sorgente luminosa).

Se analizziamo quel segnale luminoso possiamo capire parecchie cose sulla sorgente che lo ha emesso (che si chiama sorgente luminosa). Ciao a tutti! Il segnale che arriva, sotto forma di luce visibile, è quello che permette di studiare quei puntini luminosi che vediamo in cielo la notte. Se analizziamo quel segnale luminoso possiamo capire

Dettagli

DAI NUMERI COMPLESSI ALLA REALTA FISICA. (in particolare gli ottonioni)

DAI NUMERI COMPLESSI ALLA REALTA FISICA. (in particolare gli ottonioni) DAI NUMERI COMPLESSI ALLA REALTA FISICA (in particolare gli ottonioni) Gruppo B. Riemann Michele Nardelli, Francesco Di Noto *Gruppo amatoriale per la ricerca matematica sui numeri primi, sulle loro congetture

Dettagli

Giochi matematici. Slot machine

Giochi matematici. Slot machine Giochi matematici di Luca Barletta Slot machine Una slot machine ha 5 finestre; da ogni finestra si può affacciare uno dei 6 simboli possibili. All inizio tutti i simboli sono diversi; lo scopo è quello

Dettagli

ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA. 2. Insiemi numerici. A. A. 2014-2015 L.Doretti

ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA. 2. Insiemi numerici. A. A. 2014-2015 L.Doretti ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 2. Insiemi numerici A. A. 2014-2015 L.Doretti 1 INSIEMI NUMERICI rappresentano la base su cui la matematica si è sviluppata costituiscono le tappe

Dettagli

Campus Invernale Matematica Fisica Astrofisica E Nuove Tecnologie

Campus Invernale Matematica Fisica Astrofisica E Nuove Tecnologie Campus Invernale Matematica Fisica Astrofisica E Nuove Tecnologie 19-21 Dicembre 2014 Bardonecchia Da Galileo al Bosone di Higgs: Il filo conduttore di quattro secoli di scienza Wanda M. Alberico Dipartimento

Dettagli

Le figure seguenti sono tratte dal libro di Gabaglio.

Le figure seguenti sono tratte dal libro di Gabaglio. In Italia, Antonio Gabaglio (1840 1909), professore di statistica all Università di Pavia, pubblica nel 1888 la seconda edizione della sua Teoria generale della statistica, un opera importante per affermare

Dettagli

SERIE NUMERICHE. prof. Antonio Greco 6-11-2013

SERIE NUMERICHE. prof. Antonio Greco 6-11-2013 SERIE NUMERICHE prof. Antonio Greco 6--203 Indice Motivazioni........... 3 Definizione........... 3 Errore tipico........... 3 Un osservazione utile...... 3 Condizione necessaria...... 4 Serie armonica.........

Dettagli

Introduzione. Sul piano analitico, l improvvisazione è un concetto multidimensionale che può assumere diverse forme. Può essere vista come:

Introduzione. Sul piano analitico, l improvvisazione è un concetto multidimensionale che può assumere diverse forme. Può essere vista come: Disciplina, inciampo felice, responsabilità: i tre contributi che fanno da prefazione a questo mio testo colgono ciascuno una componente rilevante del tema dell improvvisazione. Punti di vista peculiari

Dettagli

Relazione attività in classe sul Teorema di Pitagora

Relazione attività in classe sul Teorema di Pitagora Relazione attività in classe sul Teorema di Pitagora Lez. 2/04. Prima Lezione A.S. 2011/2012 Insegnante: Siamo nel VI secolo a.c. in Grecia. In questo periodo visse Pitagora che nacque a Samo e vi restò

Dettagli

Lo Zodiaco ed i suoi dintorni

Lo Zodiaco ed i suoi dintorni Lo Zodiaco ed i suoi dintorni A cura di Antonio Alfano INAF Osservatorio Astronomico di Palermo Associazione Specula Panormitana Cercheremo di capire insieme cosa è lo Zodiaco e quale significato ha assunto

Dettagli

Tra scienza normale e paradigmi : il linguaggio della scienza secondo Kuhn

Tra scienza normale e paradigmi : il linguaggio della scienza secondo Kuhn Tra scienza normale e paradigmi : il linguaggio della scienza secondo Kuhn Martina Aicardi Kliton Marku Classe 4H Docente coordinatore Prof. Bellonotto Liceo Scientifico O. Grassi Savona, 21 maggio 2013

Dettagli

albi illustrati Tutti i numeri del mondo

albi illustrati Tutti i numeri del mondo sinnos editrice Sinnos Soc. Coop. Sociale ONLUS via dei Foscari 18, 00162 Roma tel. 06.44240603 fax 06.62276832 www.sinnos.org sinnos@mclink.it Siamo circondati dai numeri. internet, computer, economia,

Dettagli

È sostenibile sostenere la sostenibilità? Non è uno scioglilingua ma una domanda.

È sostenibile sostenere la sostenibilità? Non è uno scioglilingua ma una domanda. È sostenibile sostenere la sostenibilità? Non è uno scioglilingua ma una domanda. Buonasera a tutti. Questa è la domanda che il gruppo di lavoro, un tempo si chiamavano comitati, dell Associazione Svizzera

Dettagli

Aritmetica e geometria in laboratorio. Esperti: Prof. Addeo Angelo e Zito Gianluigi Tutor: Prof. Ciccone Giovanna e Prof.

Aritmetica e geometria in laboratorio. Esperti: Prof. Addeo Angelo e Zito Gianluigi Tutor: Prof. Ciccone Giovanna e Prof. Aritmetica e geometria in laboratorio Esperti: Prof. Addeo Angelo e Zito Gianluigi Tutor: Prof. Ciccone Giovanna e Prof. Scotti Domenico È un progetto autorizzato per l attuazione dei P.O.N. 08/09 UNIONE

Dettagli

GALILEO E LA MISURA DEL TEMPO

GALILEO E LA MISURA DEL TEMPO GALILEO E LA MISURA DEL TEMPO Inaugurata a Firenze la nuova sezione del Museo Galileo Officine Panerai ha donato al Museo Galileo il primo esemplare di Jupiterium Il Museo Galileo di Firenze, in collaborazione

Dettagli

Grandezze scalari e vettoriali

Grandezze scalari e vettoriali Grandezze scalari e vettoriali 01 - Grandezze scalari e grandezze vettoriali. Le grandezze fisiche, gli oggetti di cui si occupa la fisica, sono grandezze misurabili. Altri enti che non sono misurabili

Dettagli

La spirale iperbolica: Fu descritta per la prima volta da Pierre Varignon (1654-1722). L equazione, espressa in coordinate polari, è del tipo:

La spirale iperbolica: Fu descritta per la prima volta da Pierre Varignon (1654-1722). L equazione, espressa in coordinate polari, è del tipo: Esistono delle forme geometriche che sono in grado, per complessi fattori psicologici non del tutto chiariti, di comunicarci un senso d equilibrio, di gradimento e di benessere. Tra queste analizzeremo

Dettagli

Ponzio a Bologna Maggio 2009

Ponzio a Bologna Maggio 2009 Ponzio a Bologna Maggio 2009 Intervento di Gregorio Scalise Il filosofo Hans Blumenberg parla di esistenza di un inadeguatezza del linguaggio rispetto alla sensazione, topos che ricorre nella poesia, e

Dettagli

La realtà non è come ci appare. carlo rovelli

La realtà non è come ci appare. carlo rovelli La realtà non è come ci appare carlo rovelli 450 a.e.v. Anassimandro cielo terra Anassimandro ridisegna la struttura del mondo Modifica il quadro concettuale in termine del quali comprendiamo i fenomeni

Dettagli

Relatività INTRODUZIONE

Relatività INTRODUZIONE Relatività INTRODUZIONE Un po di ordine Einstein, nel 1905, dopo aver inviato alcuni articoli alla rivista scientifica «Annalen der physik» diventa subito famoso, uno dei quali riguardava la relatività

Dettagli

ENERGIA SOLARE: Centrali fotovoltaiche e termosolari. Istituto Paritario Scuole Pie Napoletane - Anno Scolastico 2012-13 -

ENERGIA SOLARE: Centrali fotovoltaiche e termosolari. Istituto Paritario Scuole Pie Napoletane - Anno Scolastico 2012-13 - ENERGIA SOLARE: Centrali fotovoltaiche e termosolari L A V E R A N A T U R A D E L L A L U C E La luce, sia naturale sia artificiale, è una forma di energia fondamentale per la nostra esistenza e per quella

Dettagli

IL METODO SCIENTIFICO SPERIMENTALE

IL METODO SCIENTIFICO SPERIMENTALE IL METODO SCIENTIFICO SPERIMENTALE A. Completa il testo a buchi inserendo le seguenti parole: metodo - leggi - fenomeni - scienziati - Galileo Galilei - metodo scientifico sperimentale Le persone che si

Dettagli

Software Applicativo. Hardware. Sistema Operativo Software di Base Traduttori e Linguaggi

Software Applicativo. Hardware. Sistema Operativo Software di Base Traduttori e Linguaggi : di base e applicativo L HardWare (monitor, tastiera, circuiti, stampante, ) è il nucleo fondamentale del calcolatore ma da solo non serve a nulla. Bisogna utilizzare il software per poterlo fare funzionare.

Dettagli

GIACOMO LEOPARDI. LEOPARDI.notebook

GIACOMO LEOPARDI. LEOPARDI.notebook GIACOMO LEOPARDI una famiglia di rango nobiliare da...(nasce)... a Recanati nel 1798 PADRE il conte Monaldo Leopardi: uomo molto colto; aveva messo insieme una notevole biblioteca; l'orientamento politico

Dettagli

Serie numeriche. 1 Definizioni e proprietà elementari

Serie numeriche. 1 Definizioni e proprietà elementari Serie numeriche Definizioni e proprietà elementari Sia { } una successione, definita per ogni numero naturale n n. Per ogni n n, consideriamo la somma s n degli elementi della successione di posto d s

Dettagli

OSCURI PREDATORI DI LUCE

OSCURI PREDATORI DI LUCE OSCURI PREDATORI DI LUCE LA CADUTA DI EUCLIDE IN UN BUCO NERO PAOLO DULIO DIPARTIMENTO DI MATEMATICA DI COSA PARLIAMO Ricerca e applicazioni I protagonisti di un viaggio fantastico Geometria dello spazio-tempo

Dettagli

200. Dal Paradosso di Achille e la tartaruga alle serie numeriche: un intervento didattico Raffaella Gigante raffamat@yahoo.it

200. Dal Paradosso di Achille e la tartaruga alle serie numeriche: un intervento didattico Raffaella Gigante raffamat@yahoo.it 200. Dal Paradosso di Achille e la tartaruga alle serie numeriche: un intervento didattico Raffaella Gigante raffamat@yahoo.it Introduzione Nello sviluppo di tale attività, ho cercato di stimolare la costruzione

Dettagli

MATEMATICA TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE COMUNI A TUTTI GLI INDICATORI

MATEMATICA TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE COMUNI A TUTTI GLI INDICATORI INFANZIA I bambini esplorano continuamente la realtà e imparano a riflettere sulle proprie esperienze descrivendole, rappresentandole, riorganizzandole con diversi criteri. Pongono così le basi per la

Dettagli

Sistemi Di Misura Ed Equivalenze

Sistemi Di Misura Ed Equivalenze Sistemi Di Misura Ed Equivalenze (a cura Prof.ssa M.G. Gobbi) Una mamma deve somministrare al figlio convalescente 150 mg di vitamina C ogni giorno. Ha a disposizione compresse da 0,6 g: quante compresse

Dettagli

LE GEOMETRIE NON EUCLIDEE FRA CULTURA, STORIA E DIDATTICA DELLA MATEMATICA. Dario Palladino (Università di Genova)

LE GEOMETRIE NON EUCLIDEE FRA CULTURA, STORIA E DIDATTICA DELLA MATEMATICA. Dario Palladino (Università di Genova) LE GEOMETRIE NON EUCLIDEE FRA CULTURA, STORIA E DIDATTICA DELLA MATEMATICA Dario Palladino (Università di Genova) Seconda parte Momenti della storia dei tentativi di dimostrazione del V postulato di Euclide

Dettagli

Percorso multidisciplinare

Percorso multidisciplinare La luce Faremo degli esperimenti atti ad indagare la natura e le caratteristiche della luce ed esporremo le principali teorie che sono state elaborate su questo argomento dagli scienziati nel corso dei

Dettagli

Lezione 2: come si descrive il trascorrere del tempo

Lezione 2: come si descrive il trascorrere del tempo Lezione 2 - pag.1 Lezione 2: come si descrive il trascorrere del tempo 2.1. Il tempo: un concetto complesso Che cos è il tempo? Sembra una domanda tanto innocua, eppure Sembra innocua perché, in fin dei

Dettagli

NUMERINUMERI E FORME. PON DI MATEMATICA a.s. 2009/2010. Docenti tutor: Altamura Maria Valentino Domenica Esperto: Prof. Azzone Antonella.

NUMERINUMERI E FORME. PON DI MATEMATICA a.s. 2009/2010. Docenti tutor: Altamura Maria Valentino Domenica Esperto: Prof. Azzone Antonella. NUMERINUMERI E FORME PON DI MATEMATICA a.s. 2009/2010 Classi IB-IC IC-IE-IFIF Docenti tutor: Altamura Maria Valentino Domenica Esperto: Prof. Azzone Antonella Il grande libro della natura è scritto in

Dettagli

Domanda e offerta di lavoro

Domanda e offerta di lavoro Domanda e offerta di lavoro 1. Assumere (e licenziare) lavoratori Anche la decisione di assumere o licenziare lavoratori dipende dai costi che si devono sostenere e dai ricavi che si possono ottenere.

Dettagli

1. Siamo a Firenze nel secolo. Adesso leggi l'inizio della storia della famiglia dei Medici e rispondi alle domande

1. Siamo a Firenze nel secolo. Adesso leggi l'inizio della storia della famiglia dei Medici e rispondi alle domande La Firenze dei medici: la famiglia e il Rinascimento Il luogo è Firenze, ma di quale secolo parliamo? Guarda queste tre immagini legate al titolo e decidi a quale secolo si riferiscono: a) XIX sec. d.

Dettagli

A cura della prof. ssa Barone Antonina

A cura della prof. ssa Barone Antonina A cura della prof. ssa Barone Antonina Oggi come 10.000 anni fa, l uomo si pone domande sull universo che lo circonda. Come si è formato? Qual è la sua struttura? Di che cosa è fatto? Le competenze Una

Dettagli

SOCRATE E LE LEGGI DELLA CITTA. L esempio di un cittadino nell antichità

SOCRATE E LE LEGGI DELLA CITTA. L esempio di un cittadino nell antichità SOCRATE E LE LEGGI DELLA CITTA L esempio di un cittadino nell antichità Poiché Socrate non ha lasciato testi scritti, conosciamo la sua vita e il suo pensiero attraverso le opere di Platone, famoso filosofo,

Dettagli

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni.

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni. MATEMATICA. Sistemi lineari in due equazioni due incognite. Date due equazioni lineari nelle due incognite x, y come ad esempio { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un

Dettagli

La condivisione del rischio e la sua ripartizione su ampia scala

La condivisione del rischio e la sua ripartizione su ampia scala La condivisione del rischio e la sua ripartizione su ampia scala 1 ARGOMENTI DI QUESTA LEZIONE Questa lezione propone esplora due problemi fondamentali: Se esiste un rischio in una transazione chi lo deve

Dettagli

CURRICOLO MATEMATICA

CURRICOLO MATEMATICA 1 CURRICOLO MATEMATICA Competenza 1 al termine della scuola dell Infanzia 2 NUMERI Raggruppare, ordinare, contare, misurare oggetti, grandezze ed eventi direttamente esperibili. Utilizzare calendari settimanali

Dettagli

Erwin Schrödinger Che cos è la vita? La cellula vivente dal punto di vista fisico tr. it. a cura di M. Ageno, Adelphi, Milano 2008, pp.

Erwin Schrödinger Che cos è la vita? La cellula vivente dal punto di vista fisico tr. it. a cura di M. Ageno, Adelphi, Milano 2008, pp. RECENSIONI&REPORTS recensione Erwin Schrödinger Che cos è la vita? La cellula vivente dal punto di vista fisico tr. it. a cura di M. Ageno, Adelphi, Milano 2008, pp. 154, 12 «Il vasto e importante e molto

Dettagli

AREA MATEMATICO-SCIENTIFICO-TECNOLOGICA MATEMATICA

AREA MATEMATICO-SCIENTIFICO-TECNOLOGICA MATEMATICA AREA MATEMATICO-SCIENTIFICO-TECNOLOGICA MATEMATICA TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE AL TERMINE DELLA SCUOLA SECONDARIA DI PRIMO GRADO. L alunno ha rafforzato un atteggiamento positivo rispetto

Dettagli

L ATOMO. Risponde (o almeno ci prova)

L ATOMO. Risponde (o almeno ci prova) L ATOMO Di cosa sono fatte le cose? Come si è arrivati a capire gli atomi? Com è fatto un atomo? Quanto è grande un atomo? Che atomi esistono in natura? Perché esistono gli atomi? Risponde (o almeno ci

Dettagli

I numeri che si ottengono successivamente sono 98-2 = 96 4 = 92 8 = 84 16 = 68 32 = 36 e ci si ferma perché non possibile togliere 64

I numeri che si ottengono successivamente sono 98-2 = 96 4 = 92 8 = 84 16 = 68 32 = 36 e ci si ferma perché non possibile togliere 64 Problemini e indovinelli 2 Le palline da tennis In uno scatolone ci sono dei tubi che contengono ciascuno 4 palline da tennis.approfittando di una offerta speciale puoi acquistare 4 tubi spendendo 20.

Dettagli

Il DNA: la molecola della vita

Il DNA: la molecola della vita Il DNA: la molecola della vita Gli acidi nucleici comprendono il DNA (acido desossiribonucleico) e l RNA (acido ribonucleico). Sono costituiti da molecole molto grandi, formate da unità dette nucleotidi,

Dettagli

Scuola Primaria Conta oggetti o eventi, a voce e a mente, in senso progressivo e regressivo e per salti di due, tre ;

Scuola Primaria Conta oggetti o eventi, a voce e a mente, in senso progressivo e regressivo e per salti di due, tre ; Primo anno Secondo anno Terzo anno Primo anno MATEMATICA Scuola dell Infanzia Scuola Primaria Conta oggetti o eventi, a voce e a mente, in senso progressivo e regressivo e per salti di due, tre ; legge

Dettagli

Acqua e Arte (qualche riflessione)

Acqua e Arte (qualche riflessione) Acqua e Arte (qualche riflessione) L'acqua è l'elemento naturale intorno al quale ruota la vita di ogni essere vivente, ed è inoltre uno degli elementi interpretativi più forti nella letteratura, nell'architettura,

Dettagli

SINCRONICITÀ autori vari

SINCRONICITÀ autori vari SINCRONICITÀ autori vari La sincronicità è un termine introdotto da Carl Jung nel 1950 per descrivere una connessione fra eventi, psichici o oggettivi, che avvengono in modo sincrono, cioè nello stesso

Dettagli

La BIBBIA è il libro più diffuso nel mondo.

La BIBBIA è il libro più diffuso nel mondo. La BIBBIA è il libro più diffuso nel mondo. La parola BIBBIA deriva da una parola greca (biblia) che vuol dire I LIBRI. Possiamo dire, infatti che la Bibbia è una BIBLIOTECA perché raccoglie 73 libri.

Dettagli

URANO E NETTUNO. I due pianeti glaciali del Sistema Solare. Ricerca Astronomia" 1

URANO E NETTUNO. I due pianeti glaciali del Sistema Solare. Ricerca Astronomia 1 URANO E NETTUNO I due pianeti glaciali del Sistema Solare Ricerca Astronomia" 1 Introduzione: Urano e Nettuno fanno parte dei pianeti recenti, ovvero quelli scoperti nel 19 secolo. Sono infatti stati i

Dettagli

LA GEOMETRIA NELLE PIASTRELLE

LA GEOMETRIA NELLE PIASTRELLE LA GEOMETRIA NELLE PIASTRELLE Supponiamo di dover pavimentare delle superfici molto estese e vogliamo evitare le classiche composizioni quadrate, rettangolari o a spina di pesce, per rendere meno banale

Dettagli

Luca Zeffiro 4C Liceo Scientifico Galileo Galilei

Luca Zeffiro 4C Liceo Scientifico Galileo Galilei Luca Zeffiro 4C Il problema sulla conservazione del moto nacque con Cartesio: nei suoi «Principia philosophiae» egli affermò la conservazione della quantità di moto a partire da Dio: gli errori presenti

Dettagli

Base 7 - Base 10. Base 10. + ADDIZIONE - SOTTRAZIONE / DIVISIONE x MOLTIPLICAZIONE

Base 7 - Base 10. Base 10. + ADDIZIONE - SOTTRAZIONE / DIVISIONE x MOLTIPLICAZIONE Base 7 - Base 10 C o m e c o m p r e n d e r e l e d i f f e r e n z e t r a B a s e 7 e B a s e 1 0? Base 10 Utilizzato sin dal tempo dei Sumeri, il sistema a Base 10 nasce presumibilmente solo perché

Dettagli

UD 3.4b: Trattabilità e Intrattabilità. Dispense, cap. 4.2

UD 3.4b: Trattabilità e Intrattabilità. Dispense, cap. 4.2 UD 3.4b: Trattabilità e Intrattabilità Dispense, cap. 4.2 Problemi Intrattabili Esistono problemi che, pur avendo un algoritmo di soluzione, non forniranno mai una soluzione in tempi ragionevoli nemmeno

Dettagli

GUIDA A LOGICA. Indicazioni preliminari per lo svolgimento della prima batteria di test

GUIDA A LOGICA. Indicazioni preliminari per lo svolgimento della prima batteria di test GUIDA A LOGICA Indicazioni preliminari per lo svolgimento della prima batteria di test L esame di Stato è certamente uno dei traguardi più significativi nella vita di uno studente e il suo superamento

Dettagli

Una lezione simulata per il concorso a cattedra. TITOLO: la storia di un triangolo

Una lezione simulata per il concorso a cattedra. TITOLO: la storia di un triangolo Una lezione simulata per il concorso a cattedra Il teorema di Pitagora di Enrico Maranzana I nuovi regolamenti di riordino pongono l attività di laboratorio a fondamento del lavoro del docente. Il laboratorio

Dettagli

GIACOMO LEOPARDI MATERIALISMO E RELIGIONE CRISTIANA

GIACOMO LEOPARDI MATERIALISMO E RELIGIONE CRISTIANA GIACOMO LEOPARDI MATERIALISMO E RELIGIONE CRISTIANA scelta ragionata dallo Zibaldone Introduzione di Dante Lepore cm. 14x21, pp. 100 Offerta minima 10 *** Leopardi mette in guardia dal ruolo nefasto della

Dettagli

Percorsi didattici di geometria dello spazio: lavorando con CABRI 3D

Percorsi didattici di geometria dello spazio: lavorando con CABRI 3D Roma, 6-7 giugno 2007 Incontro su Ricerche in didattica della matematica con l uso dei DGS Percorsi didattici di geometria dello spazio: lavorando con CABRI 3D Luigi Tomasi L.S. G. Galilei Adria SSIS Ferrara

Dettagli

Competenza chiave europea: MATEMATICA. Scuola Primaria. DISCIPLINE DI RIFERIMENTO: MATEMATICA DISCIPLINE CONCORRENTI: tutte

Competenza chiave europea: MATEMATICA. Scuola Primaria. DISCIPLINE DI RIFERIMENTO: MATEMATICA DISCIPLINE CONCORRENTI: tutte Competenza chiave europea: MATEMATICA Scuola Primaria DISCIPLINE DI RIFERIMENTO: MATEMATICA DISCIPLINE CONCORRENTI: tutte TAB. A TRAGUARDI PER LO SVILUPPO DELLE COMPETENZE al termine della Scuola Primaria

Dettagli