La simmetria assiale classe IV Scuola primaria A.M.Menconi I.C.Taliercio Anno Scolastico 20014/2015 insegnante Giovanetti Alessandra

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "La simmetria assiale classe IV Scuola primaria A.M.Menconi I.C.Taliercio Anno Scolastico 20014/2015 insegnante Giovanetti Alessandra"

Transcript

1

2 La simmetria assiale classe IV Scuola primaria A.M.Menconi I.C.Taliercio Anno Scolastico 20014/2015 insegnante Giovanetti Alessandra

3 CURRICOLO VERTICALE: GEOMETRIA

4 OBIETTIVI: Riconoscere figure simmetriche. Costruire coppie di figure simmetriche. Identificare elementi significativi di una figura tramite simmetrie.

5 Attività laboratoriale, metodo euristico.

6 MATERIALI: Carta bianca, e lucida, quadernone, matita gomma,pennarelli. APPARECCHI: LIM STRUMENTI: Righello, geopiano, spilli, specchi di dimensione 15x15.

7 AMBIENTE: Aula

8 Tempo impiegato: 4 ore gruppo LSS, 6 ore progettazione,7lezioni da 2 ore ciascuna nel periodo febbraio Marzo,10 ore documentazione.

9 PRIMA LEZIONE: Introduzione del concetto di simmetria assiale attraverso attività pratiche e manipolative. OCCORRENTE: fogli di carta bianca, spilli e righello carta lucida.

10 Piegare il foglio in modo casuale e riaprirlo: la piegatura è una retta che divide il foglio in due parti o semipiani. Segnare su un semipiano due punti A e B e un punto C sull altro semipiano, ripiegare il foglio e con uno spillo forare i due semipiani sovrapposti nei punti A,B,C e dispiegare il foglio. Il foro fatto in A genera nell altro semipiano un foro corrispondente che chiamiamo A, così da B otteniamo B e da C otteniamo C.

11 Vengono a questo punto poste delle domande stimolo agli alunni: Se A è in un semipiano dove troverò il punto corrispondente? Ogni punto avrà un solo corrispondente rispetto alla retta individuata? Se cambio retta di riferimento anche il punto corrispondente ad A cambierà o resterà lo stesso?

12 Foto piegatura carta

13 Da questo abbiamo visto che un punto A di un semipiano corrisponde un punto A nell altro semipiano (Livia Marco) Abbiamo misurato la distanza tra A e A e abbiamo visto che la piegatura era alla stessa distanza tra A e A (Fabio, Giacomo). Tracciando una figura su un semipiano e forando i vertici abbiamo trovato la stessa figura sull altro semipiano (Jacopo Alessandro

14

15

16 I ragazzi stanno facendo la piegatura della carta per trovare la retta che sarà poi l asse di simmetria.

17 Piegatura della carta

18 SECONDA LEZIONE Ho dato ai bambini un foglio di carta bianca loro l hanno piegata casualmente e hanno poi disegnato l asse di simmetria r,su cui hanno evidenziato due punti A e B e una qualsiasi figura F.

19

20 Per determinare la figura simmetrica F hanno sovrapposto al primo foglio un foglio di carta lucida e ricalcato r con i suoi punti A e B ed F.

21

22 Dopo varie prove hanno capito che dovevano ribaltato il foglio di carta lucida riportando r su r ma in modo tale che i punti A e B dei due fogli si sovrapponessero. La figura F del foglio trasparente dopo il ribaltamento dà la posizione della figura simmetrica F cercata.

23

24

25

26

27 Dopo aver fatto questa esperienza abbiamo concluso che: i punti A e B sono fondamentali per ottenere una figura simmetrica a quella disegnata e ci sono stati di grande aiuto per capire che dovevamo ribaltare la figura rispetto all asse di simmetria in modo che dopo il ribaltamento ogni punto dell asse tornasse su se stesso e per questo bastava che i due punti tornassero su se stessi.

28 ASSE DI SIMMETRIA ALLA FIGURA Piega un foglio a metà. Apri il foglio. Colora di rosso la linea di piegatura Richiudi il foglio. Con il foglio piegato disegna una figura accostata di piegatura

29 Tieni il foglio piegato e ritaglia la figura. Apri il foglio

30 La linea di piegatura è l ASSE DI SIMMETRIA. L ASSE DI SIMMETRIA divide la figura a META

31 TERZA LEZIONE I bambini hanno disegnato delle figure non regolari che poi hanno osservato allo specchio

32 Un'esperienza importante, a questo livello, è utilizzare lo specchio come asse di simmetria

33 QUARTA LEZIONE Attività pratiche con il geopiano. Alcuni genitori della classe hanno costruito dei geopiani. Inizialmente gli alunni hanno formato delle figure geometriche utilizzando degli elasticini, per prendere confidenza con lo strumento.

34 Ecco le nostre figure

35

36 Successivamente è stato proposta un attività di gioco a coppie:è stato tracciato con l elastico l asse di simmetria e loro a turno dovevano toccare il chiodo simmetrico rispetto a quello indicato dal compagno.

37

38

39 Hanno continuato il lavoro a coppie formando figure simmetriche rispetto all asse. Per tutta la durata dell attività ci sono stati momenti di difficoltà,commessi errori,sorti dei dubbi,che sono stati di volta in volta chiariti.

40

41

42

43

44

45 QUINTA LEZIONE Sul geopiano abbiamo formato diverse figure geometriche e abbiamo cercato gli assi di simmetria interna e abbiamo visto che non tutte hanno assi di simmetria.

46 Il triangolo scaleno non ha assi di simmetria

47 Da questa esperienza è emerso che le figure che non hanno lati uguali non hanno assi di simmetria (Sofia).

48 IL triangolo isoscele ha un asse di simmetria

49 Il triangolo equilatero ha tre assi di simmetria

50 Nel rombo troviamo due assi di simmetria

51 Nel quadrato ci sono quattro assi di simmetria

52 Il rettangolo ha due assi di simmetria. Le diagonali non sono assi di simmetria.

53 SESTA LEZIONE Attraverso la sovrapposizione e piegatura di figure geometriche abbiamo verificato quanto osservato con il geopiano.

54 Con la piegatura abbiamo verificato quanto osservato con il geopiano

55

56

57 SETTIMA LEZIONE Con attività pratiche manipolative di consolidamento, sono quindi stati corretti gli errori che potevano essere stati fatti.

58 VERIFICHE FINALI Sono state assegnate tre schede di verifiche finali e svolto dei giochi sulla LIM.

59

60 Disegna l asse di simmatria della figura

61

62 Nella prima verifica gli alunni dovevano disegnare figure simmetriche rispetto agli assi. Tutti i ragazzi hanno svolto la verifica senza trovare difficoltà

63 Nella seconda verifica la richiesta è stata di disegnare l asse di simmetria relativo alle figure. Anche qui non si sono riscontrate difficoltà e tutti hanno fatto la verifica senza errori.

64 La terza scheda è tratta dalle prove invalsi degli anni precedenti. La prova è stata svolta senza particolari difficoltà.

65 Gli alunni sono stati motivati attraverso le varie attività manipolative ed esperienze dirette: fogli di carta,specchi,geopiani e attraverso la ricerca di simmetrie nella realtà circostante nella natura( FOGLIE,INSETTI ECC )

66 Posso quindi concludere che hanno sostenuto la prova 50 alunni su 51, di questi 40 hanno ottenuto votazioni tra 9 e 10 gli altri tra

67 Gli esiti finali sono stati più che positivi. Attraverso pratiche manipolative sono stati corretti gli errori che potevano essere stati fatti. Gli alunni hanno partecipato con interesse e grande motivazione.

Prodotto realizzato con il contributo della Regione Toscana nell'ambito dell'azione regionale di sistema. Laboratori del Sapere Scientifico

Prodotto realizzato con il contributo della Regione Toscana nell'ambito dell'azione regionale di sistema. Laboratori del Sapere Scientifico Prodotto realizzato con il contributo della Regione Toscana nell'ambito dell'azione regionale di sistema Laboratori del Sapere Scientifico 1 Istituto Comprensivo di Greve in Chianti Scuola primaria G.Bucciolini

Dettagli

Prodo3o realizzato con il contributo della Regione Toscana nell'ambito dell'azione regionale di sistema. Laboratori del Sapere Scien0fico

Prodo3o realizzato con il contributo della Regione Toscana nell'ambito dell'azione regionale di sistema. Laboratori del Sapere Scien0fico Prodo3o realizzato con il contributo della Regione Toscana nell'ambito dell'azione regionale di sistema Laboratori del Sapere Scien0fico LA SEZIONE AUREA IN CLASSE I numeri e la geometria CLASSI 3 - Scuola

Dettagli

POTENZIAMENTO VISUO-SPAZIALE

POTENZIAMENTO VISUO-SPAZIALE POTENZIAMENTO VISUO-SPAZIALE Spunti ricavati dalla bozza (fornita da Marta) per potenziare le carenze visuo-spaziali di alunni di seconda media Docente Gisella Maculan Obiettivo : Con questa sezione si

Dettagli

Attività laboratoriali per i nuovi curricoli di matematica

Attività laboratoriali per i nuovi curricoli di matematica Attività laboratoriali per i nuovi curricoli di matematica Ricerca Azione a.s. 2010/2011 U.S.P. Bergamo - Centro MatNet Università di Bergamo SIMMETRIE NEI POLIGONI Docenti che hanno collaborato all elaborazione

Dettagli

4.3 PROBLEMI TIPO. 1. Determinare l asse di simmetria, data una figura e la sua simmetrica. (scheda 2)

4.3 PROBLEMI TIPO. 1. Determinare l asse di simmetria, data una figura e la sua simmetrica. (scheda 2) 4.3 PROBLEMI TIPO Le situazioni descritte rappresentano alcuni problemi standard che riguardano lo studio della simmetria assiale. Considerata la potenzialità del software Cabrì Geometre e la possibilità

Dettagli

Prodotto realizzato con il contributo della Regione Toscana nell'ambito dell'azione regionale di sistema. Laboratori del Sapere Scientifico

Prodotto realizzato con il contributo della Regione Toscana nell'ambito dell'azione regionale di sistema. Laboratori del Sapere Scientifico Prodotto realizzato con il contributo della Regione Toscana nell'ambito dell'azione regionale di sistema Laboratori del Sapere Scientifico Corpo Arte Geometria Docenti: Moracchioli Stefania e Tarantola

Dettagli

La misura della lunghezza della poligonale si chiama perimetro del poligono. Due poligoni che hanno lo stesso perimetro si chiamano isoperimetrici.

La misura della lunghezza della poligonale si chiama perimetro del poligono. Due poligoni che hanno lo stesso perimetro si chiamano isoperimetrici. Perimetro La misura della lunghezza della poligonale si chiama perimetro del poligono. Quindi è la somma delle lunghezze dei lati. Due poligoni che hanno lo stesso perimetro si chiamano isoperimetrici.

Dettagli

Si chiamano poligoni regolari quei poligoni che sono equilateri ed equiangoli.

Si chiamano poligoni regolari quei poligoni che sono equilateri ed equiangoli. 6.4 I poligoni regolari Si chiamano poligoni regolari quei poligoni che sono equilateri ed equiangoli. Poligoni regolari: triangolo equilatero; quadrato; pentagono regolare; esagono regolare; ettagono

Dettagli

Principali Definizioni e Teoremi di Geometria

Principali Definizioni e Teoremi di Geometria Principali Definizioni e Teoremi di Geometria Segmento (definizione) Si dice segmento di estremi A e B l insieme costituito dai punti A e B e da tutti i punti della retta AB compresi tra A e B. Angolo

Dettagli

Prodotto realizzato con il contributo della Regione Toscana nell'ambito dell'azione regionale di sistema. Laboratori del Sapere Scientifico

Prodotto realizzato con il contributo della Regione Toscana nell'ambito dell'azione regionale di sistema. Laboratori del Sapere Scientifico Prodotto realizzato con il contributo della Regione Toscana nell'ambito dell'azione regionale di sistema Laboratori del Sapere Scientifico LO SPAZIO e IL PIANO LE VISTE LE SEZIONI GLI SVILUPPI A. S. 2015

Dettagli

LE TRASFORMAZIONI GEOMETRICHE

LE TRASFORMAZIONI GEOMETRICHE LE TRASFORMAZIONI GEOMETRICHE LA SIMMETRIA ASSIALE Definizione: il simmetrico P di un punto P, rispetto alla simmetria assiale di asse r gode delle seguenti proprietà: P e P sono equidistanti da r e il

Dettagli

LA GEOMETRIA EUCLIDEA. Seminario Cidi, Roma 13/05/ prof.ssa Dario Liliana 1

LA GEOMETRIA EUCLIDEA. Seminario Cidi, Roma 13/05/ prof.ssa Dario Liliana 1 LA GEOMETRIA EUCLIDEA Seminario Cidi, Roma 13/05/2013 - prof.ssa Dario Liliana 1 Le difficoltà degli studenti nell apprendere la geometria nel 1 anno della scuola secondaria Gli argomenti della geometria

Dettagli

LA CLASSIFICAZIONE. DEI QUADRILATERI Luca Fioretti seconda classe, secondaria primo grado

LA CLASSIFICAZIONE. DEI QUADRILATERI Luca Fioretti seconda classe, secondaria primo grado LA CLASSIFICAZIONE DEI QUADRILATERI Luca Fioretti seconda classe, secondaria primo grado Perché un lavoro di geometria sulla classificazione dei quadrilateri? Perché la maggior parte dei ragazzi incontra

Dettagli

GEOGEBRA. Nella scuola del Primo Ciclo

GEOGEBRA. Nella scuola del Primo Ciclo GEOGEBRA Nella scuola del Primo Ciclo GEOGEBRA GeoGebra è un software gratuito di matematica dinamica. In questi due incontri saranno utilizzati solo gli strumenti geometrici Con questo software è possibile

Dettagli

I quadrilateri Punti notevoli di un triangolo

I quadrilateri Punti notevoli di un triangolo I quadrilateri Capitolo Quadrilateri 1 erifica per la classe prima COGME............................... ME............................. Quesiti 1.a ero o falso? 1. La somma degli angoli interni di un ottagono

Dettagli

Prodotto realizzato con il contributo della Regione Toscana nell'ambito dell'azione regionale di sistema. Laboratori del Sapere Scientifico

Prodotto realizzato con il contributo della Regione Toscana nell'ambito dell'azione regionale di sistema. Laboratori del Sapere Scientifico Prodotto realizzato con il contributo della Regione Toscana nell'ambito dell'azione regionale di sistema Laboratori del Sapere Scientifico LE SIMILITUDINI Figure con la stessa forma e dimensioni diverse:

Dettagli

Cosa puoi dire del quadrilatero ABCD? Come sono i lati, le diagonali, gli angoli?

Cosa puoi dire del quadrilatero ABCD? Come sono i lati, le diagonali, gli angoli? Dal parallelogramma al rombo (fase 1 e 2) Fase 1 Disegna due circonferenze concentriche c e c di centro O; disegna su c un punto A e su c un punto B; traccia la retta r passante per i punti A e O, chiama

Dettagli

Costruzioni geometriche. (Teoria pag , esercizi )

Costruzioni geometriche. (Teoria pag , esercizi ) Costruzioni geometriche. (Teoria pag. 81-96, esercizi 141-153 ) 1) Costruzione con squadra e riga. a) Rette parallele. Ricorda: due rette sono parallele quando.... oppure quando hanno la stessa. Matematicamente

Dettagli

SCUOLA SECONDARIA DI SECONDO GRADO. Contenuti Attività Metodo Strumenti Durata (in ore)

SCUOLA SECONDARIA DI SECONDO GRADO. Contenuti Attività Metodo Strumenti Durata (in ore) SCUOLA SECONDARIA DI SECONDO GRADO Obiettivi di apprendimento Contenuti Attività Metodo Strumenti Durata (in ore) Valutazione degli obiettivi di apprendimento Valutazione della competenza Conoscere i poligoni

Dettagli

Progetto Pilota Valutazione della scuola italiana. Anno Scolastico PROVA DI MATEMATICA. Scuola Secondaria Inferiore.

Progetto Pilota Valutazione della scuola italiana. Anno Scolastico PROVA DI MATEMATICA. Scuola Secondaria Inferiore. Gruppo di lavoro per la predisposizione degli indirizzi per l attuazione delle disposizioni concernenti la valutazione del servizio scolastico Progetto Pilota Valutazione della scuola italiana Anno Scolastico

Dettagli

1 La traslazione. 2 La composizione di traslazioni. 3 La rotazione

1 La traslazione. 2 La composizione di traslazioni. 3 La rotazione 1 La traslazione Per poter applicare una traslazione ad una generica figura geometrica si deve: ± creare il vettore di traslazione AB mediante il comando Vettore tra due punti; ± cliccare con il mouse

Dettagli

Kangourou Italia Gara del 17 marzo 2016 Categoria Student Per studenti di quarta e quinta della scuola secondaria di secondo grado

Kangourou Italia Gara del 17 marzo 2016 Categoria Student Per studenti di quarta e quinta della scuola secondaria di secondo grado Kangourou Italia Gara del 17 marzo 2016 Categoria Student Per studenti di quarta e quinta della scuola secondaria di secondo grado I quesiti dal N. 1 al N. 10 valgono 3 punti ciascuno 1. La somma degli

Dettagli

GEOMETRIA CLASSE IV B A.S.

GEOMETRIA CLASSE IV B A.S. GEOMETRIA CLASSE IV B A.S. 2014/15 Insegnante: Stallone Raffaella RETTA, SEMIRETTA E SEGMANTO La retta è illimitata, non ha né inizio né fine. Si indica con una lettera minuscola. La semiretta è ciascuna

Dettagli

Simmetrie assiali, poligoni e curve simmetrici. Daniela Valenti, Treccani scuola

Simmetrie assiali, poligoni e curve simmetrici. Daniela Valenti, Treccani scuola Simmetrie assiali, poligoni e curve simmetrici Daniela Valenti, Treccani scuola 1 Un primo video per esplorare il tema Simmetria: un tema vasto che porta verso l arte, la fisica, la biologia, Ecco un breve

Dettagli

Prodotto realizzato con il contributo della Regione Toscana nell'ambito dell'azione regionale di sistema. Laboratori del Sapere Scientifico

Prodotto realizzato con il contributo della Regione Toscana nell'ambito dell'azione regionale di sistema. Laboratori del Sapere Scientifico Prodotto realizzato con il contributo della Regione Toscana nell'ambito dell'azione regionale di sistema Laboratori del Sapere Scientifico DISEGNIAMO I NUMERI Costruzione e rappresentazione dei numeri

Dettagli

La composizione di isometrie

La composizione di isometrie La composizione di isometrie Quello che è più interessante in una trasformazione geometrica è studiare quali effetti ha sulle figure e soprattutto valutare quali proprietà delle figure di partenza si conservano

Dettagli

Assumendo 1 u = 1 cm, calcola il perimetro e l area del quadrilatero ABCD.

Assumendo 1 u = 1 cm, calcola il perimetro e l area del quadrilatero ABCD. Esercizio 1a Disegna un piano cartesiano ortogonale ed in esso inserisci i punti che seguono, poi uniscili nell ordine dato: Secondo te che tipo di quadrilatero hai ottenuto? Perché? Quali sono le sue

Dettagli

Introduzione. Nome. per la geometria. per le frazioni

Introduzione. Nome. per la geometria. per le frazioni Introduzione Questo volume contiene una serie di esercizi per gli alunni della scuola elementare dalla classe terza in poi, che mirano a consolidare i concetti matematici di base di geometria e di algebra

Dettagli

Prodotto realizzato con il contributo della Regione Toscana nell'ambito dell'azione regionale di sistema. Laboratori del Sapere Scientifico

Prodotto realizzato con il contributo della Regione Toscana nell'ambito dell'azione regionale di sistema. Laboratori del Sapere Scientifico Prodotto realizzato con il contributo della Regione Toscana nell'ambito dell'azione regionale di sistema Laboratori del Sapere Scientifico Dai polimini al calcolo della superficie Classe Quinta Obiettivi

Dettagli

LE FIGURE PIANE CON GLI OCCHI DEI BAMBINI

LE FIGURE PIANE CON GLI OCCHI DEI BAMBINI LE FIGURE PIANE CON GLI OCCHI DEI BAMBINI Monica Falleri CLASSE V a.s. 2014-15 METODOLOGIA LABORATORIALE che utilizza il PROBLEMA come MOTORE dell ESPLORAZIONE, della SCOPERTA, della COSTRUZIONE DI CONOSCENZA

Dettagli

ESERCITAZIONE INVALSI GEOMETRIA PIANA FEBBRAIO 2012

ESERCITAZIONE INVALSI GEOMETRIA PIANA FEBBRAIO 2012 ESERCITAZIONE INVALSI GEOMETRIA PIANA FEBBRAIO 2012 G 1 : Considera la corona circolare formata da due cerchi aventi il raggio uno il doppio dell altro, l angolo al centro â e le due corde AB e A B. La

Dettagli

SISTEMI DI RIFERIMENTO SU UNA RETTA E SU UN PIANO

SISTEMI DI RIFERIMENTO SU UNA RETTA E SU UN PIANO DIPARTIMENTO DI INGEGNERIA CIVILE PRECORSO DI MATEMATICA ANNO ACCADEMICO 013-014 ESERCIZI RELATIVI A SISTEMI DI RIFERIMENTO SU UNA RETTA E SU UN PIANO Esercizio 1: Fissato su una retta un sistema di riferimento

Dettagli

Scuola Media Fermi Villasanta (MB) Classe I D Insegnante di riferimento: Prof.ssa marina Rossi Ricercatore: dott. Alexandro Redaelli Partecipanti:

Scuola Media Fermi Villasanta (MB) Classe I D Insegnante di riferimento: Prof.ssa marina Rossi Ricercatore: dott. Alexandro Redaelli Partecipanti: 11010 Scuola Media Fermi Villasanta (MB) Classe I D Insegnante di riferimento: Prof.ssa marina Rossi Ricercatore: dott. Alexandro Redaelli Partecipanti: Daniele Carnevale, Giulia Cervo, Martina De Maria,

Dettagli

LA MISURA. Confrontare Misurare Calcolare 1 anno di liceo scientifico. Liceo Buonarroti - Pisa

LA MISURA. Confrontare Misurare Calcolare 1 anno di liceo scientifico. Liceo Buonarroti - Pisa LA MISURA Confrontare Misurare Calcolare 1 anno di liceo scientifico Liceo Buonarroti - Pisa 2 LA MISURA Il percorso è stato proposto come primo argomento del corso di Fisica a 3 classi prime liceo scientifico,

Dettagli

Teorema di Pitagora. Triangoli con angoli di 45, 30 e 60. Eserciziario con soluzioni. - 1

Teorema di Pitagora. Triangoli con angoli di 45, 30 e 60. Eserciziario con soluzioni. - 1 Teorema di Pitagora. Triangoli con angoli di 45, 30 e 60. Eserciziario con soluzioni. - 1 Raccolta di problemi di geometra piana sul teorema di Pitagora applicato ai triangolo con angoli di 45, 30 e 60

Dettagli

MESSA A PUNTO DI UNA SITUAZIONE A-DIDATTICA

MESSA A PUNTO DI UNA SITUAZIONE A-DIDATTICA MESSA A PUNTO DI UNA SITUAZIONE A-DIDATTICA Una situazione a-didattica è una situazione che mette l allievo in un conflitto cognitivo con la conoscenza, costringendolo a costruirsi modelli revisionali.

Dettagli

Attività: Artigiano, operaio o imprenditore? Materiale: Schede ruolo degli artigiani da fotocopiare e distribuire nella prima fase del.

Attività: Artigiano, operaio o imprenditore? Materiale: Schede ruolo degli artigiani da fotocopiare e distribuire nella prima fase del. Attività: Artigiano, operaio o imprenditore? Materiale: Schede ruolo degli artigiani da fotocopiare e distribuire nella prima fase del gioco 1 Il tessitore di cubi (indicare il nome) I vostri cubi sono

Dettagli

SCHEMA RIASSUNTIVO SUI QUADRILATERI

SCHEMA RIASSUNTIVO SUI QUADRILATERI SCHEMA RIASSUNTIVO SUI QUADRILATERI ( a cura della prof.sa Carmelisa Destradis ) SI CHIAMA QUADRILATERO UNA FIGURA PIANA CON QUATTRO LATI E QUATTRO ANGOLI. LA SOMMA DEGLI ANGOLI INTERNI DI QUALUNQUE QUADRILATERO

Dettagli

Test di autovalutazione

Test di autovalutazione Test di autovalutazione Test 0 10 0 30 0 0 0 70 80 90 100 n Il mio punteggio, in centesimi, è n Rispondi a ogni quesito segnando una sola delle alternative. n onfronta le tue risposte con le soluzioni.

Dettagli

Geometria figure piane Raccolta di esercizi

Geometria figure piane Raccolta di esercizi Geometria figure piane Raccolta di esercizi RETTANGOLO 1. Calcola il perimetro e l area di un rettangolo le cui dimensioni misurano rispettivamente 13 cm e 22 cm. [70 cm; 286 cm 2 ] 2. Un rettangolo ha

Dettagli

Prodotto realizzato con il contributo della Regione Toscana nell'ambito dell'azione regionale di sistema. Laboratori del Sapere Scientifico

Prodotto realizzato con il contributo della Regione Toscana nell'ambito dell'azione regionale di sistema. Laboratori del Sapere Scientifico Prodotto realizzato con il contributo della Regione Toscana nell'ambito dell'azione regionale di sistema Laboratori del Sapere Scientifico GIOCHIAMO CON LA GEOMETRIA Docente: Sabrina Musso Classe I A Plesso

Dettagli

CORSO DI PREPARAZIONE AI GIOCHI DI ARCHIMEDE 2015

CORSO DI PREPARAZIONE AI GIOCHI DI ARCHIMEDE 2015 CORSO DI PREPARAZIONE AI GIOCHI DI ARCHIMEDE 2015 Lezione del 3 NOVEMBRE 2015 GEOMETRIA CRITERI DI CONGRUENZA FRA TRIANGOLI IL SIMBOLO indica la congruenza PRIMO CRITERIO DI CONGRUENZA: Se due triangoli

Dettagli

Problemi di minimo nel piano

Problemi di minimo nel piano Problemi di minimo nel piano Livello scolare: 1 biennio bilità interessate Realizzare costruzioni geometriche elementari utilizzando strumenti diversi (riga e compasso, software di geometria, ). Produrre

Dettagli

3 Omotetie del piano. 4 Omotetie del piano. Fondamenti e didattica della matematica B. Geometria delle similitudini. k = 3.

3 Omotetie del piano. 4 Omotetie del piano. Fondamenti e didattica della matematica B. Geometria delle similitudini. k = 3. 1 2 Fondamenti e didattica della matematica B 5 marzo 2007 Geometria delle similitudini Marina Bertolini (marina.bertolini@mat.unimi.it) Dipartimento di Matematica F.Enriques Università degli Studi di

Dettagli

Lavorare in gruppo con L APPRENDIMENTO COOPERATIVO. una proposta nuova per imparare un po di geometria e non solo. La proposta

Lavorare in gruppo con L APPRENDIMENTO COOPERATIVO. una proposta nuova per imparare un po di geometria e non solo. La proposta Lavorare in gruppo con L APPRENDIMENTO COOPERATIVO una proposta nuova per imparare un po di geometria e non solo. La proposta GRUPPI: di 3 (formati da tutor e insegnanti) MATERIA: geometria ARGOMENTO:

Dettagli

Stabilire se il punto di coordinate (1,1) appartiene alla circonferenza centrata nell origine e di raggio 1.

Stabilire se il punto di coordinate (1,1) appartiene alla circonferenza centrata nell origine e di raggio 1. Definizione di circonferenza e cerchio. Equazione della circonferenza centrata in O e di raggio R. Esercizi. La circonferenza e il cerchio Definizioni: dato un punto C nel piano cartesiano e dato un numero

Dettagli

LE TRASFORMAZIONI GEOMETRICHE

LE TRASFORMAZIONI GEOMETRICHE pag. 1 LE TRASFORMAZIONI GEOMETRICHE Trasformazione geometrica Movimento rigido Traslazione Simmetria Costruzione di due punti simmetrici rispetto ad una retta Poligoni aventi assi di simmetria Rotazione

Dettagli

REGOLA DELLA SEMPLIFICAZIONE DELLE AREE

REGOLA DELLA SEMPLIFICAZIONE DELLE AREE REGOLA DELLA SEMPLIFICAZIONE DELLE AREE Ogni formula di calcolo delle aree dei poligoni può essere espressa tramite una frazione avente al numeratore un prodotto di due valori e un unico valore al denominatore.

Dettagli

In un triangolo altezza mediana bisettrice asse Proprietà di angoli e lati di un triangolo

In un triangolo altezza mediana bisettrice asse Proprietà di angoli e lati di un triangolo In un triangolo si dice altezza relativa a un lato il segmento di perpendicolare al lato condotta dal vertice opposto. Si dice mediana relativa a un lato il segmento che unisce il punto medio del lato

Dettagli

LE ALTEZZE. Sandra Taccetti, Antonio Moro, Classe quarta o quinta delle scuola primaria

LE ALTEZZE. Sandra Taccetti, Antonio Moro, Classe quarta o quinta delle scuola primaria LE ALTEZZE Sandra Taccetti, Antonio Moro, 2013 Classe quarta o quinta delle scuola primaria 1. Oggi misuriamo le nostre altezze: esperienza in classe con l uso del metro e dei grafici (già fatta lo scorso

Dettagli

6 ottobre 2010 Prof.ssa Marina Rocco GEOMETRIA CON PIEGATURE DELLA CARTA: COSTRUZIONI GEOMETRICHE, IN PARTICOLARE DI TRIANGOLI E QUADRILATERI.

6 ottobre 2010 Prof.ssa Marina Rocco GEOMETRIA CON PIEGATURE DELLA CARTA: COSTRUZIONI GEOMETRICHE, IN PARTICOLARE DI TRIANGOLI E QUADRILATERI. U N I V E R S I T A D E G L I S T U D I D I T R I E S T E CENTRO INTERDIPARTIMENTALE PER LA RICERCA DIDATTICA Via A. Valerio 12/1, 34127 Trieste, Italia Tel.: +39 040 558 2659 Fax: +39 040 558 2660 email:

Dettagli

SCHEDA 1. Con un pennarello segnate due punti sulla sfera, appoggiata sulla sua base.

SCHEDA 1. Con un pennarello segnate due punti sulla sfera, appoggiata sulla sua base. SCHEDA 1 GRUPPO........ Con un pennarello segnate due punti sulla sfera, appoggiata sulla sua base. 1) Disegnate la linea di minima distanza che unisce i due punti sulla superficie sferica. Provate con

Dettagli

Parallele e perpendicolari

Parallele e perpendicolari Parallele e perpendicolari classe 4A scuola Don Milani a.s. 2015/16 Insegnante: Riili Silvia Elementi che hanno caratterizzato il percorso: Didattica laboratoriale -Attività manipolative con materiale

Dettagli

Costruzioni geometriche. ( Teoria pag , esercizi 141 )

Costruzioni geometriche. ( Teoria pag , esercizi 141 ) Costruzioni geometriche. ( Teoria pag. 81-96, esercizi 141 ) 1) Costruzione con squadra e riga. a) Rette parallele. Ricorda ; due rette sono parallele quando.... oppure quando hanno la stessa. Matematicamente

Dettagli

Simmetrie nei poliedri

Simmetrie nei poliedri Simmetrie nei poliedri Livello scolare: 1 biennio Abilità interessate Individuare e riconoscere nel mondo reale le figure. geometriche note e descriverle con la terminologia specifica. Analizzare con strumenti

Dettagli

Progetto Indicazioni Nazionali 2015/2016. I.C. G. Marconi Castelfranco Emilia (Modena)

Progetto Indicazioni Nazionali 2015/2016. I.C. G. Marconi Castelfranco Emilia (Modena) Progetto Indicazioni Nazionali 2015/2016 I.C. G. Marconi Castelfranco Emilia (Modena) Perimetro e area in gioco Docente: Antonella Casarini Classe: VB I.C. G. Marconi Artefatti: squadretta/goniometro,

Dettagli

Prodotto realizzato con il contributo della Regione Toscana nell'ambito dell'azione regionale di sistema. Laboratoridel Sapere Scientifico

Prodotto realizzato con il contributo della Regione Toscana nell'ambito dell'azione regionale di sistema. Laboratoridel Sapere Scientifico Prodotto realizzato con il contributo della Regione Toscana nell'ambito dell'azione regionale di sistema Laboratoridel Sapere Scientifico Traslazione, simmetria centrale, rotazione e antitraslazione anche

Dettagli

TRASFORMAZIONI GEOMETRICHE NEL PIANO. Parte 2

TRASFORMAZIONI GEOMETRICHE NEL PIANO. Parte 2 TRASFORMAZIONI GEOMETRICHE NEL PIANO Parte 2 La simmetria L'etimologia della parola simmetria è greca. = stessa misura Per estensione, se ne amplia il significato ad espressioni del tipo 'equilibrio fra

Dettagli

geometria con la carta

geometria con la carta p r o g r a m m i d i p o t e n z i a m e n t o D E L L A c o g n i z i o n e n u m e r i c a e l o g i c o - s c i e n t i f i c a Collana diretta da Daniela Lucangeli Mario Perona, Eugenia Pellizzari

Dettagli

GEOMETRIA ANALITICA. Il Piano cartesiano

GEOMETRIA ANALITICA. Il Piano cartesiano GEOMETRIA ANALITICA La geometria analitica consente di studiare e rappresentare per via algebrica informazioni di tipo geometrico. Lo studio favorisce una più immediata visualizzazione di informazioni,

Dettagli

1. costruzione di un TRIANGOLO ISOSCELE di assegnati lati

1. costruzione di un TRIANGOLO ISOSCELE di assegnati lati LABORATORIO DI GEOMETRIA COSTRUZIONI DI BASE DI POLIGONI 1. costruzione di un TRIANGOLO ISOSCELE di assegnati lati Si costruisce un segmento AB, base del triangolo, ed un segmento CD, lato obliquo. Si

Dettagli

Laboratorio CIDI. Piazze e dintorni. presso. Scuola primaria Giovanni Cena. 13 dicembre Valerio Scorsipa

Laboratorio CIDI. Piazze e dintorni. presso. Scuola primaria Giovanni Cena. 13 dicembre Valerio Scorsipa Laboratorio CIDI Piazze e dintorni presso Scuola primaria Giovanni Cena 13 dicembre 2016 Francesca Conti Candori fconticandori43@gmail.com Valerio Scorsipa valerio.scorsipa@alice.it F. Conti - V. Scorsipa

Dettagli

I criteri di similitudine introdotti a partire dalle trasformazioni

I criteri di similitudine introdotti a partire dalle trasformazioni I criteri di similitudine introdotti a partire dalle trasformazioni Cinzia Cerroni, Rosa Conforto, Leo Maggio Introduzione La scelta metodologica di introdurre i criteri di similitudine a partire dalle

Dettagli

Giochi con due specchi. (Laboratorio sulla simmetria rotazionale)

Giochi con due specchi. (Laboratorio sulla simmetria rotazionale) Giochi con due specchi. (Laboratorio sulla simmetria rotazionale) Prima parte. Abbiamo a disposizione alcune coppie di specchi, dei piccoli oggetti (poligoni, matite, palline), alcuni disegni. Tra due

Dettagli

esercizi 107 Problemi sulla retta

esercizi 107 Problemi sulla retta esercizi 107 Problemi sulla retta Es. 1 Detto C il punto in cui l asse del segmento di estremi A( 3, 3) e B(1, 5) incontra l asse x, calcolare le coordinate del punto D equidistante da A, B e C. Determinare

Dettagli

Due esempi di simmetria

Due esempi di simmetria Due esempi di simmetria Giugno 2002 1 Le simmetrie del triangolo equilatero 1.1 Il triangolo equilatero è una figura dotata di simmetria. Cosa significa questa affermazione? In cosa consiste la sua simmetria?

Dettagli

C6. Quadrilateri - Esercizi

C6. Quadrilateri - Esercizi C6. Quadrilateri - Esercizi DEFINIZIONI E COSTRUZIONI 1) Dato il seguente quadrilatero completa al posto dei puntini. I lati AB e BC sono I lati AB e CD sono I lati AD e sono consecutivi I lati AD e sono

Dettagli

ATTIVITAÁ SULLE COMPETENZE

ATTIVITAÁ SULLE COMPETENZE 1 ATTIVITAÁ SULLE COMPETENZE I RIBALTAMENTI NON SEMPRE SONO... PERICOLOSI! Scopo dell'attivitaá Individuare l'importanza delle trasformazioni geometriche isometriche e consolidare le competenze relative

Dettagli

La matematica e la scienza nelle bolle

La matematica e la scienza nelle bolle MATEMATICA TRASPARENTE COME BOLLE DI SAPONE Un percorso didattico-sperimentale per le scuole secondarie di primo grado Relatore I. Tamanini Laureanda Silvia Dirupo La matematica e la scienza nelle bolle

Dettagli

PIANO CARTESIANO. NB: attenzione ai punti con una coordinata nulla: si trovano sugli assi

PIANO CARTESIANO. NB: attenzione ai punti con una coordinata nulla: si trovano sugli assi PIANO CARTESIANO Il piano cartesiano è individuato da due rette perpendicolari (ortogonali) che si incontrano in un punto O detto origine del piano cartesiano. Si fissa sulla retta orizzontale il verso

Dettagli

Triangoli equilateri e parabole

Triangoli equilateri e parabole Triangoli equilateri e parabole Livello scolare: 2 biennio Abilità interessate Realizzare semplici costruzioni di luoghi geometrici. Risolvere semplici problemi riguardanti rette, circonferenze, parabole.

Dettagli

GEOMETRIA ANALITICA 1 IL PIANO CARTESIANO

GEOMETRIA ANALITICA 1 IL PIANO CARTESIANO GEOMETRI NLITIC 1 IL PINO CRTESINO Il piano cartesiano è costituito da due rette orientate e tra loro perpendicolari chiamate assi cartesiani, generalmente una orizzontale e l altra verticale, sulle quali

Dettagli

LA CAMERA DEGLI SPECCHI

LA CAMERA DEGLI SPECCHI LA CAMERA DEGLI SPECCHI Alunna: Prisca Iacovone (Classe 2B, a. s. 2013 2014, scuola secondaria di primo grado, G. Mezzanotte, Chieti, Ch) Referente: Prof.ssa Diana Cipressi Un architetto deve costruire

Dettagli

LE FRAZIONI. ll pesce fratto. Modello di Fumiaki Shingu (da

LE FRAZIONI. ll pesce fratto. Modello di Fumiaki Shingu (da LE FRAZIONI Modello di Fumiaki Shingu (da http://en.origami-club.com) ll pesce fratto Lo scopo del laboratorio è quello di scovare delle frazioniche rappresentino, rispetto al tutto, la parte bianca e

Dettagli

Il Piano Cartesiano Goniometrico

Il Piano Cartesiano Goniometrico Valori di seno e coseno per angoli multipli di / Il Piano Cartesiano Goniometrico Seno e coseno: valori per angoli particolari September 1, 010 Valori di seno e coseno per angoli multipli di / Sommario

Dettagli

Classifichiamo i quadrilateri Che noia! O no?

Classifichiamo i quadrilateri Che noia! O no? Classifichiamo i quadrilateri Che noia! O no? Classe II C Scuola secondaria di primo grado di Incisa I.C. Rignano-Incisa Valdarno Docente: Lucia Ciabini 12 Seminario nazionale sul curricolo verticale 07

Dettagli

Lezione 6 Richiami di Geometria Analitica

Lezione 6 Richiami di Geometria Analitica 1 Piano cartesiano Lezione 6 Richiami di Geometria Analitica Consideriamo nel piano due rette perpendicolari che si intersecano in un punto O Consideriamo ciascuna di queste rette come retta orientata

Dettagli

C5. Triangoli. C5.1 Definizioni. C5.2 Classificazione dei triangoli in base ai lati

C5. Triangoli. C5.1 Definizioni. C5.2 Classificazione dei triangoli in base ai lati 5. Triangoli 5.1 efinizioni Un triangolo è un poligono con tre lati. In figura 5.1 i lati sono i segmenti =c, =b e =a. Gli angoli (interni) sono α = ˆ, β = ˆ e γ = ˆ. Si dice che un angolo è opposto a

Dettagli

AREE DEI POLIGONI. b = A h

AREE DEI POLIGONI. b = A h AREE DEI POLIGONI 1. RETTANGOLO E un parallelogramma avente quattro angoli retti, i lati opposti uguali e paralleli, le diagonali uguali non perpendicolari che si scambiano vicendevolmente a metà. Def.

Dettagli

Anno 1. Quadrilateri

Anno 1. Quadrilateri Anno 1 Quadrilateri 1 Introduzione In questa lezione impareremo a risolvere i problemi legati all utilizzo dei quadrilateri. Forniremo la definizione di quadrilatero e ne analizzeremo le proprietà e le

Dettagli

Partiamo da un informazione comune a tutti gli alunni della scuola italiana: La somma degli angoli interni di un triangolo è 180.

Partiamo da un informazione comune a tutti gli alunni della scuola italiana: La somma degli angoli interni di un triangolo è 180. 1 Partiamo da un informazione comune a tutti gli alunni della scuola italiana: La somma degli angoli interni di un triangolo è 180. Come giustificare questo fatto? Con delle prove sperimentali, ad esempio.

Dettagli

Abbiamo poi chiesto ai bambini cosa sono i km

Abbiamo poi chiesto ai bambini cosa sono i km Avventure intorno a noi L ambiente esterno costituisce il luogo nel quale, quotidianamente, il bambino è inserito. I bambini esplorano costantemente la realtà, ma hanno bisogno di imparare a riflettere

Dettagli

I Ludi geometrici di Leonardo Proposta multidisciplinare di riflessione sul concetto di area. IC Fara Sabina Classe 2E Insegnante Laura Tomassi

I Ludi geometrici di Leonardo Proposta multidisciplinare di riflessione sul concetto di area. IC Fara Sabina Classe 2E Insegnante Laura Tomassi I Ludi geometrici di Leonardo Proposta multidisciplinare di riflessione sul concetto di area IC Fara Sabina Classe 2E Insegnante Laura Tomassi C era una volta.. dare una storicità alla matematica Una delle

Dettagli

Test A Teoria dei numeri e Combinatoria

Test A Teoria dei numeri e Combinatoria Test A Teoria dei numeri e Combinatoria Problemi a risposta secca 1. Determinare con quanti zeri termina la scrittura in base 12 del fattoriale di 2002. 2. Determinare quante sono le coppie (x, y) di interi

Dettagli

20 MARZO 2010 TESTO E SOLUZIONI

20 MARZO 2010 TESTO E SOLUZIONI 25 a GARA MATEMATICA CITTÀ DI PADOVA 20 MARZO 2010 TESTO E SOLUZIONI 1.- È dato un rettangolo ABCD. Si dimostri che per un qualunque punto P del piano vale : PD 2 + PB 2 = PA 2 + PC 2 con AC una diagonale.

Dettagli

Laboratorio di progettazione/sperimentazione del curricolo verticale di MATEMATICA

Laboratorio di progettazione/sperimentazione del curricolo verticale di MATEMATICA Laboratorio di progettazione/sperimentazione del curricolo verticale di MATEMATICA Gestione del laboratorio Su questo laboratorio è stata assegnata una funzione strumentale suddivisa fra due docenti, uno

Dettagli

A B C D E F G H I L M N O P Q R S T U V Z

A B C D E F G H I L M N O P Q R S T U V Z IL VOCABOLARIO GEOMETRICO A B C D E F G H I L M N O P Q R S T U V Z A A: è il simbolo dell area di una figura geometrica Altezza: è la misura verticale e il segmento che parte da un vertice e cade perpendicolarmente

Dettagli

SOLUZIONI QUARTA TAPPA CLASSE PRIMA

SOLUZIONI QUARTA TAPPA CLASSE PRIMA CLASSE PRIMA CARI AMICI, QUESTO PROBLEMA È STATO DAVVERO DIFFICILE PER ELENA! HA DOVUTO LEGGERE IL TESTO TANTE VOLTE PER CAPIRE BENE IL PROBLEMA, MA ALLA FINE È RIUSCITA A RISOLVERLO, ANCHE GRAZIE AL VOSTRO

Dettagli

Prodotto realizzato con il contributo della Regione Toscana nell'ambito dell'azione regionale di sistema. Laboratori del Sapere Scientifico

Prodotto realizzato con il contributo della Regione Toscana nell'ambito dell'azione regionale di sistema. Laboratori del Sapere Scientifico Prodotto realizzato con il contributo della Regione Toscana nell'ambito dell'azione regionale di sistema Laboratori del Sapere Scientifico LA SIMILITUDINE Sperimentazione in classe di un percorso didattico

Dettagli

Equivalenza delle figure piane

Equivalenza delle figure piane Capitolo Equivalenza Poligoni equivalenti - erifica per la classe seconda Teoremi di Pitagora ed Euclide COGNOME............................... NOME............................. Classe....................................

Dettagli

D2. Problemi sulla retta - Esercizi

D2. Problemi sulla retta - Esercizi D. Problemi sulla retta - Esercizi Per tutti gli esercizi è OBBLIGATORIO tracciare il grafico. 1) Trovare il perimetro del triangolo ABC, con A(1;0), B(-1;1), C(0;-). [ 5 + 10 ) Trovare il perimetro del

Dettagli

SIMULAZIONE TEST INVALSI

SIMULAZIONE TEST INVALSI SIMULAZIONE TEST INVALSI AREE POLIGONI Disegna nel piano quadrettato un rettangolo che abbia la stessa area del rettangolo ABCD, ma perimetro maggiore. Osserva il rettangolo. Sul lato DC segna il punto

Dettagli

Motivare tutte le risposte

Motivare tutte le risposte 1. Nel quadrato ABCD di lato 7 cm. Il punto E rappresenta il centro e il punto F il suo simmetrico rispetto al lato BC. Calcolare l'area del poligono ABFCDEA 2. L'area di un rettangolo misura 1034 m 2.

Dettagli

SUPER PROGETTO. Logo con la Geometria

SUPER PROGETTO. Logo con la Geometria SUPER PROGETTO Logo con la Geometria alla fine di M2 dott.r Giovanni Lariccia abbiamo pensato di poter tradurre le competenze acquisite in un SUPERprogetto per una classe quarta Primaria (proponendo così

Dettagli

METODI E TECNOLOGIE PER L INSEGNAMETO DELLA MATEMATICA. LEZIONE n 13

METODI E TECNOLOGIE PER L INSEGNAMETO DELLA MATEMATICA. LEZIONE n 13 METODI E TECNOLOGIE PER L INSEGNAMETO DELLA MATEMATICA LEZIONE n 13 Parte terza TRASFORMAZIONI GEOMETRICHE Dalle indicazioni nazionali: Descrivere, denominare e classificare figure geometriche, identificando

Dettagli

Matematica - Sessione 1 / Produzione Esame di Qualifica (II Livello Europeo) Terzo Anno

Matematica - Sessione 1 / Produzione Esame di Qualifica (II Livello Europeo) Terzo Anno Id orso ata.. Nome e ognome Tipo prova Matematica - Sessione 1 / Produzione Esame di Qualifica (II Livello Europeo) Terzo nno a.f. 2011/2012 omanda 1 Osserva il seguente grafico: M010553 Fra le seguenti,

Dettagli

Problemi sulla circonferenza verso l esame di stato

Problemi sulla circonferenza verso l esame di stato Problemi sulla circonferenza verso l esame di stato * * * n. 0 pag. 06 a) Scrivi l equazione della circonferenza γ 1 di centro P ; ) e passante per il punto A0; 1). b) Scrivi l equazione della circonferenza

Dettagli

Applicazioni dei teoremi di Pitagora ed Euclide

Applicazioni dei teoremi di Pitagora ed Euclide Utilizzando le misure di segmenti e superfici si possono riscrivere i teoremi di Pitagora ed Euclide per il triangolo rettangolo: Teorema di Pitagora: 1 + c i c = 1 Teorema di Euclide: c p i 1 = 1 c =

Dettagli

Rilevazione degli apprendimenti. Anno Scolastico PROVA DI MATEMATICA. Scuola Secondaria di I grado. Classe Prima. Codici. Scuola:...

Rilevazione degli apprendimenti. Anno Scolastico PROVA DI MATEMATICA. Scuola Secondaria di I grado. Classe Prima. Codici. Scuola:... Ministero dell Istruzione dell Università e della Ricerca Istituto nazionale per la valutazione del sistema educativo di istruzione e di formazione Rilevazione degli apprendimenti Anno Scolastico 2005

Dettagli

Analogie e differenze tra i due metodi?

Analogie e differenze tra i due metodi? Il piano Cartesiano. Per iniziare..forse hai già giocato a Battaglia Navale! Descrivi il gioco: Come comunichi con l avversario? Altro passatempo simile per la comunicazione è il gioco degli scacchi. Descrivi

Dettagli