dove f = 0,997 è un fattore correttivo che dipende dall allungamento e dal rapporto di rastremazione

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "dove f = 0,997 è un fattore correttivo che dipende dall allungamento e dal rapporto di rastremazione"

Transcript

1 ALA TRIDIMENSIONALE Procediamo con la determinazione delle caratteristiche aerodinamiche dell ala tridimensionale seguendo il testo del Picardi. Il primo passo è il calcolo della pendenza della curva C L -α secondo la formula α ala p / α p.m. b = f p 1+ 57,3 / π A α p.m. b dove f =,997 è un fattore correttivo che dipende dall allungamento e dal rapporto di rastremazione =,14 (in deg -1 ) è la pendenza della curva C L -α del profilo medio nel α p.m. tratto rettilineo p = 48,9 ft è il semiperimetro alare b = 1 ft è l apertura alare A = 9 è l allungamento. Si ottiene =,811 (deg -1 ). α ala Dobbiamo ora calcolare l angolo di portanza nulla dell ala secondo la formula α,ala = α,root + J*ε dove α,root = -,5 è l angolo di portanza nulla del profilo in mezzeria alare cioè del profilo alla radice J = -,38 è un coefficiente correttivo dipendente dall allungamento alare e dal rapporto di rastremazione

2 ε è lo svergolamento aerodinamico tra il profilo alla radice e quello all estremità preso positivo per rotazioni che comportano una maggior incidenza del profilo di estremità rispetto a quello alla radice. Tale parametro è però riferito a uno svergolamento uniformemente distribuito. Si deve quindi confrontare lo svergolamento della nostra ala con uno svergolamento uniformemente distribuito. Procediamo considerando gli angoli di portanza nulla dei 3 profili alla radice,5 al % della semiapertura alare,1 in estremità,5 e calcolando per ogni profilo α,root -α,i ; si ottiene alla radice naturalmente al % della semiapertura alare -,4 in estremità -. Moltiplico ora i 3 risultati ottenuti per α i c i dove alla radice α root al % della semiapertura alare in estremità α tip =,173 (deg -1 ) e c root = 41,1 ft α % =,11 (deg -1 ) c tip = 6,7 ft =,153 (deg -1 ) c % = 6,7 ft ricavando così alla radice al % della semiapertura alare -1,146 in estremità -1,3534. Possiamo a questo punto rappresentare i risultati ottenuti in un diagramma

3 -1,6-1,4-1,3534-1, -1-1,146 -,8 -,6 -,4 -, %b L area A 1 sottesa alla spezzata moltiplicata per la pressione dinamica fornisce la portanza di ogni semiala. A noi interessa però confrontare tale area con quella ottenuta da uno svergolamento uniforme di un ala geometricamente uguale e costruita sul profilo medio. Si può così ottenere A1 ε = = -3,168. b ctip 4 α pm Abbiamo ora tutto per calcolare α,ala = -,5 +,38*3,168 = -1,96. Per completare la curva C L -α è necessario determinare la zona dello stallo utilizzando i parametri ora definiti cioè e α,ala. Vale infatti la relazione α ala

4 α ala = α C α pm ( αpm α,pm ) + α,ala L ala che nel nostro caso diventa α ala = 1,8 α pm + 1,14. Possiamo allora mettere in grafico la curva C L -α anche per l ala tridimensionale isolata. 1,5 1, ,5-1 angolo di incidenza profilo medio ala isolata A questo punto possiamo proseguire con la determinazione della polare dell ala, a partire dalla polare del profilo medio e tenendo conto dell ulteriore contributo della resistenza indotta. A tal proposito sfruttiamo la seguente formula

5 C D,i dove α = + ε πau p / b pm v + ε α p / b pm w C L è riferito all ala ed è la variabile nella formula u, v, w sono dei parametri dipendenti dal rapporto di rastremazione e dall allungamento alare e nel nostro caso u =,96, v = -,5, w =,33 Gli altri parametri sono già stati definiti in precedenza; ε dovrebbe essere ricalcolato se la curva tracciata precedentemente in funzione della posizione sulla seminala attraversasse l asse delle ascisse; nel nostro caso ciò non accade e dunque possiamo utilizzare il valore già calcolato. Si ottiene allora un andamento di C D,i descritto dalla funzione C C 7,143 L 3 4 D,i = + 1,43 1 +,6 1 e illustrato nel diagramma seguente,9,8,7,6 CDi,5,4,3,,1-1 -,8 -,6 -,4 -,,,4,6,8 1 1, 1,4 1,6 1,8

6 In conclusione la polare dell ala tridimensionale isolata si ottiene sommando il coefficiente di resistenza indotta al coefficiente di resistenza del profilo medio; se ne deduce il seguente grafico profilo medio ala isolata,1,1,8 CD,6,4, -1 -,5,5 1 1,5 DETERMINAZIONE COEFFICIENTE DI MOMENTO DELL ALA ISOLATA Come fatto per il coefficiente di portanza e di resistenza, si parte dalle caratteristiche del profilo medio per passare poi a quelle dell ala finita. I risultati saranno tutti riferiti al centro aerodinamico. Di seguito riportiamo i diagrammi C M -C L dei singoli profili

7 -,5-1 -,5,5 1 1,5 -,55 -,6 CM -,65 -,7 -,75 -, Ricaviamo a questo punto il valore della corda media aerodinamica (CMA) dalla nota espressione CMA = 1 S b c ( x) dx dove c(x) è la legge di variazione della corda alare lungo l apertura. Nel nostro caso ricaveremo CMA come somma di due integrali in quanto per il cambio di rastremazione c(x) assume due espressioni diverse: CMA 1 S,(b ) b / c ( ) + ( ) 1 x dx c x dx,(b / ) = dove c 1 (x) = c (x) = 41,1 6,7 41,1 x 1, 6,7 6,7 31,7 x 16 1, Si ottiene così CMA = 1,34 ft = 6,5 m.

8 Possiamo direttamente calcolare la posizione lungo l apertura alare della corda media aerodinamica secondo la formula suggerita dal Seckel x ba,cma = b / x ba (y) c(y)dy S/ dove c(y) è la legge di variazione della corda dei profili, mentre x ba (y) è rappresentato in figura xba(y) 7,3 ft Come prima dobbiamo spezzare l integrale in parti. Conosciamo già l andamento della 7,3 corda lungo l apertura, mentre è facile trovare x ba (y) = y dove 7,3 ft è la distanza 16 indicata in figura e 16 ft è la semiapertura alare. Allora x ba,cma,(b / ) b / 1 = x ba (y) c1(y)dy + x S/,(b / ) ba (y) c (y) dy x ba,cma = 4, ft = 7,377 m

9 Possiamo ora determinare l andamento del C M per il profilo medio utilizzando la formula b / 1 CM,pm = CM (x) c CMA S/ (x)dx dove C M (x) è l andamento del coefficiente di momento lungo l apertura; si può supporre che C M vari linearmente da profilo a profilo. Si deve naturalmente ripetere il calcolo di CM,pm per ogni valore di C L, in quanto al variare di C L varia la distribuzione di C M lungo la semiala. Inoltre come prima dovremo spezzare l integrale in parti corrispondenti alle zone di ogni semiala. Si ottiene un andamento di questo genere -,65-1 -,5,5 1 1,5 -,63 -,635 -,64 CM -,645 -,65 -,655 -,66 -,665 -,67 profilo medio N.B.:si noti la scala sull asse delle ordinate; in realtà la variazione di C M con C L è minima e anche nei calcoli avremmo potuto ritenere costante il C M dei vari profili. Possiamo ora calcolare C M per l ala isolata secondo la formula C M,ala b = E CM,pm G ε A tgβ α p pm

10 dove: E = 1,19 e G =, sono un fattori correttivi dipendenti dall allungamento alare A e dal rapporto di rastremazione ε è lo svergolamento aerodinamico già usato in precedenza β è l angolo di freccia dell asse passante per i centri aerodinamici dei profili usati. Poiché l ala non è trapezia non vi è un asse passante per i centri aerodinamici di tutti e tre i profili; perciò sono definiti due angoli di freccia al quarto della corda, per la parte di semiala vicino alla radice e per la parte di semiala vicino all estremità alare. In questo caso si usa la relazione: ( tgβ ) S + ( tg ) 1 1 β S tgβ = S dove: S 1 =,3(S/) = 7 ft S =,7(S/) = 168 ft β1 = 6,6 β = 31,8 Si ottiene, con questi valori, tgβ =,58 A questo punto abbiamo tutto per determinare la curva C M -C L dell ala tridimensionale isolata.

11 -1 -,5,5 1 1,5 -, -,4 profilo medio ala isolata CM -,6 -,8 -,1 -,1

mentre nello studio iniziale delle varie fasi di volo si erano ritenuti necessari

mentre nello studio iniziale delle varie fasi di volo si erano ritenuti necessari IPERSOSTENTATORI L uso degli ipersostentatori è necessario in quanto, ricordando i risultati raggiunti nella sezione sull aerodinamica dell ala, i profili utilizzati non sono in grado di garantire il C

Dettagli

Negli anni 60 la NASA sviluppò profili aventi migliori prestazioni nel subsonico rispetto ai profili largamente usati ai tempi che erano profili NACA

Negli anni 60 la NASA sviluppò profili aventi migliori prestazioni nel subsonico rispetto ai profili largamente usati ai tempi che erano profili NACA SCELTA DEI PROFILI A nostro avviso risulta molto importante la scelta di profili che mantengano buone prestazioni nel campo del transonico. Infatti tutti gli aerei commerciali, e anche il nostro, volano

Dettagli

Teoria dell ala finita

Teoria dell ala finita Il fatto che un ala sia dotata di apertura finita fa si che alle estremità si generi un flusso di aria che dall intradosso va verso l estradosso. Tale flusso è indotto dalla differenza di pressione presente

Dettagli

AERODINAMICA DEL VELIVOLO COMPLETO

AERODINAMICA DEL VELIVOLO COMPLETO AERODINAMICA DEL VELIVOLO COMPLETO Si tratta ora di studiare il comportamento aerodinamico complessivo del velivolo, tenendo conto dei risultati raggiunti per l ala isolata e sommandovi i contributi di

Dettagli

CONFIGURAZIONE STRUTTURALE E FORMA IN PIANTA DELL ALA

CONFIGURAZIONE STRUTTURALE E FORMA IN PIANTA DELL ALA ONFIGURAZIONE STRUTTURALE E FORMA IN PIANTA DELL ALA La forma in pianta Determinato il punto di progetto e fissato il massimo peso al decollo, è stata ricavato il valore della superficie alare. In analogia

Dettagli

GLI ALETTONI. Riportiamo di seguito la pianta della semiala in cui evidenziamo i 2 alettoni usati. Abbiamo scelto il seguente dimensionamento.

GLI ALETTONI. Riportiamo di seguito la pianta della semiala in cui evidenziamo i 2 alettoni usati. Abbiamo scelto il seguente dimensionamento. GI AETTONI o scopo degli alettoni è quello di permettere la manovra e il controllo intorno all asse di rollio. Attraverso il loro movimento è infatti possiile aumentare la portanza su una semiala e diminuirla

Dettagli

Y (m) X (m) 3 deg. B Esame di Meccanica del volo Modulo di Manovre e Stabilità Prova scritta del 10 ottobre 2013

Y (m) X (m) 3 deg. B Esame di Meccanica del volo Modulo di Manovre e Stabilità Prova scritta del 10 ottobre 2013 Esame di Meccanica del volo Modulo di Manovre e Stailità Prova scritta del ottore È assegnata l ala la cui forma in pianta è rappresentata nella figura. retta di portanza nulla retta di portanza nulla

Dettagli

ESAME DI AERODINAMICA 12/12/2006

ESAME DI AERODINAMICA 12/12/2006 ESAME DI AERODINAMICA 12/12/2006 La velocità indotta nel piano y-z passante per l origine da un filamento vorticoso rettilineo semi-infinito disposto lungo l asse x e con origine in x=0, rispetto a quella

Dettagli

8 - Dimensionamento del piano di coda

8 - Dimensionamento del piano di coda 8 - Dimensionamento del piano di coda 8.1 Piano di coda orizzontale Si è scelto un piano di coda orizzontale di tipo stabilizzatore equilibratore, di profilo NACA 0012 con un rapporto di rastremazione

Dettagli

Integrazione numerica

Integrazione numerica Integrazione numerica Lucia Gastaldi DICATAM - Sez. di Matematica, http://www.ing.unibs.it/gastaldi/ Indice 1 Formule di quadratura semplici e composite Formule di quadratura Grado di precisione Formule

Dettagli

Integrazione numerica

Integrazione numerica Integrazione numerica Lucia Gastaldi DICATAM - Sez. di Matematica, http://lucia-gastaldi.unibs.it Indice 1 Formule di quadratura semplici e composite Formule di quadratura Grado di precisione Formule di

Dettagli

Esame di Costruzioni Aerospaziali Prof. P. Gasbarri. Nome: Cognome: Data: 17/01/ Si

Esame di Costruzioni Aerospaziali Prof. P. Gasbarri. Nome: Cognome: Data: 17/01/ Si Esercizio N. 1 Valutazione 6 Sia data una semiala la cui forma in pianta trapezoidale è ripotata in figura. L allungamento della semiala è pari a, mentre le corde all incastro con la fusoliera e all estremo

Dettagli

SIMULAZIONE - 29 APRILE QUESITI

SIMULAZIONE - 29 APRILE QUESITI www.matefilia.it SIMULAZIONE - 29 APRILE 206 - QUESITI Q Determinare il volume del solido generato dalla rotazione attorno alla retta di equazione y= della regione di piano delimitata dalla curva di equazione

Dettagli

Istituzioni di Matematiche Modulo A (ST)

Istituzioni di Matematiche Modulo A (ST) Istituzioni di Matematiche Modulo A ST) V I foglio di esercizi ESERCIZIO. Si calcoli + sin t) dt t cos t + log + t))dt e + tg t + e t )dt cos t dt t. Calcoliamo il primo dei due. Si tratta di un ite della

Dettagli

Teoria del disco attuatore

Teoria del disco attuatore Prima di affrontare l argomento nel particolare e nacessario fare un po di teoria. Teoria del disco attuatore L elica iinvestita dal vento puo essere assimilata come un disco che separa il flusso in moto.

Dettagli

SIMULAZIONE - 29 APRILE QUESITI

SIMULAZIONE - 29 APRILE QUESITI www.matefilia.it SIMULAZIONE - 29 APRILE 206 - QUESITI Q Determinare il volume del solido generato dalla rotazione attorno alla retta di equazione y= della regione di piano delimitata dalla curva di equazione

Dettagli

Problema ( ) = 0,!

Problema ( ) = 0,! Domanda. Problema ( = sen! x ( è! Poiché la funzione seno è periodica di periodo π, il periodo di g x! = 4. Studio di f. La funzione è pari, quindi il grafico è simmetrico rispetto all asse y. È sufficiente

Dettagli

3 - Calcolo del Punto di progetto.

3 - Calcolo del Punto di progetto. 3 - Calcolo del Punto di progetto. 3.1 Il punto di progetto Scopo di questo calcolo è quello di determinare due parametri di progetto fondamentali del velivolo: il carico alare ed il rapporto spinta-peso.

Dettagli

CALENDARIO BOREALE 2 AMERICHE 2015 QUESITO 1

CALENDARIO BOREALE 2 AMERICHE 2015 QUESITO 1 www.matefilia.it Indirizzi: LI0, EA0 SCIENTIFICO; LI0 - SCIENTIFICO - OPZIONE SCIENZE APPLICATE CALENDARIO BOREALE AMERICHE 0 QUESITO Determinare il volume del solido generato dalla rotazione attorno alla

Dettagli

Lezione 4 Quadratura Numerica. Fernando Palombo

Lezione 4 Quadratura Numerica.  Fernando Palombo Lezione 4 Quadratura Numerica http://idefix.mi.infn.it/~palombo/didattica/lab-tnds/corsolab/lezionifrontali Fernando Palombo Scopo della Quadratura Numerica Calcolare con metodi numerici un integrale definito

Dettagli

Esercitazione 1. Invece, essendo il mezzo omogeneo, il vettore sarà espresso come segue

Esercitazione 1. Invece, essendo il mezzo omogeneo, il vettore sarà espresso come segue 1.1 Una sfera conduttrice di raggio R 1 = 10 cm ha una carica Q = 10-6 C ed è circondata da uno strato sferico di dielettrico di raggio (esterno) R 2 = 20 cm e costante dielettrica relativa. Determinare

Dettagli

Triangolo rettangolo

Triangolo rettangolo Dato il triangolo rettangolo Possiamo perciò utilizzare angoli). Progetto Matematica in Rete Triangolo rettangolo OPA sappiamo che: PA cateto senα OP OA cateto cos α OP PA cateto tgα OA cateto opposto

Dettagli

PNI 2014 SESSIONE STRAORDINARIA - QUESITI QUESITO 1

PNI 2014 SESSIONE STRAORDINARIA - QUESITI QUESITO 1 www.matefilia.it PNI 0 SESSIONE STRAORDINARIA - QUESITI QUESITO Un gruppo di attivisti antinucleari ha organizzato una marcia di protesta verso un sito scelto per la costruzione di una centrale termonucleare.

Dettagli

ESAME DI AERODINAMICA 10/9/2012

ESAME DI AERODINAMICA 10/9/2012 ESAME DI AERODINAMICA 10/9/2012 Se un aereo Boeing 727 sviluppa un C L pari a 16 volte il suo C D, quale distanza (in Km) può percorrere in volo planato partendo da un altezza di 7500 m se all improvviso

Dettagli

ESAME DI AERODINAMICA 16/4/2007

ESAME DI AERODINAMICA 16/4/2007 ESAME DI AERODINAMICA 6/4/2007 Un ala a pianta ellittica e distribuzione ellittica di portanza ha allungamento 6 ed apertura alare 2 m. Quando si muove in aria alla velocità di 50 km/h e sviluppa un C

Dettagli

Lezione 6 Richiami di Geometria Analitica

Lezione 6 Richiami di Geometria Analitica 1 Piano cartesiano Lezione 6 Richiami di Geometria Analitica Consideriamo nel piano due rette perpendicolari che si intersecano in un punto O Consideriamo ciascuna di queste rette come retta orientata

Dettagli

INVILUPPO DI VOLO VELOCITÀ MASSIMA IN VOLO ORIZZONTALE RETTILINEO UNIFORME

INVILUPPO DI VOLO VELOCITÀ MASSIMA IN VOLO ORIZZONTALE RETTILINEO UNIFORME INILUPPO DI OLO Una volta diagrammate le curve delle potenze disponibili e necessarie, dobbiamo ora usarle per determinare le prestazioni fondamentali del velivolo: tali prestazioni andranno a generare

Dettagli

Perché un aereo vola? Prof. G. Graziani Dipartimento Ingegneria Meccanica e Aerospaziale Sapienza Università di Roma

Perché un aereo vola? Prof. G. Graziani Dipartimento Ingegneria Meccanica e Aerospaziale Sapienza Università di Roma Perché un aereo vola? Prof. G. Graziani Dipartimento Ingegneria Meccanica e Aerospaziale Sapienza Università di Roma Domanda: Perché un aeroplano dal peso di molte tonnellate riesce a volare? Ø L aerodinamica

Dettagli

Risoluzione del compito n. 5 (Luglio 2018/2)

Risoluzione del compito n. 5 (Luglio 2018/2) Risoluzione del compito n. 5 (Luglio 2018/2) PROBLEMA 1 Considerate il luogo di zeri S = {(x, y, z) R 3 : z 4+ x 2 + y 2 =0, 2x y + z =0}. a) Giustificando la risposta, dite se S è una curva liscia. b)

Dettagli

2. SIGNIFICATO FISICO DELLA DERIVATA

2. SIGNIFICATO FISICO DELLA DERIVATA . SIGNIFICATO FISICO DELLA DERIVATA Esempi 1. Un auto viaggia lungo un percorso rettilineo, con velocità costante uguale a 70 km/h. Scrivere la legge oraria s= s(t) e rappresentarla graficamente. 1. Scriviamo

Dettagli

PROGETTO DELLA PIANTA DELL ALA

PROGETTO DELLA PIANTA DELL ALA PROGETTO DELLA PIANTA DELL ALA Ci proponiamo ora di determinare le caratteristiche geometriche dell ala, ricordando che la superficie alare e l allungamento sono già stati determinati precedentemente (S

Dettagli

ESAME DI AERODINAMICA 13/7/2009

ESAME DI AERODINAMICA 13/7/2009 ESAME DI AERODINAMICA 3/7/2009 Una presa d aria supersonica è progettata per funzionare a M = 2.6. se la sezione d ingresso ha un area A i = 0.58m 2, la sezione di gola in m 2 è: (b).32 (c).2 (d).4 (e).078

Dettagli

QUESITO 1. Quante sono tutte le funzioni iniettive da un insieme A di n elementi in un insieme B di m elementi?

QUESITO 1. Quante sono tutte le funzioni iniettive da un insieme A di n elementi in un insieme B di m elementi? www.matefilia.it Quesiti QUESITO Quante sono tutte le funzioni iniettive da un insieme A di n elementi in un insieme B di m elementi? Ad ogni elemento di A deve corrispondere uno ed un solo elemento di

Dettagli

1 Distanza di un punto da una retta (nel piano)

1 Distanza di un punto da una retta (nel piano) Esercizi 26/10/2007 1 Distanza di un punto da una retta (nel piano) Sia r = {ax + by + c = 0} una retta. Sia P = (p 1, p 2 ) R 2 un punto che non sta sulla retta r. Vogliamo vedere se si può parlare di

Dettagli

POLARE DEL VELIVOLO COMPLETO

POLARE DEL VELIVOLO COMPLETO POLARE DEL VELIVOLO COMPLETO Una volta fatto il progetto e il dimensionamento dell ala, dei piani di coda, della fusoliera e delle gondole motore e ricavatene le caratteristiche aerodinamiche, è possibile

Dettagli

II Università degli Studi di Roma

II Università degli Studi di Roma Versione preliminare gennaio TOR VERGATA II Università degli Studi di Roma Dispense di Geometria. Capitolo 3. 7. Coniche in R. Nel Capitolo I abbiamo visto che gli insiemi di punti P lineare di primo grado

Dettagli

Limite. Se D non è limitato si può fare il limite di f(x) per x che tende

Limite. Se D non è limitato si può fare il limite di f(x) per x che tende Appunti sul corso di Complementi di Matematica,mod.Analisi, prof. B.Bacchelli - a.a. 200/20. 05 - Limiti continuità: Riferimenti: R.Adams, Calcolo Differenziale 2. Capitoli 3., 3.2. - Esercizi 3., 3.2.

Dettagli

Calcolo Numerico A.A Laboratorio 8 Integrazione numerica

Calcolo Numerico A.A Laboratorio 8 Integrazione numerica ESERCIZIO 1. Calcolo Numerico A.A. 26-27 Laboratorio 8 Integrazione numerica I = 5 e x 1 dx. 1. Si approssimi I con la formula del punto medio semplice. Si stimi l errore commesso. 2. Si consideri ora

Dettagli

Integrazione numerica

Integrazione numerica Integrazione numerica Lucia Gastaldi Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ Laboratorio - 5 marzo 2007 Outline 1 Formule di quadratura semplici e composite Formule di quadratura Grado

Dettagli

SESSIONE SUPPLETIVA QUESTIONARIO QUESITO 1

SESSIONE SUPPLETIVA QUESTIONARIO QUESITO 1 www.matefilia.it SESSIONE SUPPLETIVA 015 - QUESTIONARIO x QUESITO 1 Data la funzione integrale ln(t) dt, determinare per quali valori di x il suo grafico 1 incontra la retta di equazione y = x + 1. Calcoliamo

Dettagli

IL PROGETTO DI TRAVI IN C.A.P. IPERSTATICHE

IL PROGETTO DI TRAVI IN C.A.P. IPERSTATICHE 7 I PROGETTO DI TRAVI I C.A.P. IPERSTATICHE 7.1 Il sistema equivalente alla precompressione a valutazione delle caratteristiche della sollecitazione nelle travi in c.a.p. può essere condotta, in alternativa

Dettagli

Analisi dei Dati Tabelle e Grafici

Analisi dei Dati Tabelle e Grafici Analisi dei Dati Tabelle e Grafici Spesso una misurazione consiste nello studio di una grandezza,y i in funzione di un altra, x i. Esempi: o lo spazio percorso da un oggetto in funzione di un intervallo

Dettagli

CALCOLO DEL RAGGIO DI CURVATURA DI UNA CURVA REGOLARE DI E Q UAZI O NE y = f (x ), ivi derivabile almeno due volte, e che la derivata seconda

CALCOLO DEL RAGGIO DI CURVATURA DI UNA CURVA REGOLARE DI E Q UAZI O NE y = f (x ), ivi derivabile almeno due volte, e che la derivata seconda ALOLO DEL RAGGIO DI URVATURA DI UNA URVA REGOLARE DI E Q UAZI O NE Supponiamo che b sia una unzione deinita in, ivi derivabile almeno due volte, e che in la derivata seconda sia diversa da zero, e indichiamo

Dettagli

Esercitazione N.2 Risultanti dei carichi aerodinamici sull ala

Esercitazione N.2 Risultanti dei carichi aerodinamici sull ala R. BARBONI EERCITAZIONI DI COTRUZIONI AEROPAZIALI 1 Esercitazione N.2 Risultanti dei carichi aerodinamici sull ala 2 CARICHI UL VELIVOLO Esercizio La figura mostra la semiala in pianta di un velivolo.

Dettagli

Soluzioni verifica di Matematica 5 a E Liceo Scientifico - 17/10/2013

Soluzioni verifica di Matematica 5 a E Liceo Scientifico - 17/10/2013 Istituto Superiore XXV aprile Pontedera - Prof Francesco Daddi Soluzioni verifica di Matematica 5 a E Liceo Scientifico - 7/0/03 Esercizio Si consideri la funzione e x+ se x < f(x) = 0 se x = x x x se

Dettagli

Dinamica dei Fluidi. Moto stazionario

Dinamica dei Fluidi. Moto stazionario FLUIDODINAMICA 1 Dinamica dei Fluidi Studia il moto delle particelle di fluido* sotto l azione di tre tipi di forze: Forze di superficie: forze esercitate attraverso una superficie (pressione) Forze di

Dettagli

ORDINAMENTO 2014 SESSIONE SUPPLETIVA - PROBLEMA 1

ORDINAMENTO 2014 SESSIONE SUPPLETIVA - PROBLEMA 1 www.matefilia.it ORDINAMENTO 20 SESSIONE SUPPLETIVA - PROBLEMA Sono dati un quarto di cerchio AOB e la tangente t ad esso in A. Dal punto O si mandi una semiretta che intersechi l arco AB e la tangente

Dettagli

LABORATORIO DI CIRCUITI ELETTRICI Nozioni generali e guida agli esperimenti. Rappresentazione grafica dei risultati sperimentali

LABORATORIO DI CIRCUITI ELETTRICI Nozioni generali e guida agli esperimenti. Rappresentazione grafica dei risultati sperimentali LABORATORIO DI CIRCUITI ELETTRICI Nozioni generali e guida agli esperimenti Rappresentazione grafica dei risultati sperimentali Uno strumento molto utile per comunicare e leggere risultati sperimentali

Dettagli

definita e continua in

definita e continua in Teorema della media integrale definita e continua in dim. Teorema di Weierstrass e tali che Proprietà di monotonia Dividendo tutto per Valore compreso tra il minimo e il massimo assoluti della funzione

Dettagli

Nome: Cognome: Data: 4/11/2017

Nome: Cognome: Data: 4/11/2017 Esercizio N. 1 Valutazione 5 1. Si consideri un lanciatore, lungo L = 40m, fermo sulla rampa di lancio modellato come una trave appoggiata, alla base (x=0m) e a x = 3/4L, come in figura. La sollecitazione

Dettagli

EQUAZIONE DELLA LINEA ELASTICA

EQUAZIONE DELLA LINEA ELASTICA ESERCIZI SVOLTI O CON TRACCIA DI SOLUZIONE SU EQUAZIONE DELLA LINEA ELASTICA v 0.9 Calcolare lo spostamento verticale del pattino A della struttura utilizzando l equazione della linea elastica. Materiale:

Dettagli

Piano cartesiano e retta

Piano cartesiano e retta Piano cartesiano e retta Il punto, la retta e il piano sono concetti primitivi di cui non si da una definizione rigorosa, essi sono i tre enti geometrici fondamentali della geometria euclidea. Osservazione

Dettagli

SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE

SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE. Esercizi Esercizio. In R calcolare il modulo dei vettori,, ),,, ) ed il loro angolo. Esercizio. Calcolare una base ortonormale del sottospazio

Dettagli

SEZIONI A PARETE SOTTILE SFORZI TANGENZIALI E CENTRO DI TAGLIO

SEZIONI A PARETE SOTTILE SFORZI TANGENZIALI E CENTRO DI TAGLIO SEZIONI A PAREE SOILE SFORZI ANGENZIALI E CENRO DI AGLIO La relazione di Jourawski che lega l azione di taglio agente nella sezione di una trave con le sollecitazioni tangenziali medie agenti su su una

Dettagli

Daniela Lera A.A

Daniela Lera A.A Daniela Lera Università degli Studi di Cagliari Dipartimento di Matematica e Informatica A.A. 2014-2015 Equazioni Differenziali Si consideri il seguente problema: Quali sono le curve y = f (x) del piano

Dettagli

Determinazione del punto neutro e di alcune caratteristiche latero-direzionali di un velivolo

Determinazione del punto neutro e di alcune caratteristiche latero-direzionali di un velivolo Dispensa 7 Determinazione del punto neutro e di alcune caratteristiche latero-direzionali di un velivolo Metti qui una citazione. E qui l autore Indice 7. Definizione del prolema........................

Dettagli

Geometria Analitica Domande e Risposte

Geometria Analitica Domande e Risposte Geometria Analitica Domande e Risposte A. Il Piano Cartesiano. Qual è la formula della distanza tra due punti nel piano cartesiano? Per calcolare la formula della distanza tra due punti nel piano cartesiano

Dettagli

L illuminamento medio in esercizio risulta pari a 500 lux. Determinare :

L illuminamento medio in esercizio risulta pari a 500 lux. Determinare : 1)Un sala di lettura, di pianta rettangolare 10 x 5 metri, è illuminata con plafoniere dotate di due lampade fluorescenti tubolari, di potenza 36 W ciascuna e flusso luminoso 2800 lm. Le dimensioni dell

Dettagli

Matematica - Prova d esame (25/06/2004)

Matematica - Prova d esame (25/06/2004) Matematica - Prova d esame (/6/4) Università di Verona - Laurea in Biotecnologie AI - A.A. /4. (a) Disegnare sul piano di Gauss i numeri z = i e w = i, e scriverne la forma trigonometrica. Calcolare z

Dettagli

Dom. 1 Dom 2 Es. 1 Es. 2 Es. 3 Es. 4 Totale. Cognome: Nome: Matricola:

Dom. 1 Dom 2 Es. 1 Es. 2 Es. 3 Es. 4 Totale. Cognome: Nome: Matricola: Dom. Dom 2 Es. Es. 2 Es. 3 Es. Totale Analisi e Geometria Secondo appello 0 luglio 207 Docente: Gianni Arioli Numero Alfabetico: Cognome: Nome: Matricola: Prima parte a. Enunciare e dimostrare la formula

Dettagli

CALCOLO DELLA RESISTENZA DI UN PROFILO

CALCOLO DELLA RESISTENZA DI UN PROFILO CACOO DEA RESISTENZA DI UN PROFIO A cura di: Andrea Fogante Davide Gambarara Emanuel Gomez Antonio Grande Ivan Josipovic Anwar Koshakji allievi aerospaziali del anno, corso di Fluidodinamica I 1 Prefazione

Dettagli

HP VP. (rispettivamente seno, coseno e tangente di β)

HP VP. (rispettivamente seno, coseno e tangente di β) Trigonometria Prerequisiti: Nozione di angolo e di arco. Obiettivi convertire le misure degli angoli dai gradi ai radianti e viceversa; sapere le relazioni fra gli elementi (lati, angoli) di un triangolo;

Dettagli

Il metodo di Galerkin Elementi Finiti Lineari

Il metodo di Galerkin Elementi Finiti Lineari Il metodo di Galerkin Elementi Finiti Lineari Si consideri il problema: u(x) = f(x), x (, ), u() = 0, u() = 0. Se ne fornisca la corrispondente formulazione debole. Si costruiscano inoltre la matrice di

Dettagli

determinare una soluzione y(t) dell equazione completa e, quindi dedurne tutte le y(t) soluzioni dell equazione.

determinare una soluzione y(t) dell equazione completa e, quindi dedurne tutte le y(t) soluzioni dell equazione. ANALISI VETTORIALE Soluzione esercizi 4 febbraio 2011 10.1. Esercizio. Assegnata l equazione lineare omogenea di primo ordine y + a y = 0 determinare le soluzioni di tale equazione in corrispondenza ai

Dettagli

Esonero di Analisi Matematica II (A)

Esonero di Analisi Matematica II (A) Esonero di Analisi Matematica II (A) Ingegneria Edile, 8 aprile 3. Studiare la convergenza del seguente integrale improprio: + x log 3 x (x ) 3 dx.. Studiare la convergenza puntuale ed uniforme della seguente

Dettagli

Esercizio (tratto dal problema 7.36 del Mazzoldi 2)

Esercizio (tratto dal problema 7.36 del Mazzoldi 2) Esercizio (tratto dal problema 7.36 del Mazzoldi 2) Un disco di massa m D = 2.4 Kg e raggio R = 6 cm ruota attorno all asse verticale passante per il centro con velocità angolare costante ω = 0 s. ll istante

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Laurea in Ingegneria Gestionale Sede di Fermo Corso di 9 - EQUAZIONI DIFFERENZIALI ORDINARIE valori iniziali Valori iniziali Ci occuperemo della soluzione numerica di equazioni del prim ordine

Dettagli

Paolo Martinis Trieste, 11 marzo Università degli Studi di Trieste Facoltà di Ingegneria Corso di strade, ferrovie, aeroporti A.A.

Paolo Martinis Trieste, 11 marzo Università degli Studi di Trieste Facoltà di Ingegneria Corso di strade, ferrovie, aeroporti A.A. Paolo Martinis Trieste, 11 marzo 004 Università degli Studi di Trieste Facoltà di Ingegneria Corso di strade, ferrovie, aeroporti A.A. 003-004 Esercitazione Per una strada extraurbana secondaria (tipo

Dettagli

Integrazione di funzioni razionali

Integrazione di funzioni razionali Esercitazione n Integrazione di funzioni razionali Consideriamo il rapporto P (x) di due polinomi di gradi n e m rispettivamente. Per determinare una primitiva della funzione f(x) P (x) possiamo procedere

Dettagli

C I R C O N F E R E N Z A...

C I R C O N F E R E N Z A... C I R C O N F E R E N Z A... ESERCITAZIONI SVOLTE 3 Equazione della circonferenza di noto centro C e raggio r... 3 Equazione della circonferenza di centro C passante per un punto A... 3 Equazione della

Dettagli

1 Esercizi di ripasso 2

1 Esercizi di ripasso 2 Esercizi di ripasso. Sia P r : R R l endomorfismo che manda ogni vettore v R nella sua proiezione ortogonale sulla retta r passante per l origine di equazione x y =. Calcolare una matrice per P r. Determinare

Dettagli

Domande 1. La domanda e l offerta del bene 1 sono date rispettivamente da:

Domande 1. La domanda e l offerta del bene 1 sono date rispettivamente da: Domande 1. La domanda e l offerta del bene 1 sono date rispettivamente da: DD SS 10 0,2 2 2 5 0,5 a) Calcolare la quantità e il prezzo di equilibrio sapendo che il reddito a disposizione del consumatore

Dettagli

CAP 4 La polare di resistenza del velivolo

CAP 4 La polare di resistenza del velivolo Corso di MECCANICA DEL VOLO Modulo Prestazioni CAP 4 La polare di resistenza del velivolo Prof. F. Nicolosi 1 LA POLARE DEL VELIVOLO Res. indotta (vortex drag) Res. di scia (form drag) Res. di attrito

Dettagli

RIPASSO E APPROFONDIMENTO DI ARGOMENTI DEL TERZO ANNO

RIPASSO E APPROFONDIMENTO DI ARGOMENTI DEL TERZO ANNO RIPASSO E APPROFONDIMENTO DI ARGOMENTI DEL TERZO ANNO 1 La circonferenza. 2 La parabola. 3 L ellisse. L iperbole. 5 Le coniche. 6 Equazione generale di una conica. 7 Calcolo delle principali caratteristiche

Dettagli

Risoluzione del compito n. 4 (Giugno 2014)

Risoluzione del compito n. 4 (Giugno 2014) Risoluzione del compito n. 4 Giugno 2014) PROBLEMA 1 Determinate le soluzioni z, w), con z, w C,delsistema { z = w 2 w i Dalla prima equazione ricaviamo 2iz +4i z = w 2. che sostituito nella seconda la

Dettagli

Problema (tratto dal 7.42 del Mazzoldi 2)

Problema (tratto dal 7.42 del Mazzoldi 2) Problema (tratto dal 7.4 del azzoldi Un disco di massa m D e raggio R ruota attorno all asse verticale passante per il centro con velocità angolare costante ω. ll istante t 0 viene delicatamente appoggiata

Dettagli

APPENDICE MATEMATICA VARIAZIONE MEDIA E VARIAZIONE MARGINALE

APPENDICE MATEMATICA VARIAZIONE MEDIA E VARIAZIONE MARGINALE PPENDIE MTEMTI VRIZIONE MEDI E VRIZIONE MRGINLE Problema: come possiamo conoscere, oltre alla direzione della variazione (come, cioè + o -, varia Y al variare di ), anche l entità della variazione (quanto

Dettagli

Esercizi svolti sugli integrali

Esercizi svolti sugli integrali Esercizio. Calcolare il seguente integrale indefinito x dx. Soluzione. Poniamo da cui x = t derivando rispetto a t abbiamo t = x x = t dx dt = quindi ( t x dx = ) poiché t = t, abbiamo t dt = = in definitiva:

Dettagli

ESAME DI AERODINAMICA 11/6/2012

ESAME DI AERODINAMICA 11/6/2012 ESAME DI AERODINAMICA /6/202 La velocità in un campo fluidodinamico bidimensionale è espressa, in m/s, da u = x y t,v = 2 y 2. La vorticità nel punto (x= -2 m, y= m) al tempo t=2 s è, in s : (a) -4 (b)

Dettagli

Corso di MECCANICA DEL VOLO Modulo Prestazioni Lezione n.7 La polare di resistenza del velivolo

Corso di MECCANICA DEL VOLO Modulo Prestazioni Lezione n.7 La polare di resistenza del velivolo Corso di MECCANICA DEL VOLO Modulo Prestazioni Lezione n.7 La polare di resistenza del velivolo 1 LA POLARE DEL VELIVOLO Res. indotta (vortex drag) Res. di scia (form drag) Res. di attrito (friction drag)

Dettagli

Esercizi svolti di geometria delle aree Alibrandi U., Fuschi P., Pisano A., Sofi A. ESERCIZIO n.4

Esercizi svolti di geometria delle aree Alibrandi U., Fuschi P., Pisano A., Sofi A. ESERCIZIO n.4 ESERCZO n. Data la sezione a L riportata in Figura determinare: a) gli assi principali centrali di inerzia; b) l ellisse principale centrale di inerzia; c) il nocciolo centrale di inerzia. b b = cm h =

Dettagli

Corso di Analisi Matematica 1 - professore Alberto Valli

Corso di Analisi Matematica 1 - professore Alberto Valli Università di Trento - Corso di Laurea in Ingegneria Civile e Ingegneria per l Ambiente e il Territorio - 06/7 Corso di Analisi Matematica - professore Alberto Valli foglio di esercizi - ottobre 06 iti.

Dettagli

Ricordiamo. 1. Tra le equazioni delle seguenti rette individua e disegna quelle parallele all asse delle ascisse:

Ricordiamo. 1. Tra le equazioni delle seguenti rette individua e disegna quelle parallele all asse delle ascisse: La retta Retta e le sue equazioni Equazioni di rette come luogo geometrico y = h h R equazione di una retta parallela all asse delle ascisse x = 0 equazione dell asse delle ordinate y = h h R equazione

Dettagli

ESAME DI AERODINAMICA 29/3/2007

ESAME DI AERODINAMICA 29/3/2007 ESAME DI AERODINAMICA 29/3/2007 Un ala a pianta ellittica e distribuzione ellittica di portanza ha allungamento 6 ed apertura alare 2 m. Quando si muove in aria alla velocità di 50 km/h e sviluppa un C

Dettagli

Equazioni differenziali

Equazioni differenziali Capitolo 2 Equazioni differenziali I modelli matematici per lo studio di una popolazione isolata sono equazioni differenziali. Premettiamo dunque allo studio dei modelli di popolazioni isolate una breve

Dettagli

Le coniche retta generatrice

Le coniche retta generatrice Le coniche Consideriamo un cono retto a base circolare a due falde ed un piano. Le intersezioni possibili tra le due figure sono rappresentate dallo schema seguente Le figure che si possono ottenere sono

Dettagli

Esercizi svolti di geometria delle aree Alibrandi U., Fuschi P., Pisano A., Sofi A. ESERCIZIO n.5

Esercizi svolti di geometria delle aree Alibrandi U., Fuschi P., Pisano A., Sofi A. ESERCIZIO n.5 Esercizi svolti di geometria delle aree Alibrandi U., Fusci P., Pisano A., Sofi A. ESERCZO n.5 Data la sezione riportata in Figura, determinare: a) gli assi principali centrali di inerzia; b) l ellisse

Dettagli

ESERCIZI DI ANALISI MATEMATICA II. sin(tv) v. f(v) dv = (1 + t) (e 1/t + 1)

ESERCIZI DI ANALISI MATEMATICA II. sin(tv) v. f(v) dv = (1 + t) (e 1/t + 1) ESERCIZI DI ANALISI MATEMATICA II Equazioni differenziali ED 1 Stabilire se l equazione integrale f(t) 1/2 0 sin(tv) v f(v) dv = (1 + t) (e 1/t + 1) ammette una soluzione nello spazio C([0, 1/2]). (Suggerimento:

Dettagli

LEZIONE N 12 IL CEMENTO ARMATO PRECOMPRESSO IL SISTEMA EQUIVALENTE ALLA PRECOMPRESSIONE (SEP) Uso del sistema equivalente per travi continue

LEZIONE N 12 IL CEMENTO ARMATO PRECOMPRESSO IL SISTEMA EQUIVALENTE ALLA PRECOMPRESSIONE (SEP) Uso del sistema equivalente per travi continue EZIOE 12 I CEMETO ARMATO PRECOMPRESSO I SISTEMA EQUIVAETE AA PRECOMPRESSIOE (SEP) I sistemi i iperstatici ti i precompressi Uso del sistema equivalente per travi continue linea delle pressioni e cavo concordante

Dettagli

Prima prova in Itinere Ist. Mat. 1, Prima parte, Tema ALFA COGNOME: NOME: MATR.:

Prima prova in Itinere Ist. Mat. 1, Prima parte, Tema ALFA COGNOME: NOME: MATR.: Prima prova in Itinere Ist. Mat. 1, Prima parte, Tema ALFA 1) L applicazione lineare f : R 3 R 2 data da f(x, y, z) = (3x + 2y + z, kx + 2y + kz) è suriettiva A: sempre; B: mai; C: per k 1 D: per k 2;

Dettagli

INTEGRALI INDEFINITI e DEFINITI Esercizi risolti

INTEGRALI INDEFINITI e DEFINITI Esercizi risolti INTEGRALI INDEFINITI e DEFINITI Esercizi risolti E data la funzione f( = (a Provare che la funzione F ( = + arcsin è una primitiva di f( sull intervallo (, (b Provare che la funzione G( = + arcsin π è

Dettagli

x =0 x 1 x 2 Esercizio (tratto dal Problema 1.4 del Mazzoldi)

x =0 x 1 x 2 Esercizio (tratto dal Problema 1.4 del Mazzoldi) 1 Esercizio (tratto dal Problema 1.4 del Mazzoldi) Un punto materiale si muove con moto uniformemente accelerato lungo l asse x. Passa per la posizione x 1 con velocità v 1 1.9 m/s, e per la posizione

Dettagli

17. LA DISTRIBUZIONE NORMALE E LA FUNZIONE DI GAUSS

17. LA DISTRIBUZIONE NORMALE E LA FUNZIONE DI GAUSS 17. LA DISTRIBUZIONE NORMALE E LA FUNZIONE DI GAUSS 17.1 LA DISTRIBUZIONE DEI DATI Nel trattare gli errori casuali abbiamo utilizzato il concetto di media aritmetica ed il concetto di deviazione standard

Dettagli

DERIVATE E LORO APPLICAZIONE

DERIVATE E LORO APPLICAZIONE DERIVATE E LORO APPLICAZIONE SIMONE ALGHISI 1. Applicazione del calcolo differenziale 1 Abbiamo visto a lezione che esiste un importante legame tra la continuità di una funzione y = f(x) in un punto x

Dettagli