Se x* e punto di minimo (locale) per la funzione nell insieme Ω, Ω = { x / g i (x) 0 i I, h j (x)= 0 j J } lo e anche per F(x) = f o (x) + c x x 2

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Se x* e punto di minimo (locale) per la funzione nell insieme Ω, Ω = { x / g i (x) 0 i I, h j (x)= 0 j J } lo e anche per F(x) = f o (x) + c x x 2"

Transcript

1 NLP -OPT 1 CONDIZION DI OTTIMO [ Come ricavare le condizioni di ottimo. ] Si suppone x* sia punto di ottimo (minimo) per il problema min f o (x) con vincoli g i (x) 0 i I h j (x) = 0 j J la condizione (necessaria) di ottimo e' (se x* punto di minimo) esistono pesi μ i 0, λ j per cui i I μ i g i (x*) = 0 e vale μ 0 f o (x*) + i I μ i g i (x*) + j J λ j h j (x*) = 0 [Se μ 0 >0 equivale alla condizione f o (x*) + i I μ i g i (x*) + j J λ j h j (x*) = 0 mentre se μ 0 =0 alla condizione (senza usare f o (x) ) i I μ i g i (x*) + j J λ j h j (x*) = 0 ] Una delle dimostrazioni possibili e' la seguente. Benche il metodo sia "costruttivo" e' numericamente instabile e non puo' essere brutalmente applicato come algoritmo di minimizzaione Dim Si suppone x* punto di ottimo per il problema min f o (x) con vincoli g i (x) 0 i I h j (x) = 0 j J Se x* e punto di minimo (locale) per la funzione nell insieme Ω, Ω = { x / g i (x) 0 i I, h j (x)= 0 j J } lo e anche per F(x) = f o (x) + c x x 2 In questo modo F(x*) = f o (x*), f o (x*) = F (x*) F(x) f o (x), lim x + F(x)= + Siccome c >0 e arbitrario si puo scegliere c in modo che x* sia minimo isolato e globale per F(x) Nel punto x* le condizioni (locali) per F sono le stesse che per f o.

2 NLP -OPT 2 Si puo suppporre che x* sia minimo isolato e globale, lim x + f o (x) = + k >0 si puo definire la funzione (di penalizzazione) P k (x) = f o (x) + i I k (g i (x) + ) 2 + j J k (h j (x)) 2 f o (x) P k (x) x, vale la condizione lim x + P k (x)= + P k ha un punto di minimo(assoluto) x k e in tale punto si ha P k (x k ) = 0 cioe f o (x k ) + i I 2k (g i (x k ) + ) g i (x k ) + j J 2k (h j (x k )) h j (x k ) = 0 [ N.B. g i (x) + = max {0, g i (x)}, (g i (x) + ) 2 = 2(g i (x)) + g i (x) se g i (x) 0, (g i (x) + ) 2 = 0, (g i (x) + ) 2 = 0 se g i (x) > 0, (g i (x) + ) 2 = g i (x) 2, (g i (x) + ) 2 = 2(g i (x)) g i (x) e quindi (g i (x) + ) 2 e' una funzione C 1 se cosi e' g i ] Nel punto x* si ha f o (x*) = P k (x*) k e necessariamente P k (x k ) f o (x*) = P k (x*) Si genera una successione x k Le due condizioni P k (x k ) f o (x*), lim x + f o (x) = + garantiscono la limitatezza di x k Per un estratta x k y Allora f o (x k ) + i I k(g i (x k ) + ) 2 + j J k(h j (x k )) 2 f o (x*) 0 i I (g i (x k ) + ) 2 + j J (h j (x k )) 2 (k -1 ) ( f o (x*) - f o (x k ) ) e al limite con k + 0 i I (g i (y) + ) 2 + j J (h j (y)) 2 lim k -1 ( f o (x*) - f o (x k ) ) = 0 cioe y e ammissibile.

3 NLP -OPT 3 Allora f o (x*) f(y) [x* minimo] ] lim ( i I k(g i (x k ) + ) 2 + j J k(h j (x k )) 2 ) lim (f o (x*) - f o (x k ) ) 0 e lim P k (x k ) = f(y), f(y) f o (x*) e y = x* ( x* unico minimo) Se tutte le quantita 2kg i (x k ) + i I, 2k h j (x k ) j J sono limitate allora 2k g i (x k ) + μ i 0, 2k h j (x k ) λ j Da P k (x k ) = 0 f o (x k ) + i I 2k g i (x k ) + g i (x k ) + j J 2k h j (x k ) h j (x k ) = 0 al limite f o (x*) + i I μ i g i (x*) + j J λ j h j (x*) = 0 Se le quantita 2k g i (x k ) + i I, 2k h j (x k ) j J non sono limitate si pone σ k = max { 2kg i (x k ) + i I, 2k h j (x k ) j J } μ (i,k) = (σ k ) -1 2k g i (x k ) + λ (j,k) = (σ k ) -1 2k h j (x k ) Mentre σ k + i valori μ (i,k) e λ (j,k) sono limitati quindi μ (i,k) μ i 0 λ (j,k) λ j La condizione P k (x k ) = 0 si puo scrivere come (σ k ) -1 f o (x k ) + i I μ (i,k) g i (x k ) + j J λ (j,k) h j (x k ) = 0 e al limite i I μ i g i (x*) + j J λ j h j (x*) = 0 Ovviamente j J λ j h j (x*) = 0 Se g i (x*) < 0 lim g i (x k ) + = 0 e μ i = 0 Se μ i > 0 necessariamente g i (x k ) > 0 (o 0) e per ammissibilita' g i (x*) = 0 e quindi i I μ i g i (x*) = 0 I valori μ i, λ j sono indicati come moltiplicatori (di Lagrange) In questo modo le condizioni di ottimo vincolato si ottengono come estensione/applicazione delle condizioni di ottimo (non vincolato).

4 NLP -OPT 4 CONDIZIONI DI OTTIMO (cenno altro modo) Le condizioni di ottimo si possono ricavare anche secondo la seguente traccia 1) Se x* minimizza e se x n x* x n ammissibile allora (x n -x*)/ x n x v, v = 1 e necessariamente (da x n ammissibile, x* ottimo) g i (x*) t (v) 0 h j (x*) t (v) = 0, f o (x*)t (v) 0 { g i (x*) t (v) 0 per i vincoli attivi per cui g i (x*)= 0 } 2) Lo stesso risultato vale per vettori v+ ottenuti come limite di vettori v calcolati al punto precedente, somma di vettori v calcolati al punto precedente, multipli di vettori v calcolati al punto precedente 3) Se ogni vettore v del tipo g i (x*) t (v) 0 h j (x*) t (v) = 0 puo essere ottenuto da limiti di punti ammissibili x n x* o da limite di vettori cosi generati + operazioni al punto 2 allora vale la proprieta v per cui g i (x*) t (v) 0 h j (x*) t (v) = 0 si ha f o (x*)t (v) 0 4) Si considerano le matrici H (di righe h j (x*) ) e la matrice G (di righe g i (x*) ). Da considerazioni di algebra lineare, teoremi dell alternativa per matrici (lemma di Farkas), considerazioni di convessita (Coni +Coni duali) si ottiene che la condizione al punto 3 e equivalente a i I μ i g i (x*) = 0 μ 0 f o (x*) + i I μ i g i (x*) + j J λ j h j (x*) = 0 con la condizione μ i 0

5 NLP -OPT 5 QUALIFICAZIONE DEI VINCOLI All ottimo risulta f o (x*) + i I μ i g i (x*) + j J λ j h j (x*) = 0 oppure i I μ i g i (x*) + j J λ j h j (x*) = 0 e quindi in generale μ 0 f o (x*) + i I μ i g i (x*) + j J λ j h j (x*) = 0 Le condizioni che assicurano μ 0 > 0 sono dette qualificazioni dei vincoli. Se i vincoli sono g i (x) 0 i I h j (x) = 0 j J si denotano x con I(x) = { i I / g i (x) = 0 }, J(x) = { j J / h(x) =0 } e relativamente a x* (ottimo) con IA(x*) = { i I(x*) / μ i >0 } JA(x*) = { j J(x*) / λ j 0 } e con A(x*) = IA(x*) JA(x*) [COTTLE INDIPENDENZA LINEARE] Una condizione possibile e l indipendenza lineare i vettori { g i (x*) i IA(x*), h j (x*) j JA(x*) } sono linearmente indipendenti [MANGASARIAN-FROMOWITZ ] Una condizione piu debole e la seguente i vettori { h j (x*) j JA(x*) } sono linearmente indipendenti ed esiste v 0 t.c h j (x*) t v = 0 j JA(x*) e e g i (x*) t v > 0 i IA(x*) Se i vincoli g i (x) 0 sono tutti convessi l esistenza di v e garantita da un punto u tale che g i (u) < 0 per i vincoli i IA(x*) Infatti 0 > g(u) g i (x*) + g i (x*) t (u-x*) = g i (x*) t (u-x*) e g i (x*) t (x*-u) >0

6 NLP -OPT 6 [SLATER ] Se i vincoli g i (x) 0 sono tutti convessi e mancano i vincoli h j (x) = 0 l esistenza di un punto u tale che g i (u) < 0 e una qualificazione dei vincoli. Infatti da μ i 0 0 > i I μ i g i (u) i I μ i g i (x*) + i I μ i g i (x*) t (u-x*) Vale i I μ i g i (x*) = 0, se μ i >0 allora g i (x*)=0 Quindi 0 > i I μ i g i (x*) e i I μ i g i (x*) = 0 e impossibile NOTA Vi sono altre condizioni possibili. μ 0 > 0 implica che i I μ i g i (x*) + j J λ j h j (x*) = -μ 0 f o (x*) Se u e un punto interno (g i (u) 0, h j (u) = 0 ) al primo ordine si dovrebbe avere g i (x*) t (u-x*) 0, h j (x*) t (u-x*) = 0 e f o (u) f o (x*) cioe f o (x*) t (u-x*) 0 Se vale per (u-x*) vale anche per h(u) = (u-x*)/ u-x* e per ogni direzione h limite di h(u). Se μ 0 = 0 significa che alcune direzioni (vettori h) sembrano interni g i (x*) t h 0, h j (x*) t h = 0 ma non lo sono ( & non obbligano f o (x*) t h 0)

7 NLP -OPT 7 ESEMPIO ( : Calcolo esplicito condizioni di ottimo attraverso penalizzazione) Si considera min F(x) = (1/2) x t Qx p t x Ax = b [ Q definita positiva & righe A l.i.] Funzione penalizzata P σ = (1/2) x t Qx p t x +σ/2 Ax-b 2 [ P σ = F + Α t σ (Ax-b) ] P σ = Qx-p + σ (Α t Α)x - σa t b Ottimo unico a σ fissato x σ = (Q+σ Α t Α) -1 ( p+σ A t b ) (Q+σ Α t Α) definita positiva Se σ + si deve avere x σ x* (soluzione del problema ) A x σ - b 0 (A x σ b) ( ammissibilita x* ) σ (A x σ - b) m* (vettore moltiplicatori ) Serve una formula per (Q+σ Α t Α) -1 :si usa la Formula ( Shermann Morrison (esatta)) (Q+σ Α t Α) -1 = Q -1 -σ Q -1 A t H -1 AQ -1 con H = (I + σ AQ -1 A t ) = σ (AQ -1 A t ) ( (σ) -1 (AQ -1 A t ) -1 + I ) da cui H -1 = (σ) -1 ( (σ) -1 (AQ -1 A t ) -1 + I ) -1 (AQ -1 A t ) -1 Si pone M = (AQ -1 A t ) se σ + ρ (M -1 /σ) < 1 (definitivamente ) e ( (σ) -1 M -1 + I ) -1 = I (σ) -1 M -1 + (σ) -2 M -2 - (σ) -3 M ) ( serie convergente)

8 NLP -OPT 8 (formula per (Q+σ Α t Α) -1 ) = Q -1 -σ Q -1 A t H -1 AQ -1 = Q -1 - Q -1 A t ( (σ) -1 M -1 + I ) -1 M -1 AQ -1 = Q -1 - Q -1 A t ( I (σ) -1 M -1 + (σ) -2 M -2 ) M -1 AQ -1 ( tralasciati termini (σ) -3 o superiori ) = Q -1 - Q -1 A t M -1 AQ -1 + (σ) -1 (Q -1 A t M -2 AQ -1 ) - (σ) -2 (Q -1 A t M -3 AQ -1 ) Moltiplicando per ( p+σa t b ) si ottiene x σ (= coefficienti delle potenze (σ) -j, j = -1, n di x σ ) Coeff. di σ (Q -1 - Q -1 A t M -1 AQ -1 ) (A t b) = 0 Termine noto (Q -1 - Q -1 A t M -1 AQ -1 )p + (Q -1 A t M -2 AQ -1 ) A t b = Q -1 p - Q -1 A t M -1 AQ -1 p + Q -1 A t M -1 b = lim x σ = x* [ A x* () = A(Q -1 p - Q -1 A t M -1 AQ -1 p + Q -1 A t M -1 b )= AQ -1 p - AQ -1 p + b =b ] Termine (σ) -1 [ lim σ (A x σ - b) lim = σ (Αx*+Αc1(σ) -1 +Ac2(σ) -1 - b ) = c1 ] (Q -1 A t M -2 AQ -1 ) p- (Q -1 A t M -3 AQ -1 ) (A t b) = (Q -1 A t M -2 (AQ -1 p b) e moltiplicando per A M -1 (AQ -1 p b) e m* = M -1 (AQ -1 p b) = (AQ -1 A t ) -1 (AQ -1 p b) m* sono i veri moltiplicatori: Per x* = Q -1 p - Q -1 A t M -1 AQ -1 p + Q -1 A t M -1 b F = Qx*-p = p A t M -1 AQ -1 p + A t M -1 b) p = -A t (M -1 AQ -1 p - M -1 b) = -A t m*

9 NLP -OPT 9 Il punto x* e ottimo : se y altro punto ammissibile A(x*-y)=0 e da Qx*-p+A t m* = 0 (x*-y) t (Qx*-p+A t m*) = (x*-y) t (Qx*-p ) = 0, [ x* t Qx*-y t Qx* = -p t y +p t x* ] F(y)-F(x*) = (1/2) y t Q y p t y - (1/2) x* t Q x* +p t x* = (1/2) y t Q y - (1/2) x* t Q x* + x* t Qx*-y t Qx* = (1/2) y t Q y + (1/2) x* t Q x* -y t Qx* = (1/2) (x*-y) t Q(x*-y) > 0 Possibile ricavare le condizioni di ottimo Calcolo esplicito ( fissare σ e calcolare numericamente x σ ) problematico (Q + σ Α t Α) mal condizionata Fissato σ formula per l inversa inesatta (richiede la serie) x σ risulta ammissibile solo al limite ( come avere una soluzione? ) m* e limite di forma (+ )(0) (come approssimare m*? )

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

2.1 Definizione di applicazione lineare. Siano V e W due spazi vettoriali su R. Un applicazione

2.1 Definizione di applicazione lineare. Siano V e W due spazi vettoriali su R. Un applicazione Capitolo 2 MATRICI Fra tutte le applicazioni su uno spazio vettoriale interessa esaminare quelle che mantengono la struttura di spazio vettoriale e che, per questo, vengono dette lineari La loro importanza

Dettagli

Ricerca Operativa Dualità e programmazione lineare

Ricerca Operativa Dualità e programmazione lineare Ricerca Operativa Dualità e programmazione lineare L. De Giovanni AVVERTENZA: le note presentate di seguito non hanno alcuna pretesa di completezza, né hanno lo scopo di sostituirsi alle spiegazioni del

Dettagli

2 + (σ2 - ρσ 1 ) 2 > 0 [da -1 ρ 1] b = (σ 2. 2 - ρσ1 σ 2 ) = (σ 1

2 + (σ2 - ρσ 1 ) 2 > 0 [da -1 ρ 1] b = (σ 2. 2 - ρσ1 σ 2 ) = (σ 1 1 PORTAFOGLIO Portafoglio Markowitz (2 titoli) (rischiosi) due titoli rendimento/varianza ( μ 1, σ 1 ), ( μ 2, σ 2 ) Si suppone μ 1 > μ 2, σ 1 > σ 2 portafoglio con pesi w 1, w 2 w 1 = w, w 2 = 1- w 1

Dettagli

Capitolo 4: Ottimizzazione non lineare non vincolata parte II. E. Amaldi DEIB, Politecnico di Milano

Capitolo 4: Ottimizzazione non lineare non vincolata parte II. E. Amaldi DEIB, Politecnico di Milano Capitolo 4: Ottimizzazione non lineare non vincolata parte II E. Amaldi DEIB, Politecnico di Milano 4.3 Algoritmi iterativi e convergenza Programma non lineare (PNL): min f(x) s.v. g i (x) 0 1 i m x S

Dettagli

Nel seguito, senza ulteriormente specificarlo, A indicherà un anello commutativo con identità.

Nel seguito, senza ulteriormente specificarlo, A indicherà un anello commutativo con identità. 1 ANELLI Definizione 1.1. Sia A un insieme su cui sono definite due operazioni +,. (A, +, ) si dice Anello se (A, +) è un gruppo abeliano è associativa valgono le leggi distributive, cioè se a, b, c A

Dettagli

Ricerca Operativa 2. Introduzione al metodo del Simplesso

Ricerca Operativa 2. Introduzione al metodo del Simplesso Ricerca Operativa 2. Introduzione al metodo del Simplesso Luigi De Giovanni Giacomo Zambelli 1 Problemi di programmazione lineare Un problema di ottimizzazione vincolata è definito dalla massimizzazione

Dettagli

Dimensione di uno Spazio vettoriale

Dimensione di uno Spazio vettoriale Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione

Dettagli

RICHIAMI SULLE MATRICI. Una matrice di m righe e n colonne è rappresentata come

RICHIAMI SULLE MATRICI. Una matrice di m righe e n colonne è rappresentata come RICHIAMI SULLE MATRICI Una matrice di m righe e n colonne è rappresentata come A = a 11 a 12... a 1n a 21 a 22... a 2n............ a m1 a m2... a mn dove m ed n sono le dimensioni di A. La matrice A può

Dettagli

Chiusura lineare. N.B. A può essere indifferentemente un insieme, finito o no, o un sistema. Es.1. Es.2

Chiusura lineare. N.B. A può essere indifferentemente un insieme, finito o no, o un sistema. Es.1. Es.2 Chiusura lineare Def. Sia A V (K) con A. Si dice copertura lineare (o chiusura lineare) di A, e si indica con L(A), l insieme dei vettori di V che risultano combinazioni lineari di un numero finito di

Dettagli

Sulle funzioni di W 1,p (Ω) a traccia nulla

Sulle funzioni di W 1,p (Ω) a traccia nulla Sulle funzioni di W 1,p () a traccia nulla Sia u W 1,p (R n ) e supponiamo che il supp u, essendo un aperto di R n. Possiamo approssimare u con una successione di funzioni C il cui supporto è contenuto

Dettagli

Applicazioni lineari

Applicazioni lineari Applicazioni lineari Esempi di applicazioni lineari Definizione. Se V e W sono spazi vettoriali, una applicazione lineare è una funzione f: V W tale che, per ogni v, w V e per ogni a, b R si abbia f(av

Dettagli

Da una a più variabili: derivate

Da una a più variabili: derivate Da una a più variabili: derivate ( ) 5 gennaio 2011 Scopo di questo articolo è di evidenziare le analogie e le differenze, relativamente al calcolo differenziale, fra le funzioni di una variabile reale

Dettagli

- Trovare soluzione ottima primale ( con il simplesso o algoritmo analogo)

- Trovare soluzione ottima primale ( con il simplesso o algoritmo analogo) Se si ha un problema lineare e' possibile risolverlo in piu' modi (equivalenti ) - Trovare soluzione ottima primale ( con il simplesso o algoritmo analogo) - Trovare soluzione ottima duale (con il simplesso

Dettagli

9 Metodi diretti per la risoluzione di sistemi lineari: fattorizzazione P A = LU

9 Metodi diretti per la risoluzione di sistemi lineari: fattorizzazione P A = LU 9 Metodi diretti per la risoluzione di sistemi lineari: fattorizzazione P A LU 9.1 Il metodo di Gauss Come si è visto nella sezione 3.3, per la risoluzione di un sistema lineare si può considerare al posto

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Analisi dei sistemi dinamici Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail: marcello.bonfe@unife.it pag. 1 Analisi dei

Dettagli

ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA

ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA Francesco Bottacin Padova, 24 febbraio 2012 Capitolo 1 Algebra Lineare 1.1 Spazi e sottospazi vettoriali Esercizio 1.1. Sia U il sottospazio di R 4 generato dai

Dettagli

Corso di Analisi Numerica

Corso di Analisi Numerica Corso di Laurea in Ingegneria Informatica Corso di Analisi Numerica 8 - METODI ITERATIVI PER I SISTEMI LINEARI Lucio Demeio Dipartimento di Scienze Matematiche 1 Norme e distanze 2 3 4 Norme e distanze

Dettagli

Programmazione Non Lineare Ottimizzazione vincolata

Programmazione Non Lineare Ottimizzazione vincolata DINFO-Università di Palermo Programmazione Non Lineare Ottimizzazione vincolata D. Bauso, R. Pesenti Dipartimento di Ingegneria Informatica Università di Palermo DINFO-Università di Palermo 1 Sommario

Dettagli

Esercizi su lineare indipendenza e generatori

Esercizi su lineare indipendenza e generatori Esercizi su lineare indipendenza e generatori Per tutto il seguito, se non specificato esplicitamente K indicherà un campo e V uno spazio vettoriale su K Cose da ricordare Definizione Dei vettori v,,v

Dettagli

Dimensionamento dei lotti di produzione: il caso con variabilità nota

Dimensionamento dei lotti di produzione: il caso con variabilità nota Dimensionamento dei lotti di produzione: il caso con variabilità nota A. Agnetis In questi appunti studieremo alcuni modelli per il problema del lot sizing, vale a dire il problema di programmare la dimensione

Dettagli

x 1 + x 2 3x 4 = 0 x1 + x 2 + x 3 = 0 x 1 + x 2 3x 4 = 0.

x 1 + x 2 3x 4 = 0 x1 + x 2 + x 3 = 0 x 1 + x 2 3x 4 = 0. Problema. Sia W il sottospazio dello spazio vettoriale R 4 dato da tutte le soluzioni dell equazione x + x 2 + x = 0. (a. Sia U R 4 il sottospazio dato da tutte le soluzioni dell equazione Si determini

Dettagli

Ricerca Operativa A.A. 2007/2008. 10. Dualità in Programmazione Lineare

Ricerca Operativa A.A. 2007/2008. 10. Dualità in Programmazione Lineare Ricerca Operativa A.A. 2007/2008 10. Dualità in Programmazione Lineare Luigi De Giovanni - Ricerca Operativa - 10. Dualità in Programmazione Lineare 10.1 Soluzione di un problema di PL: punti di vista

Dettagli

Note di matematica per microeconomia

Note di matematica per microeconomia Note di matematica per microeconomia Luigi Balletta Funzioni di una variabile (richiami) Una funzione di variabile reale ha come insieme di partenza un sottoinsieme di R e come insieme di arrivo un sottoinsieme

Dettagli

GEOMETRIA I Corso di Geometria I (seconda parte)

GEOMETRIA I Corso di Geometria I (seconda parte) Corso di Geometria I (seconda parte) anno acc. 2009/2010 Cambiamento del sistema di riferimento in E 3 Consideriamo in E 3 due sistemi di riferimento ortonormali R e R, ed un punto P (x, y, z) in R. Lo

Dettagli

Indice. Nota degli autori. 1 Capitolo 1 Introduzione alla ricerca operativa

Indice. Nota degli autori. 1 Capitolo 1 Introduzione alla ricerca operativa XI Nota degli autori 1 Capitolo 1 Introduzione alla ricerca operativa 1 1.1 Premessa 1 1.2 Problemi di ottimizzazione 6 1.3 Primi approcci ai modelli di ottimizzazione 13 1.4 Uso del risolutore della Microsoft

Dettagli

La dualità nella Programmazione Lineare

La dualità nella Programmazione Lineare Capitolo 5 La dualità nella Programmazione Lineare In questo capitolo verrà introdotto un concetto di fondamentale importanza sia per l analisi dei problemi di Programmazione Lineare, sia per lo sviluppo

Dettagli

Richiami di algebra lineare e geometria di R n

Richiami di algebra lineare e geometria di R n Richiami di algebra lineare e geometria di R n combinazione lineare, conica e convessa spazi lineari insiemi convessi, funzioni convesse rif. BT.5 Combinazione lineare, conica, affine, convessa Un vettore

Dettagli

SIMULAZIONE ESAME di OTTIMIZZAZIONE Corso di Laurea in Ingegneria Gestionale 2 o anno

SIMULAZIONE ESAME di OTTIMIZZAZIONE Corso di Laurea in Ingegneria Gestionale 2 o anno SIMULAZIONE ESAME di OTTIMIZZAZIONE 28 novembre 2005 SIMULAZIONE ESAME di OTTIMIZZAZIONE Corso di Laurea in Ingegneria Gestionale 2 o anno Cognome : XXXXXXXXXXXXXXXXX Nome : XXXXXXXXXXXXXX VALUTAZIONE

Dettagli

Corso di Analisi Numerica - AN1. Parte 2: metodi diretti per sistemi lineari. Roberto Ferretti

Corso di Analisi Numerica - AN1. Parte 2: metodi diretti per sistemi lineari. Roberto Ferretti Corso di Analisi Numerica - AN1 Parte 2: metodi diretti per sistemi lineari Roberto Ferretti Richiami sulle norme e sui sistemi lineari Il Metodo di Eliminazione di Gauss Il Metodo di Eliminazione con

Dettagli

Il Teorema di Fritz John: tre differenti approcci

Il Teorema di Fritz John: tre differenti approcci Università degli Studi di Milano Bicocca FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI Corso di Laurea Triennale in Matematica Il Teorema di Fritz John: tre differenti approcci Tesi di Laurea in Matematica

Dettagli

EQUAZIONI non LINEARI

EQUAZIONI non LINEARI EQUAZIONI non LINEARI Francesca Pelosi Dipartimento di Matematica, Università di Roma Tor Vergata CALCOLO NUMERICO e PROGRAMMAZIONE http://www.mat.uniroma2.it/ pelosi/ EQUAZIONI non LINEARI p.1/44 EQUAZIONI

Dettagli

LA FUNZIONE ESPONENZIALE E IL LOGARITMO

LA FUNZIONE ESPONENZIALE E IL LOGARITMO LA FUNZIONE ESPONENZIALE E IL LOGARITMO APPUNTI PER IL CORSO DI ANALISI MATEMATICA I G. MAUCERI Indice 1. Introduzione 1 2. La funzione esponenziale 2 3. Il numero e di Nepero 9 4. L irrazionalità di e

Dettagli

= E(X t+k X t+k t ) 2 + 2E [( X t+k X t+k t + E

= E(X t+k X t+k t ) 2 + 2E [( X t+k X t+k t + E 1. Previsione per modelli ARM A Questo capitolo è dedicato alla teoria della previsione lineare per processi stocastici puramente non deterministici, cioè per processi che ammettono una rappresentazione

Dettagli

STRUTTURE ALGEBRICHE

STRUTTURE ALGEBRICHE STRUTTURE ALGEBRICHE Operazioni in un insieme Sia A un insieme non vuoto; una funzione f : A A A si dice operazione binaria (o semplicemente operazione), oppure legge di composizione interna. Per definizione

Dettagli

RICERCA OPERATIVA GRUPPO B prova scritta del 22 marzo 2007

RICERCA OPERATIVA GRUPPO B prova scritta del 22 marzo 2007 RICERCA OPERATIVA GRUPPO B prova scritta del 22 marzo 2007 Rispondere alle seguenti domande marcando a penna la lettera corrispondente alla risposta ritenuta corretta (una sola tra quelle riportate). Se

Dettagli

METODI ITERATIVI PER SISTEMI LINEARI

METODI ITERATIVI PER SISTEMI LINEARI METODI ITERATIVI PER SISTEMI LINEARI LUCIA GASTALDI 1. Metodi iterativi classici Sia A R n n una matrice non singolare e sia b R n. Consideriamo il sistema (1) Ax = b. Un metodo iterativo per la soluzione

Dettagli

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Se a e b sono numeri interi, si dice che a divide b, in simboli: a b, se e solo se esiste c Z tale che b = ac. Si può subito notare che:

Dettagli

Metodi iterativi per sistemi lineari

Metodi iterativi per sistemi lineari Metodi iterativi per sistemi lineari Dario A. Bini, Università di Pisa 30 ottobre 2013 Sommario Questo modulo didattico contiene risultati relativi ai metodi iterativi per risolvere sistemi di equazioni

Dettagli

4. Operazioni elementari per righe e colonne

4. Operazioni elementari per righe e colonne 4. Operazioni elementari per righe e colonne Sia K un campo, e sia A una matrice m n a elementi in K. Una operazione elementare per righe sulla matrice A è una operazione di uno dei seguenti tre tipi:

Dettagli

Siano V e W due spazi vettoriali. La definizione seguente é è tra quelle basilari per il corso di Matematica B. L : V W

Siano V e W due spazi vettoriali. La definizione seguente é è tra quelle basilari per il corso di Matematica B. L : V W Matematica B - a.a 2006/07 p. 1 Siano V e W due spazi vettoriali. La definizione seguente é è tra quelle basilari per il corso di Matematica B. Definizione 1. La funzione L : V W si dice una applicazione

Dettagli

Lezioni di Ottimizzazione

Lezioni di Ottimizzazione Lezioni di Ottimizzazione Italo Capuzzo Dolcetta Flavia Lanzara Dipartimento di Matematica Guido Castelnuovo Sapienza Università di Roma A.A. 2007-2008 Ultimo aggiornamento: October 5, 2007 1 Indice 1

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI 1. Esercizi Esercizio 1. Date le seguenti applicazioni lineari (1) f : R 2 R 3 definita da f(x, y) = (x 2y, x + y, x + y); (2) g : R 3 R 2 definita da g(x, y, z) = (x + y, x y); (3)

Dettagli

Lezione 6 Nucleo, Immagine e Teorema della Dimensione. 1 Definizione di Nucleo e Immagine

Lezione 6 Nucleo, Immagine e Teorema della Dimensione. 1 Definizione di Nucleo e Immagine Lezione 6 Nucleo, Immagine e Teorema della Dimensione In questa lezione entriamo nel vivo della teoria delle applicazioni lineari. Per una applicazione lineare L : V W definiamo e impariamo a calcolare

Dettagli

Lezioni di Ricerca Operativa. Corso di Laurea in Informatica Università di Salerno. Lezione n 4

Lezioni di Ricerca Operativa. Corso di Laurea in Informatica Università di Salerno. Lezione n 4 Lezioni di Ricerca Operativa Lezione n 4 - Problemi di Programmazione Matematica - Problemi Lineari e Problemi Lineari Interi - Forma Canonica. Forma Standard Corso di Laurea in Informatica Università

Dettagli

AL. Algebra vettoriale e matriciale

AL. Algebra vettoriale e matriciale PPENDICI L. lgebra vettoriale e matriciale Vettori Somma di vettori: struttura di gruppo Come abbiamo richiamato nell introduzione vi sono delle grandezze fisiche caratterizzabili come vettori, cioè tali

Dettagli

Modelli di Ottimizzazione

Modelli di Ottimizzazione Capitolo 2 Modelli di Ottimizzazione 2.1 Introduzione In questo capitolo ci occuperemo più nel dettaglio di quei particolari modelli matematici noti come Modelli di Ottimizzazione che rivestono un ruolo

Dettagli

SISTEMI LINEARI QUADRATI: METODI ITERATIVI

SISTEMI LINEARI QUADRATI: METODI ITERATIVI SISTEMI LINEARI QUADRATI: METODI ITERATIVI CALCOLO NUMERICO e PROGRAMMAZIONE SISTEMI LINEARI QUADRATI:METODI ITERATIVI p./54 RICHIAMI di ALGEBRA LINEARE DEFINIZIONI A R n n simmetrica se A = A T ; A C

Dettagli

Cenni di teoria dei campi finiti

Cenni di teoria dei campi finiti Cenni di teoria dei campi finiti Luca Giuzzi 31 ottobre 2011 In queste note vengono richiamati alcuni risultati di algebra relativi la teoria dei campi finiti. 1 Anelli Definizione 1. Un anello (R, +,

Dettagli

Metodi diretti per la soluzione di sistemi lineari

Metodi diretti per la soluzione di sistemi lineari Metodi diretti per la soluzione di sistemi lineari N Del Buono 1 Introduzione Consideriamo un sistema di n equazioni in n incognite a 11 x 1 + a 12 x 2 + a 13 x 3 + + a 1n x n = b 1, a 21 x 1 + a 22 x

Dettagli

Laboratorio Complementi di Ricerca Operativa DEI, Politecnico di Milano. Stima di parametri

Laboratorio Complementi di Ricerca Operativa DEI, Politecnico di Milano. Stima di parametri Stima di parametri Il gestore di un sito turistico dove si pratica il bungee-jumping deve fornire alla sovrintendenza municipale un documento che riguarda la sicurezza del servizio fornito. Il documento

Dettagli

Giochi ed equilibri di Nash. Marco Sciandrone Dipartimento di Ingegneria dell Informazione Università di Firenze E-mail: marco.sciandrone@unifi.

Giochi ed equilibri di Nash. Marco Sciandrone Dipartimento di Ingegneria dell Informazione Università di Firenze E-mail: marco.sciandrone@unifi. Giochi ed equilibri di Nash Marco Sciandrone Dipartimento di Ingegneria dell Informazione Università di Firenze E-mail: marco.sciandrone@unifi.it 1 1 Notazione e definizione di equilibrio di Nash Si supponga

Dettagli

4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale

4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale 4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale Spazi Metrici Ricordiamo che uno spazio metrico è una coppia (X, d) dove X è un insieme e d : X X [0, + [ è una funzione, detta metrica,

Dettagli

Matematica B - a.a 2006/07 p. 1

Matematica B - a.a 2006/07 p. 1 Matematica B - a.a 2006/07 p. 1 Definizione 1. Un sistema lineare di m equazioni in n incognite, in forma normale, è del tipo a 11 x 1 + + a 1n x n = b 1 a 21 x 1 + + a 2n x n = b 2 (1) = a m1 x 1 + +

Dettagli

FUNZIONI CONVESSE. + e x 0

FUNZIONI CONVESSE. + e x 0 FUNZIONI CONVESSE Sia I un intervallo aperto di R (limitato o illimitato) e sia f(x) una funzione definita in I. Dato x 0 I, la retta r passante per il punto P 0 (x 0, f(x 0 )) di equazione y = f(x 0 )

Dettagli

Parte 6. Applicazioni lineari

Parte 6. Applicazioni lineari Parte 6 Applicazioni lineari A Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Applicazioni fra insiemi, 2 Applicazioni lineari tra spazi vettoriali, 2 3 Applicazioni lineari da R n a R

Dettagli

FUNZIONI ELEMENTARI - ESERCIZI SVOLTI

FUNZIONI ELEMENTARI - ESERCIZI SVOLTI FUNZIONI ELEMENTARI - ESERCIZI SVOLTI 1) Determinare il dominio delle seguenti funzioni di variabile reale: (a) f(x) = x 4 (c) f(x) = 4 x x + (b) f(x) = log( x + x) (d) f(x) = 1 4 x 5 x + 6 ) Data la funzione

Dettagli

Università degli Studi di Roma Tor Vergata. Corso di Laurea in Ingegneria Meccanica

Università degli Studi di Roma Tor Vergata. Corso di Laurea in Ingegneria Meccanica Università degli Studi di Roma Tor Vergata. Corso di Laurea in Ingegneria Meccanica Esame di Geometria (Prof. F. Tovena) Argomenti: Proprietà di nucleo e immagine di una applicazione lineare. dim V = dim

Dettagli

Lezioni di Algebra Lineare III. Applicazioni lineari e matrici Struttura algebrica delle soluzioni dei sistemi lineari

Lezioni di Algebra Lineare III. Applicazioni lineari e matrici Struttura algebrica delle soluzioni dei sistemi lineari Versione ottobre novembre 2008 Lezioni di Algebra Lineare III. Applicazioni lineari e matrici Struttura algebrica delle soluzioni dei sistemi lineari Contenuto 1. Applicazioni lineari 2. L insieme delle

Dettagli

ESERCIZI APPLICAZIONI LINEARI

ESERCIZI APPLICAZIONI LINEARI ESERCIZI APPLICAZIONI LINEARI PAOLO FACCIN 1. Esercizi sulle applicazioni lineari 1.1. Definizioni sulle applicazioni lineari. Siano V, e W spazi vettoriali, con rispettive basi B V := (v 1 v n) e B W

Dettagli

Corso di Matematica per la Chimica

Corso di Matematica per la Chimica Dott.ssa Maria Carmela De Bonis a.a. 203-4 I sistemi lineari Generalità sui sistemi lineari Molti problemi dell ingegneria, della fisica, della chimica, dell informatica e dell economia, si modellizzano

Dettagli

APPLICAZIONI LINEARI. B si definisce surriettiva. 9 quando ogni elemento di. B risulta IMMAGINE di. almeno un elemento di A.

APPLICAZIONI LINEARI. B si definisce surriettiva. 9 quando ogni elemento di. B risulta IMMAGINE di. almeno un elemento di A. APPLICAZIONI LINEARI Siano V e W due spazi vettoriali, di dimensione m ed n sullo stesso campo di scalari R. Una APPLICAZIONE ƒ : V W viene definita APPLICAZIONE LINEARE od OMOMORFISMO se risulta, per

Dettagli

Analisi 2. Argomenti. Raffaele D. Facendola

Analisi 2. Argomenti. Raffaele D. Facendola Analisi 2 Argomenti Successioni di funzioni Definizione Convergenza puntuale Proprietà della convergenza puntuale Convergenza uniforme Continuità e limitatezza Teorema della continuità del limite Teorema

Dettagli

Autovalori e Autovettori

Autovalori e Autovettori Daniela Lera Università degli Studi di Cagliari Dipartimento di Matematica e Informatica A.A. 2008-2009 Autovalori e Autovettori Definizione Siano A C nxn, λ C, e x C n, x 0, tali che Ax = λx. (1) Allora

Dettagli

Il modello media-varianza con N titoli rischiosi. Una derivazione formale. Enrico Saltari

Il modello media-varianza con N titoli rischiosi. Una derivazione formale. Enrico Saltari Il modello media-varianza con N titoli rischiosi. Una derivazione formale Enrico Saltari La frontiera efficiente con N titoli rischiosi Nel caso esistano N titoli rischiosi, con N 2, il problema della

Dettagli

Flusso a costo minimo e simplesso su reti

Flusso a costo minimo e simplesso su reti Flusso a costo minimo e simplesso su reti La particolare struttura di alcuni problemi di PL può essere talvolta utilizzata per la progettazione di tecniche risolutive molto più efficienti dell algoritmo

Dettagli

SPAZI METRICI. Uno spazio metrico X con metrica d si indica con il simbolo (X, d). METRICI 1

SPAZI METRICI. Uno spazio metrico X con metrica d si indica con il simbolo (X, d). METRICI 1 SPAZI METRICI Nel piano R 2 o nello spazio R 3 la distanza fra due punti è la lunghezza, o norma euclidea, del vettore differenza di questi due punti. Se p = (x, y, z) è un vettore in coordinate ortonormali,

Dettagli

LE FIBRE DI UNA APPLICAZIONE LINEARE

LE FIBRE DI UNA APPLICAZIONE LINEARE LE FIBRE DI UNA APPLICAZIONE LINEARE Sia f:a B una funzione tra due insiemi. Se y appartiene all immagine di f si chiama fibra di f sopra y l insieme f -1 y) ossia l insieme di tutte le controimmagini

Dettagli

Ottimizzazione nella gestione dei progetti Capitolo 4: la gestione dei costi (Programmazione multimodale): formulazioni

Ottimizzazione nella gestione dei progetti Capitolo 4: la gestione dei costi (Programmazione multimodale): formulazioni Ottimizzazione nella gestione dei progetti Capitolo 4: la gestione dei costi (Programmazione multimodale): formulazioni CARLO MANNINO Università di Roma La Sapienza Dipartimento di Informatica e Sistemistica

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Calcolo Numerico Dott.ssa M.C. De Bonis Università degli Studi della Basilicata, Potenza Facoltà di Ingegneria Corso di Laurea in Ingegneria Meccanica Sistemi di Numerazione Sistema decimale La

Dettagli

x u v(p(x, fx) q(u, v)), e poi

x u v(p(x, fx) q(u, v)), e poi 0.1. Skolemizzazione. Ogni enunciato F (o insieme di enunciati Γ) è equisoddisfacibile ad un enunciato universale (o insieme di enunciati universali) in un linguaggio estensione del linguaggio di F (di

Dettagli

1. Sia dato un poliedro. Dire quali delle seguenti affermazioni sono corrette.

1. Sia dato un poliedro. Dire quali delle seguenti affermazioni sono corrette. . Sia dato un poliedro. (a) Un vettore x R n è un vertice di P se soddisfa alla seguenti condizioni: x P e comunque presi due punti distinti x, x 2 P tali che x x e x x 2 si ha x = ( β)x + βx 2 con β [0,

Dettagli

Esercizi di Ricerca Operativa I

Esercizi di Ricerca Operativa I Esercizi di Ricerca Operativa I Dario Bauso, Raffaele Pesenti May 10, 2006 Domande Programmazione lineare intera 1. Gli algoritmi per la programmazione lineare continua possono essere usati per la soluzione

Dettagli

Lezioni di Geometria e Algebra. Fulvio Bisi, Francesco Bonsante, Sonia Brivio

Lezioni di Geometria e Algebra. Fulvio Bisi, Francesco Bonsante, Sonia Brivio Lezioni di Geometria e Algebra Fulvio Bisi, Francesco Bonsante, Sonia Brivio CAPITOLO 4 Applicazioni lineari 1. Definizioni ed esempi. In questo capitolo ci proponiamo di studiare le funzioni tra spazi

Dettagli

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1

LEZIONE 14. a 1,1 v 1 + a 1,2 v 2 + a 1,3 v 3 + + a 1,n 1 v n 1 + a 1,n v n = w 1 LEZIONE 14 141 Dimensione di uno spazio vettoriale Abbiamo visto come l esistenza di una base in uno spazio vettoriale V su k = R, C, permetta di sostituire a V, che può essere complicato da trattare,

Dettagli

Dispense di Algebra 1 - Gruppi

Dispense di Algebra 1 - Gruppi Dispense di Algebra 1 - Gruppi Dikran Dikranjan e Maria Silvia Lucido Dipartimento di Matematica e Informatica Università di Udine via delle Scienze 200, I-33100 Udine gennaio 2005 L algébre est généreuse,

Dettagli

Corso di Laurea in Ingegneria Gestionale. Anno Accademico 2013 2014. Appunti dalle lezioni di OTTIMIZZAZIONE GLOBALE.

Corso di Laurea in Ingegneria Gestionale. Anno Accademico 2013 2014. Appunti dalle lezioni di OTTIMIZZAZIONE GLOBALE. UNIVERSITÀ di ROMA LA SAPIENZA Corso di Laurea in Ingegneria Gestionale Anno Accademico 2013 2014 Appunti dalle lezioni di OTTIMIZZAZIONE GLOBALE Stefano Lucidi Dipartimento di Informatica e Sistemistica

Dettagli

Equazioni differenziali ordinarie

Equazioni differenziali ordinarie Equazioni differenziali ordinarie Denis Nardin January 2, 2010 1 Equazioni differenziali In questa sezione considereremo le proprietà delle soluzioni del problema di Cauchy. Da adesso in poi (PC) indicherà

Dettagli

Capitolo I STRUTTURE ALGEBRICHE ELEMENTARI

Capitolo I STRUTTURE ALGEBRICHE ELEMENTARI Capitolo I STRUTTURE ALGEBRICHE ELEMENTARI In matematica, per semplificare la stesura di un testo, si fa ricorso ad un linguaggio specifico. In questo capitolo vengono fornite in maniera sintetica le nozioni

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Calcolo Numerico Dottssa MC De Bonis Università degli Studi della Basilicata, Potenza Facoltà di Ingegneria Corso di Laurea in Ingegneria Meccanica Corso di Calcolo Numerico - Dottssa MC De Bonis

Dettagli

Per lo svolgimento del corso risulta particolarmente utile considerare l insieme

Per lo svolgimento del corso risulta particolarmente utile considerare l insieme 1. L insieme R. Per lo svolgimento del corso risulta particolarmente utile considerare l insieme R = R {, + }, detto anche retta reale estesa, che si ottiene aggiungendo all insieme dei numeri reali R

Dettagli

DIARIO DEL CORSO DI ALGEBRA A.A. 2012/13 DOCENTE: ANDREA CARANTI

DIARIO DEL CORSO DI ALGEBRA A.A. 2012/13 DOCENTE: ANDREA CARANTI DIARIO DEL CORSO DI ALGEBRA A.A. 2012/13 DOCENTE: ANDREA CARANTI Lezione 1. lunedí 17 settembre 2011 (1 ora) Presentazione del corso. Esercizio: cosa succede a moltiplicare per 2, 3, 4,... il numero 052631578947368421,

Dettagli

(V) (FX) Z 6 è un campo rispetto alle usuali operazioni di somma e prodotto.

(V) (FX) Z 6 è un campo rispetto alle usuali operazioni di somma e prodotto. 29 giugno 2009 - PROVA D ESAME - Geometria e Algebra T NOME: MATRICOLA: a=, b=, c= Sostituire ai parametri a, b, c rispettivamente la terzultima, penultima e ultima cifra del proprio numero di matricola

Dettagli

Indice. 1 Introduzione alle Equazioni Differenziali 1 1.1 Esempio introduttivo... 1 1.2 Nomenclatura e Teoremi di Esistenza ed Unicità...

Indice. 1 Introduzione alle Equazioni Differenziali 1 1.1 Esempio introduttivo... 1 1.2 Nomenclatura e Teoremi di Esistenza ed Unicità... Indice 1 Introduzione alle Equazioni Differenziali 1 1.1 Esempio introduttivo............................. 1 1.2 Nomenclatura e Teoremi di Esistenza ed Unicità.............. 5 i Capitolo 1 Introduzione

Dettagli

LEZIONE 23. Esempio 23.1.3. Si consideri la matrice (si veda l Esempio 22.2.5) A = 1 2 2 3 3 0

LEZIONE 23. Esempio 23.1.3. Si consideri la matrice (si veda l Esempio 22.2.5) A = 1 2 2 3 3 0 LEZIONE 23 231 Diagonalizzazione di matrici Abbiamo visto nella precedente lezione che, in generale, non è immediato che, data una matrice A k n,n con k = R, C, esista sempre una base costituita da suoi

Dettagli

4. Operazioni binarie, gruppi e campi.

4. Operazioni binarie, gruppi e campi. 1 4. Operazioni binarie, gruppi e campi. 4.1 Definizione. Diremo - operazione binaria ovunque definita in A B a valori in C ogni funzione f : A B C - operazione binaria ovunque definita in A a valori in

Dettagli

ANALISI NUMERICA. Elementi finiti bidimensionali. a.a. 2014 2015. Maria Lucia Sampoli. ANALISI NUMERICA p.1/23

ANALISI NUMERICA. Elementi finiti bidimensionali. a.a. 2014 2015. Maria Lucia Sampoli. ANALISI NUMERICA p.1/23 ANALISI NUMERICA Elementi finiti bidimensionali a.a. 2014 2015 Maria Lucia Sampoli ANALISI NUMERICA p.1/23 Elementi Finiti 2D Consideriamo 3 aspetti per la descrizione di elementi finiti bidimensionali:

Dettagli

Lezione 9: Cambio di base

Lezione 9: Cambio di base Lezione 9: Cambio di base In questa lezione vogliamo affrontare uno degli argomenti piu ostici per lo studente e cioè il cambio di base all interno di uno spazio vettoriale, inoltre cercheremo di capire

Dettagli

MATRICI E DETERMINANTI

MATRICI E DETERMINANTI MATRICI E DETERMINANTI 1. MATRICI Si ha la seguente Definizione 1: Un insieme di numeri, reali o complessi, ordinati secondo righe e colonne è detto matrice di ordine m x n, ove m è il numero delle righe

Dettagli

Corso di Geometria e Algebra Lineare - Sezione di Metodi Numerici

Corso di Geometria e Algebra Lineare - Sezione di Metodi Numerici Corso di Geometria e Algebra Lineare - Sezione di Metodi Numerici C. Vergara 3. Metodo della fattorizzazione LU per la risoluzione di un sistema lineare Errori di arrotondamento. Prima di affrontare la

Dettagli

Formulazioni PLI di problemi di decisione. 1 Introduzione: La formulazione dei problemi di ottimizzazione combinatoria

Formulazioni PLI di problemi di decisione. 1 Introduzione: La formulazione dei problemi di ottimizzazione combinatoria Formulazioni PLI di problemi di decisione Dispensa per il modulo di Analisi e Ottimizzazione dei Processi di Produzione Università di Roma Tor Vergata a cura di Andrea Pacifici, Claudio Cavalletti, Daniela

Dettagli

EQUAZIONI DIFFERENZIALI. 1. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x 2 log t (d) x = e t x log x (e) y = y2 5y+6

EQUAZIONI DIFFERENZIALI. 1. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x 2 log t (d) x = e t x log x (e) y = y2 5y+6 EQUAZIONI DIFFERENZIALI.. Trovare tutte le soluzioni delle equazioni differenziali: (a) x = x log t (d) x = e t x log x (e) y = y 5y+6 (f) y = ty +t t +y (g) y = y (h) xy = y (i) y y y = 0 (j) x = x (k)

Dettagli

SIMULAZIONE TEST ESAME - 1

SIMULAZIONE TEST ESAME - 1 SIMULAZIONE TEST ESAME - 1 1. Il dominio della funzione f(x) = log (x2 + 1)(4 x 2 ) (x 2 2x + 1) è: (a) ( 2, 2) (b) ( 2, 1) (1, 2) (c) (, 2) (2, + ) (d) [ 2, 1) (1, 2] (e) R \{1} 2. La funzione f : R R

Dettagli

Serie di Fourier 1. Serie di Fourier. f(t + T )=f(t) t R.

Serie di Fourier 1. Serie di Fourier. f(t + T )=f(t) t R. Serie di Fourier 1 Serie di Fourier In questo capitolo introduciamo le funzioni periodiche, la serie di Fourier in forma trigonometrica per le funzioni di periodo π, e ne identifichiamo i coefficienti.

Dettagli

Funzioni in due variabili Raccolta di FAQ by Andrea Prevete

Funzioni in due variabili Raccolta di FAQ by Andrea Prevete Funzioni in due variabili Raccolta di FAQ by Andrea Prevete 1) Cosa intendiamo, esattamente, quando parliamo di funzione reale di due variabili reali? Quando esiste una relazione fra tre variabili reali

Dettagli

Federico Lastaria. Analisi e Geometria 2. Matrici simmetriche. Il teorema spettrale. 1/24

Federico Lastaria. Analisi e Geometria 2. Matrici simmetriche. Il teorema spettrale. 1/24 Contenuto Endomorfismi auto-aggiunti. Matrici simmetriche. Il teorema spettrale Gli autovalori di una matrice simmetrica sono tutti reali. (Dimostrazione fatta usando i numeri complessi). Dimostrazione

Dettagli

190 LA DUALITÀ NELLA PROGRAMMAZIONE LINEARE 7.2 INTERPRETAZIONE DELLA DUALITÀ

190 LA DUALITÀ NELLA PROGRAMMAZIONE LINEARE 7.2 INTERPRETAZIONE DELLA DUALITÀ 190 LA DUALITÀ NELLA PROGRAMMAZIONE LINEARE 7.2 INTERPRETAZIONE DELLA DUALITÀ [Questo paragrafo non fa parte del programma di esame] Nei modelli reali le variabili (primali) possono rappresentare, ad esempio,

Dettagli

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni.

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni. MATEMATICA. Sistemi lineari in due equazioni due incognite. Date due equazioni lineari nelle due incognite x, y come ad esempio { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un

Dettagli