Liceo Scientifico Statale G. Galilei DOLO (VE) PARABOLE IN NATURA

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Liceo Scientifico Statale G. Galilei DOLO (VE) PARABOLE IN NATURA"

Transcript

1 Liceo Scienifico Saale G. Galilei DOLO (VE) Sudeni: Manuel Campalo Alessandro Genovese Insegnani: Federica Bero Robero Schiavon ARABOLE IN NATURA Durane i nosri sudi sul moo dei corpi ci siamo imbaui nella raieoria parabolica del moo di lancio di un oggeo. La parabola è una curva già sudiaa in fisica in prima liceo come modello per descrivere la proporzionalià quadraica, poi l abbiamo inconraa in seconda in maemaica e infine anche ques anno più vole in fisica, come relazione ra spazio e empo in un moo reilineo uniformemene accelerao e come raieoria del moo parabolico di un proieile, poi nuovamene in maemaica come luogo geomerico e sezione di un cono indefinio.abbiamo capio che anche in quara e in quina ci riroveremo di sicuro la parabola per descrivere sia qualche alro fenomeno fisico sia in maemaica (ci ha deo la prof. che rivedremo le equazioni delle coniche in un sisema di riferimeno polare -che per ora non abbiamo ancora sudiao-). er capire meglio la naura di quesa curva abbiamo deciso di dedicarci ad una sua analisi dal puno di visa grafico e maemaico, cosruendo delle macchine maemaiche per disegnare dei luoghi che speravamo nuovi e invece abbiamo dimosrao che le nosre invenzioni non erano alro che parabole!!. Le dimosrazioni che seguono suggeriscono la correezza degli esperimeni esposi in base alla definizione di parabola (luogo dei puni del piano equidisani da un puno fisso deo fuoco e da una rea fissa dea direrice, che in un sisema di riferimeno con la direrice parallela all asse ha un equazione del ipo y=a bc). er riprodurre senza inoppi cosruivi i nosri luoghi ci siamo servii anche del programma Cabri II che abbiamo imparao ad usare durane le ore di informaica, producendo quindi, ramie il comando raccia delle figure ineraive molo suggesive che proponiamo anche quese di disegnare ai visiaori della mosra.

2 DIMOSTRAZIONE DELL ESERIMENTO DEGLI ARCHI DI ARABOLA Un filo è eso ra un puno A fisso e un puno variabile su una rea r, enendolo perpendicolarmene alla rea r, si disegna il luogo evidenziao in rosso nel disegno (il filo è rappresenao in verde) { A d(, r) = cos} L = π A r Da quesa formula vengono a crearsi due archi di parabola: uno sopra la rea r e uno soo, infai nella dimosrazione la disanza puno-rea d (, r) risulerà y, quesa vuol dire che ci possono essere sue valori di y : uno posiivo e l alro negaivo. oniamo adesso un sisema di riferimeno più conveniene possibile in modo da dimosrare maemaicamene che il luogo geomerico sopra rappresenao unisce effeivamene gli archi di due diverse parabole (con

3 fuochi lo sesso puno A): facciamo passare l asse lungo la rea usaa come base e l asse y perpendicolare alle ascisse e passane per il puno A. In queso modo le coordinae del puno A saranno (0;h),e di un puno generico agli archi parabolici superiore (;y). L equazione della rea r (asse ) sarà invece: y=0 Sapendo che la disanza fra due puni si rova facendo: A A = ( ) ( y y ) ( r) A a by c, = a b ;, e la disanza puna-rea facendo: scriviamo l equazione che rappresena il nosro luogo: ( ) ( y y ) A a by c A a b =cos Sosiuiamo i valori: ( y h) y = C.E. h>0, >0, >h e > essendo la somma delle due lunghezze ( y h) = y poi si eleva al quadrao dao che i due valori messi in uguaglianza sono posiivi ( > ) y h hy = y y h = hy y y y, Equazioni Verice b b V ; a Fuoco b b F ; a c c 1 Se 0 y y : h = y = h ( h ) ARABOLE: Se < 0 ( h ) h y y : ( h ) = y = h ( h ) h h V I 0; V II 0; ( 0 ; ) F I ( 0 ;) F I

4 DIMOSTRAZIONE CHE LA CURVA RISULTANTE DALL INVILUO DELLE RETTE DELL ESERIMENTO E UNA ARABOLA F

5 oniamo un ideale sisema di riferimeno come da figura, facendo quindi passare l asse y per il fuoco e l asse per la rea conenene il puno mobile. In queso modo avremo un puno F rappresenane il fuoco di coordinae noe F (0,) e un puno variabile di coordinae (,0) Il coefficiene angolare della rea r sarà di conseguenza angolare della rea s sarà, essendo perpendicolare e il coefficiene L equazione della rea s che formerà l inviluppo della parabola sarà quindi y 0 = ( ) Risolvendo y = Se il suo fuoco ha la coordinaa y uguale a abbiamo 1 b c = e, avendo coordinaa uguale a zero, si avrà b=0 da cui ricaviamo 1 c = Sviluppando e risolvendo il sisema 1 y = a y = Δ = 0 oeniamo che l a dell equazione sarà uguale a a 1 4 = e c=0 1 4 L equazione della parabola sarà quindi uguale a y =

6 ULTIMO ESERIMENTO: IL IU CLASSICO Come ulimo esperimeno abbiamo pensao alla parabola come sezione di un cono, per eviare di sezionare già noi un oggeo e quindi oglier la componene ineraiva del visiaore, abbiamo pensao di cosruire un cono con dei fili legai assieme da un nodo (il verice) e avene come base due CD incollai assieme, il piano sezionaore è cosiuio dalla superficie dell acqua di una vaschea: basa osservare aenamene i puni dei fili sulla superficie dell acqua per vedere il profilo di una parabola. N.B. Le immagini di Cabri sono cosruie da noi, le alre immagini sul carellone esposo alla mosra le abbiamo rovae su inerne

Il concetto di punto materiale

Il concetto di punto materiale Il conceo di puno maeriale Puno maeriale = corpo privo di dimensioni, o le cui dimensioni sono rascurabili rispeo a quelle della regione di spazio in cui può muoversi e degli alri oggei con cui può ineragire

Dettagli

25.2. Osservazione. Siccome F(x, y, z) = 0 è un equazione e non un identità, una superficie non contiene tutti gli 3 punti dello spazio.

25.2. Osservazione. Siccome F(x, y, z) = 0 è un equazione e non un identità, una superficie non contiene tutti gli 3 punti dello spazio. . Cono e cilindro.. Definiione. Diremo superficie il luogo geomerico dei puni dello spaio le cui coordinae soddisfano un equaione del ipo F che viene dea equaione caresiana della superficie. Se F è un

Dettagli

Mo# con accelerazione costante. Mo# bidimensionali

Mo# con accelerazione costante. Mo# bidimensionali Mo# con accelerazione cosane Mo# bidimensionali Moo con accelerazione cosane () ü Se l accelerazione è cosane uol dire che la elocià aria in modo lineare nel empo, cioè per ineralli di empo uguali si hanno

Dettagli

Geometria analitica del piano pag 7 Adolfo Scimone. Rette in posizioni particolari rispetto al sistema di riferimento

Geometria analitica del piano pag 7 Adolfo Scimone. Rette in posizioni particolari rispetto al sistema di riferimento Geomeria analiica del piano pag 7 Adolfo Scimone Ree in posizioni paricolari rispeo al sisema di riferimeno L'equazione affine di una rea a + + c = 0 può assumere forme paricolari in relazione alla posizione

Dettagli

LA CINEMATICA IN BREVE. Schede di sintesi a cura di Nicola SANTORO.

LA CINEMATICA IN BREVE. Schede di sintesi a cura di Nicola SANTORO. LA CINEMAICA IN BREVE Schede di sinesi a cura di Nicola SANORO Lo scopo di quese schede è quello di riassumere i concei principali e le formule fondamenali della cinemaica, per venire inconro alle esigenze

Dettagli

Il moto in una o più dimensioni

Il moto in una o più dimensioni Il moo in una o più dimensioni Rappresenazione Grafica e esempi Piccolo riepilogo Moo: posizione in funzione del empo (grafico P-). Necessia della scela di un sisema di riferimeno ( ) Velocià media v m

Dettagli

Verifica di Matematica Classe V

Verifica di Matematica Classe V Liceo Scienifico Pariario R. Bruni Padova, loc. Pone di Brena, 6/3/17 Verifica di Maemaica Classe V Soluzione Problemi. Risolvi uno dei due problemi: 1. Facciamo il pieno. Il serbaoio del carburane di

Dettagli

Esercizi svolti. Geometria analitica: curve e superfici

Esercizi svolti. Geometria analitica: curve e superfici Esercizi svoli. Curve nel piano. Si rovi l equazione della circonferenza di cenro (,) e raggio. Applicando la definizione di circonferenza come luogo di puni equidisani dal cenro si ha ( ) ( y ) 4.. Si

Dettagli

SESSIONE SUPPLETIVA PROBLEMA 2

SESSIONE SUPPLETIVA PROBLEMA 2 www.maefilia.i SESSIONE SUPPLETIVA - 26 PROBLEMA 2 Fissao k R, la funzione g k :R R è così definia: g k = e kx2. Si indica con Γ k il suo grafico, in un riferimeno caresiano Oxy. ) Descrivi, a seconda

Dettagli

Moto di un corpo. Descrizione del moto. Moto in 2 dimensioni. È un moto in 1 Dimensione

Moto di un corpo. Descrizione del moto. Moto in 2 dimensioni. È un moto in 1 Dimensione Descrizione del moo Moo di un corpo Prerequisio: conceo di spazio e di empo. Finalià: descrizione di come varia la posizione o lo sao di un sisema meccanico in funzione del empo y In una sola direzione!!!!

Dettagli

Nome..Cognome. classe 3D 26 Gennaio 2013. Verifica: Parabola e circonferenza

Nome..Cognome. classe 3D 26 Gennaio 2013. Verifica: Parabola e circonferenza Nome..Cognome. classe D Gennaio 0 erifica: Parabola e circonferenza. Dai la definizione di parabola. Considera la parabola di fuoco F(,) e direrice r:, deermina: a) l equazione dell asse b) le coordinae

Dettagli

SISTEMI LINEARI TEMPO INVARIANTI

SISTEMI LINEARI TEMPO INVARIANTI SISTEMI LINEARI TEMPO INVARIANTI 1 Fondameni di segnali Fondameni e rasmissione TLC Definizione di sisema Sisema: Da un puno di visa fisico e un disposiivo ce modifica un segnale x(, deo ingresso, generando

Dettagli

Fisica Generale A. Dinamica del punto materiale. Scuola di Ingegneria e Architettura UNIBO Cesena Anno Accademico Maurizio Piccinini

Fisica Generale A. Dinamica del punto materiale. Scuola di Ingegneria e Architettura UNIBO Cesena Anno Accademico Maurizio Piccinini Fisica Generale A Dinamica del puno maeriale Scuola di Ingegneria e Archieura UNIBO Cesena Anno Accademico 2015 2016 Principi fondamenali Sir Isaac Newon Woolshorpe-by-Colserworh, 25 dicembre 1642 Londra,

Dettagli

P suolo in P; 2. la distanza d, dall uscita dello

P suolo in P; 2. la distanza d, dall uscita dello acolà di Ingegneria Prova Generale di isica I 1.07.004 Compio A Esercizio n.1 Uno sciaore di massa m = 60 Kg pare da fermo da un alezza h = 8 m rispeo al suolo lungo uno scivolo inclinao di un angolo α

Dettagli

CINEMATICA. Concetto di moto

CINEMATICA. Concetto di moto Uniersià degli Sudi di Torino D.E.I.A.F.A. CINEMATICA La cinemaica è una branca della meccanica classica che si occupa dello sudio del moo dei corpi senza preoccuparsi delle cause che lo deerminano. Tecnicamene

Dettagli

( x) Soluzione. Si consideri la figura sottostante, che rappresenta la questione geometrica:

( x) Soluzione. Si consideri la figura sottostante, che rappresenta la questione geometrica: Sessione sraordinaria LS_ORD 7 Soluzione Si consideri la figura soosane, ce rappresena la quesione geomerica: Il riangolo APB, essendo inscrio in una semicirconferenza è reangolo, per cui AP r sin, PB

Dettagli

SISTEMI LINEARI TEMPO INVARIANTI

SISTEMI LINEARI TEMPO INVARIANTI SISTEMI LINEARI TEMPO INVARIANTI Fondameni di Segnali e Trasmissione Sisema: Definizione di Sisema Da un puno di visa fisico e un disposiivo ce modifica un segnale, deo ingresso, generando il segnale,

Dettagli

SISTEMI LINEARI TEMPO INVARIANTI

SISTEMI LINEARI TEMPO INVARIANTI SISTEMI LINEARI TEMPO INVARIANTI SISTEMI LINEARI TEMPO INVARIANTI Sisema: Definizione di Sisema Da un puno di visa fisico e un disposiivo ce modifica un segnale x(), deo ingresso, generando il segnale

Dettagli

Teoria dei Segnali. La Convoluzione (esercizi) parte prima

Teoria dei Segnali. La Convoluzione (esercizi) parte prima Teoria dei Segnali La Convoluzione (esercizi) pare prima 1 Si ricorda che la convoluzione ra due segnali x() e y(), reali o complessi, indicaa simbolicamene come: C xy () = x() * y() è daa indifferenemene

Dettagli

Il Corso di Fisica per Scienze Biologiche

Il Corso di Fisica per Scienze Biologiche Il Corso di Fisica per Scienze Biologiche Prof. Ailio Sanocchia Ufficio presso il Diparimeno di Fisica (Quino Piano) Tel. 75-585 78 E-mail: ailio.sanocchia@pg.infn.i Web: hp://www.fisica.unipg.i/~ailio.sanocchia

Dettagli

TIPI DI REGOLATORI. Esistono diversi tipi di regolatori che ora analizzeremo.

TIPI DI REGOLATORI. Esistono diversi tipi di regolatori che ora analizzeremo. TIPI DI REGOLATORI Esisono diversi ipi di regolaori che ora analizzeremo 1REGOLATORI ON-OFF Abbiamo deo che i regolaori sono quei sisemi che cercano di manenere l uscia cosane On-Off sa per indicare che

Dettagli

Volume FISICA. Elementi di teoria ed applicazioni. Fisica 1

Volume FISICA. Elementi di teoria ed applicazioni. Fisica 1 Volume FISICA Elemeni di eoria ed applicazioni Fisica ELEMENTI DI TEORIA ED APPLICAZIONI Fisica CUES Cooperaiva Universiaria Edirice Salerniana Via Pone Don Melillo Universià di Salerno Fisciano (SA)

Dettagli

Fisica Generale T (L) Scritto Totale Compito A

Fisica Generale T (L) Scritto Totale Compito A Fisica Generale (L) Scrio oale INGEGNERIA EDILE (Prof Mauro Villa) 14/07/014 Compio A Esercizi: 1) Un corpo di massa M = 10 kg e di raggio R = 0 cm è appoggiao su un piano orizzonale scabro Un corpo di

Dettagli

LA TEORIA IN SINTESI LA GEOMETRIA ANALITICA DELLO SPAZIO

LA TEORIA IN SINTESI LA GEOMETRIA ANALITICA DELLO SPAZIO ESERCII CAPIOLO 6. LA GEOMERIA ANALIICA DELLO SPAIO LA EORIA IN SINESI LA GEOMERIA ANALIICA DELLO SPAIO. LE COORDINAE CARESIANE NELLO SPAIO La disana fra due puni A e B è: AB = ( - + ( - + ( -. Le coordinae

Dettagli

CALENDARIO BOREALE 2 AMERICHE 2015 PROBLEMA 1

CALENDARIO BOREALE 2 AMERICHE 2015 PROBLEMA 1 www.maefilia.i Indirizzi: LI2, EA2 SCIENTIFICO; LI3 - SCIENTIFICO - OPZIONE SCIENZE APPLICATE CALENDARIO BOREALE 2 AMERICHE 21 PROBLEMA 1 Sai seguendo un corso, nell'amio dell'orienameno universiario,

Dettagli

Meccanica Applicata alle Macchine compito del 15/4/99

Meccanica Applicata alle Macchine compito del 15/4/99 Compio 15//99 pagina 1 Meccanica Applicaa alle Macchine compio del 15//99 A) Chi deve sosenere l'esame del I modulo deve svolgere i puni 1 e. B) Chi deve sosenere l'esame compleo deve svolgere i puni 1,

Dettagli

Corso di Laurea in Disegno Industriale. Lezione 6 Novembre 2002 Derivate successive, derivate parziali e derivate di vettori. F.

Corso di Laurea in Disegno Industriale. Lezione 6 Novembre 2002 Derivate successive, derivate parziali e derivate di vettori. F. Corso di Laurea in Disegno Indusriale Corso di Meodi Numerici per il Design Lezione 6 Novembre Derivae successive, derivae parziali e derivae di veori F. Caliò I5 5 Derivazioni ripeue Derivaa della derivaa

Dettagli

Soluzione. Le componenti del gradiente sono le derivate parziali della funzione: cos y 0 (x 0, y 0 ) domf =R 2. sin y 0 (x x 0 ) + e x 0

Soluzione. Le componenti del gradiente sono le derivate parziali della funzione: cos y 0 (x 0, y 0 ) domf =R 2. sin y 0 (x x 0 ) + e x 0 Gradiene e piano angene Definizione 1 Sia f : A R 2 R, f derivabile in (x 0, y 0 ) A). Definiamo il veore gradiene di f in (x 0, y 0 ): f(x 0, y 0 ) = (f x (x 0, y 0 ), f y (x 0, y 0 )). Definiamo il piano

Dettagli

TRASFORMATE DI LAPLACE

TRASFORMATE DI LAPLACE CONTROLLI AUTOMATICI Ingegneria della Gesione Indusriale e della Inegrazione di Impresa hp://www.auomazione.ingre.unimore.i/pages/corsi/conrolliauomaicigesionale.hm Trasformae di Laplace Gli esempi visi

Dettagli

Processo di Arrivi di Poisson

Processo di Arrivi di Poisson CALCOLO DELLE PROBABILITA Processo di Arrivi di Poisson Per arrivo riferimeno. si inende un qualsiasi eveno casuale che si realizza in un deerminao sisema di Un processo di arrivi è un flusso di eveni

Dettagli

Meccanica. Cinematica

Meccanica. Cinematica Meccanica Sisemi meccanici: Il più semplice è il PUNTO MATERIALE: oggeo prio di dimensioni (doao di massa) Asrazione uile: ü per definire in modo semplice alcune grandezze fondamenali ü quando ineressa

Dettagli

Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario

Il candidato risolva uno dei due problemi e risponda a 5 quesiti del questionario www.maemaicamene.i N. De Rosa STR 6 p. Esame di sao di isruzione secondaria superiore Indirizzi: Scienifico e Scienifico opzione scienze applicae Tema di maemaica 6 Il candidao risolva uno dei due problemi

Dettagli

v2 - v1 t2 - t1 a = Δv Δv = 39-24 = 15 m/s Δv Δt a = 15/5 = 3 m/s 2 L ' ACCELERAZIONE 39-24 20-15 15 = = 3,0 a =

v2 - v1 t2 - t1 a = Δv Δv = 39-24 = 15 m/s Δv Δt a = 15/5 = 3 m/s 2 L ' ACCELERAZIONE 39-24 20-15 15 = = 3,0 a = L ' ACCELERAZINE Tui pensiao di sapere inuiivaene cosa sia l'accelerazione, a non sepre abbiao le idee sufficieneene chiare. Per coprendere eglio facciao un esepio : due dragsers, coe quelli in figura,

Dettagli

Fisica Applicata (FIS/07) Architettura

Fisica Applicata (FIS/07) Architettura Fisica Applicaa (FIS/07) 9CFU Facolà di Ingegneria, Archieura e delle Scienze Moorie 18-marzo-013 Archieura (corso magisrale a ciclo unico quinquennale) Prof. Lanzalone Gaeano Cinemaica del Puno Maeriale

Dettagli

CALENDARIO BOREALE 2 AMERICHE 2015 PROBLEMA 1

CALENDARIO BOREALE 2 AMERICHE 2015 PROBLEMA 1 www.maefilia.i Indirizzi: LI2, EA2 SCIENTIFICO; LI3 - SCIENTIFICO - OPZIONE SCIENZE APPLICATE CALENDARIO BOREALE 2 AMERICHE 21 PROBLEMA 1 Sai seguendo un corso, nell'amio dell'orienameno universiario,

Dettagli

CINEMATICA DEL PUNTO. CINEMATICA: moto rettilineo

CINEMATICA DEL PUNTO. CINEMATICA: moto rettilineo CINEMATICA DEL PUNTO Inroduzione Con il ermine cinemaica si indica lo sudio del moo dei corpi. Per poer sudiare ciò si approssima la realà ramie una schemaizzazione della sessa. La prima approssimazione

Dettagli

VERSO LA SECONDA PROVA DI MATEMATICA 2017

VERSO LA SECONDA PROVA DI MATEMATICA 2017 erso la seconda prova di maemaica 07 - Esercizi ERS L SEN PR I MTEMTI 07 ESERIZI Limii RELTÀ E MELLI Quesione di concenrazione Un farmaco somminisrao per via inramuscolare prima viene inieao nel muscolo

Dettagli

Equazioni Differenziali (5)

Equazioni Differenziali (5) Equazioni Differenziali (5) Daa un equazione differenziale lineare omogenea y n + a n 1 ()y n 1 + a 0 ()y = 0, (1) se i coefficieni a i non dipendono da, abbiamo viso che le soluzioni si possono deerminare

Dettagli

sedimentazione Approfondimenti matematici

sedimentazione Approfondimenti matematici sedimenazione Approfondimeni maemaici considerazioni sulla velocià L espressione p A F = R (1) che fornisce la relazione sulle forze ageni nel processo della sedimenazine, indica che all inizio il moo

Dettagli

Teoria dei Segnali. La Convoluzione (esercizi) parte seconda

Teoria dei Segnali. La Convoluzione (esercizi) parte seconda Teoria dei Segnali La Convoluzione (esercizi) pare seconda 1 Esercizio n.8 Calcolare la convoluzione ra i due segnali : e x() = rec ( ) rec ( 2 ) y() = rec 2 ( ) Conviene inizialmene disegnare i due segnali

Dettagli

ANALISI DEI RESIDUI E RELAZIONI NON LINEARI

ANALISI DEI RESIDUI E RELAZIONI NON LINEARI Lezione del 5-- (IV canale, Do.ssa P. Vicard) ANALISI DEI RESIDUI E RELAZIONI NON LINEARI ESEMPIO: consideriamo il seguene daa se x y xy x y* e 9, 9,,,, 5, 7,,,7, 9 9,5 -,7 9,77 7,9 7,5,7 9,,,5,7,, 9,

Dettagli

CAMPO ROTANTE DI GALILEO FERRARIS.doc pag. 1 di 5

CAMPO ROTANTE DI GALILEO FERRARIS.doc pag. 1 di 5 CAPO ROANE DI GALILEO FERRARIS. È noo che un solenoide percorso da correne elerica dà origine nel suo inerno a un campo magneico che ha come direzione quella del suo asse come mosrao in fig.. Se esso e

Dettagli

SISTEMI LINEARI TEMPO INVARIANTI. Fondamenti Segnali e Trasmissione

SISTEMI LINEARI TEMPO INVARIANTI. Fondamenti Segnali e Trasmissione SISTEMI LINEARI TEMPO INVARIANTI Fondameni Segnali e Trasmissione Definizione di sisema Sisema: Da un puno di visa fisico e un disposiivo ce modifica un segnale (), deo ingresso, generando il segnale y(),

Dettagli

Riassunto di Meccanica

Riassunto di Meccanica Riassuno di Meccanica Cinemaica del puno maeriale 1 Cinemaica del puno: moo nel piano 5 Dinamica del puno: le leggi di Newon 6 Dinamica del puno: Lavoro, energia, momeni 8 Dinamica del puno: Lavoro, energia,

Dettagli

IL MOVIMENTO. Spazio e tempo Spostamento Legge oraria Velocita Moto uniforme Accelerazione Moto uniformemente accelerato Esempi di moti in 2-D

IL MOVIMENTO. Spazio e tempo Spostamento Legge oraria Velocita Moto uniforme Accelerazione Moto uniformemente accelerato Esempi di moti in 2-D IL MOVIMENTO Spazio e empo Sposameno Legge oraria Velocia Moo uniforme Accelerazione Moo uniformemene accelerao Esempi di moi in 2-D Il movimeno pag.1 Spazio e empo Ingredieni fondamenali: Disanza variazione

Dettagli

GENERALITA SULLE MACCHINE ELETTRICHE

GENERALITA SULLE MACCHINE ELETTRICHE GENERALITA SULLE MACCHINE ELETTRICHE Una macchina è un organo che assorbe energia di un deerminao ipo e la rasforma in energia di un alro ipo. Energia in Energia in MACCHINA ingresso uscia Energia dispersa

Dettagli

Circuiti dinamici. Circuiti del primo ordine. (versione del ) Circuiti del primo ordine

Circuiti dinamici. Circuiti del primo ordine.  (versione del ) Circuiti del primo ordine ircuii dinamici ircuii del primo ordine www.die.ing.unibo.i/pers/masri/didaica.hm (versione del 4-5- ircuii del primo ordine ircuii del primo ordine: circuii il cui sao è definio da una sola variabile

Dettagli

EX 2 Una particella si muove su una retta con accelerazione a(t)=18t-8. Sapendo che la sua velocità all istante iniziale è v 0

EX 2 Una particella si muove su una retta con accelerazione a(t)=18t-8. Sapendo che la sua velocità all istante iniziale è v 0 CINEMATICA EX 1 Un puno nello spazio è definio dal veore posizione ˆr() = 3 3 î + ĵ + ˆk dove è il empo. Calcolare: a) velocià e accelerazione isananea, b) velocià veoriale media in un empo compreso fra

Dettagli

Per calcolare il tempo di volo considero il moto in direzione x che è un moto uniforme:

Per calcolare il tempo di volo considero il moto in direzione x che è un moto uniforme: Un proieie è anciao con incinazione 65 verso un bersaio B poso su un muro ao h 0 m, ad una disanza 50 m daa posizione di ancio. Cacoare a) i moduo v dea a veocià iniziae che dovrà avere i proieie per copire

Dettagli

SOLUZIONE ESERCIZI: CONCORRENZA PERFETTA E OLIGOPOLIO. ECONOMIA INDUSTRIALE Università degli Studi di Milano-Bicocca. Christian Garavaglia

SOLUZIONE ESERCIZI: CONCORRENZA PERFETTA E OLIGOPOLIO. ECONOMIA INDUSTRIALE Università degli Studi di Milano-Bicocca. Christian Garavaglia SOLUZIONE ESERCIZI: CONCORRENZA PERFETTA E OLIGOPOLIO ECONOMIA INDUSTRIALE Universià degli Sudi di Milano-Bicocca Chrisian Garavaglia Soluzione 4 a) Indicando con θˆ la sima di θ, il profio aeso dell impresa

Dettagli

IL MODELLO LOGISTICO NEL CASO CONTINUO

IL MODELLO LOGISTICO NEL CASO CONTINUO IL MODELLO LOGISTICO NEL CASO CONTINUO I modelli discrei si basano sull ipoesi cha la riproduzione sia concenraa in una sagione dell anno. Il passaggio da una generazione all alra è descrio dalla variabile

Dettagli

Unità Didattica N 9 : La parabola

Unità Didattica N 9 : La parabola 0 Matematica Liceo \ Unità Didattica N 9 La parabola Unità Didattica N 9 : La parabola ) La parabola ad asse verticale ) La parabola ad asse orizzontale 5) Intersezione di una parabola con una retta 6)

Dettagli

(c) Determinare per quali valori di h la varietà lineare delle soluzioni del sistema ha dimensione 2:

(c) Determinare per quali valori di h la varietà lineare delle soluzioni del sistema ha dimensione 2: CORSO DI GEOMETRIA E ALGEBRA Cognome e Nome: Corso di Laurea: 8 gennaio 6 Maricola: Anno di corso: x. (6 p) Si consideri il sisema lineare AX = B, dovex = @ z A è i l v e o r e d e l l e incognie, A e

Dettagli

LE ONDE. Un onda è una perturbazione che si propaga trasportando energia ma non materia.

LE ONDE. Un onda è una perturbazione che si propaga trasportando energia ma non materia. LE ONDE A ui è capiao di osservare ciò che accade se si lancia un sasso nel mare, oppure si scuoe una corda esa. Il fenomeno che osserviamo è comunemene chiamao ONDA. Che cos è un onda? Un onda è una perurbazione

Dettagli

Regime di capitalizzazione: una famiglia di funzioni fattore di montante che dipende da uno o più parametri.

Regime di capitalizzazione: una famiglia di funzioni fattore di montante che dipende da uno o più parametri. 5. Teoria generale Regimi finanziari Nel capiolo precedene abbiamo inrodoo alcuni parameri in grado di descrivere ualsiasi ipo di regime. Ciò ci permee di definire in generale i regimi finanziari. Regime

Dettagli

Corso di Onde e Oscillazioni (Calo Pagani) Esercizi e temi d esame sull oscillatore armonico

Corso di Onde e Oscillazioni (Calo Pagani) Esercizi e temi d esame sull oscillatore armonico Corso di Onde e Oscillazioni (Calo Pagani) Esercizi e emi d esame sull oscillaore armonico 4-marzo4 1. Una massa M = 5. kg è sospesa ad una molla di cosane elasica k = 5. N/m ed oscilla vericalmene. All

Dettagli

m = y x x S lim y x = dove: t = t t t = dove: x = x x

m = y x x S lim y x = dove: t = t t t = dove: x = x x L uso di derivae, differenziali ed inegrali definii nelle definizioni di grandezze fisiche. Grazie alla scienza, colui che sa scopre ue le verià in una sola, sviluppandone ue le conseguenze. (Ploino Ploino

Dettagli

Impulso di una forza

Impulso di una forza Uri Nel linguaggio di ui i giorni chiamiamo uro uno sconro fra due oggei. Piu in generale, possiamo definire uri quei fenomeni in cui la inerazione di due o piu corpi per un breve inervallo di empo genera

Dettagli

I - Cinematica del punto materiale

I - Cinematica del punto materiale I - Cinemaica del puno maeriale La cinemaica deli oei puniformi descrie il moo dei puni maeriali. La descrizione del moo di oni puno maeriale dee sempre essere faa in relazione ad un paricolare sisema

Dettagli

PROVA SCRITTA DI AUTOMATICA I (Prof. Bittanti, BIO A-K) 25 Settembre 2006 Cognome Nome Matricola. y=x 2 =i L

PROVA SCRITTA DI AUTOMATICA I (Prof. Bittanti, BIO A-K) 25 Settembre 2006 Cognome Nome Matricola. y=x 2 =i L .9.8.7.6.5.4.3.. - 3 4 5 6 7 8 9 PROVA SCRITTA DI AUTOMATICA I (Prof. Biani, BIO A-K) 5 Seembre 6 Cognome Nome Maricola............ Verificare che il fascicolo sia cosiuio da 9 pagine. La chiarezza e precisione

Dettagli

Teoria dei segnali. Unità 2 Sistemi lineari. Sistemi lineari: definizioni e concetti di base. Concetti avanzati Politecnico di Torino 1

Teoria dei segnali. Unità 2 Sistemi lineari. Sistemi lineari: definizioni e concetti di base. Concetti avanzati Politecnico di Torino 1 Sisemi lineari: deinizioni e concei di base Teoria dei segnali Unià 2 Sisemi lineari Sisemi lineari Deinizioni e concei di base Concei avanzai 2 25 Poliecnico di Torino Sisemi lineari: deinizioni e concei

Dettagli

PIL NOMINALE, PIL REALE E DEFLATORE

PIL NOMINALE, PIL REALE E DEFLATORE PIL NOMINALE, PIL REALE E DEFLATORE Il PIL nominale (o a prezzi correni) Come sappiamo il PIL è il valore di ui i beni e servizi finali prodoi in un cero periodo all inerno del paese. Se per calcolare

Dettagli

g Y g M p g Y g g + g M p dove p è il tasso di crescita dei prezzi, ovvero il tasso di inflazione. Poiché g è costante, g

g Y g M p g Y g g + g M p dove p è il tasso di crescita dei prezzi, ovvero il tasso di inflazione. Poiché g è costante, g APPENDICI 465 g Y g g + g M p dove p è il asso di crescia dei prezzi, ovvero il asso di inflazione. Poiché g è cosane, g g è uguale a zero. Quindi: g Y g M p Il asso di crescia della produzione è approssimaivamene

Dettagli

Fisica Generale A. 12. Urti. Urti. Urti (II) Forze d Urto

Fisica Generale A. 12. Urti. Urti. Urti (II) Forze d Urto Fisica Generale A. Uri Uri Si ha un uro quando due corpi, che si uoono a elocià dierse, ineragiscono (p.es. engono a conao) e, in un inerallo di epo olo bree (rispeo al coneso), odificano sosanzialene

Dettagli

ESERCIZI di TEORIA dei SEGNALI. La Correlazione

ESERCIZI di TEORIA dei SEGNALI. La Correlazione ESERCIZI di TEORI dei SEGNLI La Correlazione Correlazione Si definisce correlazione (o correlazione incrociaa o cross-correlazione) ra i due segnali di energia, in generale complessi, x() e y() la quanià:

Dettagli

Sistemi Lineari e Tempo-Invarianti (SLI) Risposta impulsiva e al gradino

Sistemi Lineari e Tempo-Invarianti (SLI) Risposta impulsiva e al gradino Sisemi Lineari e Tempo-Invariani (SLI) Risposa impulsiva e al gradino by hp://www.oasiech.i Con sisema SLI si inende un sisema lineare e empo invariane, rispeo alla seguene figura: Lineare: si ha quando

Dettagli

CORSO di RECUPERO di FISICA Classi seconde (anno scolastico ) CINEMATICA: richiami teorici

CORSO di RECUPERO di FISICA Classi seconde (anno scolastico ) CINEMATICA: richiami teorici CORSO di RECUPERO di FISICA Classi seconde (anno scolasico 015-016) giorno daa Ora inizio Ora fine aula mercoledì 9/06/016 giovedì 30/06/016 maredì 05/07/016 giovedì 07/07/016 08:45 10:15 401 Nel corso

Dettagli

Vantaggio temporale. Problemi sul moto rettilineo uniforme. Risoluzione

Vantaggio temporale. Problemi sul moto rettilineo uniforme. Risoluzione Creao il 25/2/2 19.35. elaborao il 14/5/26 alle ore 18.3.26 Problemi sul moo reilineo uniforme anaggio emporale m s (m) Un moociclisa passa dall origine del sisema di riferimeno ( m) al empo s ad una velocià

Dettagli

UNITA 4. LE DISEQUAZIONI GONIOMETRICHE.

UNITA 4. LE DISEQUAZIONI GONIOMETRICHE. UNITA. LE DISEQUAZIONI GONIOMETRICHE.. Generalià sulle disequazioni goniomeriche.. Disequazioni goniomeriche elemenari con seno, coseno, angene e coangene.. Disequazioni riconducibili a disequazioni goniomeriche

Dettagli

UNITA 3. LE EQUAZIONI GONIOMETRICHE.

UNITA 3. LE EQUAZIONI GONIOMETRICHE. UNITA. LE EQUAZIONI GONIOMETRICHE.. Generalià sulle equazioni goniomeriche.. Equazioni goniomeriche elemenari con seno, coseno, angene e coangene.. Alri ipi di equazioni goniomeriche elemenari.. Le funzioni

Dettagli

CORSI I.D.E.I. - LA PARABOLA CLASSI QUARTE Prof. E. Modica

CORSI I.D.E.I. - LA PARABOLA CLASSI QUARTE Prof. E. Modica ISTITUTO PROVINCIALE DI CULTURA E LINGUE NINNI CASSARÀ SEDE DI VIA FATTORI CORSI I.D.E.I. - LA PARABOLA CLASSI QUARTE Prof. E. Modica erasmo@galois.it DEFINIZIONI Definizione. Dicesi parabola il luogo

Dettagli

Precorso di Matematica

Precorso di Matematica Precorso di Matematica Lezione 3 Andrea Susa OPERATORE DI PRODOTTO Π 2 1 Operatore di prodotto Π Consideriamo un insieme numerico ={ =1, }. Definiamo prodotto degli elementi in, = Esempio: ={ =1, =2, =3,

Dettagli

C2. Introduzione alla cinematica del moto in una dimensione

C2. Introduzione alla cinematica del moto in una dimensione C. Inroduzione alla cinemaica del moo in una dimensione Legge oraria di un puno maeriale che si muove su una rea Come già discusso, la legge oraria di un puno maeriale che si muove su una rea è la funzione

Dettagli

Proprietà razionali per il prezzo

Proprietà razionali per il prezzo Proprieà razionali per il prezzo delle opzioni call 8/09/0 Corso di Finanza quaniaiva L aricolo di Rober Meronpubblicao nel 973, heoryofraionalopionpricing idenifica una serie di proprieà che devono valere

Dettagli

Esercizi aggiuntivi Unità A1

Esercizi aggiuntivi Unità A1 Esercizi aggiunivi Unià A Esercizi svoli Esercizio A Concei inroduivi Daa la grandezza impulsiva periodica la cui forma d onda è rappresenaa nella figura A., calcolarne il valore medio nel periodo, il

Dettagli

Anno 4 Equazioni goniometriche lineari e omogenee

Anno 4 Equazioni goniometriche lineari e omogenee Anno 4 Equazioni goniomeriche lineari e omogenee Inroduzione In quesa lezione descriveremo le equazioni goniomeriche lineari e omogenee. Esamineremo le definizioni e illusreremo i meodi risoluivi per ogni

Dettagli

Soluzioni del compito di Istituzioni di Matematiche/Matematica per Chimica F45 e F5X (23/2/10)

Soluzioni del compito di Istituzioni di Matematiche/Matematica per Chimica F45 e F5X (23/2/10) Soluzioni del compio di Isiuzioni di Maemaiche/Maemaica per Chimica F e FX (//) I esi sono in pare comuni ai due emi d esame. Gli sudeni del vecchio ordinameno hanno due domande in meno nei primi see esercizi,

Dettagli

Si dice parabola il luogo geometrico dei punti del piano, equidistanti da un punto fisso, detto fuoco, e da una retta fissa, detta direttrice.

Si dice parabola il luogo geometrico dei punti del piano, equidistanti da un punto fisso, detto fuoco, e da una retta fissa, detta direttrice. LA PARABOLA Definizione: Si dice parabola il luogo geometrico dei punti del piano, equidistanti da un punto fisso, detto fuoco, e da una retta fissa, detta direttrice. Dimostrazione della parabola con

Dettagli

Scienze e Tecnologie Applicate L. Agarossi - ITIS P. Hensemberger - Monza

Scienze e Tecnologie Applicate L. Agarossi - ITIS P. Hensemberger - Monza elemeni di segnali elemeni di segnali SEGNALE il segnale segnale e informazione segnale analogico e digiale il segnale digiale il segnale il segnale si può genericamene definire come una grandezza che

Dettagli

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI

RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI RISPOSTA IN FREQUENZA DEI SISTEMI LINEARI TEMPO INVARIANTI 1 Fondameni di segnali Fondameni e rasmissione TLC Inroduzione Se il segnale d ingresso di un sisema Lineare Tempo-Invariane LTI e un esponenziale

Dettagli

3 Cinematica. La descrizione del moto dipende dal sistema di riferimento in cui viene studiato.

3 Cinematica. La descrizione del moto dipende dal sistema di riferimento in cui viene studiato. 3 Cinemaica 3 Cinemaica... 4 3.1 Inroduzione.... 4 3. Moi reilinei.... 44 3.3 Alcuni esempi di grafici orari.... 46 3.4 Moi reilinei: definizione della velocià.... 47 3.5 Regole di derivazione... 53 3.6

Dettagli

Corso di Matematica II

Corso di Matematica II Corso di Matematica II Università degli Studi della Basilicata Dipartimento di Scienze Corso di laurea in Chimica e in Scienze Geologiche A.A. 2014/15 dott.ssa Vita Leonessa Elementi di geometria analitica

Dettagli

Ci domandiamo allora se e sempre possibile rappresentare una funzione in questo modo.

Ci domandiamo allora se e sempre possibile rappresentare una funzione in questo modo. 1. Serie di Fourier I problemi al bordo associai ad equazioni differenziali si sanno risolvere con il meodo di separazione delle variabili solano se il dao iniziale si rappresena nella forma fx = a cosx

Dettagli

velocità angolare o pulsazione (gradi /s oppure rad/s) (angolo percorso da V in un intervallo di tempo)

velocità angolare o pulsazione (gradi /s oppure rad/s) (angolo percorso da V in un intervallo di tempo) V A = AMPIEZZA = lunghezza di V A ALTERNATA Proiezione di V X ISTANTE = velocià angolare o pulsazione (gradi /s oppure rad/s) (angolo percorso da V in un inervallo di empo) DEVE ESSERE COSTANTE Angolo

Dettagli

Nel caso particolare in cui il vertice si trovi nell'origine, la parabola assume la forma: y ˆ ax 2.

Nel caso particolare in cui il vertice si trovi nell'origine, la parabola assume la forma: y ˆ ax 2. LA PARABOLA Rivedi la teoria La parabola e la sua equazione La parabola eá il luogo dei punti del piano che hanno la stessa distanza da un punto fisso chiamato fuoco e da una retta fissa chiamata direttrice.

Dettagli

Esercizi svolti sulla parabola

Esercizi svolti sulla parabola Liceo Classico Galilei Pisa - Classe a A - Prof. Francesco Daddi - 19 dicembre 011 Esercizi svolti sulla parabola Esercizio 1. Determinare l equazione della parabola avente fuoco in F(1, 1) e per direttrice

Dettagli

Geometria analitica del piano

Geometria analitica del piano Geometria analitica del piano dott.ssa Vita Leonessa Università degli Studi della Basilicata (27 marzo 2008) (Analisi) Matematica 2 CdL in Chimica, Biotecnologie, Scienze Geologiche Rette Fissato un sistema

Dettagli

1 Geometria analitica nel piano

1 Geometria analitica nel piano Lezioni di Geometria a.a. 2007-2008 cdl SIE prof. C. Franchetti 1 Geometria analitica nel piano 1.1 Distanza di due punti Siano P 1 = (x 1, y 1 ), P 2 = (x 2, y 2 ) due punti del piano, se d(p 1, P 2 )

Dettagli

Introduzione e modellistica dei sistemi

Introduzione e modellistica dei sistemi Inroduzione e modellisica dei sisemi Modellisica dei sisemi eleromeccanici Principi fisici di funzionameno Moore elerico in correne coninua (DC-moor) DC-moor con comando di armaura DC-moor con comando

Dettagli

intervalli di tempo. Esempio di sistema oscillante: Fig. 1 Massa m che può traslare in una sola direzione x, legata ad una molla di rigidezza k.

intervalli di tempo. Esempio di sistema oscillante: Fig. 1 Massa m che può traslare in una sola direzione x, legata ad una molla di rigidezza k. Sudio delle vibrazioni raa ogni oscillazione di una grandezza inorno ad una posizione di equilibrio. La forma piu semplice di oscillazione e il moo armonico che puo i essere descrio da un veore roane Ae

Dettagli

Il Debito Pubblico. In questa lezione: Studiamo il vincolo di bilancio del governo.

Il Debito Pubblico. In questa lezione: Studiamo il vincolo di bilancio del governo. Il Debio Pubblico In quesa lezione: Sudiamo il vincolo di bilancio del governo. Esaminiamo i faori che influenzano il debio pubblico nel lungo periodo. Sudiamo la sabilià del debio pubblico. 327 Il disavanzo

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO

ESAME DI STATO DI LICEO SCIENTIFICO ESAME DI STATO DI LICEO SCIENTIFICO SIMULAZIONE DELLA II PROVA A.S. 014-15 Indirizzo: SCIENTIFICO Tema di: MATEMATICA 1 Nome del candidao Classe Il candidao risolva uno dei due problemi; il problema da

Dettagli

Esercizi di Cinematica. 28 febbraio 2009 PIACENTINO - PREITE (Fisica per Scienze Motorie)

Esercizi di Cinematica. 28 febbraio 2009 PIACENTINO - PREITE (Fisica per Scienze Motorie) Esercizi di Cinemaica 8 febbraio 9 PIACENTINO - PREITE (Fisica per Scienze Moorie) Le equazioni cinemaiche Moo reilineo uniforme Moo reilineo uniformemene accelerao a cosane ) ( e cosane a a + 8 febbraio

Dettagli

L'importanza delle restrizioni econometriche nell'utilizzo dei modelli GARCH per la valutazione del rischio di prodotti finanziari

L'importanza delle restrizioni econometriche nell'utilizzo dei modelli GARCH per la valutazione del rischio di prodotti finanziari L'imporanza delle resrizioni economeriche nell'uilizzo dei modelli GARCH per la valuazione del rischio di prodoi finanziari Giusj Carmen Sanangelo (MeodiaLab) Robero Reno (Universià di Siena e MeodiaLab)

Dettagli

Proprietà focali delle coniche.

Proprietà focali delle coniche. roprietà focali delle coniche. Mauro Saita e-mail: maurosaita@tiscalinet.it Versione provvisoria, gennaio 2014 Indice 1 Coniche 1 1.1 arabola....................................... 1 1.1.1 roprietà focale

Dettagli

Geometria differenziale delle curve.

Geometria differenziale delle curve. Geomeria differenziale delle curve Curve paramerizzae Definizione Una curva paramerizzaa in IR n è un applicazione γ γ γ: I IR n,, γ n dove I = [a, b] IR è un inervallo della rea reale con a < b + γa γ

Dettagli

Oscillazione Moto di una molla

Oscillazione Moto di una molla Oscillazione oo di una molla Uno dei più imporani esempi di moo armonico semplice (AS) è il moo di una molla. (Una molla ideale è una molla che rispea la Legge di Hooe.) Consideriamo una molla sospesa

Dettagli

Capitolo 8 Il regime periodico e il regime alternativo sinusoidale

Capitolo 8 Il regime periodico e il regime alternativo sinusoidale Capiolo 8 Il regime periodico e il regime alernaivo sinusoidale Capiolo 8 Il regime periodico e il regime alernaivo sinusoidale 8.1 Definizioni 8.1.1 Periodo, frequenza, pulsazione Una grandezza si dice

Dettagli

Limite. Se D non è limitato si può fare il limite di f(x) per x che tende

Limite. Se D non è limitato si può fare il limite di f(x) per x che tende Appunti sul corso di Complementi di Matematica,mod.Analisi, prof. B.Bacchelli - a.a. 200/20. 05 - Limiti continuità: Riferimenti: R.Adams, Calcolo Differenziale 2. Capitoli 3., 3.2. - Esercizi 3., 3.2.

Dettagli

Funzioni goniometriche

Funzioni goniometriche 0 oobre 008. Trigonomeria. Misura degli angoli e cerchio rigonomerico. Definizione di seno, coseno, angene. Idenià fondamenali 5. Valori delle funzioni circolari 6. Formule rigonomeriche 7. Inverse delle

Dettagli