RICHIAMI SU RETTA, PARABOLA E DISEQUAZIONI. Angela Donatiello 1

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "RICHIAMI SU RETTA, PARABOLA E DISEQUAZIONI. Angela Donatiello 1"

Transcript

1 RICHIAMI SU RETTA, PARABOLA E DISEQUAZIONI Angela Donatiello 1

2 Una funzione del tipo f() = m + q, con m e q numeri reali, è una FUNZIONE LINEARE. Il numero q è detto INTERCETTA o ORDINATA ALL ORIGINE, il termine m è detto COEFFICIENTE ANGOLARE. Tale funzione è definita R e rappresenta una retta del piano cartesiano non parallela all asse y. Se q = 0, allora la retta passa per l origine degli assi. Esempio. y = 4 In tal caso le due grandezze e y sono tra loro in una relazione di proporzionalità diretta. Def. Due grandezze si definiscono direttamente proporzionali se il loro rapporto è costante. Angela Donatiello

3 A ( 1,y 1 ) B(,y ) - 1 y -y 1 m = y y 1 1 = Δy Δ = tgα dove α è l angolo che la retta forma con l asse delle ascisse valutato in senso antiorario. RAPPORTO INCREMENTALE o TASSO DI VARIAZIONE Ø Tasso di crescita del peso di un neonato tra la seconda e sesta settimana Ø Tasso di dilatazione termica Angela Donatiello 3

4 m > 0 la retta è una funzione crescente ( 1 < y 1 < y ) Δy Per cui = Δ α acuto tgα >0 m < 0 la retta è una funzione decrescente ( 1 < y 1 > y ) Δy Per cui = Δ α ottuso tgα < 0 Angela Donatiello 4

5 Condizione di parallelismo tra rette: Condizione di perpendicolarità tra rette: r // r' m = r r' m' m = 1 m' Equazione del fascio proprio di rette (retta passante per un punto assegnato P( 0,y 0 ) ): y = m( ) y 0 0 Equazione della retta passante per due punti: A ( 1,y 1 ) B(,y ) y y m = 1 e y y1 = m( 1) 1 y y y y 1 y y = 1 + ( y y1 ) = 1 1 Angela Donatiello 5

6 FUNZIONE QUADRATICA Una funzione del tipo f() = a + b + c con a,b,c R ed a 0 È detta funzione quadratica. Il suo grafico è una parabola generica. Ø Il grafico della parabola è simmetrico rispetto ad una retta parallela all asse y, detto asse di simmetria, di equazione = b a Ø La parabola ha vertice nel punto di coordinate con Δ = b 4ac V Ø Se a > 0 la parabola volge la concavità verso l alto b a ; Δ 4a Ø Se a < 0 la parabola volge la concavità verso il basso Angela Donatiello 6

7 Angela Donatiello 7

8 EQUAZIONI DI SECONDO GRADO Risolvere un equazione del tipo a + b + c = 0 significa risolvere il sistema y = a ossia cercare le intersezioni tra la funzione quadratica e l asse delle ascisse (asse ) Tali soluzioni vengono definite RADICI o ZERI della funzione. y = + 0 b + c Angela Donatiello 8

9 Δ = b 4ac Ø Se Δ > 0 l equazione ammette due soluzioni reali e b Δ b + Δ distinte 1 = e = a a (due intersezioni con l asse ) Ø Se Δ = 0 l equazione ammette due soluzioni reali e b coincidenti 1 = = a (una sola intersezione con l asse ) Ø Se Δ < 0 l equazione non ammette soluzioni reali, ciò vuol dire che la funzione quadratica non ha intersezioni con l asse Angela Donatiello 9

10 a > 0 a + b + c >0 DISEQUAZIONI DI SECONDO GRADO Δ > 0 > < 1 R, 1 Δ = 0 Δ < 0 R Angela Donatiello 10

11 a > 0 a + b + c 0 Δ > 0 = 0 1 Δ Δ < 0 R R Angela Donatiello 11

12 a > 0 a + b + c < 0 Δ = 0 Δ < 0 Δ > 0 < < / R / R 1 Angela Donatiello 1

13 a > 0 a + b + c 0 Δ = 0 Δ < 0 Δ > = / R Angela Donatiello 13

14 RICAPITOLANDO 1) Nel caso di disequazione di secondo grado Pura, Spuria o Completa con Δ > 0, l equazione associata avrà due soluzioni reali e distinte e la disequazione sarà soddisfatta per intervalli esterni o interni, a seconda se sono concordi o discordi il coefficiente del termine di secondo grado e il verso della disequazione:! 5 > 0 < 5 > 5 3! 4 < 0 0 < < 4 3! Angela Donatiello 14

15 ) Nel caso di disequazione di secondo grado Completa con Δ < 0, l equazione associata non avrà soluzioni reali, per cui la parabola a cui il polinomio si riferisce non interseca l asse. Pertanto, facendo in modo di avere il coefficiente del termine di secondo grado positivo, si avranno due casi:! > 0 R! + 7 < 0 impossibile Angela Donatiello 15

16 3) Nel caso di disequazione di secondo grado Completa con Δ = 0 il polinomio è necessariamente un quadrato di binomio, pertanto si presenteranno 4 casi possibili:! = ( 3)! ( 3)! > 0 3 ( 3)! 0 R ( 3)! < 0 impossibile ( 3)! 0 = 3 Angela Donatiello 16

17 DISEQUAZIONI RAZIONALI FRATTE N() D() N() 0 o 0 D() Si studiano il segno del numeratore e il segno del denominatore, analizzandone la positività. Si costruisce poi un grafico dei segni su cui riportare gli intervalli di positività di numeratore e denominatore. Si determina, infine, con la regola dei segni, il segno del rapporto N/D. + 5 Esempio Esempio Sol: (-;) Sol: (, 4) ( ; + ) Angela Donatiello 17

18 D (X) > 0 ( < 0) SISTEMI DI DISEQUAZIONI Si determinano le soluzioni della prima 1 disequazione, si determinano le soluzioni della D(X) > 0 ( < 0) seconda disequazione e si rappresentano tali soluzioni su un grafico di sistema. (Le soluzioni di una singola disequazione vanno rappresentate con una linea continua su uno stesso livello, le disequazioni dell altra disequazione su un secondo livello). Si ricercano infine le soluzioni comuni, ossia quelle che soddisfano entrambe le disequazioni. Esempio: 9 5 > Sol: (, 3) (3,5] Angela Donatiello 18

1. Le due rette y = 3x + 5 e y + 3x = 1. a) sono incidenti. b) sono parallele. c) sono perpendicolari. d) sono coincidenti.

1. Le due rette y = 3x + 5 e y + 3x = 1. a) sono incidenti. b) sono parallele. c) sono perpendicolari. d) sono coincidenti. 1. Le due rette y = 3x + 5 e y + 3x = 1 a) sono incidenti. b) sono parallele. c) sono perpendicolari. d) sono coincidenti. 2. L equazione x 2 = x + 2 a) ha per soluzioni x = 1 e x = 2 b) ha per soluzioni

Dettagli

Quaderno per il recupero del debito MATEMATICA ANNO SCOLASTICO 2016/2017 Prof.ssa Migliaccio Gabriella CLASSE III

Quaderno per il recupero del debito MATEMATICA ANNO SCOLASTICO 2016/2017 Prof.ssa Migliaccio Gabriella CLASSE III Quaderno per il recupero del debito MATEMATICA ANNO SCOLASTICO 016/017 Prof.ssa Migliaccio Gabriella CLASSE III Gli esercizi vanno svolti e consegnati, anche su un quaderno, il giorno dell esame per il

Dettagli

Lezione 6. Sistemi di equazioni lineari Parabola

Lezione 6. Sistemi di equazioni lineari Parabola Lezione 6 Sistemi di equazioni lineari Parabola Altro metodo per trovare l equazione di una retta che passa per due punti dati Siano A e B due punti di coordinate rispettivamente A = (x A, y A ) e B =

Dettagli

Matematica. 2. Funzioni, equazioni e disequazioni lineari e quadratiche. Giuseppe Vittucci Marzetti 1

Matematica. 2. Funzioni, equazioni e disequazioni lineari e quadratiche. Giuseppe Vittucci Marzetti 1 Matematica 2. e quadratiche Giuseppe Vittucci Marzetti 1 Corso di laurea in Scienze dell Organizzazione Dipartimento di Sociologia e Ricerca Sociale Università degli Studi di Milano-Bicocca A.A. 2018-19

Dettagli

ESERCITAZIONE 9 : FUNZIONI QUADRATICHE

ESERCITAZIONE 9 : FUNZIONI QUADRATICHE ESERCITAZIONE 9 : FUNZIONI QUADRATICHE e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Ricevimento: Martedi 16-18 Dipartimento di Matematica, piano terra, studio 126 4 Dicembre 2012 L espressione

Dettagli

Precorso di Matematica

Precorso di Matematica Precorso di Matematica Lezione 3 Andrea Susa OPERATORE DI PRODOTTO Π 2 1 Operatore di prodotto Π Consideriamo un insieme numerico ={ =1, }. Definiamo prodotto degli elementi in, = Esempio: ={ =1, =2, =3,

Dettagli

UNITÀ DIDATTICA 2 LE FUNZIONI

UNITÀ DIDATTICA 2 LE FUNZIONI UNITÀ DIDATTICA LE FUNZIONI. Le funzioni Definizione. Siano A e B due sottoinsiemi non vuoti di R. Si chiama funzione di A in B una qualsiasi legge che fa corrispondere a ogni elemento A uno ed un solo

Dettagli

Mutue posizioni della parabola con gli assi cartesiani

Mutue posizioni della parabola con gli assi cartesiani Mutue posizioni della parabola con gli assi cartesiani L equazione di una parabola generica è data da: Consideriamo l equazione che definisce i punti di intersezione della parabola con l asse delle ascisse

Dettagli

Disequazioni razionali (in una variabile)

Disequazioni razionali (in una variabile) 5 settembre 8 Disequazioni razionali (in una variabile) Forma normale: f f f < f > Disequazioni razionali intere Nelle disequazioni razionali intere la funzione f è un polinomio. Disequazioni di grado

Dettagli

Geometria analitica di base. Equazioni di primo grado nel piano cartesiano Funzioni quadratiche Funzioni a tratti Funzioni di proporzionalità inversa

Geometria analitica di base. Equazioni di primo grado nel piano cartesiano Funzioni quadratiche Funzioni a tratti Funzioni di proporzionalità inversa Equazioni di primo grado nel piano cartesiano Funzioni quadratiche Funzioni a tratti Funzioni di proporzionalità inversa Equazioni di primo grado nel piano cartesiano Risoluzione grafica di un equazione

Dettagli

EQUAZIONE DELLA RETTA

EQUAZIONE DELLA RETTA EQUAZIONE DELLA RETTA EQUAZIONE DEGLI ASSI L equazione dell asse x è 0. L equazione dell asse y è 0. EQUAZIONE DELLE RETTE PARALLELE AGLI ASSI L equazione di una retta r parallela all asse x è cioè è uguale

Dettagli

RETTA NEL PIANO CARTESIANO

RETTA NEL PIANO CARTESIANO RETTA NEL PIANO CARTESIANO Def: una funzione matematica del tipo rappresenta nel piano cartesiano una RETTA. Quindi l EQUAZIONE DI UNA RETTA in forma generica è sempre della forma: COEFFICIENTE ANGOLARE:

Dettagli

Appunti per la classe terza. Geometria Analitica

Appunti per la classe terza. Geometria Analitica Istituto Professionale L. Lagrange Torino A.S. 008-009 Appunti per la classe terza Geometria Analitica Autore: Di Liscia Francesca Indice 1 Piano cartesiano 1.1 Punto medio......................................

Dettagli

MATEMATICA Amministrazione Finanza e Marketing

MATEMATICA Amministrazione Finanza e Marketing MATEMATICA Classe 2 B Anno scolastico 2018-2019 Amministrazione Finanza e Marketing Docente: prof.ssa Anna Nardi Testi in adozione: - Autore: Leonardo Sasso - Titolo: La matematica a colori Ed. Rossa volume

Dettagli

Appunti: il piano cartesiano. Distanza tra due punti

Appunti: il piano cartesiano. Distanza tra due punti ppunti: il piano cartesiano Distanza tra due punti Come determinare la distanza tra i punti ( ; ) e ( ; ): Se i due punti e hanno la stessa ascissa = allora (-3;1) (-3; 5) d()= d()= 1 5 4 4 Se i due punti

Dettagli

Il coefficiente angolare è 3/2 mentre Q ha coordinate (0;0). La retta passa per l origine.

Il coefficiente angolare è 3/2 mentre Q ha coordinate (0;0). La retta passa per l origine. SOLUZIONI ESERCIZI GEOMETRIA ANALITICA ) y Il coefficiente angolare è mentre Q ha coordinate (0;) ) y E necessario passare alla forma esplicita della retta y Il coefficiente angolare è mentre Q ha coordinate

Dettagli

RIPASSO PROPEDEUTICO AL V ANNO. Disciplina: MATEMATICA

RIPASSO PROPEDEUTICO AL V ANNO. Disciplina: MATEMATICA RIPASSO PROPEDEUTICO AL V ANNO Disciplina: MATEMATICA Testi consigliati : - BOOK IN PROGRESS MATEMATICA, ALGEBRA PRIMO ANNO, tomo n http://www.itistulliobuzzi.it/buzziwebsite/studenti/matematica/tomo%0_algebra%0buzzi%

Dettagli

quindi, applicando la legge di annullamento del prodotto, si ottiene l insieme delle soluzioni:

quindi, applicando la legge di annullamento del prodotto, si ottiene l insieme delle soluzioni: ) Risolvi le seguenti equazioni e scrivi le soluzioni reali in ordine crescente, indicando se sono multiple e quante sono le eventuali soluzioni non reali: ( ) ( ) questa equazione equivale a ( ) ( ) quindi

Dettagli

Calcolo letterale. 1. Quale delle seguenti affermazioni è vera?

Calcolo letterale. 1. Quale delle seguenti affermazioni è vera? Calcolo letterale 1. Quale delle seguenti affermazioni è vera? (a) m.c.m.(49a b 3 c, 4a 3 bc ) = 98a 3 b 3 c (b) m.c.m.(49a b 3 c, 4a 3 bc ) = 98a 3 b 3 c (XX) (c) m.c.m.(49a b 3 c, 4a 3 bc ) = 49a bc

Dettagli

Verifica del 8 febbraio 2018

Verifica del 8 febbraio 2018 Verifica del 8 febbraio 018 Esercizio 1 (15 punti) Risolvi le seguenti disequazioni: 1 x 1 a) x + 6x + 8 x 3 b) x + 1 + 1 c) d) Esercizio (0 punti) 3 x 8 x 4 x 3 ax 9 Considera la funzione f ( x) = x 3x

Dettagli

Liceo Scientifico A. Romita Programma di Matematica Anno scolastico 2016/2017 Prof.ssa Santella Mariagrazia

Liceo Scientifico A. Romita Programma di Matematica Anno scolastico 2016/2017 Prof.ssa Santella Mariagrazia Liceo Scientifico A. Romita Programma di Matematica Anno scolastico 2016/2017 Prof.ssa Santella Mariagrazia Classe III sez. A Modulo 1 Unità didattica 1 Ripetizione della risoluzione delle equazioni di

Dettagli

http://www.appuntielettro.altervista.org Possiamo associare a ogni punto di una retta orientata un numero reale Il piano cartesiano associamo a ogni punto del piano una coppia di numeri reali Un piano

Dettagli

5. EQUAZIONI e DISEQUAZIONI

5. EQUAZIONI e DISEQUAZIONI 5. EQUAZIONI e DISEQUAZIONI 1. Per ognuna delle affermazioni seguenti, indicare se e vera o falsa, motivando la risposta (a) L equazione di primo grado (1 2)x = 2 ha soluzione x = 2(1+ 2). V F (b) La disequazione

Dettagli

Disequazioni. 3 Liceo Scientifico 3 Liceo Scientifico sez. Scienze Applicate A.S. 2016/2017 Prof. Andrea Pugliese

Disequazioni. 3 Liceo Scientifico 3 Liceo Scientifico sez. Scienze Applicate A.S. 2016/2017 Prof. Andrea Pugliese Disequazioni 3 Liceo Scientifico 3 Liceo Scientifico sez. Scienze Applicate A.S. 2016/2017 Prof. Andrea Pugliese Definizione ed esempi Date due espressioni algebriche A e B contenenti numeri e lettere

Dettagli

Liceo Scientifico A. Romita Programma di Matematica Anno scolastico 2016/2017 Prof.ssa Santella Mariagrazia

Liceo Scientifico A. Romita Programma di Matematica Anno scolastico 2016/2017 Prof.ssa Santella Mariagrazia Liceo Scientifico A. Romita Programma di Matematica Anno scolastico 2016/2017 Prof.ssa Santella Mariagrazia Classe III sez. F Modulo 1 Unità didattica 1 Ripetizione della risoluzione delle equazioni di

Dettagli

1. riconoscere la risolubilità di equazioni e disequazioni in casi particolari

1. riconoscere la risolubilità di equazioni e disequazioni in casi particolari Secondo modulo: Algebra Obiettivi 1. riconoscere la risolubilità di equazioni e disequazioni in casi particolari 2. risolvere equazioni intere e frazionarie di primo grado, secondo grado, grado superiore

Dettagli

x = x. Si ha quindi: Macerata 6 marzo 2015 classe 3M COMPITO DI MATEMATICA SOLUZIONE QUESITO 1 Considera il fascio di parabole di equazione: ( )

x = x. Si ha quindi: Macerata 6 marzo 2015 classe 3M COMPITO DI MATEMATICA SOLUZIONE QUESITO 1 Considera il fascio di parabole di equazione: ( ) Macerata 6 marzo 0 classe M COMPITO DI MATEMATICA SOLUZIONE QUESITO Considera il fascio di parabole di equazione: a) Trova eventuali punti base. y = k x + x + P ( 0;) Le curve sostegno del fascio sono

Dettagli

In tutti i casi giungo alla stessa conclusione che posso rappresentare nel piano cartesiano:

In tutti i casi giungo alla stessa conclusione che posso rappresentare nel piano cartesiano: Funzione polinomiale di 1 grado y = ax + b y = x 6 (coefficiente di x positivo) D = R Determino dove la funzione si annulla (cioè troviamo gli zeri della funzione) risolvendo l equazione x 6 = 0 che, essendo

Dettagli

EQUAZIONI. Prendiamo in considerazione le funzioni reali in una variabile reale

EQUAZIONI. Prendiamo in considerazione le funzioni reali in una variabile reale EQUAZIONI Prendiamo in considerazione le funzioni reali in una variabile reale Una equazione è una uguaglianza tra due funzioni eventualmente verificata per particolari valori attribuiti alla variabile

Dettagli

quindi, applicando la legge di annullamento del prodotto, si ottiene l insieme delle soluzioni: x x da cui:

quindi, applicando la legge di annullamento del prodotto, si ottiene l insieme delle soluzioni: x x da cui: ) Risolvi le seguenti equazioni e scrivi le soluzioni reali in ordine crescente, indicando se sono multiple e quante sono le eventuali soluzioni non reali: ( ) ( ) per risolvere questa equazione si applica

Dettagli

COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) MATEMATICA III - VE

COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) MATEMATICA III - VE 1 COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) MATEMATICA III - VE Scheda 1: Fondamenti di geometria analitica 1. Determina il punto P dell asse y che forma con A(; ) e B(; ) un triangolo

Dettagli

Lezione 6 Richiami di Geometria Analitica

Lezione 6 Richiami di Geometria Analitica 1 Piano cartesiano Lezione 6 Richiami di Geometria Analitica Consideriamo nel piano due rette perpendicolari che si intersecano in un punto O Consideriamo ciascuna di queste rette come retta orientata

Dettagli

GEOMETRIA ANALITICA

GEOMETRIA ANALITICA GEOMETRIA ANALITICA matematica@blogscuola.it LE COORDINATE CARTESIANE Quando si vuole fissare un sistema di coordinate cartesiane su una retta r, è necessario considerare: un punto O detto origine; un

Dettagli

Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1

Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1 Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1 CAPITOLO 8. LE FUNZIONI. 1. Generalità sulle funzioni.. Le rappresentazioni di una funzione. 3. Le funzioni reali di variabile reale. 4. L espressione

Dettagli

La parabola. 0) ti senti preparato sull argomento? si no abbastanza poco. 0) ti senti preparato sull argomento? si no abbastanza poco

La parabola. 0) ti senti preparato sull argomento? si no abbastanza poco. 0) ti senti preparato sull argomento? si no abbastanza poco Contesto: Geometria analitica - Attività di recupero PRIMA 0) ti senti preparato sull argomento? si no abbastanza poco La parabola DOPO 0) ti senti preparato sull argomento? si no abbastanza poco 1)In

Dettagli

LICEO SCIENTIFICO STATALE. Matematica. Programma svolto. Testo di riferimento: M. Bergamini - G. Barozzi - A. Trifone

LICEO SCIENTIFICO STATALE. Matematica. Programma svolto. Testo di riferimento: M. Bergamini - G. Barozzi - A. Trifone A.S. 2016 2015 17 16 LICEO SCIENTIFICO STATALE " G. Pellecchia" - CASSINO (FR) Classe 3^C 1^C Matematica Programma svolto Docente: Bianchi Angelarita Testo di riferimento: M. Bergamini - G. Barozzi - A.

Dettagli

Programma di MATEMATICA

Programma di MATEMATICA Classe 3B Indirizzo ELETTRONICA ED ELETTROTECNICA 1. MODULO 1: GEOMETRIA ANALITICA La parabola: la parabola come luogo geometrico del piano. Rappresentazione della parabola nel piano cartesiano e ricerca

Dettagli

L equazione generica della funzione costante è y=k, il grafico è una retta parallela all asse x (asse delle ascisse). retta parallela all'asse x y

L equazione generica della funzione costante è y=k, il grafico è una retta parallela all asse x (asse delle ascisse). retta parallela all'asse x y La funzione costante L equazione generica della funzione costante è =k, il grafico è una retta parallela all asse (asse delle ascisse). Esempio di esercizio, dall equazione al grafico: =- retta parallela

Dettagli

Coordinate Cartesiane nel Piano

Coordinate Cartesiane nel Piano Coordinate Cartesiane nel Piano O = (0,0) origine degli assi x ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi x, y sistemi dimetrici: unità di misura diverse sui due assi

Dettagli

Funzioni elementari. Funzioni lineari. 13. Funzioni elementari. Funzioni lineari.

Funzioni elementari. Funzioni lineari. 13. Funzioni elementari. Funzioni lineari. Funzioni elementari. Funzioni lineari. Funzioni elementari Per potere determinare le proprietà e quindi il grafico di una qualsiasi funzione a partire dalla sua espressione analitica, dobbiamo prima di

Dettagli

1.4 Geometria analitica

1.4 Geometria analitica 1.4 Geometria analitica IL PIANO CARTESIANO Per definire un riferimento cartesiano nel piano euclideo prendiamo: Un punto detto origine i Due rette orientate passanti per. ii Due punti e per definire le

Dettagli

LICEO SCIENTIFICO RINALDO.D AQUINO MONTELLA ITIS BAGNOLI IRPINO PROGRAMMA SVOLTO A.S Materia: MATEMATICA Classe : 3 A Prof.

LICEO SCIENTIFICO RINALDO.D AQUINO MONTELLA ITIS BAGNOLI IRPINO PROGRAMMA SVOLTO A.S Materia: MATEMATICA Classe : 3 A Prof. LICEO SCIENTIFICO RINALDO.D AQUINO MONTELLA ITIS BAGNOLI IRPINO PROGRAMMA SVOLTO A.S. 2017-18 Materia: MATEMATICA Classe : 3 A Prof. PARENTI Luigi LA RETTA SUL PIANO CARTESIANO - Coordinate cartesiane.

Dettagli

Piano cartesiano e Retta

Piano cartesiano e Retta Piano cartesiano e Retta 1 Piano cartesiano e Retta 1. Richiami sul piano cartesiano 2. Richiami sulla distanza tra due punti 3. Richiami punto medio di un segmento 4. La Retta (funzione lineare) 5. L

Dettagli

1. (Da Medicina e Odontoiatria 2012) Determinare l'area del triangolo che ha come vertici i punti (0,0), (0,1), (13,12) del piano cartesiano:

1. (Da Medicina e Odontoiatria 2012) Determinare l'area del triangolo che ha come vertici i punti (0,0), (0,1), (13,12) del piano cartesiano: QUESITI 1 PIANO CARTESIANO 1. (Da Medicina e Odontoiatria 2012) Determinare l'area del triangolo che ha come vertici i punti (0,0), (0,1), (13,12) del piano cartesiano: a) 6 b) 13/2 c) 12 d) 13 e) 78 2.

Dettagli

Geometria analitica di base (seconda parte)

Geometria analitica di base (seconda parte) SAPERE Al termine di questo capitolo, avrai appreso: il concetto di luogo geometrico la definizione di funzione quadratica l interpretazione geometrica di un particolare sistema di equazioni di secondo

Dettagli

PROGRAMMA DI MATEMATICA

PROGRAMMA DI MATEMATICA PROGRAMMA DI MATEMATICA Classe 1 A /1 B GRAFICA anno scolastico 2015-2016 La teoria degli insiemi Il concetto di insieme, il simbolo di appartenenza, la rappresentazione grafica di Eulero- Venn, la rappresentazione

Dettagli

x > 4 x < x 1 x 2 3 4x Disequazioni frazionarie Esercizio no.1 Esercizio no.2 Esercizio no.3 Esercizio no.4 Esercizio no.5 Esercizio no.

x > 4 x < x 1 x 2 3 4x Disequazioni frazionarie Esercizio no.1 Esercizio no.2 Esercizio no.3 Esercizio no.4 Esercizio no.5 Esercizio no. Edutecnica.it Disequazioni frazionarie Disequazioni frazionarie Esercizio no. 8 7 9 8 Esercizio no. Soluzione a pag. R. 7 con 9 Soluzione a pag.5 R. Esercizio no. Soluzione a pag.5 8 8 R. [ ] Esercizio

Dettagli

EQUAZIONI, DISEQUAZIONI E SISTEMI

EQUAZIONI, DISEQUAZIONI E SISTEMI EQUAZIONI, DISEQUAZIONI E SISTEMI RICHIAMI DI TEORIA Definizione: sia f una funzione reale di variabile reale. Gli elementi del dominio di f su cui la funzione assume valore nullo costituiscono l' insieme

Dettagli

Derivata di una funzione

Derivata di una funzione Derivata di una funzione Prof. E. Modica http://www.galois.it erasmo@galois.it Il problema delle tangenti Quando si effettua lo studio delle coniche viene risolta una serie di esercizi che richiedono la

Dettagli

Parabole (per studenti del biennio)

Parabole (per studenti del biennio) Parabole (per studenti del biennio) - - - 5 - - Equazione della parabola con vertice in O(0,0) : = a 5 - - - Equazione della parabola con vertice in V( 0,0) : = a 0 - - - 5 - Equazione della parabola con

Dettagli

Liceo Scientifico Statale Einstein Milano posta certificata: Tel. 02/ Fax. 02/

Liceo Scientifico Statale Einstein Milano posta certificata: Tel. 02/ Fax. 02/ Liceo Scientifico Statale Einstein Milano posta certificata: mips01000g@pec.istruzione.it Tel. 02/5413161 Fax. 02/5460852 CLASSE 3 L A.S. 2018-2019 PROGRAMMA SVOLTO DI MATEMATICA 1. EQUAZIONI E DISEQUAZIONI

Dettagli

DISEQUAZIONI DI SECONDO GRADO

DISEQUAZIONI DI SECONDO GRADO DISEQUAZIONI DI SECONDO GRADO Esercizio - -8 - - - - - - Esercizio L equazione non ha soluzioni e quindi la parabola non interseca l asse delle ascisse - - - - - Pertanto la parabola, avendo la concavità

Dettagli

COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) MATEMATICA III - A PT

COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) MATEMATICA III - A PT 1 COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) MATEMATICA III - A PT Scheda 1: Fondamenti di geometria analitica 1. Determina il punto P dell asse y che forma con A(; ) e B(; ) un triangolo

Dettagli

CLASSIFICAZIONE DELLE CONICHE AFFINI

CLASSIFICAZIONE DELLE CONICHE AFFINI CLASSIFICAZIONE DELLE CONICHE AFFINI Pre-requisiti necessari. Elementi di geometria analitica punti e rette nel piano cartesiano, conoscenza delle coniche in forma canonica). Risoluzione di equazioni e

Dettagli

Macerata 19 dicembre 2014 classe 3M COMPITO DI MATEMATICA RECUPERO ASSENTI ( ) ( ) ( ) C 2; 1.

Macerata 19 dicembre 2014 classe 3M COMPITO DI MATEMATICA RECUPERO ASSENTI ( ) ( ) ( ) C 2; 1. Macerata 9 dicembre 04 classe M COMPITO DI MATEMATICA RECUPERO ASSENTI SOLUZIONE QUESITO In un riferimento cartesiano ortogonale è dato il fascio di rette: k + x k y + k + = 0. Determina il centro C del

Dettagli

LA RETTA

LA RETTA EQUAZIONE DEL Ogni equazione di I grado in due variabili x e y rappresenta nel piano cartesiano una retta, per cui si dice che a x + b y + c = 0 è l equazione di una retta in forma implicita. OSSERVAZIONE:

Dettagli

PROGRAMMA MATEMATICA Classe 1 A AFM anno scolastico

PROGRAMMA MATEMATICA Classe 1 A AFM anno scolastico Classe 1 A AFM anno scolastico 2014-2015 I numeri naturali rappresentazione dei numeri naturali, le quattro operazioni, multipli e divisori di un numero. Criteri di divisibilità, le potenze, le espressioni

Dettagli

Lo studio di funzione. 18 febbraio 2013

Lo studio di funzione. 18 febbraio 2013 Lo studio di funzione 18 febbraio 2013 1 Indice 1 Lo studio di funzione 3 1.1 Dominio di funzioni......................... 3 1.1.1 Domini di funzioni elementari............... 3 1.1.2 Funzioni composte,

Dettagli

CORSI I.D.E.I. - LA PARABOLA CLASSI QUARTE Prof. E. Modica

CORSI I.D.E.I. - LA PARABOLA CLASSI QUARTE Prof. E. Modica ISTITUTO PROVINCIALE DI CULTURA E LINGUE NINNI CASSARÀ SEDE DI VIA FATTORI CORSI I.D.E.I. - LA PARABOLA CLASSI QUARTE Prof. E. Modica erasmo@galois.it DEFINIZIONI Definizione. Dicesi parabola il luogo

Dettagli

FUNZIONI ELEMENTARI RICHIAMI SULLE DISEQUAZIONI E TRASLAZIONI. Angela Donatiello 1

FUNZIONI ELEMENTARI RICHIAMI SULLE DISEQUAZIONI E TRASLAZIONI. Angela Donatiello 1 FUNZIONI ELEMENTARI RICHIAMI SULLE DISEQUAZIONI E TRASLAZIONI Agela Doatiello 1 Ua fuzioe del tipo f() = m + q, co m e q umeri reali, è ua FUNZIONE LINEARE. Il umero q è detto INTERCETTA o ORDINATA ALL

Dettagli

FUNZIONI ELEMENTARI RICHIAMI SULLE DISEQUAZIONI E GRAFICI DEDUCIBILI. Angela Donatiello 1

FUNZIONI ELEMENTARI RICHIAMI SULLE DISEQUAZIONI E GRAFICI DEDUCIBILI. Angela Donatiello 1 FUNZIONI ELEMENTARI RICHIAMI SULLE DISEQUAZIONI E GRAFICI DEDUCIBILI Agela Doatiello 1 Ua fuzioe del tipo f() = m + q, co m e q umeri reali, è ua FUNZIONE LINEARE. Il umero q è detto INTERCETTA o ORDINATA

Dettagli

Anno Scolastico:

Anno Scolastico: LICEO SCIENTIFICO DI STATO "G. BATTAGLINI" TARANTO PROGRAMMA DI MATEMATICA svolto nella Classe III Sezione A. Anno Scolastico: 2012-2013. Docente: Francesco Pantano. 1. Disequazioni. Richiami sulle disequazioni

Dettagli

I.T.T.L. BUCCARI CAGLIARI PROGRAMMA DI MATEMATICA E COMPLEMENTI DOCENTE: PODDA GIAMPAOLO

I.T.T.L. BUCCARI CAGLIARI PROGRAMMA DI MATEMATICA E COMPLEMENTI DOCENTE: PODDA GIAMPAOLO I.T.T.L. BUCCARI CAGLIARI ANNO SCOLASTICO 2017/201 8 CLASSE II I E PROGRAMMA DI MATEMATICA E COMPLEMENTI DOCENTE: PODDA GIAMPAOLO IL PIANO CARTESIANO L ascissa di un punto su una retta: la distanza di

Dettagli

Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che.

Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che. Esercitazioni di Analisi Matematica Prof.ssa Chiara Broggi Materiale disponibile su www.istitutodefilippi.it/claro Lezione 2: Funzioni reali e loro proprietà Definizione: Siano e due sottoinsiemi non vuoti

Dettagli

PROGRAMMA MATEMATICA Classe 1 A AFM anno scolastico

PROGRAMMA MATEMATICA Classe 1 A AFM anno scolastico PROGRAMMA MATEMATICA Classe 1 A AFM anno scolastico 2015-2016 I numeri naturali rappresentazione dei numeri naturali, le quattro operazioni, multipli e divisori di un numero. Criteri di divisibilità, le

Dettagli

PROGRAMMA SVOLTO A.S. 2018/2019 Classe: 1^A Amministrazione Finanza e Marketing Disciplina: Matematica Prof. Andrea Vianello

PROGRAMMA SVOLTO A.S. 2018/2019 Classe: 1^A Amministrazione Finanza e Marketing Disciplina: Matematica Prof. Andrea Vianello Classe: 1^A Amministrazione Finanza e Marketing Mod.1 Calcolo numerico Insiemistica: significato di insieme, intersezione, unione, appartenenza. Gli insiemi numerici N, Z, Q e R. Multipli e divisori di

Dettagli

valore di a: verso l alto (ordinate crescenti) se a>0, verso il basso (ordinate decrescenti) se a<0;

valore di a: verso l alto (ordinate crescenti) se a>0, verso il basso (ordinate decrescenti) se a<0; La parabola è una particolare conica definita come è una curva aperta, nel senso che non può essere contenuta in alcuna superficie finita del piano; è simmetrica rispetto ad una retta, detta ASSE della

Dettagli

Istituto di Istruzione Secondaria Superiore Statale «Via Silvestri 301» Programma di MATEMATICA

Istituto di Istruzione Secondaria Superiore Statale «Via Silvestri 301» Programma di MATEMATICA 1. MODULO 1: RICHIAMI DI CALCOLO LETTERALE La scomposizione di polinomi e le operazioni con le frazioni algebriche 2. MODULO 2: LE EQUAZIONI Istituto di Istruzione Secondaria Superiore Statale Classe 1

Dettagli

ISTITUTO TECNICO DEI TRASPORTI E LOGISTICA

ISTITUTO TECNICO DEI TRASPORTI E LOGISTICA ISTITUTO TECNICO DEI TRASPORTI E LOGISTICA NAUTICO SAN GIORGIO NAUTICO C.COLOMBO PROGRAMMA SVOLTO NELLA CLASSE IAA MATERIA : MATEMATICA INSEGNANTE : PROF. Simona TRESCA Programma di Algebra: U.D. 1 : I

Dettagli

Esame di Matematica Generale 7 Febbraio Soluzione Traccia E

Esame di Matematica Generale 7 Febbraio Soluzione Traccia E Esame di Matematica Generale 7 Febbraio 013 - Soluzione Traccia E ESERCIZIO 1. Si consideri la funzione f : R R f(x) = x + 1 x. (a) Determinare il dominio di f ed eventuali simmetrie (3 punti). Dominio.

Dettagli

Scuole italiane all estero - Bilingue italo-albanesi 2005

Scuole italiane all estero - Bilingue italo-albanesi 2005 www.matefilia.it Scuole italiane all estero - Bilingue italo-albanesi 25 1) Studiare e rappresentare graficamente in un piano cartesiano ortogonale XOY la funzione F(x) = x2 +1 4 x2. Verificare che le

Dettagli

Disequazioni di II grado

Disequazioni di II grado Disequazioni di II grado Scomposizione di un trinomio di 2 grado La scomposizione del trinomio di 2 grado ax 2 + bx + c dipende dal discriminante. Se questo è positivo esistono radici reali e distinte

Dettagli

Introduzione. Test d ingresso

Introduzione. Test d ingresso Indice Introduzione Test d ingresso v vii 1 Insiemi e numeri 1 1.1 Insiemi... 1 1.2 Operazionicongliinsiemi... 3 1.3 Insieminumerici,operazioni... 7 1.4 Potenze... 11 1.5 Intervalli... 12 1.6 Valoreassolutoedistanza...

Dettagli

PROGRAMMA DI MATEMATICA APPLICATA

PROGRAMMA DI MATEMATICA APPLICATA PROGRAMMA DI MATEMATICA APPLICATA Classe II A Turismo A.S. 2014/2015 Prof.ssa RUGGIERO ANGELA ISABELLA I NUMERI REALI Radicali: - Riduzione allo stesso indice e semplificazione - Alcune operazioni fra

Dettagli

Istituto Kandinsky Anno Scolastico Programma di MATEMATICA - Classi Prime

Istituto Kandinsky Anno Scolastico Programma di MATEMATICA - Classi Prime Istituto Kandinsky Anno Scolastico 2011-2012 Programma di MATEMATICA - Classi Prime Insieme dei numeri naturali. Le operazioni in N: addizione, sottrazione, moltiplicazione e divisione. Legge di composizione

Dettagli

Programma di Matematica A.S. 2013/14. Classe 1 B odont Insegnante : M.Teresa Di Prizio INSIEMI

Programma di Matematica A.S. 2013/14. Classe 1 B odont Insegnante : M.Teresa Di Prizio INSIEMI Programma di Matematica A.S. 2013/14 Classe 1 B odont Insegnante : M.Teresa Di Prizio INSIEMI Insiemi e sottoinsiemi - Le operazioni fondamentali con gli insiemi - Prodotto cartesiano I NUMERI NATURALI

Dettagli

SYLLABUS DI GEOMETRIA ANALITICA 3A DON BOSCO

SYLLABUS DI GEOMETRIA ANALITICA 3A DON BOSCO SYLLABUS DI GEOMETRIA ANALITICA 3A DON BOSCO 2014-15 Si precisa che, con questo syllabus, l intenzione non è quella di ridurre l apprendimento della matematica allo studio mnemonico di una serie di procedure.

Dettagli

Disequazioni di secondo grado

Disequazioni di secondo grado Disequazioni di secondo grado.1 Risoluzione delle disequazioni di secondo grado Una disequazione di secondo grado si presenta in una delle seguenti forme: a + b + c > 0; a + b + c 0; a + b + c < 0; a +

Dettagli

LE RETTE PERPENDICOLARI E LE RETTE PARALLELE Le rette perpendicolari Le rette tagliate da una trasversale Le rette parallele

LE RETTE PERPENDICOLARI E LE RETTE PARALLELE Le rette perpendicolari Le rette tagliate da una trasversale Le rette parallele PROGRAMMA DI MATEMATICA Classe prima (ex quarta ginnasio) corso F NUMERI: Numeri per contare: insieme N. I numeri interi: insieme Z. I numeri razionali e la loro scrittura: insieme Q. Rappresentare frazioni

Dettagli

Studio del segno di un prodotto

Studio del segno di un prodotto Studio del segno di un prodotto Consideriamo una disequazione costituita dal prodotto di più binomi, ad esempio: ( x 1 )( 4 x)( x + 3) > 0 Per risolverla possiamo studiare il segno del prodotto al variare

Dettagli

LA PARABOLA E LA SUA EQUAZIONE

LA PARABOLA E LA SUA EQUAZIONE LA PARABOLA E LA SUA EQUAZIONE Prof. Giovanni Ianne CHE COS È LA PARABOLA DEFINIZIONE Parabola Scegliamo sul piano un punto F e una retta d. Possiamo tracciare sul piano i punti equidistanti da F e da

Dettagli

Liceo Scientifico Statale A. Einstein

Liceo Scientifico Statale A. Einstein . PROGRAMMA SVOLTO DAL DOCENTE DI MATEMATICA Prof.ssa Alessandra Desogus a.s. 2015/16 3^ F Libro di testo adottato : L.Sasso La matematica a colori (vol.3) (edizione blu) Ripasso Equazioni di vario tipo

Dettagli

Matematica per esami d idoneità o integrativi della classe 2 ITI

Matematica per esami d idoneità o integrativi della classe 2 ITI UNI EN ISO 9001:008 I.I.S. PRIMO LEVI Torino ISTITUTO TECNICO - LICEO SCIENTIFICO - LICEO SCIENTIFICO Scienze Applicate LICEO SCIENTIFICO SPORTIVO Contenuti di Matematica per esami d idoneità o integrativi

Dettagli

3 Equazioni e disequazioni.

3 Equazioni e disequazioni. 3 Equazioni e disequazioni. 3. Equazioni. Una equazione algebrica è un uguaglianza tra espressioni letterali soddisfatta per alcuni valori attribuiti alle lettere che vi compaiono. Tali valori sono detti

Dettagli

a- il punto medio di un segmento b- la distanza fra due punti nel piano c- calcolo di perimetro e area di semplici figure

a- il punto medio di un segmento b- la distanza fra due punti nel piano c- calcolo di perimetro e area di semplici figure PROGRAMMA DI MATEMATICA CLASSE 3^Q A.S. 2017/2018 Prof. ALGHISI MODULO N 1 LA RETTA E LE CONICHE IL CONCETTO DI FUNZIONE a- definizione di funzione b- le funzioni numeriche c- il dominio naturale delle

Dettagli

Lezione 5 Geometria Analitica 1

Lezione 5 Geometria Analitica 1 Lezione 5 Geometria Analitica 1 Donato A Ciampa In questa lezione richiameremo alcune nozioni della geometria analitica, quali le trasformazioni del piano in se stesso e le varie equazioni relative alla

Dettagli

Maturità Scientifica, Corso di ordinamento, Sessione Ordinaria

Maturità Scientifica, Corso di ordinamento, Sessione Ordinaria Matematica per la nuova maturità scientifica A. Bernardo M. Pedone 7 Problema 1 Maturità Scientifica, Corso di ordinamento, Sessione Ordinaria 001-00 In un piano, riferito a un sistema di assi cartesiani

Dettagli

Rappresenta nel piano cartesiano l insieme dei punti P(x; y) le cui coordinate soddisfano le seguenti condizioni:

Rappresenta nel piano cartesiano l insieme dei punti P(x; y) le cui coordinate soddisfano le seguenti condizioni: ultima modifica /0/0 ESERCIZI PROPOSTI IL PIANO CARTESIANO LE COORDINATE DI UN PUNTO NEL PIANO CARTESIANO A Quali sono le coordinate dei punti indicati in figura? B Quali sono le coordinate dei punti indicati

Dettagli

Chi non risolve esercizi non impara la matematica.

Chi non risolve esercizi non impara la matematica. 2.8 esercizi 31 2.8 esercizi hi non risolve esercizi non impara la matematica. 1 Vero o falso? a. I punti (0, 2), (4, 4), (6, 0) e (2, 2) sono i vertici di un quadrato. V F b. Non esiste il coefficiente

Dettagli

1. conoscere le nozioni fondamentali della geometria analitica del piano e dello spazio

1. conoscere le nozioni fondamentali della geometria analitica del piano e dello spazio Terzo modulo: Geometria analitica Obiettivi 1 conoscere le nozioni fondamentali della geometria analitica del piano e dello spazio interpretare geometricamente equazioni e sistemi algebrici di primo e

Dettagli

1. riconoscere la risolubilità di equazioni e disequazioni in casi particolari

1. riconoscere la risolubilità di equazioni e disequazioni in casi particolari Secondo modulo: Algebra Obiettivi 1. riconoscere la risolubilità di equazioni e disequazioni in casi particolari 2. risolvere equazioni intere e frazionarie di primo grado, secondo grado, grado superiore

Dettagli

PROGRAMMAZIONE DISCIPLINARE ISTITUTO PROFESSIONALE SOCIALE MATEMATICA. CAPACITA MODULO 0: RIPASSO Equazioni intere e fratte di primo e secondo grado

PROGRAMMAZIONE DISCIPLINARE ISTITUTO PROFESSIONALE SOCIALE MATEMATICA. CAPACITA MODULO 0: RIPASSO Equazioni intere e fratte di primo e secondo grado PROGRAMMAZIONE DISCIPLINARE PROGRAMMAZIONE DISCIPLINARE ISTITUTO PROFESSIONALE SOCIALE MATEMATICA CLASSE TERZA IPS COMPETENZE 42) Utilizzare le tecniche e le procedure del calcolo aritmetico ed algebrico

Dettagli

PROGRAMMAZIONE DISCIPLINARE ISTITUTO PROFESSIONALE COMMERCIALE MATEMATICA

PROGRAMMAZIONE DISCIPLINARE ISTITUTO PROFESSIONALE COMMERCIALE MATEMATICA PROGRAMMAZIONE DISCIPLINARE PROGRAMMAZIONE DISCIPLINARE ISTITUTO PROFESSIONALE COMMERCIALE MATEMATICA CLASSE TERZA IPC COMPETENZE 42) Utilizzare le tecniche e le procedure del calcolo aritmetico ed algebrico

Dettagli

1. Risolvi in R le seguenti disequazioni: 1.a) ( x ) ( x ) b) 2x. 1.e) 2x 1. 1.g)

1. Risolvi in R le seguenti disequazioni: 1.a) ( x ) ( x ) b) 2x. 1.e) 2x 1. 1.g) LICEO PEDAGOGICO-ARTISTICO GPascoli di Bolzano PROVA SCRITTA DI MATEMATICA-ALUNNI CON GIUDIZIO SOSPESO CLASSE a B /9/9- Tempo h Ogni risposta ai quesiti va opportunamente motivata (con calcoli, grafici,

Dettagli

Introduzione alla II edizione. Introduzione. Test d ingresso

Introduzione alla II edizione. Introduzione. Test d ingresso Indice Introduzione alla II edizione Introduzione Test d ingresso v vii ix 1 Insiemi e numeri 1 1.1 Insiemi... 1 1.2 Operazionicongliinsiemi... 3 1.3 Insieminumerici,operazioni... 7 1.4 Potenze... 11 1.5

Dettagli

3. Segni della funzione (positività e negatività)

3. Segni della funzione (positività e negatività) . Segni della funzione (positività e negatività) Questo punto, qualora sia possibile algebricamente, ci permette di stabilire il segno che assume la variabile dipendente y (che esprime il valore della

Dettagli

CORSO ZERO DI MATEMATICA

CORSO ZERO DI MATEMATICA UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA GEOMETRIA ANALITICA NEL PIANO Dr. Erasmo Modica erasmo@galois.it LE COORDINATE CARTESIANE Quando si vuole fissare un sistema

Dettagli

PROGRAMMA SVOLTO. Classe 1G Matematica Anno scolastico:

PROGRAMMA SVOLTO. Classe 1G Matematica Anno scolastico: Classe 1G Matematica Anno scolastico: 2018-2019 Gli insiemi numerici e le operazioni: Gli insiemi: intersezione ed unione. Gli insiemi numerici: N, Z, Q e R. Le operazioni con i numeri interi, espressioni

Dettagli

Esercitazioni di ISTITUZIONI di MATEMATICA 1 Facoltà di Architettura Anno Accademico 2005/2006

Esercitazioni di ISTITUZIONI di MATEMATICA 1 Facoltà di Architettura Anno Accademico 2005/2006 Esercitazioni di ISTITUZIONI di MATEMATICA 1 Facoltà di Architettura Anno Accademico 005/006 Antonella Ballabene SOLUZIONI -14 marzo 006- SCHEMA per lo STUDIO di FUNZIONI 1. Dominio della funzione f)..

Dettagli

LO STUDIO DI FUNZIONE ESERCIZI CON SOLUZIONI

LO STUDIO DI FUNZIONE ESERCIZI CON SOLUZIONI Autore: Enrico Manfucci - 6/05/0 LO STUDIO DI FUNZIONE ESERCIZI CON SOLUZIONI PREMESSA Per Studio di funzione si intende disegnare il grafico di una funzione data la sua espressione analitica. Questo significa

Dettagli