La probabilità frequentista e la legge dei grandi numeri

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "La probabilità frequentista e la legge dei grandi numeri"

Transcript

1 La probabilità frequentista e la legge dei grandi numeri La definizione di probabilità che abbiamo finora considerato è anche nota come probabilità a priori poiché permette di prevedere l'esito di un evento sulla base della sola formulazione, cioè conoscendo a priori il numero dei casi possibili e il numero dei casi favorevoli, sempre supponendo che i casi possibili siano equiprobabili. La definizione classica di Laplace è stata accettata e fatta propria da molti studiosi per oltre un secolo, e ha valore ancora oggi; infatti, la probabilità dei vari risultati nei giochi d'azzardo si calcola facendo riferimento a questa definizione. D'altra parte, esistono molti eventi aleatori per cui è molto diffìcile, se non addirittura impossibile, conoscere il numero dei casi possibili e quello dei casi favorevoli o, potendo calcolarli, non si riesce a stabilire se i casi possibili siano tutti equiprobabili. L'utilizzo del concetto di probabilità classica in campi diversi dai giochi d'azzardo, come ad esempio le scienze sociali, le scienze economiche, o le scienze fìsiche, risulta impossibile. Per meglio chiarire questo concetto, analizziamo i seguenti eventi aleatori: El = Francesco sarà qualificato con una votazione di 72/100. E2 = Nel prossimo decennio in Europa si venderanno 10 milioni di televisori. E^ Nel prossimo trimestre il prezzo del greggio crescerà di 10 dollari. 4 = II prossimo anno in Italia nasceranno più maschi che femmine. E5 = Maria, oggi diciottenne, raggiungerà i novant'anni. E6 Martedì prossimo ci sarà il sole. Calcolare la probabilità di questi eventi con le conoscenze fino ad ora acquisite risulta impossibile, cioè non siamo in grado, mediante la teoria classica della probabilità, di conoscere a priori i casi possibili e i casi favorevoli. Inoltre, riuscire a stabilire oggettivamente se i casi possibili siano equiprobabili è un altro problema di non facile soluzione. Se per esempio decidiamo di fare un picnic domani, dobbiamo essere certi che non piova. La probabilità che domani piova è, secondo la teoria classica, ~r~ (piove, non piove, CP 2, CF= 1); ma se guardando le previsioni vediamo che c'è una perturbazione in arrivo, pensiamo ragionevolmente che sia molto probabile che domani piova; quindi soggettivamente, in base alle conoscenze a nostra disposizione, stabiliamo che la probabilità che domani piova è maggiore 1 di -, cioè stabiliamo che i casi «piove», «non piove» non sono equiprobabili. Quindi, la teoria classica della probabilità non permette di calcolare la probabilità di eventi aleatori che descrivono la realtà nel suo insieme; per questo è stato necessario introdurre nuove teorie per determinare la probabilità di un insieme più grande di eventi aleatori. Una delle teorie che sono nate in seguito alla constatazione della limitatezza della probabilità classica è stata la teoria frequentista. Prima di esporre la teoria frequentista analizziamo il seguente esempio. ESEMPIO Veronica esegue una serie di esperimenti in cui lancia in aria una moneta varie volte e conta quante volte esce croce. La probabilità dell'evento; E = nel lancio di una moneta esce croce secondo la teoria classica della probabilità, cioè a priori, è: i f(e) = l Vediamo, invece, i risultati ottenuti da Veronica nei suoi esperimenti. 74

2 Indicando con n il numero di lanci effettuati e con v il numero di volte in cui esce croce, cioè il numero dei successi riportati nelle prove eseguite, si hanno i risultati riportati nella seguente tabella. fl V Dall'esempio considerato si deduce che il numero dei successi non è sufficiente per dare una valutazione all'esperimento se non viene considerato in relazione al numero delle prove eseguite, pertanto si deve introdurre un nuovo concetto: la frequenza relativa. Si dice frequenza relativa di un evento E, riferita a n prove effettuate nelle stesse condizioni, il rapporto fra il numero v delle prove nelle quali l'evento si è verificato (successi) e il numero n delle prove effettuate: Ritornando all'esempio precedente, si ha che: n V m 0,4600 0,5200 0,4990 0,4994 0,5005 Osservando i valori della frequenza relativa ottenuti nei vari esperimenti si nota che si avvicinano tutti al valore 0,5 e che vi si avvicinano sempre più all'aumentare del numero delle prove eseguite; ricordiamo, però, che 0,5 è la probabilità teorica dell'evento E. Da queste considerazioni deduciamo che la frequenza dipende dal numero delle prove eseguite e tende a stabilizzarsi verso un unico valore se il numero di prove è sufficientemente elevato, pertanto possiamo scrivere la seguente legge. Legge empirica del caso o legge dei grandi numeri La frequenza relativa di un evento in un gran numero di prove, ripetute tutte nelle stesse condizioni, da un valore approssimato della probabilità dell'evento, che è tanto più approssimato quanto più è grande il numero delle prove. La legge empirica del caso non può essere dimostrata, ma solo verificata mediante le innumerevoli osservazioni dei fenomeni reali nel loro complesso; questa legge permette di formulare una nuova definizione della probabilità per eventi ripetibili, detta probabilità frequentista. La probabilità di un evento Fé il valore intorno al quale tende a stabilizzarsi la frequenza relativa, al crescere del numero delle prove. 75

3 Concludendo si ha che, per la teoria frequentista della probabilità, ripetendo più volte la stessa prova, nelle stesse condizioni, sì assume come valore approssimato della probabilità (p (E)) la frequenza relativa (f(e)) dell'evento considerato: p(e) <f(e) = Dalla definizione risulta evidente che: il numero dei successi è sempre minore o uguale al numero delle prove effettuate: O = v a n, pertanto O ^ p (E ) =s 1 ; inoltre: se v = n l'evento sì è sempre verificato in quelle n prove, quindi l'evento è certo e si ha se v = O l'evento non si è mai verificato in quelle n prove, quindi l'evento è impossibile e si ha p (E} = 0. Rimangono quindi valide le proprietà della probabilità viste nella teoria classica. La probabilità frequentista è molto usata nel campo della fìsica, della medicina, della chi mica, della biologia, cioè in tutte quelle discipline in cui è opportuno e risulta possibile ri petere gli esperimenti nelle stesse condizioni. OSSERVAZIONE La probabilità secondo la teoria classica è una probabilità calcolata a priori, mentre la probabilità secondo la teoria frequentista è una probabilità calcolata a posteriori. La probabilità soggettiva La concezione classica e la concezione frequentista della probabilità portano a definizioni «oggettive», ossia a definizioni indipendenti dalle opinioni di chi valuta numericamente la «possibilità» che un evento si verifìchi. A queste concezioni si oppone la concezione detta soggettiva, che ha in Italia il suo massimo esponente in De Finetti, e che può essere così espressa: - dato un evento E, la probabilità p (E) di verificarsi dell'evento è la misura del grado di fiducia che un individuo attribuisce, secondo le sue informazioni e opinioni, all'avverarsi di E. La probabilità diventa una misura della fiducia che noi riponiamo sull'esito dell'evento; tale fiducia si può misurare come la somma di denaro che si è disposti a pagare per poter ricevere in cambio una somma maggiore qualora l'evento si verifìchi. Per meglio chiarire il punto di vista della concezione soggettiva, analizziamo il seguente esempio. Vogliamo calcolare la probabilità che si verifìchi il seguente evento: E nel prossimo Moto GP «un campione» vincerà " La probabilità teorica è ==& - (vince, non vince), ma tale probabilità può non essere attendibile perché non è detto che i due casi possìbili siano equiprobabili. Riferiamoci, allora, alla storia precedente del «campione» e calcoliamo la probabilità secondo la concezione frequentista. Sappiamo che su 11 Moto GP finora disputati, il «campione» considerato ne ha vinti 9; quindi la frequenza relativa dell'evento considerato è: 9 f(e) = -jj = 0,81 ' 76

4 E attendibile assumere questa frequenza relativa come stima della probabilità dell'evento? In generale la risposta a questo quesito è negativa, in quanto le condizioni fìsiche, meteorologiche, psicologiche sono diverse da quelle con cui il «campione» ha disputato gli altri Moto GP; cade quindi l'ipotesi che le prove siano ripetute nelle stesse condizioni. Pertanto, non si può applicare la definizione frequentista di probabilità. L'evento in esame è un evento unico nel suo genere e la sua probabilità non può essere calcolata in modo oggettivo, quindi bisogna considerare delle ipotesi aggiuntive di tipo soggettivo. Supponiamo di attribuire all'evento E la seguente probabilità: 1 70 p (E) = 0,70=- 100 Attribuire tale valore alla probabilità significa che il grado dì fiducia che riponiamo nel verifìcarsi dell'evento è del 70%, cioè giudichiamo equo pagare 70 euro per avere diritto a riceverne 100 nel caso in cui l'evento si verifichi, cioè scommettiamo 70 euro per averne in cambio 100. E evidente che individui diversi possono formulare valutazioni diverse sulla probabilità dello stesso evento; infatti Luigi, che non ha letto Ì quotidiani della settimana e non sa che il motociclista ha avuto l'influenza, potrebbe pensare che la probabilità sia dell'80%, mentre Antonio, che è sempre informatìssimo sul suo campione, stima una probabilità del 40%. Quando però si fa una scommessa bisogna rispettare il principio di coerenza, cioè si deve essere disponibili a invertire i ruoli: l'individuo che accetta di pagare la somma s per ricevere ìn cambio la somma 5 deve essere disposto a ricevere s da un altro individuo pagandone 5 se l'evento si verifica; nell'esempio considerato bisogna essere, quindi, disponibili a pagare 100 euro per riceverne in cambio 70 se l'evento si verificherà. Quindi, secondo la teoria della probabilità soggettiva: la probabilità di un evento E è uguale al rapporto tra la somma s che un individuo coerente è disposto a pagare e la somma S che riceve in compenso se l'evento E si verifica: A conclusione delle diverse concezioni di probabilità ricordiamo che i teoremi che esporremo nel corso dell'unità, e che per semplicità applicheremo solo alla teoria classica, valgono per qualunque definizione di probabilità. NOTIZIE,,_ STOR1CHE ' Concludiamo la trattazione delle diverse concezioni di probabilità con una frase scrìtta da De Finettì. «La differenza tra tali concezioni, fattasi netta sia per l'approfondimento critico che per l'estendersi dei campi di applicazione da un secolo a questa parte, tocca però solo il modo di concepire e interpretare le applicazioni. Matematicamente non c'è alcuna divergenza, tanto che, esponendolo in forma astratta o assiomatica, il calcolo delle probabilità è uno solo». 77

5 T V E R I F I C A Analizza i seguenti eventi e stabilisci se sono certi, impossibili o aleatori. Quest'anno sarò promosso. Evento La Juventus vincerà la Champions League. Da un'urna contenente 10 palline rosse e 4 palline nere viene estratta una pallina bianca. Da un mazzo di 52 carte viene estratta una carta o rossa o nera. Lanciando due dadi esce Ìl numero 14. Da un'urna contenente 21 palline bianche viene estratta una pallina bianca. Certo Impossibile Aleatorio Completa le seguenti frasi. Se l'evento E è certo, allora la sua probabilità/ ( ) Se l'evento E è aleatorio, allora Se l'evento ^ è impossibile, allora Definisci l'evento contrario dell'evento A e completa in modo opportuno. Collega in modo opportuno. probabilità classica probabilità ftequentìsta probabilità soggettiva Completa le seguenti frasi. Dato un evento E si ha che: teoria classica: in cui CP = teoria v p (E] ~f(e] - in cui e teoria soggettivista: p (E).. in cui Due eventi sono equiprobabili se 78

Calcolo delle probabilità

Calcolo delle probabilità Calcolo delle probabilità Laboratorio di Bioinformatica Corso A aa 2005-2006 Statistica Dai risultati di un esperimento si determinano alcune caratteristiche della popolazione Calcolo delle probabilità

Dettagli

Calcolo delle Probabilità

Calcolo delle Probabilità Calcolo delle Probabilità Il calcolo delle probabilità studia i modelli matematici delle cosidette situazioni di incertezza. Molte situazioni concrete sono caratterizzate a priori da incertezza su quello

Dettagli

Matematica Applicata. Probabilità e statistica

Matematica Applicata. Probabilità e statistica Matematica Applicata Probabilità e statistica Fenomeni casuali Fenomeni che si verificano in modi non prevedibili a priori 1. Lancio di una moneta: non sono in grado di prevedere con certezza se il risultato

Dettagli

OSSERVAZIONI TEORICHE Lezione n. 4

OSSERVAZIONI TEORICHE Lezione n. 4 OSSERVAZIONI TEORICHE Lezione n. 4 Finalità: Sistematizzare concetti e definizioni. Verificare l apprendimento. Metodo: Lettura delle OSSERVAZIONI e risoluzione della scheda di verifica delle conoscenze

Dettagli

PROBABILITA. Sono esempi di fenomeni la cui realizzazione non è certa a priori e vengono per questo detti eventi aleatori (dal latino alea, dado)

PROBABILITA. Sono esempi di fenomeni la cui realizzazione non è certa a priori e vengono per questo detti eventi aleatori (dal latino alea, dado) L esito della prossima estrazione del lotto L esito del lancio di una moneta o di un dado Il sesso di un nascituro, così come il suo peso alla nascita o la sua altezza.. Il tempo di attesa ad uno sportello

Dettagli

(concetto classico di probabilità)

(concetto classico di probabilità) Probabilità matematica (concetto classico di probabilità) Teoria ed esempi Introduzione Il calcolo delle probabilità è la parte della matematica che si occupa di prevedere, sulla base di regole e leggi

Dettagli

Esercizi. Rappresentando le estrazioni con un grafo ad albero, calcolare la probabilità che:

Esercizi. Rappresentando le estrazioni con un grafo ad albero, calcolare la probabilità che: Esercizi Esercizio 4. Un urna contiene inizialmente 2 palline bianche e 4 palline rosse. Si effettuano due estrazioni con la seguente modalità: se alla prima estrazione esce una pallina bianca, la si rimette

Dettagli

Per poter affrontare il problema abbiamo bisogno di parlare di probabilità (almeno in maniera intuitiva). Analizziamo alcune situazioni concrete.

Per poter affrontare il problema abbiamo bisogno di parlare di probabilità (almeno in maniera intuitiva). Analizziamo alcune situazioni concrete. Parliamo di probabilità. Supponiamo di avere un sacchetto con dentro una pallina rossa; posso aggiungere tante palline bianche quante voglio, per ogni pallina bianca che aggiungo devo pagare però un prezzo

Dettagli

Calcolo delle probabilità

Calcolo delle probabilità Calcolo delle probabilità Il calcolo delle probabilità ha avuto origine nel Seicento in riferimento a questioni legate al gioco d azzardo e alle scommesse. Oggi trova tante applicazioni in ambiti anche

Dettagli

Viene lanciata una moneta. Se esce testa vinco 100 euro, se esce croce non vinco niente. Quale è il valore della mia vincita?

Viene lanciata una moneta. Se esce testa vinco 100 euro, se esce croce non vinco niente. Quale è il valore della mia vincita? Viene lanciata una moneta. Se esce testa vinco 00 euro, se esce croce non vinco niente. Quale è il valore della mia vincita? Osserviamo che il valore della vincita dipende dal risultato dell esperimento

Dettagli

Siamo così arrivati all aritmetica modulare, ma anche a individuare alcuni aspetti di come funziona l aritmetica del calcolatore come vedremo.

Siamo così arrivati all aritmetica modulare, ma anche a individuare alcuni aspetti di come funziona l aritmetica del calcolatore come vedremo. DALLE PESATE ALL ARITMETICA FINITA IN BASE 2 Si è trovato, partendo da un problema concreto, che con la base 2, utilizzando alcune potenze della base, operando con solo addizioni, posso ottenere tutti

Dettagli

Statistica e biometria. D. Bertacchi. Variabili aleatorie. V.a. discrete e continue. La densità di una v.a. discreta. Esempi.

Statistica e biometria. D. Bertacchi. Variabili aleatorie. V.a. discrete e continue. La densità di una v.a. discreta. Esempi. Iniziamo con definizione (capiremo fra poco la sua utilità): DEFINIZIONE DI VARIABILE ALEATORIA Una variabile aleatoria (in breve v.a.) X è funzione che ha come dominio Ω e come codominio R. In formule:

Dettagli

Probabilità e statistica

Probabilità e statistica Indice generale.probabilità ed eventi aleatori....come si può definire una probabilità....eventi equiprobabili....eventi indipendenti, eventi dipendenti....eventi incompatibili....eventi compatibili....probabilità

Dettagli

Una sperimentazione. Probabilità. Una previsione. Calcolo delle probabilità. Nonostante ciò, è possibile dire qualcosa.

Una sperimentazione. Probabilità. Una previsione. Calcolo delle probabilità. Nonostante ciò, è possibile dire qualcosa. Una sperimentazione Probabilità Si sta sperimentando l efficacia di un nuovo farmaco per il morbo di Parkinson. Duemila pazienti partecipano alla sperimentazione: metà di essi vengono trattati con il nuovo

Dettagli

LA STATISTICA si interessa del rilevamento, dell elaborazione e dello studio dei dati; studia ciò che accade o come è fatto un gruppo numeroso di

LA STATISTICA si interessa del rilevamento, dell elaborazione e dello studio dei dati; studia ciò che accade o come è fatto un gruppo numeroso di STATISTICA LA STATISTICA si interessa del rilevamento, dell elaborazione e dello studio dei dati; studia ciò che accade o come è fatto un gruppo numeroso di oggetti; cerca, attraverso l uso della matematica

Dettagli

E naturale chiedersi alcune cose sulla media campionaria x n

E naturale chiedersi alcune cose sulla media campionaria x n Supponiamo che un fabbricante stia introducendo un nuovo tipo di batteria per un automobile elettrica. La durata osservata x i delle i-esima batteria è la realizzazione (valore assunto) di una variabile

Dettagli

Capitolo 4 Probabilità

Capitolo 4 Probabilità Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 4 Probabilità Insegnamento: Statistica Corso di Laurea Triennale in Economia Facoltà di Economia, Università di Ferrara Docenti: Dott.

Dettagli

Corso di Matematica. Corso di Laurea in Farmacia, Facoltà di Farmacia. Università degli Studi di Pisa. Maria Luisa Chiofalo.

Corso di Matematica. Corso di Laurea in Farmacia, Facoltà di Farmacia. Università degli Studi di Pisa. Maria Luisa Chiofalo. Corso di Matematica Corso di Laurea in Farmacia, Facoltà di Farmacia Università degli Studi di Pisa Maria Luisa Chiofalo Scheda 18 Esercizi svolti sul calcolo delle probabilità I testi degli esercizi sono

Dettagli

Tasso di interesse e capitalizzazione

Tasso di interesse e capitalizzazione Tasso di interesse e capitalizzazione Tasso di interesse = i = somma che devo restituire dopo un anno per aver preso a prestito un euro, in aggiunta alla restituzione dell euro iniziale Quindi: prendo

Dettagli

Test statistici di verifica di ipotesi

Test statistici di verifica di ipotesi Test e verifica di ipotesi Test e verifica di ipotesi Il test delle ipotesi consente di verificare se, e quanto, una determinata ipotesi (di carattere biologico, medico, economico,...) è supportata dall

Dettagli

Cosa dobbiamo già conoscere?

Cosa dobbiamo già conoscere? Cosa dobbiamo già conoscere? Insiemistica (operazioni, diagrammi...). Insiemi finiti/numerabili/non numerabili. Perché la probabilità? In molti esperimenti l esito non è noto a priori tuttavia si sa dire

Dettagli

PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE

PROBABILITÀ - SCHEDA N. 2 LE VARIABILI ALEATORIE Matematica e statistica: dai dati ai modelli alle scelte www.dima.unige/pls_statistica Responsabili scientifici M.P. Rogantin e E. Sasso (Dipartimento di Matematica Università di Genova) PROBABILITÀ -

Dettagli

Un gioco con tre dadi

Un gioco con tre dadi Un gioco con tre dadi Livello scolare: biennio Abilità interessate Costruire lo spazio degli eventi in casi semplici e determinarne la cardinalità. Valutare la probabilità in diversi contesti problematici.

Dettagli

Statistica 1. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo

Statistica 1. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo Statistica 1 Esercitazioni Dott. 1 1 Dipartimento di Scienze Statistiche e Matematiche S. Vianelli, Università di Palermo ricevimento: lunedì ore 15-17 mercoledì ore 15-17 e-mail: luigi.augugliaro@unipa.it

Dettagli

PROBABILITA MISURARE L INCERTEZZA Lanciamo due dadi, facciamo la somma dei punteggi ottenuti. Su quale numero mi conviene scommettere?

PROBABILITA MISURARE L INCERTEZZA Lanciamo due dadi, facciamo la somma dei punteggi ottenuti. Su quale numero mi conviene scommettere? Lanciamo due dadi, facciamo la somma dei punteggi ottenuti. Su quale numero mi conviene scommettere? Abbiamo visto nella lezione precedente che lo spazio degli eventi più idoneo a rappresentare l esperimento

Dettagli

Matematica generale CTF

Matematica generale CTF Successioni numeriche 19 agosto 2015 Definizione di successione Monotonìa e limitatezza Forme indeterminate Successioni infinitesime Comportamento asintotico Criterio del rapporto per le successioni Definizione

Dettagli

Esercizi di Calcolo delle Probabilita (I)

Esercizi di Calcolo delle Probabilita (I) Esercizi di Calcolo delle Probabilita (I) 1. Si supponga di avere un urna con 15 palline di cui 5 rosse, 8 bianche e 2 nere. Immaginando di estrarre due palline con reimmissione, si dica con quale probabilità:

Dettagli

VINCERE AL BLACKJACK

VINCERE AL BLACKJACK VINCERE AL BLACKJACK Il BlackJack è un gioco di abilità e fortuna in cui il banco non può nulla, deve seguire incondizionatamente le regole del gioco. Il giocatore è invece posto continuamente di fronte

Dettagli

Probabilità discreta

Probabilità discreta Probabilità discreta Daniele A. Gewurz 1 Che probabilità c è che succeda...? Una delle applicazioni della combinatoria è nel calcolo di probabilità discrete. Quando abbiamo a che fare con un fenomeno che

Dettagli

= variazione diviso valore iniziale, il tutto moltiplicato per 100. \ Esempio: PIL del 2000 = 500; PIL del 2001 = 520:

= variazione diviso valore iniziale, il tutto moltiplicato per 100. \ Esempio: PIL del 2000 = 500; PIL del 2001 = 520: Fig. 10.bis.1 Variazioni percentuali Variazione percentuale di x dalla data zero alla data uno: x1 x 0 %x = 100% x 0 = variazione diviso valore iniziale, il tutto moltiplicato per 100. \ Esempio: PIL del

Dettagli

PROBABILITA CONDIZIONALE

PROBABILITA CONDIZIONALE Riferendoci al lancio di un dado, indichiamo con A l evento esce un punteggio inferiore a 4 A ={1, 2, 3} B l evento esce un punteggio dispari B = {1, 3, 5} Non avendo motivo per ritenere il dado truccato,

Dettagli

f(x) = 1 x. Il dominio di questa funzione è il sottoinsieme proprio di R dato da

f(x) = 1 x. Il dominio di questa funzione è il sottoinsieme proprio di R dato da Data una funzione reale f di variabile reale x, definita su un sottoinsieme proprio D f di R (con questo voglio dire che il dominio di f è un sottoinsieme di R che non coincide con tutto R), ci si chiede

Dettagli

Elementi di Psicometria con Laboratorio di SPSS 1

Elementi di Psicometria con Laboratorio di SPSS 1 Elementi di Psicometria con Laboratorio di SPSS 1 29-Analisi della potenza statistica vers. 1.0 (12 dicembre 2014) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia, Università di Milano-Bicocca

Dettagli

risulta (x) = 1 se x < 0.

risulta (x) = 1 se x < 0. Questo file si pone come obiettivo quello di mostrarvi come lo studio di una funzione reale di una variabile reale, nella cui espressione compare un qualche valore assoluto, possa essere svolto senza necessariamente

Dettagli

TEORIA DELLE DECISIONI. DOCENTE: JULIA MORTERA mortera@uniroma3.it

TEORIA DELLE DECISIONI. DOCENTE: JULIA MORTERA mortera@uniroma3.it TEORIA DELLE DECISIONI DOCENTE: JULIA MORTERA mortera@uniroma3.it 1 Decisioni in Condizioni di Incertezza Sia singoli individui che gruppi di individui (società, governi, aziende, sindacati ecc. si trovano

Dettagli

Il principio di induzione e i numeri naturali.

Il principio di induzione e i numeri naturali. Il principio di induzione e i numeri naturali. Il principio di induzione è un potente strumento di dimostrazione, al quale si ricorre ogni volta che si debba dimostrare una proprietà in un numero infinito

Dettagli

Statistica 1. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo

Statistica 1. Esercitazioni. Dott. Luigi Augugliaro 1. Università di Palermo Statistica 1 Esercitazioni Dott. 1 1 Dipartimento di Scienze Statistiche e Matematiche S. Vianelli, Università di Palermo ricevimento: lunedì ore 15-17 mercoledì ore 15-17 e-mail: luigi.augugliaro@unipa.it

Dettagli

PROBABILITA CONDIZIONALE

PROBABILITA CONDIZIONALE Riferendoci al lancio di un dado, indichiamo con A l evento esce un punteggio inferiore a 4 A ={1, 2, 3} B l evento esce un punteggio dispari B = {1, 3, 5} Non avendo motivo per ritenere il dado truccato,

Dettagli

Test sul calcolo della probabilità

Test sul calcolo della probabilità Test sul calcolo della probabilità 2 Test sul calcolo della probabilità Test sul calcolo della probabilità. La probabilità p di un evento E, quando si indica con E il suo complementare, è : a) 0 se E è

Dettagli

Esercizi di Probabilità e Statistica

Esercizi di Probabilità e Statistica Esercizi di Probabilità e Statistica Samuel Rota Bulò 19 marzo 2007 Spazi di probabilità finiti e uniformi Esercizio 1 Un urna contiene due palle nere e una rossa. Una seconda urna ne contiene una bianca

Dettagli

Calcolo delle probabilità (riassunto veloce) Laboratorio di Bioinformatica Corso A aa 2005-2006

Calcolo delle probabilità (riassunto veloce) Laboratorio di Bioinformatica Corso A aa 2005-2006 Calcolo delle probabilità riassunto veloce Laboratorio di Bioinformatica Corso aa 2005-2006 Teoria assiomatica della probabilità S = spazio campionario = insieme di tutti i possibili esiti di un esperimento

Dettagli

PROVE D'ESAME DI CPS A.A. 2009/2010. 0 altrimenti.

PROVE D'ESAME DI CPS A.A. 2009/2010. 0 altrimenti. PROVE D'ESAME DI CPS A.A. 009/00 0/06/00 () (4pt) Olimpiadi, nale dei 00m maschili, 8 nalisti. Si sa che i 4 atleti nelle corsie centrali hanno probabilità di correre in meno di 0 secondi. I 4 atleti delle

Dettagli

1 Probabilità condizionata

1 Probabilità condizionata 1 Probabilità condizionata Accade spesso di voler calcolare delle probabilità quando si è in possesso di informazioni parziali sull esito di un esperimento, o di voler calcolare la probabilità di un evento

Dettagli

Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B. Evento prodotto: Evento in cui si verifica sia A che B ; p(a&b) = p(a) x p(b/a)

Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B. Evento prodotto: Evento in cui si verifica sia A che B ; p(a&b) = p(a) x p(b/a) Probabilità condizionata: p(a/b) che avvenga A, una volta accaduto B Eventi indipendenti: un evento non influenza l altro Eventi disgiunti: il verificarsi di un evento esclude l altro Evento prodotto:

Dettagli

La distribuzione Normale. La distribuzione Normale

La distribuzione Normale. La distribuzione Normale La Distribuzione Normale o Gaussiana è la distribuzione più importante ed utilizzata in tutta la statistica La curva delle frequenze della distribuzione Normale ha una forma caratteristica, simile ad una

Dettagli

Dimensione di uno Spazio vettoriale

Dimensione di uno Spazio vettoriale Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione

Dettagli

STATISTICA E PROBABILITá

STATISTICA E PROBABILITá STATISTICA E PROBABILITá Statistica La statistica è una branca della matematica, che descrive un qualsiasi fenomeno basandosi sulla raccolta di informazioni, sottoforma di dati. Questi ultimi risultano

Dettagli

matematica probabilmente

matematica probabilmente IS science centre immaginario scientifico Laboratorio dell'immaginario Scientifico - Trieste tel. 040224424 - fax 040224439 - e-mail: lis@lis.trieste.it - www.immaginarioscientifico.it indice Altezze e

Dettagli

15. Antico gioco russo

15. Antico gioco russo 15. Antico gioco russo In un antico gioco russo, attraverso i risultati casuali ottenuti dall allacciamento di cordicelle, i giovani cercavano una previsione sul tipo di legame che si sarebbe instaurata

Dettagli

Stima per intervalli Nei metodi di stima puntuale è sempre presente un ^ errore θ θ dovuto al fatto che la stima di θ in genere non coincide con il parametro θ. Sorge quindi l esigenza di determinare una

Dettagli

Elementi di Psicometria con Laboratorio di SPSS 1

Elementi di Psicometria con Laboratorio di SPSS 1 Elementi di Psicometria con Laboratorio di SPSS 1 12-Il t-test per campioni appaiati vers. 1.2 (7 novembre 2014) Germano Rossi 1 germano.rossi@unimib.it 1 Dipartimento di Psicologia, Università di Milano-Bicocca

Dettagli

1. Distribuzioni campionarie

1. Distribuzioni campionarie Università degli Studi di Basilicata Facoltà di Economia Corso di Laurea in Economia Aziendale - a.a. 2012/2013 lezioni di statistica del 3 e 6 giugno 2013 - di Massimo Cristallo - 1. Distribuzioni campionarie

Dettagli

I libri di testo. Carlo Tarsitani

I libri di testo. Carlo Tarsitani I libri di testo Carlo Tarsitani Premessa Per accedere ai contenuti del sapere scientifico, ai vari livelli di istruzione, si usa comunemente anche un libro di testo. A partire dalla scuola primaria, tutti

Dettagli

Slide Cerbara parte1 5. Le distribuzioni teoriche

Slide Cerbara parte1 5. Le distribuzioni teoriche Slide Cerbara parte1 5 Le distribuzioni teoriche I fenomeni biologici, demografici, sociali ed economici, che sono il principale oggetto della statistica, non sono retti da leggi matematiche. Però dalle

Dettagli

Calcolo del Valore Attuale Netto (VAN)

Calcolo del Valore Attuale Netto (VAN) Calcolo del Valore Attuale Netto (VAN) Il calcolo del valore attuale netto (VAN) serve per determinare la redditività di un investimento. Si tratta di utilizzare un procedimento che può consentirci di

Dettagli

Statistiche campionarie

Statistiche campionarie Statistiche campionarie Sul campione si possono calcolare le statistiche campionarie (come media campionaria, mediana campionaria, varianza campionaria,.) Le statistiche campionarie sono stimatori delle

Dettagli

Ulteriori problemi di fisica e matematica

Ulteriori problemi di fisica e matematica Facoltà di Medicina e Chirurgia Università degli Studi di Firenze Agosto 2010 Ulteriori problemi di fisica e matematica Giovanni Romano Perché un raggio di luce proveniente dal Sole e fatto passare attraverso

Dettagli

1 Serie di Taylor di una funzione

1 Serie di Taylor di una funzione Analisi Matematica 2 CORSO DI STUDI IN SMID CORSO DI ANALISI MATEMATICA 2 CAPITOLO 7 SERIE E POLINOMI DI TAYLOR Serie di Taylor di una funzione. Definizione di serie di Taylor Sia f(x) una funzione definita

Dettagli

Aspetti probabilistici del gioco d azzardo

Aspetti probabilistici del gioco d azzardo Università degli Studi di Genova Scuola di Scienze Sociali Dipartimento di Economia Perché il banco vince sempre? Aspetti probabilistici del gioco d azzardo Enrico di Bella (edibella@economia.unige.it)

Dettagli

Vincere a testa o croce

Vincere a testa o croce Vincere a testa o croce Liceo Scientifico Pascal Merano (BZ) Classe 2 Liceo Scientifico Tecnologico Insegnante di riferimento: Maria Elena Zecchinato Ricercatrice: Ester Dalvit Partecipanti: Jacopo Bottonelli,

Dettagli

Analisi dei Dati 12/13 Esercizi proposti 3 soluzioni

Analisi dei Dati 12/13 Esercizi proposti 3 soluzioni Analisi dei Dati 1/13 Esercizi proposti 3 soluzioni 0.1 Un urna contiene 6 palline rosse e 8 palline nere. Si estraggono simultaneamente due palline. Qual è la probabilità di estrarle entrambe rosse? (6

Dettagli

Corrispondenze e funzioni

Corrispondenze e funzioni Corrispondenze e funzioni L attività fondamentale della mente umana consiste nello stabilire corrispondenze e relazioni tra oggetti; è anche per questo motivo che il concetto di corrispondenza è uno dei

Dettagli

Teoria delle code. Sistemi stazionari: M/M/1 M/M/1/K M/M/S

Teoria delle code. Sistemi stazionari: M/M/1 M/M/1/K M/M/S Teoria delle code Sistemi stazionari: M/M/1 M/M/1/K M/M/S Fabio Giammarinaro 04/03/2008 Sommario INTRODUZIONE... 3 Formule generali di e... 3 Leggi di Little... 3 Cosa cerchiamo... 3 Legame tra N e le

Dettagli

Il sistema monetario

Il sistema monetario Il sistema monetario Premessa: in un sistema economico senza moneta il commercio richiede la doppia coincidenza dei desideri. L esistenza del denaro rende più facili gli scambi. Moneta: insieme di tutti

Dettagli

FISICA. Le forze. Le forze. il testo: 2011/2012 La Semplificazione dei Testi Scolastici per gli Alunni Stranieri IPSIA A.

FISICA. Le forze. Le forze. il testo: 2011/2012 La Semplificazione dei Testi Scolastici per gli Alunni Stranieri IPSIA A. 01 In questa lezione parliamo delle forze. Parliamo di forza quando: spostiamo una cosa; solleviamo un oggetto; fermiamo una palla mentre giochiamo a calcio; stringiamo una molla. Quando usiamo (applichiamo)

Dettagli

Corso di Laurea in Scienze e Tecnologie Biomolecolari. NOME COGNOME N. Matr.

Corso di Laurea in Scienze e Tecnologie Biomolecolari. NOME COGNOME N. Matr. Corso di Laurea in Scienze e Tecnologie Biomolecolari Matematica e Statistica II Prova di esame del 18/7/2013 NOME COGNOME N. Matr. Rispondere ai punti degli esercizi nel modo più completo possibile, cercando

Dettagli

Logica Numerica Approfondimento 1. Minimo Comune Multiplo e Massimo Comun Divisore. Il concetto di multiplo e di divisore. Il Minimo Comune Multiplo

Logica Numerica Approfondimento 1. Minimo Comune Multiplo e Massimo Comun Divisore. Il concetto di multiplo e di divisore. Il Minimo Comune Multiplo Logica Numerica Approfondimento E. Barbuto Minimo Comune Multiplo e Massimo Comun Divisore Il concetto di multiplo e di divisore Considerato un numero intero n, se esso viene moltiplicato per un numero

Dettagli

Distribuzioni discrete

Distribuzioni discrete Distribuzioni discrete Esercitazione 4 novembre 003 Distribuzione binomiale Si fa un esperimento (o prova): può manifestarsi un certo evento A con probabilità p oppure no (con probabilità q = p). La distribuzione

Dettagli

Sarà del tutto identico a come se giocassimo 4 schedine da 2 euro ciascuna così fatte, avremo quindi 4 combinazioni:

Sarà del tutto identico a come se giocassimo 4 schedine da 2 euro ciascuna così fatte, avremo quindi 4 combinazioni: SISTEMISTICA. Prefazione. Il mio consiglio è quello di giocare in base al budget di cui si dispone. Se in budget è limitato si può optare di giocare più persone insieme. Sia chiaro che bisogna sempre avere

Dettagli

Calcolo delle Probabilità

Calcolo delle Probabilità Calcolo delle Probabilità Corso di Laurea Specialistica in SCIENZE DELLE PROFESSIONI SANITARIE DELLA RIABILITAZIONE Corso di Laurea Specialistica in SCIENZE DELLE PROFESSIONI SANITARIE AREA TECNICO ASSISTENZIALI

Dettagli

Primi esercizi per gli studenti del corso di Statistica ed Elementi di Probabilita

Primi esercizi per gli studenti del corso di Statistica ed Elementi di Probabilita Primi esercizi per gli studenti del corso di Statistica ed Elementi di Probabilita NOTA 1 Gli esercizi sono presi da compiti degli scorsi appelli, oppure da testi o dispense di colleghi. A questi ultimi

Dettagli

Corso di Laurea in Scienze e Tecnologie Biomolecolari. NOME COGNOME N. Matr.

Corso di Laurea in Scienze e Tecnologie Biomolecolari. NOME COGNOME N. Matr. Corso di Laurea in Scienze e Tecnologie Biomolecolari Matematica e Statistica II Prova di esame dell 11/1/2012 NOME COGNOME N. Matr. Rispondere alle domande nel modo più completo possibile, cercando di

Dettagli

Capitolo II. La forma del valore. 7. La duplice forma in cui si presenta la merce: naturale e di valore.

Capitolo II. La forma del valore. 7. La duplice forma in cui si presenta la merce: naturale e di valore. Capitolo II La forma del valore 7. La duplice forma in cui si presenta la merce: naturale e di valore. I beni nascono come valori d uso: nel loro divenire merci acquisiscono anche un valore (di scambio).

Dettagli

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 7

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 7 CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 7 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Incompatibilità ed indipendenza stocastica. Probabilità condizionate, legge della probabilità totale, Teorema

Dettagli

LEZIONE 23. Esempio 23.1.3. Si consideri la matrice (si veda l Esempio 22.2.5) A = 1 2 2 3 3 0

LEZIONE 23. Esempio 23.1.3. Si consideri la matrice (si veda l Esempio 22.2.5) A = 1 2 2 3 3 0 LEZIONE 23 231 Diagonalizzazione di matrici Abbiamo visto nella precedente lezione che, in generale, non è immediato che, data una matrice A k n,n con k = R, C, esista sempre una base costituita da suoi

Dettagli

Corso di Matematica per la Chimica

Corso di Matematica per la Chimica Dott.ssa Maria Carmela De Bonis a.a. 203-4 I sistemi lineari Generalità sui sistemi lineari Molti problemi dell ingegneria, della fisica, della chimica, dell informatica e dell economia, si modellizzano

Dettagli

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario:

1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: Esempi di domande risposta multipla (Modulo II) 1) Si consideri un esperimento che consiste nel lancio di 5 dadi. Lo spazio campionario: 1) ha un numero di elementi pari a 5; 2) ha un numero di elementi

Dettagli

IL CALCOLO DELLE PROBABILITA

IL CALCOLO DELLE PROBABILITA IL CALCOLO DELLE PROBABILITA 0. Origini Il concetto di probabilità sembra che fosse del tutto ignoto agli antichi malgrado si sia voluto trovare qualche cenno di ragionamento in cui esso è implicitamente

Dettagli

Lezioni di Matematica 1 - I modulo

Lezioni di Matematica 1 - I modulo Lezioni di Matematica 1 - I modulo Luciano Battaia 16 ottobre 2008 Luciano Battaia - http://www.batmath.it Matematica 1 - I modulo. Lezione del 16/10/2008 1 / 13 L introduzione dei numeri reali si può

Dettagli

Test d ipotesi. Statistica e biometria. D. Bertacchi. Test d ipotesi

Test d ipotesi. Statistica e biometria. D. Bertacchi. Test d ipotesi In molte situazioni una raccolta di dati (=esiti di esperimenti aleatori) viene fatta per prendere delle decisioni sulla base di quei dati. Ad esempio sperimentazioni su un nuovo farmaco per decidere se

Dettagli

Limiti e continuità delle funzioni reali a variabile reale

Limiti e continuità delle funzioni reali a variabile reale Limiti e continuità delle funzioni reali a variabile reale Roberto Boggiani Versione 4.0 9 dicembre 2003 1 Esempi che inducono al concetto di ite Per introdurre il concetto di ite consideriamo i seguenti

Dettagli

COEFFICIENTI BINOMIALI

COEFFICIENTI BINOMIALI COEFFICIENTI BINOMIALI Michele Impedovo micheleimpedovo@uni-bocconiit Una definizione insiemistica Se n è un numero naturale e è un numero naturale compreso tra e n, si indica con il simbolo il coefficiente

Dettagli

Esercitazione n 1: Circuiti di polarizzazione (1/2)

Esercitazione n 1: Circuiti di polarizzazione (1/2) Esercitazione n 1: Circuiti di polarizzazione (1/2) 1) Per il circuito in Fig. 1 determinare il valore delle resistenze R B ed R C affinché: = 3 ma - V CE = 7 V. Siano noti: = 15 V; β = 120; V BE = 0,7

Dettagli

IL RISCHIO DI INVESTIRE IN AZIONI DIMINUISCE CON IL PASSARE DEL TEMPO?

IL RISCHIO DI INVESTIRE IN AZIONI DIMINUISCE CON IL PASSARE DEL TEMPO? IL RISCHIO DI INVESTIRE IN AZIONI DIMINUISCE CON IL PASSARE DEL TEMPO? Versione preliminare: 1 Agosto 28 Nicola Zanella E-mail: n.zanella@yahoo.it ABSTRACT I seguenti grafici riguardano il rischio di investire

Dettagli

APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI

APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI Indice 1 Le frazioni algebriche 1.1 Il minimo comune multiplo e il Massimo Comun Divisore fra polinomi........ 1. Le frazioni algebriche....................................

Dettagli

2. Limite infinito di una funzione in un punto

2. Limite infinito di una funzione in un punto . Limite infinito di una funzione in un punto Consideriamo la funzione: fx ( ) = ( x ) definita in R {}, e quindi il valore di non è calcolabile in x=, che è comunque un punto di accumulazione per il dominio

Dettagli

Funzioni inverse Simmetrie rispetto alla bisettrice dei quadranti dispari. Consideriamo la trasformazione descritta dalle equazioni : = y

Funzioni inverse Simmetrie rispetto alla bisettrice dei quadranti dispari. Consideriamo la trasformazione descritta dalle equazioni : = y Funzioni inverse Simmetrie rispetto alla bisettrice dei quadranti dispari. Consideriamo la trasformazione descritta dalle equazioni : ' = y y' = Consideriamo il punto P(,5) se eseguiamo tra trasformazione

Dettagli

Metodi statistici per le ricerche di mercato

Metodi statistici per le ricerche di mercato Metodi statistici per le ricerche di mercato Prof.ssa Isabella Mingo A.A. 2014-2015 Facoltà di Scienze Politiche, Sociologia, Comunicazione Corso di laurea Magistrale in «Organizzazione e marketing per

Dettagli

Strutturazione logica dei dati: i file

Strutturazione logica dei dati: i file Strutturazione logica dei dati: i file Informazioni più complesse possono essere composte a partire da informazioni elementari Esempio di una banca: supponiamo di voler mantenere all'interno di un computer

Dettagli

4 3 4 = 4 x 10 2 + 3 x 10 1 + 4 x 10 0 aaa 10 2 10 1 10 0

4 3 4 = 4 x 10 2 + 3 x 10 1 + 4 x 10 0 aaa 10 2 10 1 10 0 Rappresentazione dei numeri I numeri che siamo abituati ad utilizzare sono espressi utilizzando il sistema di numerazione decimale, che si chiama così perché utilizza 0 cifre (0,,2,3,4,5,6,7,8,9). Si dice

Dettagli

8. Qual è la probabilità di estrarre da un mazzo di 40 carte napoletane una figura?

8. Qual è la probabilità di estrarre da un mazzo di 40 carte napoletane una figura? www.matematicamente.it Probabilità 1 Calcolo delle probabilità Cognome e nome: Classe Data 1. Quali affermazioni sono vere? A. Un evento impossibile ha probabilità 1 B. Un vento certo ha probabilità 0

Dettagli

Osservazioni sulla continuità per le funzioni reali di variabile reale

Osservazioni sulla continuità per le funzioni reali di variabile reale Corso di Matematica, I modulo, Università di Udine, Osservazioni sulla continuità Osservazioni sulla continuità per le funzioni reali di variabile reale Come è noto una funzione è continua in un punto

Dettagli

13. Campi vettoriali

13. Campi vettoriali 13. Campi vettoriali 1 Il campo di velocità di un fluido Il concetto di campo in fisica non è limitato ai fenomeni elettrici. In generale il valore di una grandezza fisica assegnato per ogni punto dello

Dettagli

Intorni Fissato un punto sull' asse reale, si definisce intorno del punto, un intervallo aperto contenente e tutto contenuto in

Intorni Fissato un punto sull' asse reale, si definisce intorno del punto, un intervallo aperto contenente e tutto contenuto in Intorni Fissato un punto sull' asse reale, si definisce intorno del punto, un intervallo aperto contenente e tutto contenuto in Solitamente si fa riferimento ad intorni simmetrici =, + + Definizione: dato

Dettagli

Capitolo 2. Operazione di limite

Capitolo 2. Operazione di limite Capitolo 2 Operazione di ite In questo capitolo vogliamo occuparci dell operazione di ite, strumento indispensabile per scoprire molte proprietà delle funzioni. D ora in avanti riguarderemo i domini A

Dettagli

Testo alla base del Pitgame redatto dal prof. Yvan Lengwiler, Università di Basilea

Testo alla base del Pitgame redatto dal prof. Yvan Lengwiler, Università di Basilea Testo alla base del Pitgame redatto dal prof. Yvan Lengwiler, Università di Basilea Funzionamento di un mercato ben organizzato Nel Pitgame i giocatori che hanno poche informazioni private interagiscono

Dettagli

VERIFICA DELLE IPOTESI

VERIFICA DELLE IPOTESI VERIFICA DELLE IPOTESI Nella verifica delle ipotesi è necessario fissare alcune fasi prima di iniziare ad analizzare i dati. a) Si deve stabilire quale deve essere l'ipotesi nulla (H0) e quale l'ipotesi

Dettagli

Statistica. Lezione 6

Statistica. Lezione 6 Università degli Studi del Piemonte Orientale Corso di Laurea in Infermieristica Corso integrato in Scienze della Prevenzione e dei Servizi sanitari Statistica Lezione 6 a.a 011-01 Dott.ssa Daniela Ferrante

Dettagli

come nasce una ricerca

come nasce una ricerca PSICOLOGIA SOCIALE lez. 2 RICERCA SCIENTIFICA O SENSO COMUNE? Paola Magnano paola.magnano@unikore.it ricevimento: martedì ore 10-11 c/o Studio 16, piano -1 PSICOLOGIA SOCIALE COME SCIENZA EMPIRICA le sue

Dettagli