Sintesi. Sintesi Sequenziale Sincrona Sintesi comportamentale di reti sequenziali sincrone. Riduzione del numero degli stati

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Sintesi. Sintesi Sequenziale Sincrona Sintesi comportamentale di reti sequenziali sincrone. Riduzione del numero degli stati"

Transcript

1 Sintsi Squnzial Sinrona Sintsi omportamntal i rti squnziali sinron Riuzion l numro li stati pr Mahin Compltamnt Spiiat Inistinuiilità & Equivalnza Irraiuniilità vrsion l 12/12/2004 Sintsi La sintsi si svol ni sunti passi: 1. Ralizzazion l iaramma li stati a partir all spiih inormali l prolma 2. Costruzion lla talla li stati 3. ottimizzazion 4. Costruzion lla talla ll transizioni Assnamnto li stati: Coi & oiia 5. Costruzion lla talla ll itazioni Slta li lmnti i mmoria 6. Sintsi sia lla rt ominatoria h ralizza la unzion stato prossimo sia lla rt ominatoria h ralizza la unzion 'usita Riuzion l numro li stati Riuzion l numro li stati Il numro minimo i lmnti i mmoria (lip-lop) nssari a mmorizzar tutti li stati ll insim S è: N FF,min = lo 2 S Esmpio Mahina on 8 stati, 1 inrsso 1 usita Mahina on 3 stati, 1 inrsso 1 usita Nl mollo i una mahina a stati possono sistr stati rionanti L intiiazion liminazion i tali stati omporta: Numro minor i lmnti i mmoria Funzion λ, δ Funzion λ1, δ1 Rti ominatori mno ostos pr aumnto i rai i lirtà nlla sintsi ominatoria onizioni i inirnza ovut all utilizzo parzial ll oniurazioni h possono oiiar lo stato pr riuzion l numro i it nssari pr oiiar li stati Minor numro i inrssi i usit all rti ominatori h ralizzano la unzion stato uturo la unzion usita. Elmnti i mmoria Eliminano 5 stati 3 stati impliano l uso i 3 oiih tra l 4 possiili. a /0 /1 a/0 /0 /0 a/0 - -/- -/

2 Riuzion l numro li stati Lo sopo lla riuzion l numro li stati onsist nll iniviuar la mahina minima quivalnt a qulla ata La mahina minima quivalnt è qulla mahina: Funzionalmnt quivalnt alla mahina ata Avnt il minimo numro i stati Il prolma lla riuzion l numro i stati è istinto pr mahin ompltamnt spiiat: intiiazion i stati inistinuiili o quivalnti non ompltamnt spiiat: intiiazion i stati ompatiili mahina non ompltamnt spiiata: s in orrisponnza i qualh oppia {stato prsnt, oniurazion i inrsso} o il simolo i usita, o lo stato prossimo o ntrami non sono spiiati Inoltr, v ssr prvista l liminazion li stati non raiuniili allo stato i rst, s qusto è spiiato mahin quivalnti Dat u mahin ompltamnt spiiat M1 M2 qust si iono quivalnti s solo s: pr oni stato s i i M1, sist uno stato s j i M2 tal h ponno la mahina M1 in s i la mahina M2 in s j appliano all u mahin una qualunqu squnza i inrsso I l u squnz i usita sono intih. E vivrsa pr M2 risptto a M1 Nota: nlla inizion i quivalnza sono onsirat solo l rlazioni inrsso-usita quini l u mahin possono avr un insim i stati ivrso in partiolar i ivrsa arinalità stati inistinuiili i una stssa mahina stati quivalnti i una stssa mahina Data una mahina ompltamnt spiiata, siano: La rlazion i inistinuiilità o i tr proprità: I α - una nria squnza i inrsso i j,..., i k U α - la squnza 'usita a ssa assoiata ottnuta attravrso λ. s i, s j - u nrii stati Rilssiva: s i s i Simmtria: s i s j s j s i Transitiva: s i s j s j s k s i s k I u stati s i s j appartnnti a S sono inistinuiili s: U α,i = λ(s i, I α ) = λ(s j, I α ) = U α,j I α ponno la mahina in s i oppur in s j appliano una qualsiasi squnza i Quini, la rlazion i inistinuiilità è una rlazion 'quivalnza Du stati inistinuiili sono quivalnti possono ssr sostituiti on un solo stato. inrsso, l usit sono intih. In nral, un ruppo i stati tra loro quivalnti può ssr raruppato in unia lass i quivalnza L inistinuiilità tra s i s j si inia on: s i s j L insim ll lassi i quivalnza trmina l insim li stati lla mahina minima quivalnt

3 partizion i quivalnza mahina minima Formalmnt, una rlazion i quivalnza inu sull'insim li stati una partizion Π i quivalnza tal h u stati appartnono alla stssa lass s solo s sono quivalnti u stati appartnono a lassi ivrs s solo s non sono quivalnti l insim S si i partizionato nll m lassi C 1,..., C m s: C 1 C... C 2 m = S C i C = j i, j : i j Il nuovo insim li stati è ormato all lassi lla partizion Esmpio: a a α β Una mahina M è minima s non sist nl suo insim li stati nssuna oppia i stati quivalnti Il prolma lla riuzion li stati può quini ssr rionotto a qullo lla ostruzion i una mahina quivalnt minima a qulla ata. Intiiazion lla mahina quivalnt minima: ata una mahina M la sua partizion i quivalnza inotta all inistinuiilità tra stati la mahina M il ui insim li stati è ostituito ai lohi lla partizion i quivalnza è la mahina minima quivalnt a qulla ata è unia quivalnt pr ostruzion minima pr ostruzion unia pr l arattristih i quivalnza intiiazion li stati quivalnti intiiazion li stati quivalnti (i) La inizion i inistinuiilità tra stati è i iiil appliailità poihé rihir i onsirar tutt l squnz i inrsso (a priori ininit) Si riorr a una rola introotta a Paull Unr Du stati s i s j appartnnti a S sono inistinuiili s solo s pr oni simolo i inrsso i a : λ(s i,i a )=λ(s j,i a ) (L usit sono uuali pr oni simolo i inrsso) Appliano la rola i Paull Unr ali stati i una mahina, si possono ottnr tr asi 1. s i s j S i simoli 'usita sono ivrsi /o S li stati prossimi sono ià stati vriiati om istinuiili 2. s i s j S i simoli i usita sono uuali S li stati prossimi sono ià stati vriiati om inistinuiili δ(s i,i a )δ(s j,i a ) (Gli stati prossimi sono inistinuiili) La rola i Paull Unr è itrativa 3. s i s j s s k s h (vinolo) S i simoli i usita sono uuali S li stati prossimi non sono anora stati vriiati om inistinuiili

4 Poihé li insimi S I hanno arinalità inita, opo un rto numro i passi i vinoli vnono risolti i si trovrà in una ll u onizioni: 1. s i s j 2. s i s j intiiazion li stati quivalnti (ii( ii) L analisi l aso 3. può portar a ostruir i vinoli ni quali è prsnt irolarità l vinolo: l inistinuiilità i una oppia i stati è vinolata all inistinuiilità lla stssa oppia i stati talla ll impliazioni (i) L rlazioni i inistinuiilità o quivalnz possono ssr intiiat attravrso l'uso lla Talla ll Impliazioni La talla ha l sunti arattristih: Mtt in rlazion oni oppia i stati E' trianolar (proprità simmtria) priva lla iaonal prinipal (proprità rilssiva) Esmpio S1 S2 S3 S0 S1 S talla ll impliazioni (ii( ii) talla ll impliazioni (iii( iii) Oni lmnto lla talla ontin: Il simolo i non quivalnza; Il simolo i quivalnza li stati orrisponnti sono quivalnti L oppi i stati a ui si rimana la vriia, s non è possiil pronuniarsi sulla quivalnza li stati orrisponnti Sulla talla osì ottnuta si pro a una analisi i tutt l oppi i stati. Esmpio: S1 S2 S3 S1,S2 S0 S1 S Analisi ll oppi i stati Pr oni oppia i stati: Una oppia marata om quivalnt non rihi aluna ultrior vriia S si trova un rimano a un altra oppia: 1. S qusti stati sono quivalnti anh li stati lla oppia in sam sono quivalnti 2. S qusti non sono quivalnti anh li stati lla oppia in sam non sono quivalnti S li stati lla oppia ui si rimana ipnono a una ultrior oppia i stati si ript il proimnto in moo itrativo ino a quano i si rionu a uno i u asi prnti (riorarsi la irolarità l vinolo) L'aloritmo trmina quano non sono più possiili liminazioni L oppi rimast sono quivalnti

5 Esmpio Esmpio Talla li stati a h/0 /1 /0 /0 /0 a/0 /1 /0 h/0 /1 /1 h/0 a/1 /0 h /0 /1 h a Talla ll impliazioni h a a h h h a h a h a a h h h a Coppia ; ; ;h ma ;h istinuiil: risultato ; istinuiil (X) Coppia ; ; a; ; ;h. ;h è istinuiil: risultato ; istinuiil (X) Coppia a;h a;h ;h a;h ;. ;h è istinuiil: risultato a;h istinuiil (X) Coppia ;h ;h ;h ;h ;. ;h è istinuiil: Risultato ;h istinuiil (X) Coppia a; a; ; ma ; a;. Quini a; ; a;: risultato a Coppia ; ; a;. è inistinuiil (passo 1) Coppia ; ; a; poihé a (passo 1) anh ; ostruzion lla partizion i quivalnza lla mahina minima Esmpio 1 L rlazioni 'quivalnza sono rapprsntaili su un rao i quivalnza: Vrti: rapprsnta uno stato Lato: u vrtii sono uniti a un lato s solo s sono quivalnti L lassi i quivalnza sono i sottorai omplti l rao (o liqu): Diaramma li stati Talla li stati h a Π = { {a, }, {, }, {, }, h, } = = { α, β, δ, h, } a h/0 /1 /0 /0 /0 a/0 /1 /0 h/0 /1 /1 h/0 a/1 /0 h /0 /1 α h,0 δ,1 β β,0 α,0 δ α,1 β,0 α,1 h,0 h δ,0,1 a 0/01 0/0/11 a /00 /01 /00 /01 /10 a/11 /10 /11 /00 /01 /10 /11 a/01 /

6 Esmpio 1 Esmpio 1 Talla li stati a /00 /01 /00 /01 /10 a/11 /10 /11 /00 /01 /10 /11 a/01 /11 Talla ll impliazioni a a Analisi lla talla ll impliazioni a a Coppia a; a; ; ma ; a; quini a; ; a;: risultato a Coppia a; a; ; ma ; a; ; ; quini a; ; ; ma ; ; ; ; quini a; ; ; ; ma ; ; quini a; ; ; ; quini a,, A qusto punto, l analisi ll altr oppi è ià risolta a a Esmpio 1 Sintsi: Esmpio 2 Talla ll impliazioni a a a Grao i quivalnza a Partizion Π = { {a,, }, {,, }, } = { α, β, } Talla riotta li stati α /00 β/01 β β/10 α/11 α/01 β/11 Sinttizzar una mahina i Moor sono l spiih: La FSM ha u inrssi A B La FSM ha una usita Z, h assum valor inizial 1 Quano A=1, l usita assum il valor i B tal spiia prman ino a quano si prsnta la onizion A = B = Z = 1 Al prsntarsi lla onizion, il ruolo assunto a A B vin samiato Il primo passo onsist nl isnar il iaramma ll transizioni nl ostruir la orrisponnt talla li stati

7 Sintsi: Esmpio 2 Sintsi: Esmpio 2 A=1 B=1 A=0;B=1 A=0;B=0 S0/1 A ontrolla A=1 B=1 S2/1 B ontrolla A=1;B=1 A=1;B=0 A=1;B=1 A=0;B=1 A=1;B=0 A=0;B=1 A=0;B=0 S1/0 A ontrolla S3/0 B ontrolla Talla li stati Z S0 S0 S0 S2 S1 1 S1 S1 S1 S0 S1 0 S2 S2 S3 S0 S2 1 S3 S3 S3 S2 S3 0 Talla li stati Z S0 S0 S0 S2 S1 1 S1 S1 S1 S0 S1 0 S2 S2 S3 S0 S2 1 S3 S3 S3 S2 S3 0 Talla ll impliazioni S1 S0,S3 S2 S1,S2 S3 S2,S0 S0 S1 S2 A=1;B=0 A=0;B=0 A=1;B=0 A=0;B=1 A=0;B= Esmpio 3 Esmpio 3 Talla li stati Talla ll impliazioni Talla ll impliazioni Grao i quivalnza S1 S2/0 S8/1 S6/0 S3/0 S2 S7/0 S1/1 S5/1 S8/1 S3 S4/0 S8/1 S7/0 S5/0 S4 S6/0 S3/1 S1/1 S8/1 S5 S2/0 S8/1 S7/0 S1/0 S6 S1/1 S6/0 S3/1 S7/1 S7 S3/1 S6/0 S5/1 S7/1 S8 S1/1 S2/1 S8/1 S7/1 S2 S2,S4 S3 S6,S7 S3,S5 S6,S7 S4 S5,S1 S3,S1 S5 S6,S7 S4,S2 S3,S1 S5,S1 S6 S7 S3,S1 S3,S5 S8 S1 S2 S3 S4 S5 S6 S7 S2 S2,S4 S3 S6,S7 S3,S5 S6,S7 S4 S5,S1 S3,S1 S5 S6,S7 S4,S2 S3,S1 S5,S1 S6 S7 S3,S1 S3,S5 S8 S1 S2 S3 S4 S5 S6 S Partizion = { {S1, S3, S5}, {S2, S4}, {S6, S7}, S8 } = ={ a,,, S8 }

8 Esmpio 3 liminazion li stati irraiuniili Grao i quivalnza Talla riotta li stati Eliminazion li stati irraiuniili Uno stato non è raiuniil s non sist aluna squnza i transizioni i stato h porti allo stato RESET in tal stato. Transizioni i RESET Partizion a /0 S8/1 /0 a/0 /0 a/1 a/1 S8/1 a/1 /0 a/1 /1 S8 a/1 /1 S8/1 /1 Rst 0/01 -/0/11 Rst 0/01 -/00 = { {S1, S3, S5}, {S2, S4}, {S6, S7}, S8 } = ={ a,,, S8 } liminazion li stati irraiuniili Eliminazion li stati irraiuniili Un moo irnt pr ottnr lo stsso risultato, ma h utilizza la talla li stati, è il sunt: A partir allo stato i rst si iniano li stati a ui rimana. Itrativamnt, si svol la stssa oprazion pr tutti li stati sussivi non iniano qulli h sono ià prsnti. Quano non è più possiil intiiar nuovi stati, il risultato è l insim li stati raiuniili. Esmpio: 1:{Rst{,}}={Rst{}} Rst /00 /00 /00 /01 -/-- Rst/11 /10 /11 /00 /11 /10 /10 Rst/01 /11 2:{Rst{{Rst,}}}={Rst{{}}} 3:{Rst{{{,}}}}={Rst{{{}}}} 4:{Rst{{{{,}}}}}={Rst{{{}}}} Da ui si riavano i soli stati raiuniili: Rst,,,. Gli altri possono ssr liminati alla talla

Minimizzazione degli Stati in una Rete Sequenziale Sincrona

Minimizzazione degli Stati in una Rete Sequenziale Sincrona Minimizzzion gli Stti in un Rt Squnzil Sinron Murizio Plsi Murizio Plsi 1 Sintsi i Rti Squnzili Sinron Il proimnto gnrl i sintsi si svolg ni sgunti pssi: 1. Rlizzzion l igrmm gli stti prtir ll spifih l

Dettagli

Minimizzazione degli Stati in una macchina a stati finiti

Minimizzazione degli Stati in una macchina a stati finiti Rti Loih Sintsi i rti squnzili sinron Minimizzzion li Stti in un mhin stti initi Proimnto: Spiih Dirmm li stti Tll li stti Minimizzzion li stti Coii li stti Tll ll trnsizioni Slt lmnti i mmori Tll ll itzioni

Dettagli

Macchine non completamente specificate. Sintesi Sequenziale Sincrona Sintesi Comportamentale di Reti Sequenziali Sincrone

Macchine non completamente specificate. Sintesi Sequenziale Sincrona Sintesi Comportamentale di Reti Sequenziali Sincrone Mhin non ompltmnt spifit Sintsi Squnzil Sinron Sintsi Comportmntl i Rti Squnzili Sinron Riuzion l numro gli stti pr Mhin Non Compltmnt Spifit Comptiilità Vrsion l 5/12/02 Sono mhin in ui pr lun onfigurzioni

Dettagli

Circuiti Sequenziali Macchine Non Completamente Specificate

Circuiti Sequenziali Macchine Non Completamente Specificate CEFRIEL Consorzio pr l Formzion l Rir in Inggnri ll Informzion Politnio i Milno Ciruiti Squnzili Mhin Non Compltmnt Spifit Introuzion Comptiilità Riuzion l numro gli stti Mtoo gnrl FSM non ompltmnt spifit

Dettagli

Macchine non completamente specificate. Sintesi Sequenziale Sincrona Sintesi Comportamentale di Reti Sequenziali Sincrone

Macchine non completamente specificate. Sintesi Sequenziale Sincrona Sintesi Comportamentale di Reti Sequenziali Sincrone Sintsi Squnzil Sinron Sintsi Comportmntl i Rti Squnzili Sinron Riuzion l numro gli stti pr Mhin Non Compltmnt Spiit Comptiilità Vrsion l 13/01/05 (Frrni( Antol) Mhin non ompltmnt spiit Sono mhin in ui

Dettagli

LE FRAZIONI LE FRAZIONI. La frazione è un operatore che opera su una qualsiasi grandezza e che da come risultato una grandezza omogenea a quella data.

LE FRAZIONI LE FRAZIONI. La frazione è un operatore che opera su una qualsiasi grandezza e che da come risultato una grandezza omogenea a quella data. LE FRAZIONI La frazion è un oprator ch opra su una qualsiasi grandzza ch da com risultato una grandzza omogna a qulla data. AB (Il sgmnto AB è stato diviso i tr parti sono stat prs du) Una frazion è scritta

Dettagli

test Di chimica per l accesso alle Facoltà UNiVersitarie

test Di chimica per l accesso alle Facoltà UNiVersitarie tst i himia pr l asso all Faoltà UNiVrsitari il sistma priodio dgli lmnti il sistma priodio dgli lmnti 1. indiar qual di sgunti lmnti NoN è di transizion: a F zn as Cu Cr (Mdiina Chirurgia 2005) 2. indiar

Dettagli

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6.

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6. Corso di laura: BIOLOGIA Tutor: Floris Marta PRECORSI DI MATEMATICA PROPORZIONI Ossrvar l sgunti figur: Cosa possiamo dir di ss? Ch la suprfici dlla figura A sta alla suprfici dlla figura B com sta a 6.

Dettagli

Progetto di cinghie trapezoidali

Progetto di cinghie trapezoidali Progtto i cinghi trapzoiali L cinghi trapzoiali sono utilizzat frquntmnt pr la trasmission i potnza Vantaggi Basso costo Smplicità i installazion Capacità i assorbir vibrazioni torsionali picchi i coppia

Dettagli

0.1. CIRCONFERENZA 1. La 0.1.1, espressa mediante la formula per la distanza tra due punti, diviene:

0.1. CIRCONFERENZA 1. La 0.1.1, espressa mediante la formula per la distanza tra due punti, diviene: 0.1. CIRCONFERENZA 1 0.1 Circonfrnza Considriamo una circonfrnza di cntro P 0 (x 0, y 0 ) raggio r, cioè il luogo di punti dl piano P (x, y) pr i quali si vrifica la rlazion: 0.1.1. P 0 P = r. La 0.1.1,

Dettagli

ANALISI STRUTTURALE sistema STRUTTURA STRUTTURA. I modelli meccanici possono suddividersi in: MODELLI CONTINUI. STRUTTURA = modello meccanico

ANALISI STRUTTURALE sistema STRUTTURA STRUTTURA. I modelli meccanici possono suddividersi in: MODELLI CONTINUI. STRUTTURA = modello meccanico AZIONI ANALISI STRUTTURALE sistma STRUTTURA STATO I modlli mccanici possono suddividrsi in: MODELLI CONTINUI Forz Coazioni STRUTTURA = modllo mccanico IDEALIZZAZIONE DELLA STRUTTURA Posizion Vlocità Acclrazion

Dettagli

Collegamenti. Istruzioni Windows per una stampante collegata localmente. Che cos'è la stampa locale? Installazione del software mediante il CD

Collegamenti. Istruzioni Windows per una stampante collegata localmente. Che cos'è la stampa locale? Installazione del software mediante il CD Pagina 1 i 6 Collgamnti Istruzioni Winows pr una stampant ollgata loalmnt Nota: quano si installa una stampant ollgata loalmnt, s il sistma oprativo in uso non è supportato al CD Softwar oumntazion, è

Dettagli

CONOSCENZE. 1. La derivata di una funzione y = f (x)

CONOSCENZE. 1. La derivata di una funzione y = f (x) ESAME D STATO ESEMP D QUEST D MATEMATCA PER LA TERZA PROVA CONOSCENZE. La drivata di una funzion y f (), in un punto intrno al suo dominio, : il it, s sist d è finito, dl rapporto incrmntal pr h, f ( h)

Dettagli

1 Il concetto di funzione 1. 2 Funzione composta 4. 3 Funzione inversa 6. 4 Restrizione e prolungamento di una funzione 8

1 Il concetto di funzione 1. 2 Funzione composta 4. 3 Funzione inversa 6. 4 Restrizione e prolungamento di una funzione 8 UNIVR Facoltà di Economia Sd di Vicnza Corso di Matmatica 1 Funzioni Indic 1 Il conctto di funzion 1 Funzion composta 4 3 Funzion invrsa 6 4 Rstrizion prolungamnto di una funzion 8 5 Soluzioni dgli srcizi

Dettagli

a b }. L insieme Q è pertanto l insieme delle frazioni.

a b }. L insieme Q è pertanto l insieme delle frazioni. I1. Insimisti I1.1 Insimi Il ontto i insim è un ontto primitivo, prtnto non n vin t un finizion rigoros. Si può ir, intuitivmnt, h un insim è un ollzion i oggtti pr ui vlgono lun proprità: Un lmnto i un

Dettagli

Elettronica dei Sistemi Digitali Sintesi di porte logiche combinatorie fully CMOS

Elettronica dei Sistemi Digitali Sintesi di porte logiche combinatorie fully CMOS Elttroni di Sistmi Digitli Sintsi di port logih omintori full CMOS Vlntino Lirli Diprtimnto di Tnologi dll Informzion Univrsità di Milno, 26013 Crm -mil: lirli@dti.unimi.it http://www.dti.unimi.it/ lirli

Dettagli

Tecniche per la ricerca delle primitive delle funzioni continue

Tecniche per la ricerca delle primitive delle funzioni continue Capitolo 4 Tcnich pr la ricrca dll primitiv dll funzioni continu Nl paragrafo.7 abbiamo dato la dfinizion di primitiva di una funzion f avnt pr dominio un intrvallo I; abbiamo visto ch s F 0 è una primitiva

Dettagli

Franco Ferraris Marco Parvis Generalità sulle Misure di Grandezze Fisiche. Testi consigliati

Franco Ferraris Marco Parvis Generalità sulle Misure di Grandezze Fisiche. Testi consigliati Gnralità sull Misur di Grandzz Fisich - Misurazioni dirtt 1 Tsti consigliati Norma UNI 4546 - Misur Misurazioni; trmini dfinizioni fondamntali - Milano - 1984 Norma UNI-I 9 - Guida all sprssion dll incrtzza

Dettagli

La popolazione in età da 0 a 2 anni residente nel comune di Bologna

La popolazione in età da 0 a 2 anni residente nel comune di Bologna Sttor Programmazion, Controlli La popolazion in tà da 0 a 2 anni rsidnt nl comun di Bologna Maggio 2007 La prsnt nota è stata ralizzata da un gruppo di dirignti funzionari dl Sttor Programmazion, Controlli

Dettagli

INTEGRALI. 1. Integrali indefiniti

INTEGRALI. 1. Integrali indefiniti INTEGRALI. Intgrli indiniti Si un unzion ontinu in [, ]. Un unzion F dinit ontinu in [, ], drivil in ], [, disi primitiv di in [, ] s F, ], [. Tormi. S F è un primitiv di in [, ] llor nh G F, on R, è un

Dettagli

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6.

PROPORZIONI. Cosa possiamo dire di esse? Che la superficie della figura A sta alla superficie della figura B come 4 sta a 6. Corso di laura: BIOLOGIA Tutor: Floris Marta PRECORSI DI MATEMATICA PROPORZIONI Ossrvar l sgunti figur: Cosa possiamo dir di ss? Ch la suprfici dlla figura A sta alla suprfici dlla figura B com sta a 6.

Dettagli

[ ] ( ) ( ) ( e ) jωn. [ ] [ [ n. [ n] = T [ ] [ ] [ ] [ ]

[ ] ( ) ( ) ( e ) jωn. [ ] [ [ n. [ n] = T [ ] [ ] [ ] [ ] Sistmi Linari Tmpo Invarianti (LTI) a Tmpo Discrto Dfiniamo il sistma tramit una trasformaion T []. La proprità di linarità implica ch [ α 1x1[ n] + α2x2[ n ] α1t x1[ n] + α2t x La proprità di tmpo invariana

Dettagli

Teoria dell integrazione secondo Riemann per funzioni. reali di una variabile reale.

Teoria dell integrazione secondo Riemann per funzioni. reali di una variabile reale. Capitolo 2 Toria dll intgrazion scondo Rimann pr funzioni rali di una variabil ral Esistono vari tori dll intgrazion; tutt hanno com comun antnato il mtodo di saustion utilizzato dai Grci pr calcolar l

Dettagli

Lemma 2. Se U V é un sottospazio vettoriale di V allora 0 U.

Lemma 2. Se U V é un sottospazio vettoriale di V allora 0 U. APPUNTI d ESERCIZI PER CASA di GEOMETRIA pr il Corso di Laura in Chimica, Facoltà di Scinz MM.FF.NN., UNICAL (Dott.ssa Galati C.) Rnd, 3 April 2 Sottospazi di uno spazio vttorial, sistmi di gnratori, basi

Dettagli

Teorema (seconda condizione sufficiente per i campi conservativi piani): Sia F ( x, y)

Teorema (seconda condizione sufficiente per i campi conservativi piani): Sia F ( x, y) Campi Vttoriali Form iffrnziali-sconda Part Torma (sconda condizion sufficint pr i campi consrvativi piani): Sia F (, y) un campo vttorial piano dfinito in un aprto A di R, si supponga ultriormnt = y ;

Dettagli

Analisi dei Sistemi. Soluzione del compito del 26 Giugno ÿ(t) + (t 2 1)y(t) = 6u(t T ). 2 x1 (t) 0 1

Analisi dei Sistemi. Soluzione del compito del 26 Giugno ÿ(t) + (t 2 1)y(t) = 6u(t T ). 2 x1 (t) 0 1 Analisi di Sistmi Soluzion dl compito dl 26 Giugno 23 Esrcizio. Pr i du sistmi dscritti dai modlli sgunti, individuar l proprità strutturali ch li carattrizzano: linar o non linar, stazionario o tmpovariant,

Dettagli

13 - LA PROGRAMMAZIONE DELL'ALLENAMENTO

13 - LA PROGRAMMAZIONE DELL'ALLENAMENTO 132 13 - LA PROGRAMMAZIONE DELL'ALLENAMENTO La prparazion complta dl calciator si ralizza sottoponndo il suo organismo, la sua prsonalità la sua potnzialità motoria, ad una gran quantità di stimoli ch

Dettagli

-LE ASPETTATIVE: NOZIONI DI - MERCATI FINANZIARI E BASE ASPETTATIVE

-LE ASPETTATIVE: NOZIONI DI - MERCATI FINANZIARI E BASE ASPETTATIVE 1 -LE ASPETTATIVE: NOZIONI DI BASE - MERCATI FINANZIARI E ASPETTATIVE DUE DEFINIZIONI PER IL TASSO DI INTERESSE Il tasso di intrss in trmini di monta è chiamato tasso di intrss nominal (i). Il tasso di

Dettagli

Test di autovalutazione

Test di autovalutazione UNITÀ LE FRAZIONI Tst Tst i utolutzion 0 0 0 0 0 0 0 0 0 0 00 n Il mio puntggio, in ntsimi, è n Risponi ogni qusito sgnno un sol ll ltrnti. n Conront l tu rispost on l soluzioni. n Color, prtno sinistr,

Dettagli

Calcolo delle Probabilità e Statistica. Prova scritta del III appello - 7/6/2006

Calcolo delle Probabilità e Statistica. Prova scritta del III appello - 7/6/2006 Corso di Laura in Informatica - a.a. 25/6 Calcolo dll Probabilità Statistica Prova scritta dl III appllo - 7/6/26 Il candidato risolva i problmi proposti, motivando opportunamnt l propri rispost.. Sia

Dettagli

SESSIONE ORDINARIA 2012 CORSI SPERIMENTALI

SESSIONE ORDINARIA 2012 CORSI SPERIMENTALI PROBLEMA SESSIONE ORDINARIA 0 CORSI SPERIMENTALI Sia ( x) ln ( x) ln x sia ( x) ln ( x) ln x.. Si dtrmino i domini di di.. Si disnino, nl mdsimo sistma di assi cartsiani ortoonali Oxy, i raici di di..

Dettagli

PROGRAMMA DI RIPASSO ESTIVO

PROGRAMMA DI RIPASSO ESTIVO ISTITUTO TECNICO PER IL TURISMO EUROSCUOLA ISTITUTO TECNICO PER GEOMETRI BIANCHI SCUOLE PARITARIE PROGRAMMA DI RIPASSO ESTIVO CLASSI MATERIA PROF. QUARTA TURISMO Matmatica Andra Brnsco Làvor ANNO SCOLASTICO

Dettagli

Documento tratto da La banca dati del Commercialista

Documento tratto da La banca dati del Commercialista Documnto tratto da La banca dati dl Commrcialista Intrnational Accounting Standards Board Intrnational Accounting Standards, n. 17 SCOPO E CONTENUTO DEL DOCUMENTO Lasing Il prsnt Principio sostituisc lo

Dettagli

PROGETTO PER IL LABORATORIO DI ASD A.A. 2014/15 VERSIONE 1.1

PROGETTO PER IL LABORATORIO DI ASD A.A. 2014/15 VERSIONE 1.1 PROGETTO PER IL LABORATORIO DI ASD A.A. 2014/15 VERSIONE 1.1 ALBERTO POLICRITI ALBERTO.POLICRITI@UNIUD.IT Sommario. Sopo dl progtto di laoratorio è vriiar h lo studnt sia in grado di disgnar, analizzar

Dettagli

Esercizi sullo studio di funzione

Esercizi sullo studio di funzione Esrcizi sullo studio di funzion Prima part Pr potr dscrivr una curva, data la sua quazion cartsiana splicita f () occorr procdr scondo l ordin sgunt: 1) Dtrminar l insim di sistnza dlla f () ) Dtrminar

Dettagli

Le coniche e la loro equazione comune

Le coniche e la loro equazione comune L conich la loro quazion comun L conich com ombra di una sra Una sra ch tocca il piano π nl punto F è illuminata da una sorgnt puntiorm S. Nl caso dlla igura l'ombra dll sra risulta una suprici dlimitata

Dettagli

Calore Specifico

Calore Specifico 6.08 - Calor Spcifico 6.08.a) Lgg Fondamntal dlla Trmologia Un modo pr far aumntar la Tmpratura di un Corpo è qullo di cdr ad sso dl Calor, pr smpio mttndolo in Contatto Trmico con un Corpo a Tmpratura

Dettagli

Comunità Europea (CE) International Accounting Standards, n. 17

Comunità Europea (CE) International Accounting Standards, n. 17 Scopo contnuto dl documnto Comunità Europa (CE) Intrnational Accounting Standards, n. 17 Lasing Lasing Finalità SOMMARIO Paragrafi 1 Ambito di applicazion 2-3 Dfinizioni 4-6 Classificazion dll oprazioni

Dettagli

Il transistor bipolare a giunzione (bjt( bjt) Dispositivi elettronici. npn bjt (bipolar junction transistor) pnp bjt (bipolar junction transistor)

Il transistor bipolare a giunzione (bjt( bjt) Dispositivi elettronici. npn bjt (bipolar junction transistor) pnp bjt (bipolar junction transistor) Sommario Dispositivi lttronici l transistor bipolar a giunzion (bjt( bjt) l transistor bipolar a giunzion (bjt) com è fatto un bjt principi di funzionamnto (giunzion a bas corta) fftto transistor (

Dettagli

Teoria. Tale retta limite non sempre esiste. Si veda il grafico sottostante. Matematica 1

Teoria. Tale retta limite non sempre esiste. Si veda il grafico sottostante. Matematica  1 LA ERVATA UNA FUNZONE Toria l problma dlla tangnt Uno di problmi classici c portano al conctto di drivata è qullo dlla dtrminazion dlla rtta tangnt a una curva in un punto. La tangnt ad una circonfrnza

Dettagli

ESERCIZI PARTE I SOLUZIONI

ESERCIZI PARTE I SOLUZIONI UNIVR Facoltà di Economia Corso di Matmatica finanziaria 008/09 ESERCIZI PARTE I SOLUZIONI Domini di funzioni di du variabili Esrcizio a f, = log +. L unica condizion di sistnza è data dalla disquazion

Dettagli

Ulteriori esercizi svolti

Ulteriori esercizi svolti Ultriori srcizi svolti Effttuar uno studio qualitativo dll sgunti funzioni ) 4 f ( ) ) ( + ) f ( ) + 3) f ( ) con particolar rifrimnto ai sgunti asptti: a) trova il dominio di f b) indica quali sono gli

Dettagli

Istogrammi ad intervalli

Istogrammi ad intervalli Istogrammi ad intrvalli Abbiamo visto com costruir un istogramma pr rapprsntar un insim di misur dlla stssa granda isica. S la snsibilità dllo strumnto di misura è alta, è probabil ch tra gli N valori

Dettagli

1 Derivate parziali 1. 2 Regole di derivazione 5. 3 Derivabilità e continuità 7. 4 Differenziabilità 7. 5 Derivate seconde e teorema di Schwarz 8

1 Derivate parziali 1. 2 Regole di derivazione 5. 3 Derivabilità e continuità 7. 4 Differenziabilità 7. 5 Derivate seconde e teorema di Schwarz 8 UNIVR Facoltà di Economia Sd di Vicnza Corso di Matmatica Drivat dll funzioni di più variabili Indic Drivat parziali Rgol di drivazion 5 3 Drivabilità continuità 7 4 Diffrnziabilità 7 5 Drivat scond torma

Dettagli

Linee accoppiate. Corso di Componenti e Circuiti a Microonde. Ing. Francesco Catalfamo. 3 Ottobre 2006

Linee accoppiate. Corso di Componenti e Circuiti a Microonde. Ing. Francesco Catalfamo. 3 Ottobre 2006 orso di omponnti ircuiti a Microond Ing. Francsco atalamo 3 Ottobr 006 Indic Ond supriciali modi di ordin suprior Lin in microstriscia accoppiat Ond supriciali Un onda supricial è un modo guidato ch si

Dettagli

Appunti sulle disequazioni frazionarie

Appunti sulle disequazioni frazionarie ppunti sull disquazioni frazionari Sono utili l sgunti dfinizioni Una disquazion fratta o frazionaria è una disquazion nlla qual l incognita compar in qualch suo dnominator. Una disquazion razional è una

Dettagli

1. UNA PARTE DI DENTE MANCANTE IN CUI E' ANCORA PRESENTE LA RADICE DEL DENTE. IN TAL CASO LA PROTESI PRENDE IL NOME DI CORONA.

1. UNA PARTE DI DENTE MANCANTE IN CUI E' ANCORA PRESENTE LA RADICE DEL DENTE. IN TAL CASO LA PROTESI PRENDE IL NOME DI CORONA. PROTESI - www.stuopaololonar.it LA PROTESI SI PREFIGGE DI SOSTITUIRE: 1. UNA PARTE DI DENTE MANCANTE IN CUIE' ANCORA PRESENTE LA RADICE DEL DENTE. IN TAL CASO LA PROTESI PRENDE IL NOME DICORONA. 2. SOSTITUIRE

Dettagli

Guida alla connettività

Guida alla connettività Pagina 1 i 7 Guia alla onnttività Istruzioni Winows pr una stampant ollgata loalmnt Nota: quano si installa una stampant ollgata loalmnt, s il sistma oprativo in uso non è inluso nl CD Sotwar oumntazion,

Dettagli

UFFICIO EUROPEO DI SELEZIONE DEL PERSONALE (EPSO)

UFFICIO EUROPEO DI SELEZIONE DEL PERSONALE (EPSO) 10.11.2010 IT Gazztta ufficial dll'union uropa C 304 A/1 V (Avvisi) PROCEDIMENTI AMMINISTRATIVI UFFICIO EUROPEO DI SELEZIONE DEL PERSONALE (EPSO) BANDO DI CONCORSI GENERALI EPSO/AST/109-110/10 CORRETTORI

Dettagli

Esercitazioni di Elettrotecnica: circuiti in regime stazionario

Esercitazioni di Elettrotecnica: circuiti in regime stazionario Maffucc: rcut n rgm stazonaro r- Unrstà dgl Stud d assno srctazon d lttrotcnca: crcut n rgm stazonaro ntono Maffucc r sttmbr Maffucc: rcut n rgm stazonaro r- Sr paralllo parttor S alcolar la rsstnza qualnt

Dettagli

Casi clinici Una Esperienza di Trattamento ACUDETOX Antifumo in Fabbrica

Casi clinici Una Esperienza di Trattamento ACUDETOX Antifumo in Fabbrica Una Esprinza di Trattamnto ACUDETOX Antifumo in Fabbrica Rmo ANGELINO Dirttor SC Dipndnz Patologich - ASL 10 Pinrolo TO, Antonio POTOSNJAK I.P. SC Dipndnz Patologich - ASL 10 Pinrolo TO Prmssa La rlazion

Dettagli

Soluzioni. Capitolo 2 (, 0 3] [2.1] A B = {1, 3, 4, 6, 7, 8}, A B = {4, 7}, A\B = {1, 3, 6}, B\A = {8}.

Soluzioni. Capitolo 2 (, 0 3] [2.1] A B = {1, 3, 4, 6, 7, 8}, A B = {4, 7}, A\B = {1, 3, 6}, B\A = {8}. Soluzioni Capitolo [.] A B = {,,,, 7, 8}, A B = {, 7}, A\B = {,, }, B\A = {8}. [.] I) [, 0] V) VI) V [, 0] (, 0) V IX) [, 00) X) ( [, ],(, 00) (, 00) (, 0 + ) (, 0 ], ), (, 0 + ) [.] B\A = {} {b = n +,

Dettagli

Albero di supporto di costo minimo

Albero di supporto di costo minimo Algortm Struttur Dat II Alro supporto osto mnmo Nl prolma lla struzon ll nrga lttra sono vrs as h vono rvr nrga a una ntral lttra. Pr rvr nrga, ogn asa v ssr ollgata alla ntral attravrso un ammno fatto

Dettagli

( ) ESERCIZI PROPOSTI. y x. cos x y. x y. c cos. xlog. x y. ctg 2. sin 1. x + 1. ctgx. c sin = + ( ) 1 = + ( ) ( )

( ) ESERCIZI PROPOSTI. y x. cos x y. x y. c cos. xlog. x y. ctg 2. sin 1. x + 1. ctgx. c sin = + ( ) 1 = + ( ) ( ) ESERCIZI PROPOSTI I) Dtrminar l intgral gnral dll sgunti quazioni diffrnziali linari dl primo ordin (fr..): ) ' ) ' ) ) ' os ' 5) ' 6) 7) tg ' ' 8) ' ( + log ) 9) ' ) ) log sin os [ log ] ' + ' sin ( +

Dettagli

Test di autovalutazione

Test di autovalutazione Tst i autovalutazion Tst 0 0 0 30 0 50 60 70 80 90 00 n Il mio puntggio, in ntsimi, è n Risponi a ogni qusito sgnano una sola ll 5 altrnativ. n Confronta l tu rispost on l soluzioni. n Colora, partno a

Dettagli

II-1 Funzioni. 1 Il concetto di funzione 1. 2 Funzione composta 5. 3 Funzione inversa 7. 4 Restrizione e prolungamento di una funzione 9

II-1 Funzioni. 1 Il concetto di funzione 1. 2 Funzione composta 5. 3 Funzione inversa 7. 4 Restrizione e prolungamento di una funzione 9 1 IL CONCETTO DI FUNZIONE 1 II-1 Funzioni Indic 1 Il conctto di funzion 1 Funzion composta 5 3 Funzion invrsa 7 4 Rstrizion prolungamnto di una funzion 9 5 Soluzioni dgli srcizi 9 In qusta dispnsa affrontiamo

Dettagli

METODO DEGLI ELEMENTI FINITI

METODO DEGLI ELEMENTI FINITI Dal libro di tsto Zinkiwicz Taylor, Capitolo 14 pag. 398 Il mtodo dgli lmnti finiti fornisc una soluzion approssimata dl problma lastico; tal approssimazion driva non dall avr discrtizzato il dominio in

Dettagli

Aquauno Video 2 Plus

Aquauno Video 2 Plus Collgr il progrmmtor l ruintto. Aquuno Vio 2 Plus Pg. 1 Gui ll utilizzo 3 START STOP RESET CANCEL 3 4 5 6 3 4 5 6 3 4 5 6 lik! Pr Aquuno Vio 2 (o.): 8454-8428 Pr Aquuno Vio 2 Plus (o.): 8412 Aprir il moulo

Dettagli

e una funzione g ε S f tali che = sup g : g S f tale che h ε f < ε/2; analogamente, per

e una funzione g ε S f tali che = sup g : g S f tale che h ε f < ε/2; analogamente, per C.13 ntgrl di Rimnn Prmttimo il sgunt risultto. Lmm C.13.1 Si f un funzion limitt su = [, b]. Allor f è intgrbil s solo s pr ogni ε > 0 sistono un funzion h ε S + f un funzion g ε S f tli h h ε g ε < ε.

Dettagli

Agenzia regionale per il lavoro Unità organizzativa: Osservatorio regionale del mercato del lavo

Agenzia regionale per il lavoro Unità organizzativa: Osservatorio regionale del mercato del lavo Agnzia rgional pr il lavoro Unità organizzativa: Ossrvatorio rgional dl mrcato dl lavo - Guida oprativa all strazion di dati dal SIL Sardgna scondo lo Standard Multirgional di Dati Amministrativi - Sttmbr

Dettagli

Il campione. Il campionamento. Il campionamento. Il campionamento. Il campionamento

Il campione. Il campionamento. Il campionamento. Il campionamento. Il campionamento Il campion I mtodi di campionamnto d accnno all dimnsioni di uno studio Raramnt in uno studio pidmiologico è possibil saminar ogni singolo soggtto di una popolazion sia pr difficoltà oggttiv di indagin

Dettagli

Esercizi di Algebra Lineare - Fogli 1-2 Corso di Laurea in Matematica 2 ottobre 2016

Esercizi di Algebra Lineare - Fogli 1-2 Corso di Laurea in Matematica 2 ottobre 2016 Esrizi i Algr Linr - Fogli 1-2 Corso i Lur in Mtmti 2 ottor 2016 1. Logi tori lmntr gli insimi Esrizio 1.1 Ngr un ssrzion. Espliitr l ngzion ll sgunti ssrzioni: (P ) ogni stunt i qust ul minornn, oppur

Dettagli

La Formazione in Bilancio delle Unità Previsionali di Base

La Formazione in Bilancio delle Unità Previsionali di Base La Formazion in Bilancio dll Unità Prvisionali di Bas Con la Lgg 3 april 1997, n. 94 sono stat introdott l Unità Prvisionali di Bas (di sguito anch solo UPB), ch rapprsntano un di aggrgazion di capitoli

Dettagli

Studio di funzione. R.Argiolas

Studio di funzione. R.Argiolas Studio di unzion R.Argiolas Introduzion Prsntiamo lo studio dl graico di alcun unzioni svolt durant l srcitazioni dl corso di analisi matmatica I assgnat nll prov scritt. Ringrazio anticipatamnt tutti

Dettagli

Mercato globale delle materie prime: il caso Ferrero

Mercato globale delle materie prime: il caso Ferrero Mrcato global dll matri prim: il caso Frrro Mauro Fontana In un priodo di fort crisi, com qullo ch attualmnt stiamo vivndo, il vincolo dl potr di acquisto di consumatori assum un importanza fondamntal

Dettagli

La dichiarazione annuale IVA e l ottimizzazione della gestione dei crediti

La dichiarazione annuale IVA e l ottimizzazione della gestione dei crediti La chiarazion annual IVA l ottimizzazion dlla gstion di crti L, 13 Marzo 2006 - Assdustria Gnova ASSINDUSTRIA GENOVA Cssion pro soluto di crti Iva Crt Suiss Crt Suiss è lita prsntar a soluzion novativa

Dettagli

BLv. BdA BLvdt. L v c) La fem relativa al primo magnete non cambia; il segno della fem relativa al secondo magnete e` opposto rispetto al punto (a).

BLv. BdA BLvdt. L v c) La fem relativa al primo magnete non cambia; il segno della fem relativa al secondo magnete e` opposto rispetto al punto (a). Elettroinamia Una spira quarata i lato L e` montata su un nastro hiuso he sorre on veloita` v tra le espansioni polari i ue magneti (vei igura). Sia l la lunghezza el nastro e (>L) la larghezza elle espansioni

Dettagli

Compito di Fisica Generale I (Mod. A) Corsi di studio in Fisica ed Astronomia 4 aprile 2011

Compito di Fisica Generale I (Mod. A) Corsi di studio in Fisica ed Astronomia 4 aprile 2011 Compito di Fisica Gnral I (Mod A) Corsi di studio in Fisica d Astronomia 4 april 2011 Problma 1 Du blocchi A B di massa rispttivamnt m A d m B poggiano su un piano orizzontal scabro sono uniti da un filo

Dettagli

Sistemi lineari COGNOME... NOME... Classe... Data...

Sistemi lineari COGNOME... NOME... Classe... Data... Cpitolo Sistmi linri Risoluzion grfi lgri rifi pr l lss prim COGNOME............................... NOME............................. Clss.................................... Dt...............................

Dettagli

ORGANO GOLD PIANO COMPENSI. E Facile, E semplice. E caffè. Italia

ORGANO GOLD PIANO COMPENSI. E Facile, E semplice. E caffè. Italia ORGANO GOLD PIANO COMPENSI E Facil, E smplic. E caffè. Italia INDICE Indic INTRODUZIONE...2 PIANO COMPENSI...3 DEFINIZIONI ED ACRONIMI.4 COME DIVENTARE UN INCARICATO ALLE VENDITE OG...5 I SETTE MODI PER

Dettagli

PROTOCOLLO D INTESA. tra. Prefettura di Roma. Università di Roma La Sapienza. Università degli Studi di Roma Tor Vergata

PROTOCOLLO D INTESA. tra. Prefettura di Roma. Università di Roma La Sapienza. Università degli Studi di Roma Tor Vergata PROTOCOLLO D INTESA tra Prfttura di Roma Univrsità di Roma La Sapinza Univrsità dgli Studi di Roma Tor Vrgata Univrsità dgli Studi Roma Tr 1 PREMESSO ch con dcrto dl Prsidnt dl Consiglio di Ministri dl

Dettagli

ASSESSORATO DELLA PROGRAMMAZIONE, BILANCIO, CREDITO E ASSETTO DEL TERRITORIO Centro Regionale di Programmazione

ASSESSORATO DELLA PROGRAMMAZIONE, BILANCIO, CREDITO E ASSETTO DEL TERRITORIO Centro Regionale di Programmazione ASSESSORATO DELLA PROGRAMMAZIONE, BILANCIO, CREDITO E ASSETTO DEL TERRITORIO Cntro Rgional di Programmazion I n t r POR Sardgna FESR 2007/2013 - ASSE VI COMPETITIVITÀ Lina di attività 6.1.1.A Promozion

Dettagli

COMMISSIONE DELLE COMUNITÀ EUROPEE. Progetto di RACCOMANDAZIONE DELLA COMMISSIONE. del (...)

COMMISSIONE DELLE COMUNITÀ EUROPEE. Progetto di RACCOMANDAZIONE DELLA COMMISSIONE. del (...) COMMISSIONE DELLE COMUNITÀ EUROPEE Bruxlls, xxx COM (2001) yyy final Progtto di RACCOMANDAZIONE DELLA COMMISSIONE dl (...) modificando la raccomandazion 96/280/CE rlativa alla dfinizion dll piccol mdi

Dettagli

Progetto di cinghie trapezoidali

Progetto di cinghie trapezoidali Progo i cinghi rapzoiali L cinghi rapzoiali sono uilizza rqunmn pr la rasmission i ponza Vanaggi Basso coso Smplicià i insallazion Capacià i assorbir vibrazioni orsionali picchi i coppia Svanaggi Mancanza

Dettagli

Regimi di cambio. In questa lezione: Studiamo l economia aperta nel breve e nel medio periodo. Studiamo le crisi valutarie.

Regimi di cambio. In questa lezione: Studiamo l economia aperta nel breve e nel medio periodo. Studiamo le crisi valutarie. Rgimi di cambio In qusta lzion: Studiamo l conomia aprta nl brv nl mdio priodo. Studiamo l crisi valutari. Analizziamo brvmnt l Ar Valutari Ottimali. 279 Il mdio priodo Abbiamo visto ch gli fftti di politica

Dettagli

regola(1,[e,f],b) regola(2,[m,f],e) regola(3,[m],f) regola(4,[b,f],g) regola(5,[b,g],c) regola(6,[g,f],c)

regola(1,[e,f],b) regola(2,[m,f],e) regola(3,[m],f) regola(4,[b,f],g) regola(5,[b,g],c) regola(6,[g,f],c) ESERCIZIO1 PREMESSA Pr risolvr proli spsso sistono dll rol ch, dai dati dl prola, prttono di calcolar o ddurr la soluzion. Qusta situazion si può dscrivr col trin rola(,,)

Dettagli

Misurazione del valore medio di una tensione tramite l uso di un voltmetro numerico

Misurazione del valore medio di una tensione tramite l uso di un voltmetro numerico Misurazion dl valor mdio di una tnsion tramit l uso di un voltmtro numrico La zion si conduc slzionando la funzion dc dllo strumnto collgando i trminali dllo strumnto al gnrator sotto zion: tnndo conto

Dettagli

Svolgimento di alcuni esercizi

Svolgimento di alcuni esercizi Svolgimnto di alcuni srcizi Si ha ch dal momnto ch / tnd a pr ch tnd a (la frazion formata da un numro, in qusto caso il numro, fratto una quantità ch tnd a ±, in qusto caso, tnd smpr a ) S facciamo tndr

Dettagli

SIMT-POS 042 GESTIONE INDICATORI E MIGLIORAMENTO CONTINUO SIMT

SIMT-POS 042 GESTIONE INDICATORI E MIGLIORAMENTO CONTINUO SIMT 1 Prima Stsura Data: 14-08-2014 Rdattori: Gasbarri, Rizzo SIMT-POS 042 GESTIONE INDICATORI E MIGLIORAMENTO CONTINUO SIMT Indic 1 SCOPO... 2 2 CAMPO D APPLICAZIONE... 2 3 DOCUMENTI DI RIFERIMENTO... 2 4

Dettagli

Tariffe delle prestazioni sanitarie nelle diverse regioni italiane. Laura Filippucci

Tariffe delle prestazioni sanitarie nelle diverse regioni italiane. Laura Filippucci Consumatori in cifr Tariff dll prstazioni sanitari nll divrs rgioni italian Laura Filippucci La rcnt proposta dl Govrno di aggiornar il tariffario dll prstazioni sanitari di laboratorio ha sollvato un

Dettagli

Quaderni del Dipartimento di Matematica Università degli Studi di Parma. Francesca Fiorenzi ALBERO BINARIO LIBERO. Novembre 1996 n.

Quaderni del Dipartimento di Matematica Università degli Studi di Parma. Francesca Fiorenzi ALBERO BINARIO LIBERO. Novembre 1996 n. Quadrni dl Dipartimnto di Matmatica Univrsità dgli Studi di Parma Francsca Fiornzi ALBERO BINARIO LIBERO Novmbr 1996 n. 153 1 2 Francsca Fiornzi ALBERO BINARIO LIBERO SOMMARIO Un albro binario libro è

Dettagli

w(r)=w max (1-r 2 /R 2 ) completamente sviluppato in un tubo circolare è dato da wmax R w max = = max

w(r)=w max (1-r 2 /R 2 ) completamente sviluppato in un tubo circolare è dato da wmax R w max = = max 16-1 Copyright 009 Th McGraw-Hill Companis srl RISOLUZIONI CAP. 16 16.1 Nl flusso laminar compltamnt sviluppato all intrno di un tubo circolar vin misurata la vlocità a r R/. Si dv dtrminar la vlocità

Dettagli

Il punto sulla liberalizzazione del mercato postale

Il punto sulla liberalizzazione del mercato postale Il punto sulla libralizzazion dl mrcato postal Andra Grillo Il punto di vista di Post Italian sul procsso di libralizzazion l implicazioni concorrnziali; l carattristich dl srvizio univrsal nll ambito

Dettagli

TIPI TIPI DI DI DECADIMENTO RADIOATTIVO --ALFA

TIPI TIPI DI DI DECADIMENTO RADIOATTIVO --ALFA TIPI TIPI DI DI DECDIMENTO RDIOTTIVO --LF LF Dcadimnto alfa: il nuclo instabil mtt una particlla alfa (), ch è composta da du protoni du nutroni (un nuclo di 4 H), quindi una particlla carica positivamnt.

Dettagli

POTENZE NECESSARIE E DISPONIBILI

POTENZE NECESSARIE E DISPONIBILI POTENZE NECESSARIE E DISPONIBILI In qusto capitolo ci proponiamo di dtrminar l curv dll potnz ncssari pr l vari condizioni di volo. Tali curv dipndranno da divrsi fattori com il pso dl vlivolo, la quota,

Dettagli

la mente cosciente... oltre i neuroni?

la mente cosciente... oltre i neuroni? la mnt coscint... oltr i nuroni? smbra ch ci sia un problma insolubil pr la scinza! com puo il mondo fisico produrr qualcosa con l carattristich dlla mnt coscint? un problma cosi difficil ch qualcuno lo

Dettagli

CURVE DI PROBABILITÀ PLUVIOMETRICA Le curve di probabilità pluviometrica esprimono la relazione fra le altezze di precipitazione h e la loro durata

CURVE DI PROBABILITÀ PLUVIOMETRICA Le curve di probabilità pluviometrica esprimono la relazione fra le altezze di precipitazione h e la loro durata CURVE DI PROBABILITÀ PLUVIOMETRICA L curv di probabilità pluviomtrica sprimono la rlazion fra l altzz di prcipitazion h la loro durata t, pr un assgnato valor dl priodo di ritorno T. Tal rlazion vin spsso

Dettagli

Corso di Laurea in Ingegneria Informatica. Corso di Reti di Calcolatori (a.a. 2010/11)

Corso di Laurea in Ingegneria Informatica. Corso di Reti di Calcolatori (a.a. 2010/11) orso di Laura in Inggnria Informatica orso di Rti di alcolatori (a.a. /) Robrto anonico (robrto.canonico@unina.it) Giorgio Vntr (giorgio.vntr@unina.it) lgoritmo di ijkstra novmbr I lucidi prsntati al corso

Dettagli

Spettro roto-vibrazionale di HCl (H 35 Cl, H 37 Cl )

Spettro roto-vibrazionale di HCl (H 35 Cl, H 37 Cl ) Spttro roto-vibrazional di HCl (H 5 Cl, H 7 Cl ) SCOPO: Misurar l nrgi dll transizioni vibro-rotazionali dll acido cloridrico gassoso utilizzar qust nrgi pr calcolar alcuni paramtri molcolari spttroscopici.

Dettagli

6) Nel 1991 Carl Lewis ha stabilito il record del mondo dei 100 m percorrendoli in 9,86 s. Qual è la velocità media in km/h?

6) Nel 1991 Carl Lewis ha stabilito il record del mondo dei 100 m percorrendoli in 9,86 s. Qual è la velocità media in km/h? 1) L unità l SI pr l tmprtur l mss sono, rispttivmnt gri grmmi klvin kilogrmmi Clsius milligrmmi Clsius kilogrmmi klvin grmmi 2) Qul mtril ffon nll olio ( = 0,94 g/m 3 )? ghiio ( = 0,92 g/m 3 ) sughro

Dettagli

x 1 x 2 Studiare e disegnare il grafico delle seguenti funzioni Esercizio no.1 Soluzione a pag.2 Esercizio no.2 Soluzione a pag.4

x 1 x 2 Studiare e disegnare il grafico delle seguenti funzioni Esercizio no.1 Soluzione a pag.2 Esercizio no.2 Soluzione a pag.4 Edutcnica.it Studio di funzioni Studiar disgnar il grafico dll sgunti funzioni Esrcizio no. Soluzion a pag. Esrcizio no. Soluzion a pag. y 5 y Esrcizio no. Soluzion a pag.6 Esrcizio no. Soluzion a pag.8

Dettagli

Big Switch: prospettive nel mercato elettrico italiano

Big Switch: prospettive nel mercato elettrico italiano Big Switch: prospttiv nl mrcato lttrico italiano Ottavio Slavio I mrcati lttrici libralizzati non smpr consntono ai consumatori finali di trarr vantaggio dalla concorrnza tra i produttori. Il caso ingls

Dettagli

Procedura Operativa Standard. Internal Dealing. Rev. 0 In vigore dal 28 marzo 2012 COMITATO DI CONTROLLO INTERNO. Luogo Data Per ricevuta

Procedura Operativa Standard. Internal Dealing. Rev. 0 In vigore dal 28 marzo 2012 COMITATO DI CONTROLLO INTERNO. Luogo Data Per ricevuta REDATTO: APPROVATO: APPROVATO: INTERNAL AUDITOR COMITATO DI CONTROLLO INTERNO C.D.A. Luogo Data Pr ricvuta INDICE 1.0 SCOPO E AMBITO DI APPLICAZIONE 2.0 RIFERIMENTI NORMATIVI 3.0 DEFINIZIONI 4.0 RUOLI

Dettagli

1. DIREZIONE LAVORI. IIIa

1. DIREZIONE LAVORI. IIIa SCHEMA DI CALCOLO DEGLI ONORARI DEL SERVIZIO DI DIREZIONE LAVORI, MISURA E CONTABILITA E COORDINATORE PER LA SICUREZZA IN FASE DI ESECUZIONE DEI LAVORI COSTRUZIONE NUOVO OSPEDALE ALTA TECNOLOGIA NELLA

Dettagli

Grandezze, funzioni empiriche e matematiche. 1 Stabilisci se le seguenti affermazioni sono vere o false.

Grandezze, funzioni empiriche e matematiche. 1 Stabilisci se le seguenti affermazioni sono vere o false. Grnzz unzioni Grnzz, unzioni mpirih mtmtih Grnzz irttmnt invrsmnt proporzionli Applizioni ll proporzionlità Grnzz, unzioni mpirih mtmtih Stilisi s l sunti rmzioni so vr o ls. SZ. I Un rnzz è vriil s ssum

Dettagli

Quale quantità produrre? Massimizzazione del profitto e offerta concorrenziale. Il significato della concorrenza. Il significato della concorrenza

Quale quantità produrre? Massimizzazione del profitto e offerta concorrenziale. Il significato della concorrenza. Il significato della concorrenza Qual quantità produrr? Massimizzazion dl profitto offrta concorrnzial In ch modo l imprsa scgli il livllo di produzion ch massimizza il profitto. Com l sclt di produzion dll singol imprs contribuiscono

Dettagli

12. Funzioni differenziabili

12. Funzioni differenziabili . Funzioni irnziabili L unzioni continu in un punto si possono rossolanamnt inir com qull unzioni c assumono vicino al punto valori prossimi al valor assunto proprio in. Siamo cioè al livllo più lmntar

Dettagli

LA LEGGE DI BATH E LA DISTRIBUZIONE DI GUTENBERG-RICHTER

LA LEGGE DI BATH E LA DISTRIBUZIONE DI GUTENBERG-RICHTER GGTS Atti l Convgno azional /.8 R. Consol,. urru A.. Lombari Istituto azional i Gofisia Vulanologia, Roma LA LEGGE I BATH E LA ISTRIBUZIOE I GUTEBERG-RICHTER Riassunto. Assumno h l magnituo i tutti gli

Dettagli

Opuscolo sui sistemi. Totogoal

Opuscolo sui sistemi. Totogoal Opuscolo sui sistmi Totogoal Più info Conoscnz calcistich pr vincr Jackpot alti Informazioni dttagliat costantmnt aggiornat sul Totogoal, sui programmi Toto sui risultati rpribili su Tltxt, a partir dalla

Dettagli

SIMATIC WinCC V7.0 SP1 ARCHITETTURE

SIMATIC WinCC V7.0 SP1 ARCHITETTURE SIMATIC V7.0 SP1 ARCHITETTURE Vrsion 1.5 SIMATIC Architttur Novità in qusta prsntazion Connctivity Pack puntualizzazioni aggiunta i una sli con Connctivity Pack in caso i conigurazion clint-srvr. N.B.

Dettagli