Esercizi relativi al capitolo 2

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Esercizi relativi al capitolo 2"

Transcript

1 Esercizi relativi al capitolo. Funzioni pari e dispari Stabilire se le seguenti funzioni sono pari, dispari o né pari né dispari.. f (x) = x 4 x. f (x) = 3 x 3 + x 3. f (x) = x3 3 x+x 4. f (x) = x sin x 5. f (x) = x 6. f (x) = x f (x) = e x e x 8. f (x) = ln ( x 4 ) 9. f (x) = e x +x 0. f (x) = x + x. f (x) = x sin x. f (x) = e x e x 3. f (x) = x cos x 4. f (x) = ln x +x 5. f (x) = lnx 6. f (x) = x(cos x + sin x) Soluzioni. f è pari. f è dispari 3. f è pari 4. f è dispari 5. f è pari 6. f non è pari né dispari

2 7. f è dispari 8. f è pari 9. f è pari 0. f non è pari né dispari. f è dispari. f è dispari 3. f è dispari 4. f è dispari 5. f non è pari né dispari 6. f non è né pari né dispari. Funzione composta. Date le funzioni f(x) = x 3 e g(x) = x determinare f g(x), g f(x), f f(x), g g(x).. Date le funzioni f(x) = x e g(x) = e x determinare f g(x), g f(x), f f(x). 3. Sia f(x) = e x. Scrivere l'espressione analitica di f( x), f(x), f(x ), f(x) +, f(x), f( x ), f( x ), f( + x ), + f( x ). 4. Siano f(x) e g(x) due funzioni dispari. Stabilire se f g(x) è pari o dispari. 5. Siano f(x) una funzione crescente e g(x) una funzione decrescente. Stabilire se f g(x) è crescente o decrescente. 6. Sia q(x) = 3 + ln (x ). Determinare tre funzioni f, g e h tali che q(x) = f g h(x). Soluzioni. f g(x) = ( x ) 3, g f(x) = x 3, f f(x) = x 9, g g(x) = x ;. f( x) = e x, f(x) = e x, f(x ) = e x, f(x) + = e x +, f(x) = e x, f( x ) = e x, f( x ) = e x, f( + x ) = e + x, + f( x ) = + e x ; 3. f g(x) = e x, g f(x) = e x, f f(x) = ( x ) = x x 4 ; 4. f g(x) risulta dispari;

3 3 5. f g(x) risulta decrescente; 6. f(x) = 3 + x, g(x) = lnx e h(x) = x..3 Funzioni invertibili Delle seguenti funzioni determinare, se esiste, la funzione inversa f ed il suo dominio.. f(x) = 3x;. f(x) = x x; 3. f(x) = 3 x ; 4. f(x) = x f(x) = 3 x ; 6. f(x) = x x+3 ; 7. f(x) = e x ; 8. f(x) = 3 x ; 9. f(x) = ln(x + 4); 0. f(x) = 4 5 3x ; Soluzioni. f (x) = x 3, D f = Im f = R;. f non è invertibile; 3. f (x) = x 3 +, D f = Im f = R; 4. f non è invertibile; 5. f (x) = x 3, D f = Im f = R\ 0}; 6. f (x) = 3x x, D f = Im f = R\}; 7. f (x) = lnx, D f = Im f = (0, + ); 8. f non è invertibile; 9. f (x) = e x 4, D f = Im f = R; 0. f (x) = 3 log 54y, D f = Im f = (0, + ).

4 4.4 Funzioni iniettive, suriettive e monotone Dopo avere rappresentato gracamente le seguenti funzioni, stabilire se esse sono monotone, iniettive e suriettive (sull'insieme R dei numeri reali). Determinarne inoltre l'insieme immagine (Im f ).. f(x) = + x ; + x x < 0. f(x) = 0 x ; x x > x 3 x 3. f(x) = x 4 x > ; 4. f(x) = 5. f(x) = 6. f(x) = 7. f(x) = 8. f(x) = x 3 x < 0 x x 0 ; x + x lnx x > ; e x x 0 3x + x > 0 ; x x < 0 x x 0 ; x x x x > ; x x 9. f(x) = x x > ; 3 x x 0. f(x) = x x > ;

5 5 Soluzioni 3. f non è iniettiva, non è suriettiva, né monotona, Im f = [, + ); f non è iniettiva, è suriettiva, monotona non decrescente, Im f = R; f è iniettiva, suriettiva, monotona crescente, Im f = R; f è iniettiva, suriettiva, monotona crescente, Im f = R;

6 f non è iniettiva, non è suriettiva, né monotona, Im f = [0, + ); f è iniettiva, non è suriettiva, è monotona crescente, Im f = (0, + ); f è iniettiva, suriettiva, monotona decrescente, Im f = R; f è iniettiva, non è suriettiva, è monotona decrescente, Im f = (, 0);

7 7 f non è iniettiva, non è suriettiva, né monotona, Im f = [, ]; f è iniettiva, suriettiva, monotona crescente, Im f = R;.5 Trasformazioni di funzioni note Dopo aver rappresentato gracamente le seguenti funzioni si stabilisca se esse risultano inettive, suriettive sull'insieme R, invertibili sul loro insieme immagine.. f(x) = x 3 + ;. f(x) = e x+ ; 3. f(x) = x ; 4. f(x) = x ; 5. f(x) = (x + ) 3 ; 6. f(x) = ln( x) ; 7. f(x) = min 0, x }; 8. f(x) = max e x, x 3 + } ; 9. f(x) = min e x, x }; 0. f(x) = ln(x + 3);. f(x) = max x x, 0 } ;. f(x) = e x+ ; 3. f(x) = ln( x ); 4. f(x) = ln( x + ); 5. f(x) = x 4 6. f(x) = (x 3) 3 + ; 7. f(x) = max } x, 3x + ; 8. f(x) = min } x, 3x + ;

8 8 9. f(x) = 3 X ; 0. f(x) = + sinx ; Soluzioni f non è iniettiva quindi non è invertibile, non è suriettiva e Im f = [, + ); f è iniettiva e quindi invertibile su Im f = (, ), non è suriettiva; (, ]; [, + );

9 f è iniettiva e invertibile su Im f = R, è quindi suriettiva; [0, + ); (, 0]; [, + );

10 f è iniettiva e quindi invertibile su Im f = (, + ), non è suriettiva; f è iniettiva e invertibile su Im f = R, è quindi suriettiva; [0, 4 ]; [0, + );

11 f non è iniettiva e quindi non è invertibile, è suriettiva e Im f = R; [ln, + ); [0, + ); [0, + );

12 f è iniettiva e invertibile su Im f = R, è quindi suriettiva; (, ); [ 3, ); [, ];.6 Dominio di una funzione Si determini il dominio delle seguenti funzioni:. f(x) = x x 3 ;

13 3. f(x) = x+ x 5x+6 ; 3. f(x) = x x+4 ; 4. f(x) = 3 x ; 5. f(x) = 3 cosx; 6. f(x) = + x ; 7. f(x) = x ; 8. f(x) = 3 x+ ; 9. f(x) = e x ; 0. f(x) = e x ;. f(x) = +e x ;. f(x) = 3+x e x ; 3. f(x) = (x + x)e x ; 4. f(x) = ln( x+ x 3 ); 5. f(x) = ln x 5 ; 6. f(x) = lnx lnx ; 7. f(x) = x ln x+lnx ; 8. f(x) = sinx ; 9. f(x) = cosx; 0. f(x) = cosxsinx ;. f(x) = cos x + sin x;. f(x) = sinx x ; 3. f(x) = ln(x x ); 4. f(x) = e 3 3x 5. f(x) = ln( x) ; x 6. f(x) = lnx; 7. f(x) = ( x x ) x ;

14 4 8. f(x) = ex +e x e x e x ; 9. f(x) = ln(x 4 + 3x); 30. f(x) = sinx; 3. f(x) = ln( cosx ); Soluzioni. D f = (, ) (, + );. D f = (, ) (, 3) (3, + ); 3. D f = (, 4) ( 4, + ); 4. D f = [ 3, 3]; 5. D f = R; 6. D f = R; 7. D f = (, ) (, + ); 8. D f = (, ) (, + ); 9. D f = R; 0. D f = [, + );. D f = R;. D f = (, ln) (ln, + ); 3. D f = (, 0) (0, + ); 4. D f = (, ) (3, + ); 5. D f = (, 5 ) ( 5, + ); 6. D f = (, e) ( e, + ); 7. D f = (, e ) ( e, ) (, + ); 8. D f = R \ kπ} k Z = (kπ, (k + )π); k Z 9. D f = [(k ) π, (k + ) π ]; k Z 0. D f = R \ k π }k Z = [k π, (k + ) π ];. D f = R; k Z

15 5. D f = (, 0) (0, + ); 3. D f = (0, ); 4. D f = R; 5. D f = (, 0) (0, ); 6. D f = (, + ); 7. D f = (, 0) (0, ); 8. D f = (, 0) (0, + ); 9. D f = (4, + ); 30. D f = R; 3. D f = R \ kπ} k Z = (kπ, (k + )π); k Z Date le funzioni f(x) = x, g(x) = sinx, h(x) = lnx e z(x) = e x+. Determinare il dominio delle seguenti funzioni:.. h(x) f(x) ; z(x) h(x) ; 3. z f(x); 4. f z(x); 5. h f(x); 6. f h(x); 7. f g(x); Soluzioni. D f = (0, ) (, + );. D f = (0, ) (, + ); 3. D f = [0, + ); 4. D f = R; 5. D f = (, + ); 6. D f = [, + ); 7. D f = (kπ, (k + )π); k Z

FUNZIONI ELEMENTARI Test di autovalutazione

FUNZIONI ELEMENTARI Test di autovalutazione FUNZIONI ELEMENTARI Test di autovalutazione 1 E data la funzione f(x) = sin(2x 5) Allora: (a) dom (f) = {x IR : 1 2x 5 1} (b) im (f) = [ 1, 1] (c) f ha periodo T= π 5 (d) f ha periodo T= 2π 5 2 La funzione

Dettagli

Funzioni e loro proprietà. Immagini e controimmagini. Funzioni composte e inverse. Funzioni elementari Quiz

Funzioni e loro proprietà. Immagini e controimmagini. Funzioni composte e inverse. Funzioni elementari Quiz Funzioni e loro proprietà. Immagini e controimmagini. Funzioni composte e inverse. Funzioni elementari Quiz Rispondere ai seguenti quesiti. Una sola risposta e corretta. 1. Le due funzioni f(x) = ln(x

Dettagli

Esercizi riassuntivi per la prima prova di verifica di Analisi Matematica. n, n IN.

Esercizi riassuntivi per la prima prova di verifica di Analisi Matematica. n, n IN. Esercizi riassuntivi - B. Di Bella 1 Esercizi riassuntivi per la prima prova di verifica di Analisi Matematica 1. Sia A = n IN ] 1 n + 1, 1 [. n a) Determinare il derivato e l interno di A; b) stabilire

Dettagli

Campo di Esistenza. Il campo di esistenza di una funzione f è il dominio più grande su cui ha significato la legge f.

Campo di Esistenza. Il campo di esistenza di una funzione f è il dominio più grande su cui ha significato la legge f. Campo di Esistenza Il campo di esistenza di una funzione f è il dominio più grande su cui ha significato la legge f. ESERCIZIO. Determinare il campo di esistenza della funzione f(x) = 9+2x. Soluzione:

Dettagli

Insiemi limitati Funzioni limitate, massimo e minimo Funzioni suriettive, iniettive e biiettive Funzione inversa Funzioni monotone Funzioni composte

Insiemi limitati Funzioni limitate, massimo e minimo Funzioni suriettive, iniettive e biiettive Funzione inversa Funzioni monotone Funzioni composte Limiti e continuità Richiami sulle unzioni - parte II Insiemi limitati Funzioni limitate, massimo e minimo Funzioni suriettive, iniettive e biiettive Funzione inversa Funzioni monotone Funzioni composte

Dettagli

FUNZIONI E LORO PROPRIETA'

FUNZIONI E LORO PROPRIETA' FUNZIONI E LORO PROPRIETA' Definizione: Dati due insiemi A e B si dice funzione di A in B una qualunque legge che faccia corrispondere ad ogni elemento di A uno ed un solo elemento di B. Si indica con

Dettagli

Funzione Composta. Date due funzioni g : A B e f : B C si può definire la funzione composta: notazione funzionale y = f (g(x))

Funzione Composta. Date due funzioni g : A B e f : B C si può definire la funzione composta: notazione funzionale y = f (g(x)) Funzione Composta Date due funzioni g : A B e f : B C si può definire la funzione composta: f g : A C g() f (g()) notazione funzionale = f (g()) La composizione ha senso se il valore g() appartiene al

Dettagli

Criterio di Monotonia

Criterio di Monotonia Criterio di Monotonia Criterio di monotonia: se f è una funzione derivabile in (a,b), si ha: f (x) 0 x (a,b) f è debolmente crescente in (a,b) f (x) 0 x (a,b) f è debolmente decrescente in (a,b) Nota:

Dettagli

05 - Funzioni di una Variabile

05 - Funzioni di una Variabile Università degli Studi di Palermo Facoltà di Economia Dipartimento di Scienze Economiche, Aziendali e Statistiche Appunti del corso di Matematica 05 - Funzioni di una Variabile Anno Accademico 2015/2016

Dettagli

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio. Esercizi svolti 1. Sia sin(x ) f(x) = x ( 1 + x 1 ) se x > 0 a x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.. Scrivere l equazione della retta tangente nel punto di ascissa

Dettagli

Esercizio 1. Sia f(x) = sin x, g(x) = log x. La funzione g(f 2 (x)) è. A log(sin 2 x); B log sin x ; C log(sin x 2 ); D sin log x 2.

Esercizio 1. Sia f(x) = sin x, g(x) = log x. La funzione g(f 2 (x)) è. A log(sin 2 x); B log sin x ; C log(sin x 2 ); D sin log x 2. 1 Esercizio 1. Sia f(x) = sin x, g(x) = log x. La funzione g(f 2 (x)) è A log(sin 2 x); B log sin x ; C log(sin x 2 ); D sin log x 2. Esercizio 2. Sia f(x) = sin(log x ). Questa funzione è Esercizio 3.

Dettagli

Analisi Matematica I DISEQUAZIONI Risposte Pagina Es. 1 Es. 2 Es. 3 Es. 4 Es. 5 1

Analisi Matematica I DISEQUAZIONI Risposte Pagina Es. 1 Es. 2 Es. 3 Es. 4 Es. 5 1 Analisi Matematica I DISEQUAZIONI Risposte Pagina Es. Es. Es. 3 Es. 4 Es. 5 AVVERTENZA: Scrivere le risposte scelte nello spazio in alto a destra. In ogni esercizio una sola risposta è corretta. Esercizio.

Dettagli

Analisi Matematica 1 (Modulo) Prove Parziali A.A. 1999/2008

Analisi Matematica 1 (Modulo) Prove Parziali A.A. 1999/2008 Analisi 1 Polo di Savona Analisi Matematica 1 (Modulo) Prove Parziali A.A. 1999/2008 1- PrA1.TEX [] Analisi 1 Polo di Savona Prima prova Parziale 21/10/1998 Prima prova Parziale 21/10/1998 Si consideri

Dettagli

Quale delle funzioni elencate ha il grafico in figura? 1) f(x)= e x /x +1 2) f(x)= logx/x 3) f(x)= e x /x 4) f(x)= e x /(x-2)

Quale delle funzioni elencate ha il grafico in figura? 1) f(x)= e x /x +1 2) f(x)= logx/x 3) f(x)= e x /x 4) f(x)= e x /(x-2) Quale delle funzioni elencate ha il grafico in figura? 1) f(x)= e x /x +1 2) f(x)= logx/x 3) f(x)= e x /x 4) f(x)= e x /(x-2) SOLUZIONE: Si esclude la 4) perché non è definita per x=2 e la 2) perché definita

Dettagli

ESERCITAZIONE: ESPONENZIALI E LOGARITMI

ESERCITAZIONE: ESPONENZIALI E LOGARITMI ESERCITAZIONE: ESPONENZIALI E LOGARITMI e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Esercizio 1 In una coltura batterica, il numero di batteri triplica ogni ora. Se all inizio dell osservazione

Dettagli

Coordinate Cartesiane nel Piano

Coordinate Cartesiane nel Piano Coordinate Cartesiane nel Piano O = (0,0) origine degli assi x ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi x, y sistemi dimetrici: unità di misura diverse sui due assi

Dettagli

Università degli Studi della Calabria Facoltà di Ingegneria. 17 luglio 2012

Università degli Studi della Calabria Facoltà di Ingegneria. 17 luglio 2012 Università degli Studi della Calabria Facoltà di Ingegneria Correzione della Seconda Prova Scritta di nalisi Matematica 7 luglio cura dei Prof. B. Sciunzi e L. Montoro. Seconda Prova Scritta di nalisi

Dettagli

ESERCIZI INTRODUTTIVI

ESERCIZI INTRODUTTIVI ESERCIZI INTRODUTTIVI () Data la proposizione p: Tutti gli uomini hanno la coda, discutere la validità delle seguenti proposte di negazione di p: (i) non tutti gli uomini hanno la coda; (ii) nessun uomo

Dettagli

Svolgimento degli esercizi del Capitolo 2

Svolgimento degli esercizi del Capitolo 2 2.1 Analisi Matematica 2 a edizione Svolgimento degli esercizi del Capitolo 2 a) Si ha x 2 + 1 1 per ogni x R, quindi im f [1,+ ). D altra parte, per ogni y 1 esiste x R tale che x 2 + 1=y (x=± y 1), quindi

Dettagli

{ x + 2y = 3 αx + 2y = 1 αx + y = 0. f(x) = e x 2 +3x+4 x 5. f(x) = x 3 e 7x.

{ x + 2y = 3 αx + 2y = 1 αx + y = 0. f(x) = e x 2 +3x+4 x 5. f(x) = x 3 e 7x. 0 Gennaio 006 Teoria: Definizione di derivata puntuale e suo significato geometrico Esercizio Determinare l equazione del piano contenente i vettori u = (,, 3 e v = (,, e passante per P o = (,, Scrivere

Dettagli

Esercizi di Analisi Matematica I

Esercizi di Analisi Matematica I Esercizi di Analisi Matematica I (corso tenuto dal Prof Alessandro Fonda) Università di Trieste, CdL Fisica e Matematica, aa 2012/2013 1 Principio di induzione 1 Dimostrare che per ogni numero naturale

Dettagli

Università di Roma Tor Vergata Corso di Laurea in Ingegneria Edile-Architettura e dell Edilizia Analisi Matematica I Prova Scritta del 8.2.

Università di Roma Tor Vergata Corso di Laurea in Ingegneria Edile-Architettura e dell Edilizia Analisi Matematica I Prova Scritta del 8.2. Analisi Matematica I Prova Scritta del 822013 1 Data la funzione f(x) = x + 1 + x + ln ( ) 2x + 1 x 1 (a) Studiare il dominio di definizione e l esistenza di eventuali asintoti orizzontali/verticali/obliqui

Dettagli

FUNZIONI E INSIEMI DI DEFINIZIONE

FUNZIONI E INSIEMI DI DEFINIZIONE FUNZIONI E INSIEMI DI DEFINIZIONE In matematica, una funzione f da X in Y consiste in: ) un insieme X detto insieme di definizione I.d.D. (o dominio) di f 2) un insieme Y detto codominio di f 3) una legge

Dettagli

Limiti e continuità Test di autovalutazione

Limiti e continuità Test di autovalutazione Test di autovalutazione 1. Sia A R tale che sup A = 2 e inf A = 0. Allora, necessariamente 2 A (b) esiste x A tale che 0 < x < 2 (c) esiste x A tale che x > 1 0 A 2. Il prodotto delle funzioni x e ln x

Dettagli

FUNZIONI ELEMENTARI Esercizi risolti

FUNZIONI ELEMENTARI Esercizi risolti FUNZIONI ELEMENTARI Esercizi risolti 1 Discutendo graficamente la disequazione x > 3+x, verificare che l insieme delle soluzioni è un intervallo e trovarne gli estremi Rappresentare nel piano x, y) l insieme

Dettagli

Funzioni e grafici. prof. Andres Manzini

Funzioni e grafici. prof. Andres Manzini Università degli studi di Modena e Reggio Emilia Dipartimento di Scienze e Metodi dell Ingegneria Corso MOOC Iscriversi a Ingegneria Reggio Emilia Introduzione Definizione Si dice funzione (o applicazione)

Dettagli

Matematica di base. Lezioni in Aula D5 ogni Venerdi alle 14:30 BLOG: matematicadibase.wordpress.com

Matematica di base. Lezioni in Aula D5 ogni Venerdi alle 14:30 BLOG: matematicadibase.wordpress.com Matematica di base Lezioni in Aula D5 ogni Venerdi alle 14:30 BLOG: matematicadibase.wordpress.com Calendario 21 Ottobre Aritmetica ed algebra elementare 28 Ottobre Geometria elementare 4 Novembre Insiemi

Dettagli

Funzioni Esercizi e complementi

Funzioni Esercizi e complementi Funzioni Esercizi e complementi e-mail: maurosaita@tiscalinet.it Novembre 05. Indice Esercizi Insiemi ininiti 6 Suggerimenti e risposte 9 Esercizi. Scrivere la deinizione di unzione e ornire almeno un

Dettagli

1. Funzioni e grafici elementari

1. Funzioni e grafici elementari 1. Funzioni e grafici elementari Davide Catania davide.catania@unibs.it Esercitazioni di Analisi Matematica 1 A.A. 2016/17 Funzioni e grafici Grafici deducibili Funzioni periodiche Funzioni simmetriche

Dettagli

1. FUNZIONI IN UNA VARIABILE

1. FUNZIONI IN UNA VARIABILE 1. FUNZIONI IN UNA VARIABILE Definizione: Dati due insiemi A, B chiamiamo funzione da A in B ogni, f, applicazione (legge, corrispondenza) che associa ad ogni elemento di A uno ed uno solo elemento di

Dettagli

Lezione 6 (16/10/2014)

Lezione 6 (16/10/2014) Lezione 6 (16/10/2014) Esercizi svolti a lezione Esercizio 1. La funzione f : R R data da f(x) = 10x 5 x è crescente? Perché? Soluzione Se f fosse crescente avrebbe derivata prima (strettamente) positiva.

Dettagli

MATEMATICA GENERALE Corsi di laurea EA, ELI, EMIF PROVA INTERMEDIA del 4 novembre 2010 Cognome Nome.................................................... Matricola.......................... Anno di Corso..........................................

Dettagli

Numeri Complessi. 4. Ricordando che, se z è un numero complesso, zz è un numero reale, mettere sotto la forma. z 2 + 2z + 2 = 0. z 2 + 2z + 6 = 0.

Numeri Complessi. 4. Ricordando che, se z è un numero complesso, zz è un numero reale, mettere sotto la forma. z 2 + 2z + 2 = 0. z 2 + 2z + 6 = 0. Numeri Complessi. Siano z = + i e z 2 = i. Calcolare z + z 2, z z 2, z z 2 e z z 2. 2. Siano z = 2 5 + i 2 e z 2 = 5 2 2i. Calcolare z + z 2, z z 2, z z 2 e z z 2. 3. Ricordando che, se z è un numero complesso,

Dettagli

Matematica per l Economia Sottoinsieme L-Z Dipartimento di Economia Universitá degli Studi di Bari 4) FUNZIONI ELEMENTARI.

Matematica per l Economia Sottoinsieme L-Z Dipartimento di Economia Universitá degli Studi di Bari 4) FUNZIONI ELEMENTARI. Matematica per l Economia Sottoinsieme L-Z Dipartimento di Economia Universitá degli Studi di Bari 4) FUNZIONI ELEMENTARI Giovanni Villani FUNZIONI ELEMENTARI Funzione potenza con esponente n N Si definisce

Dettagli

Quale delle funzioni elencate ha il grafico in figura? 1) f(x)=x 3-2 2) f(x)= x 3-2x 2 -(x-2) 3) f(x)= x 3-2x 2 + x-2 4) f(x)= x 4 -x 2-2

Quale delle funzioni elencate ha il grafico in figura? 1) f(x)=x 3-2 2) f(x)= x 3-2x 2 -(x-2) 3) f(x)= x 3-2x 2 + x-2 4) f(x)= x 4 -x 2-2 Quale delle funzioni elencate ha il grafico in figura? 1) f(x)=x 3-2 2) f(x)= x 3-2x 2 -(x-2) 3) f(x)= x 3-2x 2 + x-2 4) f(x)= x 4 -x 2-2 SOLUZIONE: Si esclude subito la funzione 2) perché per x=0 vale

Dettagli

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti Discutendo graficamente la disequazione x > 3 + x, verificare che l insieme delle soluzioni è un intervallo e trovarne

Dettagli

Esercizi per il corso di Matematica e Laboratorio

Esercizi per il corso di Matematica e Laboratorio Esercizi per il corso di Matematica e Laboratorio Corso di Laurea in Scienze Vivaistiche, ambiente e gestione del verde Prof. Lorenzo Fusi 5 settembre 01 Indice 1 Esercizi sulla retta Esercizi sulla parabola

Dettagli

Calcolo differenziale Test di autovalutazione

Calcolo differenziale Test di autovalutazione Test di autovalutazione 1. Sia f : R R iniettiva, derivabile e tale che f(1) = 3, f (1) = 2, f (3) = 5. Allora (a) (f 1 ) (3) = 1 5 (b) (f 1 ) (3) = 1 2 (c) (f 1 ) (1) = 1 2 (d) (f 1 ) (1) = 1 3 2. Sia

Dettagli

Politecnico di Torino II Facoltà di Architettura - 5 Luglio 2011 Esercizio 1. Sono date le matrici 2 1, B = 1 4

Politecnico di Torino II Facoltà di Architettura - 5 Luglio 2011 Esercizio 1. Sono date le matrici 2 1, B = 1 4 A Politecnico di Torino II Facoltà di Architettura - 5 Luglio 20 Esercizio. Sono date le matrici A = ( ) 2, B = 4 ( ). 2 a) Calcolare la matrice A. b) Enunciare ed applicare la regola di Cramer per determinare

Dettagli

CONTINUITÀ E DERIVABILITÀ Esercizi risolti

CONTINUITÀ E DERIVABILITÀ Esercizi risolti CONTINUITÀ E DERIVABILITÀ Esercizi risolti. Determinare [cos x] x kπ/ al variare di k in Z. Ove tale ite non esista, discutere l esistenza dei iti laterali. Identificare i punti di discontinuità della

Dettagli

f il sottoinsieme D f di A dei valori che può assumere la variabile indipendente x. Talvolta indicheremo il dominio della funzione f con dom (f).

f il sottoinsieme D f di A dei valori che può assumere la variabile indipendente x. Talvolta indicheremo il dominio della funzione f con dom (f). Liceo Scientico Paritario Ven. A. Luzzago di Brescia. Classe 5A - Anno Scolastico 2014/2015 - Prof. Simone Alghisi 1 Le funzioni (1.1) Denizione Siano A e B due insiemi. Una funzione f : A B é una legge

Dettagli

Funzione Esponenziale

Funzione Esponenziale Funzione Esponenziale y y O f : R (0,+ ), f(x) = a x con a > a 0 =, a = a a x > 0 x R strettamente crescente: x < x 2 a x < ax 2 se x tende a +, a x tende a + se x tende a, a x tende a 0 x O f : R (0,+

Dettagli

Esercizi Matematica 3

Esercizi Matematica 3 Esercizi Matematica 3 Dipartimento di Matematica ITIS V.Volterra San Donà di Piave Versione [1/13] Introduzione Gli esercizi presentati in questo volume, seguono la stessa struttura capitolo, sezione,

Dettagli

Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y

Funzioni. iniettiva se x y = f (x) f (y) o, equivalentemente, f (x) = f (y) = x = y Funzioni. Dati due insiemi A e B (non necessariamente distinti) si chiama funzione da A a B una qualunque corrispondenza (formula, regola) che associa ad ogni elemento di A uno ed un solo elemento di B.

Dettagli

Verica di Matematica su dominio e segno di una funzione [COMPITO 1]

Verica di Matematica su dominio e segno di una funzione [COMPITO 1] Verica di Matematica su dominio e segno di una funzione [COMPITO 1] Esercizio 1. Determinare il dominio delle seguenti funzioni: 1. y = 16 x ;. y = e 1 x +4 + x + x + 1; 3. y = 10 x x 3 4x +3x; 4. y =

Dettagli

Matematica per l Economia Sottoinsieme L-Z Dipartimento di Economia Universitá degli Studi di Bari 3) FUNZIONI. Giovanni Villani

Matematica per l Economia Sottoinsieme L-Z Dipartimento di Economia Universitá degli Studi di Bari 3) FUNZIONI. Giovanni Villani Matematica per l Economia Sottoinsieme L-Z Dipartimento di Economia Universitá degli Studi di Bari 3) FUNZIONI Giovanni Villani FUNZIONI Definizione 1 Assegnati due insiemi A e B, si definisce funzione

Dettagli

1 Funzioni reali di una variabile reale

1 Funzioni reali di una variabile reale 1 Funzioni reali di una variabile reale Qualche definizione e qualche esempio che risulteranno utili più avanti Durante tutto questo corso studieremo funzioni reali di una variabile reale, cioè Si ha f

Dettagli

Corso di Laurea in Ingegneria Edile Anno Accademico 2013/2014 Analisi Matematica

Corso di Laurea in Ingegneria Edile Anno Accademico 2013/2014 Analisi Matematica Corso di Laurea in Ingegneria Edile Anno Accademico 2013/2014 Analisi Matematica Nome... N. Matricola... Ancona, 29 marzo 2014 1. (7 punti) Studiare la funzione determinandone: f(x) = e x x il dominio;

Dettagli

Proprietà delle funzioni. M.Simonetta Bernabei & Horst Thaler

Proprietà delle funzioni. M.Simonetta Bernabei & Horst Thaler Proprietà delle funzioni M.Simonetta Bernabei & Horst Thaler Funzioni crescenti e decrescenti Crescente Decrescente Crescente Estremi di una funzione f ( ) f ( c) per ogni in [a, b]. f ( ) f ( d) per ogni

Dettagli

Equazioni, disequazioni, funzioni goniometriche Esercizi di consolidamento

Equazioni, disequazioni, funzioni goniometriche Esercizi di consolidamento Equazioni, disequazioni, funzioni goniometriche Esercizi di consolidamento Traccia il grafico delle funzioni di cui è data l equazione. Specifica il periodo di ciascuna funzione sinx 3cosx 3 sinx 4 cosx

Dettagli

Matematica. Funzioni. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica

Matematica. Funzioni. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica Matematica Funzioni Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica Le Funzioni e loro caratteristiche Introduzione L analisi di diversi fenomeni della natura o la risoluzione di problemi

Dettagli

Compito Parziale di Algebra lineare e Geometria analitica. 2x + 3y + 2z = 0 x y z = 0

Compito Parziale di Algebra lineare e Geometria analitica. 2x + 3y + 2z = 0 x y z = 0 Compito Parziale di Algebra lineare e Geometria analitica ) Dire se il seguente sottoinsieme di R 3 H = (x; y; z) R 3 : x + 3y + z = x y z = è o non un sottospazio vettoriale di R 3 e eventualmente calcolarne

Dettagli

Proprietà delle funzioni. M.Simonetta Bernabei, Horst Thaler

Proprietà delle funzioni. M.Simonetta Bernabei, Horst Thaler Proprietà delle funzioni M.Simonetta Bernabei, Horst Thaler Funzioni crescenti e decrescenti Una funzione f è crescente (non decrescente) in un intervallo I se f ( 1 ) < f ( ) (f ( 1 ) f ( )), quando 1

Dettagli

Numeri Complessi. 4. Ricordando che, se z è un numero complesso, zz è un numero reale, mettere sotto la forma. z 2 + 2z + 2 = 0. z 2 + 2z + 6 = 0.

Numeri Complessi. 4. Ricordando che, se z è un numero complesso, zz è un numero reale, mettere sotto la forma. z 2 + 2z + 2 = 0. z 2 + 2z + 6 = 0. Numeri Complessi. Siano z = + i e z 2 = i. Calcolare z + z 2, z z 2, z z 2 e z z 2. 2. Siano z = 2 5 + i 2 e z 2 = 5 2 2i. Calcolare z + z 2, z z 2, z z 2 e z z 2. 3. Ricordando che, se z è un numero complesso,

Dettagli

Corso di Laurea in Chimica e Tecnologia Farmaceutiche Matematica con Elementi di Informatica COMPITO 19 Febbraio 2016

Corso di Laurea in Chimica e Tecnologia Farmaceutiche Matematica con Elementi di Informatica COMPITO 19 Febbraio 2016 Corso di Laurea in Chimica e Tecnologia Farmaceutiche Matematica con Elementi di Informatica COMPITO 19 Febbraio 2016 Nome Cognome Matricola Punteggi 10 cfu Teoria Ex.1 Ex.2 Ex.3 Ex. 4 Ex.5 /6 /5 /5 /5

Dettagli

Funzioni (parte II).

Funzioni (parte II). Funzioni (parte II). Paola Mannucci e Alvise Sommariva Università degli Studi di Padova Dipartimento di Matematica 21 ottobre 214 Paola Mannucci e Alvise Sommariva Introduzione. 1/ 55 Funzioni trigonometriche.

Dettagli

Tutorato di Complementi di Analisi Matematica e Statistica Parte di Analisi 6 e 10 aprile 2017

Tutorato di Complementi di Analisi Matematica e Statistica Parte di Analisi 6 e 10 aprile 2017 Tutorato di Complementi di Analisi Matematica e Statistica Parte di Analisi 6 e 10 aprile 2017 Esercizi: serie di potenze e serie di Taylor 1 Date le serie di potenze a.) n=2 ln(n) n 3 (x 5)n b.) n=2 ln(n)

Dettagli

Proprietà delle funzioni. M.Simonetta Bernabei & Horst Thaler

Proprietà delle funzioni. M.Simonetta Bernabei & Horst Thaler Proprietà delle funzioni M.Simonetta Bernabei & Horst Thaler Funzioni crescenti e decrescenti Una funzione f è crescente in (a, b) se f ( 1 ) f ( ) quando 1

Dettagli

FUNZIONI ELEMENTARI Funzione retta

FUNZIONI ELEMENTARI Funzione retta 1 FUNZIONI ELEMENTARI Funzione retta L equazione generale della funzione retta è y = a x + b dove a, b sono numeri reali fissati. Il termine b si chiama termine noto e dà l ordinata dell intersezione tra

Dettagli

Esercizi sulle funzioni

Esercizi sulle funzioni Esercizi sulle funzioni Esercizio. Siano f, g : R R definite da x x g ln x. Determinare le funzioni composte f g e g f, specificandone gli insiemi di definizione. Def(f) = [, ], Def(g) = (0, + ). f g :

Dettagli

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x.

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x. Funzioni derivabili Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: a)2x 5 b) x 3 x 4 c) x + 1 d)x sin x. 2) Scrivere l equazione della retta tangente

Dettagli

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler)

Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Calcolo differenziale 2: Massimi e minimi. Studio di una funzione. (M.S.Bernabei & H. Thaler) Studio di una funzione Funzioni crescenti e decrescenti Una funzione f é crescente nell intervallo (a, b) se

Dettagli

Continuità di funzioni

Continuità di funzioni Continuità di funzioni Annalisa Cesaroni, Paola Mannucci e Alvise Sommariva Università degli Studi di Padova Dipartimento di Matematica 2 novembre 2015 Annalisa Cesaroni, Paola Mannucci e Alvise Sommariva

Dettagli

Prova d appello di Matematica 1 (Chimica) 10 Settembre x π + sin x(1 + cos x). lim. 2) Studiare la seguente funzione e tracciarne il grafico:

Prova d appello di Matematica 1 (Chimica) 10 Settembre x π + sin x(1 + cos x). lim. 2) Studiare la seguente funzione e tracciarne il grafico: Prova d appello di Matematica 1 (Chimica) 10 Settembre 2013 (x π) 2 x π + sin x(1 + cos x) f(x) = 1 2 x + 3 3 x e 1 x x 2 dx sull intervallo [0, 3 4 π] f(x) = cos x cos 2 x 5) Enunciare e dimostrare il

Dettagli

Corso di Analisi Matematica. Funzioni continue

Corso di Analisi Matematica. Funzioni continue a.a. 203/204 Laurea triennale in Informatica Corso di Analisi Matematica Funzioni continue Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità degli studenti.

Dettagli

Facoltà di Ingegneria Università di Pisa

Facoltà di Ingegneria Università di Pisa Facoltà di Ingegneria Università di Pisa Esame Debiti Formativi del 19/12/2005 1. 100 6 =... (A) 10 64 (B) 10 6 (C) 10 12 (D) 10 7 2. cos(120 ) + cos(60 ) =... (A) cos(60 ) (B) cos(180 ) (C) 0 (D) 1. log

Dettagli

x ( 3) + Inoltre (essendo il grado del numeratore maggiore del grado del denominatore, d ancora dallo studio del segno),

x ( 3) + Inoltre (essendo il grado del numeratore maggiore del grado del denominatore, d ancora dallo studio del segno), 6 - Grafici di funzioni Soluzioni Esercizio. Studiare il grafico della funzione f(x) = x x + 3. ) La funzione è definita per x 3. ) La funzione non è né pari, né dispari, né periodica. 3) La funzione è

Dettagli

Analisi Matematica I

Analisi Matematica I Esercizi di Analisi Matematica I Università degli Studi di Tor Vergata - Roma Facoltà di Ingegneria Corsi di Laurea: Ingegneria Civile, Medica, dei Modelli e dei Sistemi a cura di Ciolli Fabio I testi

Dettagli

ULTERIORI ESERCIZI SUL CALCOLO DIFFERENZIALE

ULTERIORI ESERCIZI SUL CALCOLO DIFFERENZIALE ULTERIORI ESERCIZI SUL CALCOLO DIFFERENZIALE 1 Scrivi l equazione della retta tangente al grafico di f(x) = (1 + 2x) 4 nel suo punto di intersezione con l asse y 2 Scrivi l equazione della retta tangente

Dettagli

Numeri Complessi. 4. Ricordando che, se z è un numero complesso, zz è un numero reale, mettere sotto la forma. z 2 + 2z + 2 = 0. z 2 + 2z + 6 = 0.

Numeri Complessi. 4. Ricordando che, se z è un numero complesso, zz è un numero reale, mettere sotto la forma. z 2 + 2z + 2 = 0. z 2 + 2z + 6 = 0. Numeri Complessi. Siano z = + i e z 2 = i. Calcolare z + z 2, z z 2, z z 2 e z z 2. 2. Siano z = 2 5 + i 2 e z 2 = 5 2 2i. Calcolare z + z 2, z z 2, z z 2 e z z 2. 3. Ricordando che, se z è un numero complesso,

Dettagli

UNITÀ DIDATTICA 2 LE FUNZIONI

UNITÀ DIDATTICA 2 LE FUNZIONI UNITÀ DIDATTICA LE FUNZIONI. Le funzioni Definizione. Siano A e B due sottoinsiemi non vuoti di R. Si chiama funzione di A in B una qualsiasi legge che fa corrispondere a ogni elemento A uno ed un solo

Dettagli

Università degli Studi di Salerno - Facoltà di Ingegneria Matematica II - Prova Scritta - 09/06/2006

Università degli Studi di Salerno - Facoltà di Ingegneria Matematica II - Prova Scritta - 09/06/2006 Matematica II - Prova Scritta - 09/06/2006 f(x, y) = (y x)e x2 y 2, 2. Risolvere le seguenti equazioni differenziali: y 2 = 1 1 (2x y) 2, y 2y + y 2y = e x (x 1). 3. Calcolare il seguente integrale curvilineo

Dettagli

Corso di Analisi Matematica. Funzioni reali di variabile reale

Corso di Analisi Matematica. Funzioni reali di variabile reale a.a. 2011/12 Laurea triennale in Informatica Corso di Analisi Matematica Funzioni reali di variabile reale Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità

Dettagli

2 ) = f( 1 2 )) e non è suriettiva.

2 ) = f( 1 2 )) e non è suriettiva. Università di Trieste Corso di studio: ME1 - TECNICHE DI RADIOLOGIA MEDICA, PER IMMAGINI E RADIOTERAPIA. Alcuni esercizi sulle funzioni Professor Franco Obersnel File aggiornato al giorno 28 ottobre 2016.

Dettagli

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale FUNZIONI Siano X e Y due insiemi. Def. Una funzione f definita in X a valori in Y è una corrispondenza (una legge) che associa ad ogni elemento X al piú un elemento in Y. X Y Def. L insieme Y è detto codominio

Dettagli

Funzioni elementari: logaritmi 1 / 11

Funzioni elementari: logaritmi 1 / 11 Funzioni elementari: logaritmi 1 / 11 Logaritmi La funzione logaritmica é definita come g: (0,+ ) R x log a x con a > 0 e a 1. 2 / 11 Logaritmi La funzione logaritmica é definita come g: (0,+ ) R x log

Dettagli

ANALISI MATEMATICA 3. esercizi assegnati per la prova scritta del 31 gennaio 2011

ANALISI MATEMATICA 3. esercizi assegnati per la prova scritta del 31 gennaio 2011 esercizi assegnati per la prova scritta del 31 gennaio 2011 Esercizio 1. Per x > 0 e n N si ponga f n (x) = ln ( n 5 x ) a) Provare l integrabilità delle funzioni f n in (0, + ). 3 + n 4 x 2. b) Studiare

Dettagli

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno.

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno. 1 ESERCIZI CON SOLUZIONE DETTAGLIATA Esercizio 1. Si consideri la funzione f(x) = e x 3e x +. a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre

Dettagli

1) D0MINIO. x x 4x + 3 Determinare il dominio della funzione f (x) = x Deve essere

1) D0MINIO. x x 4x + 3 Determinare il dominio della funzione f (x) = x Deve essere ) DMINIO + 3 Determinare il dominio della funzione f ) + 3 Deve essere Ovviamente, inoltre: se > + 3 ) 3) quindi < o 3 se < + 3, + 3 quindi 7 Determinare il dominio della funzione f ) + 5 Deve essere +

Dettagli

Funzioni reali di variabile reale

Funzioni reali di variabile reale Introduzione Funzioni reali di variabile reale Algebra delle funzioni reali Funzioni composta e inversa Funzioni monotone i definisce funzione reale di variabile reale e s indica con f: A R una funzione

Dettagli

6. Calcolare le derivate parziali prime e seconde, verificando la validità del teorema di Schwarz:

6. Calcolare le derivate parziali prime e seconde, verificando la validità del teorema di Schwarz: FUNZIONI DI PIU VARIABILI Esercizi svolti. Determinare il dominio delle seguenti funzioni e rappresentarlo graficamente : (a) f log( x y ) (b) f log(x + y ) (c) f y x 4 (d) f sin(x + y ) (e) f log(xy +

Dettagli

Grafico qualitativo di una funzione reale di variabile reale

Grafico qualitativo di una funzione reale di variabile reale Grafico qualitativo di una funzione reale di variabile reale Mauro Saita 1 Per commenti o segnalazioni di errori scrivere, per favore, a: maurosaita@tiscalinet.it Dicembre 2014 Indice 1 Qualè il grafico

Dettagli

Argomento 1 - Esercizi

Argomento 1 - Esercizi - Esercizi Avvertenza: alcuni esercizi, denotati con *, possono presentare qualche difficoltà per i principianti. ESERCIZIO. Eseguire il seguente prodotto di numeri reali: 7 5 5+ 7 ESERCIZIO. Confrontare

Dettagli

2. Trovare una primitiva della funzione f(x) = (i 1) 5 5. Scrivere la soluzione del problema di Cauchy. { u 2 t u = t3 u(1) = 0

2. Trovare una primitiva della funzione f(x) = (i 1) 5 5. Scrivere la soluzione del problema di Cauchy. { u 2 t u = t3 u(1) = 0 Cognome: Nome: Matricola: Università degli studi di Pisa Corso di Laurea in Ingegneria Civile 31 maggio 2016 II prova intermedia: test A 1 Calcolare il limite x 2 cos(2x) (sin x) 2 lim x 0 x log(1 + x

Dettagli

Verso il concetto di funzione

Verso il concetto di funzione Verso il concetto di funzione Il termine funzione già appare in alcuni scritti del matematico Leibniz (1646-1716). Tuttavia, in un primo momento tale termine venne usato in riferimento a espressioni analitiche

Dettagli

ESERCIZI - VER 29 MAGGIO Esercizi per le prove scritte di Analisi Matematica - ITPS corso B

ESERCIZI - VER 29 MAGGIO Esercizi per le prove scritte di Analisi Matematica - ITPS corso B ESERCIZI - VER 29 MAGGIO 2017 Esercizi per le prove scritte di Analisi Matematica - ITPS corso B Nome e cognome (leggibili): Firma: Matricola Si ricorda che non è consentito l uso di macchine calcolatrici

Dettagli

Analisi Matematica II - INGEGNERIA Gestionale - B 20 luglio 2017 Cognome: Nome: Matricola:

Analisi Matematica II - INGEGNERIA Gestionale - B 20 luglio 2017 Cognome: Nome: Matricola: Analisi Matematica II - INGEGNERIA Gestionale - B luglio 7 Cognome: Nome: Matricola: IMPORTANTE: Giustificare tutte le affermazioni e riportare i calcoli essenziali Esercizio [8 punti] Data la matrice

Dettagli

3. Generalità sulle funzioni

3. Generalità sulle funzioni ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 3. Generalità sulle funzioni A. A. 2013-2014 1 DALLA RETTA REALE AL PIANO CARTESIANO L equivalenza tra numeri reali e punti di una retta permette

Dettagli

Concavità verso il basso (funzione concava) Si dice che in x0 il grafico della funzione f(x) abbia la concavità rivolta verso il basso, se esiste

Concavità verso il basso (funzione concava) Si dice che in x0 il grafico della funzione f(x) abbia la concavità rivolta verso il basso, se esiste CONCAVITA E CONVESSITA DI UNA FUNZIONE. FLESSI. SCHEMA GENERALE PER LO STUDIO DI FUNZIONE. FUNZIONI RAZIONALI E IRRAZIONALI INTERE E FRATTE. TEOREMA DI DE L HOSPITAL CON APPLICAZIONI AI LIMITI. 1 Concavit{

Dettagli

Le funzioni reali di una variabile reale

Le funzioni reali di una variabile reale Le funzioni reali di una variabile reale Prof. Giovanni Ianne DEFINIZIONE DI FUNZIONE REALE DI UNA VARIABILE REALE Dati due insiemi non vuoti A, B R, una funzione f da A in B è una relazione fra A e B

Dettagli

FUNZIONI ELEMENTARI - ESERCIZI SVOLTI

FUNZIONI ELEMENTARI - ESERCIZI SVOLTI FUNZIONI ELEMENTARI - ESERCIZI SVOLTI 1) Determinare il dominio delle seguenti funzioni di variabile reale: (a) f(x) = x 4 (c) f(x) = 4 x x + (b) f(x) = log( x + x) (d) f(x) = 1 4 x 5 x + 6 ) Data la funzione

Dettagli

Funzioni 1. 3) una legge che ad un elemento x di X associa al più un unico elemento ( x)

Funzioni 1. 3) una legge che ad un elemento x di X associa al più un unico elemento ( x) Funzioni Un funzione f d X in Y è costituit d un tern di elementi ) un insieme X, detto dominio di f 2) un insiemey, detto codominio di f f di Y. Nel cso, in cui X,Y sino sottinsiemi di R, generlmente

Dettagli

DERIVATE SUCCESSIVE E MATRICE HESSIANA

DERIVATE SUCCESSIVE E MATRICE HESSIANA FUNZIONI DI DUE VARIABILI 1 DERIVATE SUCCESSIVE E MATRICE HESSIANA Derivate parziali seconde e matrice hessiana. Sviluppo di Taylor del secondo ordine. Punti stazionari. Punti di massimo o minimo (locale

Dettagli

Corso di Laurea in Ingegneria Gestionale Anno Accademico 2013/2014 Calcolo Numerico

Corso di Laurea in Ingegneria Gestionale Anno Accademico 2013/2014 Calcolo Numerico 1. Dato il problema ai valori iniziali f (t) = f(t) + cos t f(0) = 1, (ii) determinarne la soluzione numerica per 0 t 2π utilizzando il metodo di 2. Calcolare analiticamente e numericamente la media della

Dettagli

Ingegneria Elettronica, Informatica e delle Telecomunicazioni Prova scritta di ANALISI B - 06/04/2006

Ingegneria Elettronica, Informatica e delle Telecomunicazioni Prova scritta di ANALISI B - 06/04/2006 Ingegneria Elettronica, Informatica e delle Telecomunicazioni Prova scritta di ANALISI B - 06/04/2006 CORSO DI STUDI IN INGEGNERIA... NOME E COGNOME:... NUMERO DI MATRICOLA:... (scrivere nome e cognome

Dettagli

ANALISI MATEMATICA PER IL CdL IN INFORMATICA ESERCIZI SULLE DISEQUAZIONI

ANALISI MATEMATICA PER IL CdL IN INFORMATICA ESERCIZI SULLE DISEQUAZIONI ANALISI MATEMATICA PER IL CdL IN INFORMATICA ESERCIZI SULLE DISEQUAZIONI Risolvere le seguenti disequazioni: ( 1 ) x < x + 1 1) 4x + 4 x ) x + 1 > x 4x x 10 ) x 4 x 5 4x + > ; 4) ; 5) 0; ) x 1 x + 1 x

Dettagli

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1

Corso di Laurea in Ingegneria Informatica Prova di Analisi Matematica 1 Scrivere subito nome e cognome e matricola sul foglio risposte e preparare il libretto sul banco per il controllo. Tempo 30 minuti. Durante la prova non si può uscire dall aula. Non si possono consultare

Dettagli

Esercitazioni di Analisi Matematica I

Esercitazioni di Analisi Matematica I Esercitazioni di Analisi Matematica I Andrea Corli 3 agosto 6 ii Indice Introduzione v Nozioni preliminari. Sommatorie.......................................... Fattoriali...........................................3

Dettagli

Forme indeterminate e limiti notevoli

Forme indeterminate e limiti notevoli Forme indeterminate e iti notevoli Limiti e continuità Forme indeterminate e iti notevoli Forme indeterminate Teorema di sostituzione Limiti notevoli Altre forme indeterminate 2 2006 Politecnico di Torino

Dettagli

Corso di Analisi Matematica Funzioni di una variabile

Corso di Analisi Matematica Funzioni di una variabile Corso di Analisi Matematica Funzioni di una variabile Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 24 1 Generalità 2 Funzioni reali

Dettagli