Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione"

Transcript

1 1 La Regressone Lneare (Semplce) Relazone funzonale e statstca tra due varabl Modello d regressone lneare semplce Stma puntuale de coeffcent d regressone Decomposzone della varanza Coeffcente d determnazone Propretà degl stmator de coeffcent Propretà dello stmatore della rsposta meda Error standard Contenut del Captolo 16 del lbro d testo

2 Introduzone Dall anals ed nferenza rguardante una sngola varable statstca passamo alla relazone tra (due) varabl statstche. Le relazon tra varabl mportant nell anals della realtà economco-azendale possono essere matematcamente espresse come: Y=f(X) dove la funzone f può assumere vare forme, lnear o non lnear, e può non essere conoscuta n modo precso. Consderamo l caso pù semplce quello lneare: regressone lneare semplce

3 3 Esemp Il presdente d una dtta d materal da costruzone rtene che la Quanttà meda annua d pastrelle, Q, venduta sa una funzone (lneare) del Valore complessvo de permess edlz rlascat, V, nell anno passato: Q=f(V). Un grosssta d cereal vuole conoscere l effetto della produzone annua Complessva, C, sul prezzo d vendta a tonnellata, P: Q=f(P). L area marketng d un azenda ha necesstà d sapere come l prezzo della Benzna nfluenz la quanttà venduta: rcorrendo alla sere storca de prezz settmanal e de dat d vendta ntendono svluppare un modello (lneare) che ndch d quanto varano le vendte al varare del prezzo: Q=f(P).

4 4 Relazone funzonale e statstca Obettvo: Date due varabl, X e Y, s è nteressat a comprendere come la varable Y (dpendente o rsposta) sa nfluenzata dalla X (esplcatva o ndpendente). Y è funzone d X se ad ogn valore d X corrsponde un solo valore d Y. La relazone funzonale è lneare, se possamo scrvere: β 0 =ntercetta Y = β + β1x 0 β 1 =coeffcente angolare

5 5 Esempo Per dslocare n manera ottmale punt vendta, un azenda vuole stmare un modello lneare che prevede le vendte per nucleo famlare n funzone del reddto famlare dsponble sulla base de dat provenent da una ndagne camponara : anno Reddto (X) Vendte (Y) anno Reddto (X) Vendte (Y)

6 6 Il dagramma a dspersone ndca una relazone lneare; all aumentare del reddto dsponble aumentano le vendte: L anals della regressone fornsce l modello: Y= X

7 7 Il modello rassume le nformazon de dat camponar e non dmostra che un aumento del reddto determna un aumento delle vendte. La teora economca postula l esstenza d un legame causaeffetto, prelmnar rsultat precedent, possono fornre l evdenza emprca. In generale una buona anals statstca combnata alla teora e all esperenza può consentre d gungere a fondate concluson. Nell esempo, è noto dalla teora che la quanttà d ben acqustata n un certo mercato (Y) può essere modellzzata come funzone lneare del reddto dsponble (X): se l reddto dsponble è x la quanttà acqustata sarà y. Altr fattor tuttava nfluenzano le quanttà acqustate, alcun sconoscut (es. la dversa propensone al consumo delle famgle), altr dentfcabl qual l prezzo del bene, e quello de ben concorrent, etc.

8 8 Cò fa sì che: Nel modello lneare semplce gl effett d tutt fattor dvers dal reddto, per spegare la quanttà acqustata vengono sntetzzat n una componente d errore: ε. Per l generco valore sarà qund y=β 0 +β 1 x +ε ι Al varare del campone noltre avremo n corrspondenza d ogn dato valore x tutto un nseme d possbl valor (una dstrbuzone d valor) d Y

9 9 Pertanto s assume che n P per ogn valore d X, sa l valore medo d Y funzone lneare d X: Y=β 0 +β 1 x Il modello d regressone lneare fornsce l valore atteso della varable aleatora Y (v. dpendente o rsposta) quando X assume un partcolare valore; n base all potes d lneartà l espressone per l valore atteso può essere scrtta come: E(Y/X=x)=β 0 +β 1 x Il valore osservato d Y n corrspondenza ad un dato valore d X è nvece par al valore atteso (o meda d P) pù un errore aleatoro ε y =β 0 +β 1 x+ε La varable ε, errore aleatoro, rappresenta la varazone d Y non spegata dalla relazone lneare.

10 10 In sntes: negl stud emprc, la relazone tra Y e X non è ma funzonale (a un valore X corrspondono pù valor d Y). Una relazone statstca tra la Y e la X può essere descrtta da: f ( X ) ε Y = f ( X ) + ε defnsce l contrbuto della X rappresenta l contrbuto d tutt fattor non osservat ( ) f ε X è una componente determnstca è una componente stocastca Y è una varable casuale.

11 11 Modello d regressone lneare semplce Introducendo opportune assunzon s ottene l modello d regressone lneare semplce. Assunzone 1: Y = 0 + β1x β + ε per ogn osservazone =1, n Assunzone : Assunzone 3: ε Le sono varabl casual ndpendent con valore atteso E( ε ) = 0 e varanza costante per ogn =1,,n V ( ε ) = σ x I valor della varable esplcatva X sono not senza errore

12 1 Modello d regressone lneare semplce Assunzone 1: mplca che la funzone f(x) è lneare. Assunzone : mplca che per ogn valore fssato d X, la Y possede sempre lo stesso grado d varabltà (potes d omoschedastctà). Inoltre, poché la ε è una varable casuale, anche Y è una varable casuale. y Pertanto, le osservazon sono realzzazon d varabl casual ndpendent con valore atteso con varanza V E( Y X = x ) = β 0 + β1x ( Y X x ) = σ =

13 13 13 Stma puntuale de coeffcent d regressone = ˆ β + ˆ Indcheremo con: ŷ 0 β1x l valore d Y fornto dalla retta stmata dove βˆ0 e βˆ1 sono le stme de coeffcent d regressone. Metodo d stma Metodo de mnm quadrat Consste nel rcercare le stme d 0 e, che rendono mnma la funzone d perdta: G n β β 1 ( β, β ) = ( β ) 0 1 y 0 β1x = 1

14 14 14 Stma puntuale de coeffcent d regressone Chameremo resduo -esmo la dfferenza tra l valore osservato y e quello fornto dalla retta stmata, ŷ ê = y ŷ

15 15 15 Stma puntuale de coeffcent d regressone Procedmento: 1) Porre ugual a zero le dervate prme rspetto a parametr ( β, β ) G 0 β0 G 0 β 1 1 ( β, β ) 1 = 0 = 0 ) Rsolvendo l sstema s ottengono le stme de mnm quadrat de coeffcent d regressone βˆ σ = = X Y 1 σ X n = 1 ( x x )( y y ) n = 1 ( x x ) ˆ β = y ˆ β 0 1 x

16 16 Decomposzone della varanza Le stme de mnm quadrat possedono un mportante propretà, nota come decomposzone della varanza totale: n ( y y ) = ( ŷ y ) + = 1 = 1 Somma totale de quadrat (SQT) Somma de quadrat della regressone (SQR) Somma de quadrat degl error (SQE) n n = 1 ê SQT SQR SQE ( y y ) = n y = 1 = n ( ŷ y ) = 1 = n ê = 1

17 17 Decomposzone della varanza SQR=0 SQR=SQT SQE=SQT e valor stmat sono tutt ugual alla meda camponara SQE=0 e tutt valor stmat sono ugual a quell osservat. y

18 18 Coeffcente d determnazone Dalla relazone SQT=SQR+SQE s può defnre un ndce che msura la bontà d adattamento della retta d regressone. Il rapporto R XY SQR = = 1 SQT SQE SQT è detto coeffcente d determnazone e ndca la proporzone d varabltà d Y spegata dalla varable esplcatva X, attraverso l modello d regressone.

19 19 Coeffcente d determnazone S può dmostrare che l coeffcente d determnazone corrsponde al quadrato del coeffcente d correlazone lneare: R XY = ( ρ ) XY σ XY = σ XσY

20 0 Modello d regressone lneare - esempo Su un campone d 0 aree ammnstratve s osserva l reddto pro-capte nel 1989 (X) e 1999 (Y). Area X:1989 Y: ,8 63,0 7,9 33,4 3 36,6 4,0 4 54, 7,8 5 41,9 5,0 6 44,4 54,0 7 54,3 63,4 8 4,3 60,7 9 48, 58, ,5 54, , 55,5 1 56,3 74, ,3 79, 14 46,8 53,1 S potzza l seguente modello: Y = 0 + β1x β + ε 15 45, 59, ,7 5, ,3 47, 18 39,5 48, ,9 41,4 0 5,6 66,9

21 1 Modello d regressone lneare - esempo S ottengono le seguente stme de coeffcent del modello: ˆ β 1 = 1, 55 ˆ β0 = 0, 595 ossa la retta d regressone: ŷ = 0, , 55 x Il coeffcente d correlazone è ρ XY = 0,956 SQT=497,6 da cu: ( 0, 956) 0, 914 R XY = = ossa crca l 91% della varabltà totale d Y è spegata dal modello d regressone.

22 Propretà degl stmator de coeffcent Propretà degl stmator de mnm quadrat 1. B e sono stmator corrett d e 0 B1 β0 β1. Nella classe degl stmator corrett d β e che sono 0 β funzon lnear delle, gl stmator de mnm 1 Y quadrat sono pù effcent. (Gauss-Markov) 3. La varanza e covaranza degl stmator de mnm quadrat sono: V ( B ) Cov 1 = ( B,B ) σ ( x ) n = 1 x 0 1 = σ V x ( B ) 0 ( x ) n = 1 x 1 x = σ + n n = 1 x ( ) x

23 3 3 Propretà dello stmatore della rsposta meda Per lo stmatore della rsposta meda propretà: Ŷ valgono le seguent Ŷ ( Ŷ ) x 1. Lo stmatore è corretto, ossa E = β 0 + β1. La varanza è: ( ) ( ) 1 x x V Ŷ = σ + n n h = 1 x h x ( ) Una msura della varabltà degl stmator de coeffcent d regressone e della rsposta meda è data dagl error standard, ossa le radc quadrate delle varanze: σ ( B ) = V ( ) ( B ) = V ( ) 0 B 0 σ σ ( Ŷ ) = V ( ) 1 B 1 Ŷ

24 4 4 Errore standard Ora sebbene l metodo M.Q. ndvua la retta che mnmzza la dfferenza tra valor osservat e quell prevst, questa non conduce quas ma a prevson scevre da error. E qund necessara una statstca camponara che msur la varabltà degl scostament de valor osservat da prevst. Inoltre, gl error standard dpendono dalla quanttà gnota: σ = V = ( Y ) V ( ε ) pertanto la s sosttusce con una sua stma stmator s ( B ) ( ) 0 s( B 1 ) s Ŷ s ottenendo gl Lo stmatore che s utlzza per ottenere la stma della varanza è dato da: n = 1ê s = n La radce quadrata è una msura della varabltà degl scostament de valor osservat da quell prevst dal modello e vene chamato errore standard della stma (d regressone).

Relazioni tra variabili: Correlazione e regressione lineare

Relazioni tra variabili: Correlazione e regressione lineare Dott. Raffaele Casa - Dpartmento d Produzone Vegetale Modulo d Metodologa Spermentale Febbrao 003 Relazon tra varabl: Correlazone e regressone lneare Anals d relazon tra varabl 6 Produzone d granella (kg

Dettagli

La regressione. La Regressione. La Regressione. min. min. Var X. X Variabile indipendente (data) Y Variabile dipendente

La regressione. La Regressione. La Regressione. min. min. Var X. X Variabile indipendente (data) Y Variabile dipendente Unverstà d Macerata Facoltà d Scenze Poltche - Anno accademco - La Regressone Varable ndpendente (data) Varable dpendente Dpendenza funzonale (o determnstca): f ; Da un punto d vsta analtco, valor della

Dettagli

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari Captolo 3 Covaranza, correlazone, bestft lnear e non lnear ) Covaranza e correlazone Ad un problema s assoca spesso pù d una varable quanttatva (es.: d una persona possamo determnare peso e altezza, oppure

Dettagli

Variabili statistiche - Sommario

Variabili statistiche - Sommario Varabl statstche - Sommaro Defnzon prelmnar Statstca descrttva Msure della tendenza centrale e della dspersone d un campone Introduzone La varable statstca rappresenta rsultat d un anals effettuata su

Dettagli

Introduzione al Machine Learning

Introduzione al Machine Learning Introduzone al Machne Learnng Note dal corso d Machne Learnng Corso d Laurea Magstrale n Informatca aa 2010-2011 Prof Gorgo Gambos Unverstà degl Stud d Roma Tor Vergata 2 Queste note dervano da una selezone

Dettagli

Concetti principale della lezione precedente

Concetti principale della lezione precedente Corso d Statstca medca e applcata 6 a Lezone Dott.ssa Donatella Cocca Concett prncpale della lezone precedente I concett prncpal che sono stat presentat sono: I fenomen probablstc RR OR ROC-curve Varabl

Dettagli

STATISTICA DESCRITTIVA CON EXCEL

STATISTICA DESCRITTIVA CON EXCEL STATISTICA DESCRITTIVA CON EXCEL Corso d CPS - II parte: Statstca Laurea n Informatca Sstem e Ret 2004-2005 1 Obettv della lezone Introduzone all uso d EXCEL Statstca descrttva Utlzzo dello strumento:

Dettagli

Regressione Multipla e Regressione Logistica: concetti introduttivi ed esempi

Regressione Multipla e Regressione Logistica: concetti introduttivi ed esempi Regressone Multpla e Regressone Logstca: concett ntroduttv ed esemp I Edzone ottobre 014 Vncenzo Paolo Senese vncenzopaolo.senese@unna.t Indce Note prelmnar alla I edzone 1 Regressone semplce e multpla

Dettagli

CAPITOLO 3 Incertezza di misura Pagina 26

CAPITOLO 3 Incertezza di misura Pagina 26 CAPITOLO 3 Incertezza d msura Pagna 6 CAPITOLO 3 INCERTEZZA DI MISURA Le operazon d msurazone sono tutte nevtablmente affette da ncertezza e coè da un grado d ndetermnazone con l quale l processo d msurazone

Dettagli

Adattamento di una relazione funzionale ai dati sperimentali

Adattamento di una relazione funzionale ai dati sperimentali Adattamento d una relazone 1 funzonale a dat spermental Sno ad ora abbamo vsto come può essere stmato, con un certo lvello d confdenza, l valore vero d una grandezza fsca (dretta o dervata) con l suo ntervallo

Dettagli

Università degli Studi di Urbino Facoltà di Economia

Università degli Studi di Urbino Facoltà di Economia Unverstà degl Stud d Urbno Facoltà d Economa Lezon d Statstca Descrttva svolte durante la prma parte del corso d corso d Statstca / Statstca I A.A. 004/05 a cura d: F. Bartolucc Lez. 8/0/04 Statstca descrttva

Dettagli

Corso di Statistica (canale P-Z) A.A. 2009/10 Prof.ssa P. Vicard

Corso di Statistica (canale P-Z) A.A. 2009/10 Prof.ssa P. Vicard Corso d Statstca (canale P-Z) A.A. 2009/0 Prof.ssa P. Vcard VALORI MEDI Introduzone Con le dstrbuzon e le rappresentazon grafche abbamo effettuato le prme sntes de dat. E propro osservando degl stogramm

Dettagli

Economia del Settore Pubblico 97. Economia del Settore Pubblico 99. Quale indice di diseguaglianza usare? il rapporto interdecilico PROBLEMA:

Economia del Settore Pubblico 97. Economia del Settore Pubblico 99. Quale indice di diseguaglianza usare? il rapporto interdecilico PROBLEMA: Economa del Settore Pubblco Laura Vc laura.vc@unbo.t www.dse.unbo.t/lvc/edsp_.htm LEZIONE 4 Rmn, 9 aprle 008 Economa del Settore Pubblco 96 I prncpal ndc d dseguaglanza: ndc d entropa generalzzata Isprata

Dettagli

Capitolo 7. La «sintesi neoclassica» e il modello IS-LM. 2. La curva IS

Capitolo 7. La «sintesi neoclassica» e il modello IS-LM. 2. La curva IS Captolo 7 1. Il modello IS-LM La «sntes neoclassca» e l modello IS-LM Defnzone: ndvdua tutte le combnazon d reddto e saggo d nteresse per le qual l mercato de ben (curva IS) e l mercato della moneta (curva

Dettagli

Calibrazione. Lo strumento idealizzato

Calibrazione. Lo strumento idealizzato Calbrazone Come possamo fdarc d uno strumento? Abbamo bsogno d dentfcare l suo funzonamento n condzon controllate. L dentfcazone deve essere razonalmente organzzata e condvsa n termn procedural: s tratta

Dettagli

PREVEDERE IL CHURN: UN APPROCCIO LONGITUDINALE

PREVEDERE IL CHURN: UN APPROCCIO LONGITUDINALE UNIVERSITÀ DEGLI STUDI DI PADOVA FACOLTÀ DI SCIENZE STATISTICHE CORSO DI LAUREA SPECIALISTICA IN SCIENZE STATISTICHE, ECONOMICHE, FINANZIARIE E AZIENDALI PREVEDERE IL CHURN: UN APPROCCIO LONGITUDINALE

Dettagli

LEZIONE 2 e 3. La teoria della selezione di portafoglio di Markowitz

LEZIONE 2 e 3. La teoria della selezione di portafoglio di Markowitz LEZIONE e 3 La teora della selezone d portafoglo d Markowtz Unverstà degl Stud d Bergamo Premessa Unverstà degl Stud d Bergamo Premessa () È puttosto frequente osservare come gl nvesttor tendano a non

Dettagli

Induzione elettromagnetica

Induzione elettromagnetica Induzone elettromagnetca L esperenza d Faraday L'effetto d produzone d corrente elettrca n un crcuto prvo d generatore d tensone fu scoperto dal fsco nglese Mchael Faraday nel 83. Egl studò la relazone

Dettagli

Corso di laurea in Ingegneria Meccatronica. DINAMICI CA - 04 ModiStabilita

Corso di laurea in Ingegneria Meccatronica. DINAMICI CA - 04 ModiStabilita Automaton Robotcs and System CONTROL Unverstà degl Stud d Modena e Reggo Emla Corso d laurea n Ingegnera Meccatronca MODI E STABILITA DEI SISTEMI DINAMICI CA - 04 ModStablta Cesare Fantuzz (cesare.fantuzz@unmore.t)

Dettagli

Il patrimonio informativo aziendale come supporto alle attività di marketing

Il patrimonio informativo aziendale come supporto alle attività di marketing Unverstà degl Stud d RomaTre - Facoltà d Economa Corso d Rcerche d Marketng Il patrmono nformatvo azendale come supporto alle attvtà d marketng ng. Stefano Cazzella stefano.cazzella@datamat.t Agenda La

Dettagli

MACROECONOMIA A.A. 2014/2015

MACROECONOMIA A.A. 2014/2015 MACROECONOMIA A.A. 2014/2015 ESERCITAZIONE 2 MERCATO MONETARIO E MODELLO /LM ESERCIZIO 1 A) Un economa sta attraversando un perodo d profonda crs economca. Le banche decdono d aumentare la quota d depost

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne Metod e Modell per l Ottmzzazone Combnatora Progetto: Metodo d soluzone basato su generazone d colonne Lug De Govann Vene presentato un modello alternatvo per l problema della turnazone delle farmace che

Dettagli

lxmi.mi.infn.it/~camera/silsis/laboratorio-1/2-statistica.ppt http://www2.dm.unito.it/paginepersonali/zucca/index.htm Misura:

lxmi.mi.infn.it/~camera/silsis/laboratorio-1/2-statistica.ppt http://www2.dm.unito.it/paginepersonali/zucca/index.htm Misura: Elaborazone de dat geochmc e cenn d statstca lm.m.nfn.t/~camera/slss/laboratoro-1/-statstca.ppt http://www.dm.unto.t/pagnepersonal/zucca/nde.htm Msura: Espressone quanttatva del rapporto fra una grandezza

Dettagli

Problemi variazionali invarianti 1

Problemi variazionali invarianti 1 Problem varazonal nvarant 1 A F. Klen per l cnquantesmo annversaro del dottorato. Emmy Noether a Gottnga. Comuncazone presentata da F. Klen nella seduta del 26 luglo 1918 2. 1 Invarante Varatonsprobleme,

Dettagli

Trigger di Schmitt. e +V t

Trigger di Schmitt. e +V t CORSO DI LABORATORIO DI OTTICA ED ELETTRONICA Scopo dell esperenza è valutare l ampezza dell steres d un trgger d Schmtt al varare della frequenza e dell ampezza del segnale d ngresso e confrontarla con

Dettagli

MODELLISTICA DI SISTEMI DINAMICI

MODELLISTICA DI SISTEMI DINAMICI CONTROLLI AUTOMATICI Ingegnera Gestonale http://www.automazone.ngre.unmore.t/pages/cors/controllautomatcgestonale.htm MODELLISTICA DI SISTEMI DINAMICI Ing. Federca Gross Tel. 059 2056333 e-mal: federca.gross@unmore.t

Dettagli

Lezione 10. L equilibrio del mercato finanziario: la struttura dei tassi d interesse

Lezione 10. L equilibrio del mercato finanziario: la struttura dei tassi d interesse Lezone 1. L equlbro del mercato fnanzaro: la struttura de tass d nteresse Ttol con scadenza dversa hanno prezz (e tass d nteresse) dfferent. Due ttol d durata dversa emess dallo stesso soggetto (stesso

Dettagli

Il pendolo di torsione

Il pendolo di torsione Unverstà degl Stud d Catana Facoltà d Scenze MM.FF.NN. Corso d aurea n FISICA esna d ABORAORIO DI FISICA I Il pendolo d torsone (sezone costante) Moreno Bonaventura Anno Accademco 005/06 Introduzone. I

Dettagli

Grafico di una serie di dati sperimentali in EXCEL

Grafico di una serie di dati sperimentali in EXCEL Grafco d una sere d dat spermental n EXCEL 1. Inseramo sulla prma rga l ttolo che defnsce l contenuto del foglo. Po nseramo su un altra rga valor spermental della x e su quella successva valor della y.

Dettagli

Per il seminario di cultura formale - Dottorato GIA

Per il seminario di cultura formale - Dottorato GIA Per l semnaro d cultura formale - Dottorato GIA Luca Mar, dcembre 003 Lezone 1: la matematca come strumento per pensare Cnque ncontr, da 1 ora e mezza cascuno. Con questo tempo complessvo a dsposzone,

Dettagli

Indicatori di rendimento per i titoli obbligazionari

Indicatori di rendimento per i titoli obbligazionari Indcator d rendmento per ttol obblgazonar LA VALUTAZIONE DEGLI INVESTIMENTI A TASSO FISSO Per valutare la convenenza d uno strumento fnanzaro è necessaro precsare: /4 Le specfche esgenze d un nvesttore

Dettagli

Ministero della Salute D.G. della programmazione sanitaria --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA

Ministero della Salute D.G. della programmazione sanitaria --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA Mnstero della Salute D.G. della programmazone santara --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA La valutazone del coeffcente d varabltà dell mpatto economco consente d ndvduare gl ACC e DRG

Dettagli

UNA RASSEGNA SUI METODI DI STIMA DEL VALUE

UNA RASSEGNA SUI METODI DI STIMA DEL VALUE UNA RASSEGNA SUI METODI DI STIMA DEL VALUE at RISK (VaR) Chara Pederzol - Costanza Torrcell Dpartmento d Economa Poltca - Unverstà degl Stud d Modena e Reggo Emla Marzo 999 INDICE Introduzone. Il concetto

Dettagli

Calcolo delle Probabilità

Calcolo delle Probabilità alcolo delle Probabltà Quanto è possble un esto? La verosmglanza d un esto è quantfcata da un numero compreso tra 0 e. n partcolare, 0 ndca che l esto non s verfca e ndca che l esto s verfca senza dubbo.

Dettagli

MATERIALE PER IL CORSO DI INDAGINI E STATISTICHE PER IL TURISMO NON DIFFONDERE DA PERCORSI DI RICERCA SOCIALE (a cura di L.

MATERIALE PER IL CORSO DI INDAGINI E STATISTICHE PER IL TURISMO NON DIFFONDERE DA PERCORSI DI RICERCA SOCIALE (a cura di L. MATERIALE PER IL CORSO DI INDAGINI E STATISTICHE PER IL TURISMO NON DIFFONDERE DA PERCORSI DI RICERCA SOCIALE (a cura d L.Bernard) 3.3. Dsegn d camponamento d Lorenzo Bernard 3.3.1. Una defnzone per ntrodurre

Dettagli

Capitolo 2 Dati e Tabelle

Capitolo 2 Dati e Tabelle Captolo 2 Dat e Tabelle La Descrzone della Popolazone La descrzone d una popolazone passa attraverso due fas: 1. la formazone de dat statstc 2. la sntes de dat La formazone del dato statstco prevede: ()

Dettagli

Divagazioni in margine all Introduzione alla Probabilità di P. Baldi A. Visintin Facoltà di Ingegneria di Trento a.a. 2010-11

Divagazioni in margine all Introduzione alla Probabilità di P. Baldi A. Visintin Facoltà di Ingegneria di Trento a.a. 2010-11 Dvagazon n margne all Introduzone alla Probabltà d P. Bald A. Vsntn Facoltà d Ingegnera d Trento a.a. 2010-11 Indce 1. Statstca descrttva. 2. Spaz d probabltà e calcolo combnatoro. 3. Varabl aleatore dscrete.

Dettagli

Soluzione attuale ONCE A YEAR. correlation curve (ISO10155) done with, at least 9 parallel measurements

Soluzione attuale ONCE A YEAR. correlation curve (ISO10155) done with, at least 9 parallel measurements Torna al programma Sstema per la garanza della qualtà ne sstem automatc d msura alle emsson: applcazone del progetto d norma pren 14181:2003. Rsultat dell esperenza n campo presso due mpant plota. Cprano

Dettagli

Apprendimento Automatico e IR: introduzione al Machine Learning

Apprendimento Automatico e IR: introduzione al Machine Learning Apprendmento Automatco e IR: ntroduzone al Machne Learnng MGRI a.a. 2007/8 A. Moschtt, R. Basl Dpartmento d Informatca Sstem e produzone Unverstà d Roma Tor Vergata mal: {moschtt,basl}@nfo.unroma2.t 1

Dettagli

GLI ERRORI SPERIMENTALI NELLE MISURE DI LABORATORIO

GLI ERRORI SPERIMENTALI NELLE MISURE DI LABORATORIO GLI ERRORI SPERIMETALI ELLE MISURE DI LABORATORIO MISURA DI UA GRADEZZA FISICA S defnsce grandezza fsca una propretà de corp sulla quale possa essere eseguta un operazone d msura. Msurare una grandezza

Dettagli

METODI BAYESIANI PER IL CONTROLLO STATISTICO DI QUALITA

METODI BAYESIANI PER IL CONTROLLO STATISTICO DI QUALITA Unverstà degl Stud d Bresca Poltecnco d Mlano Unverstà degl Stud d Pava Unverstà degl Stud d Lecce Dottorato d Rcerca n TECNOLOGIE E SISTEMI DI LAVORAZIONE XII CICLO METODI BAYESIANI PER IL CONTROLLO STATISTICO

Dettagli

Analisi dei Segnali. Sergio Frasca. Dipartimento di Fisica Università di Roma La Sapienza

Analisi dei Segnali. Sergio Frasca. Dipartimento di Fisica Università di Roma La Sapienza Sergo Frasca Anals de Segnal Dpartmento d Fsca Unverstà d Roma La Sapenza Versone 13 dcembre 011 Versone aggornata n http://grwavsf.roma1.nfn.t/sp/sp.pdf Sommaro 1 Introduzone: segnal e sstem... 7 1.1

Dettagli

UNIVERSITA DEGLI STUDI DI PADOVA ANALISI STATISTICA DELLE VOTAZIONI PRESIDENZIALI AMERICANE IN FLORIDA NEL 2000

UNIVERSITA DEGLI STUDI DI PADOVA ANALISI STATISTICA DELLE VOTAZIONI PRESIDENZIALI AMERICANE IN FLORIDA NEL 2000 UNIVERSITA DEGLI STUDI DI PADOVA FACOLTA DI SCIENZE STATISTICHE CORSO DI LAUREA IN STATISTICA, ECONOMIA E FINANZA RELAZIONE FINALE ANALISI STATISTICA DELLE VOTAZIONI PRESIDENZIALI AMERICANE IN FLORIDA

Dettagli

Analisi statistica di dati biomedici Analysis of biologicalsignals

Analisi statistica di dati biomedici Analysis of biologicalsignals Anals statstca d dat bomedc Analyss of bologcalsgnals I Parte Inferenza statstca Agostno Accardo (accardo@unts.t) Master n Ingegnera Clnca LM Neuroscenze 2013-2014 e segg. Altman Practcal statstcs for

Dettagli

MODELLO SPEDITIVO PER LA PREVISIONE DELLA DISPONIBILITÀ IDRICA NEL BACINO DEL PO IN PERIODI DI SICCITA

MODELLO SPEDITIVO PER LA PREVISIONE DELLA DISPONIBILITÀ IDRICA NEL BACINO DEL PO IN PERIODI DI SICCITA U.O. Protezone Cvle MODELLO SPEDITIVO PER LA PREVISIONE DELLA DISPONIBILITÀ IDRICA NEL BACINO DEL PO IN PERIODI DI SICCITA Centro Funzonale Component del gruppo d lavoro: Nomnatvo Ente Tel. Fax Ing. Maurzo

Dettagli

Corso AFFIDABILITÀ DELLE COSTRUZIONI MECCANICHE. Prof. Dario Amodio d.amodio@univpm.it. Ing. Gianluca Chiappini g.chiappini@univpm.

Corso AFFIDABILITÀ DELLE COSTRUZIONI MECCANICHE. Prof. Dario Amodio d.amodio@univpm.it. Ing. Gianluca Chiappini g.chiappini@univpm. Corso AFFIDABILITÀ DELLE COSTRUZIONI MECCANICHE Prof. Daro Amodo d.amodo@unvpm.t Ing. Ganluca Chappn g.chappn@unvpm.t http://www.dpmec.unvpm.t/costruzone/home.htm (Ddattca/Dspense) Testo d rfermento: Stefano

Dettagli

1. Una panoramica sui metodi valutativi

1. Una panoramica sui metodi valutativi . Una panoramca su metod valutatv La dottrna azendalstca rconosce l esstenza d var metod att a determnare l valore del captale economco d un mpresa. In partcolare, è possble ndvduare tre macro-tpologe

Dettagli

Appendice B. B Elementi di Teoria dell Informazione 1. p k =P(X = x k ) ovviamente, valgono gli assiomi del calcolo della probabilità: = 1;

Appendice B. B Elementi di Teoria dell Informazione 1. p k =P(X = x k ) ovviamente, valgono gli assiomi del calcolo della probabilità: = 1; Appendce B Eleent d Teora dell Inforazone Appendce B B Eleent d Teora dell Inforazone B Introduzone E noto da tepo che fenoen percettv possono essere foralzzat e studat edante la Teora dell Inforazone

Dettagli

Economia del Lavoro. Argomenti del corso

Economia del Lavoro. Argomenti del corso Economa del Lavoro Argoment del corso Studo del funzonamento del mercato del lavoro. In partcolare, l anals economca nerente l comportamento d: a) lavorator, b) mprese, c) sttuzon nel processo d determnazone

Dettagli

MODELLI DI SISTEMI. Principi di modellistica. Considerazioni energetiche. manca

MODELLI DI SISTEMI. Principi di modellistica. Considerazioni energetiche. manca ONTOI UTOMTII Ingegnera della Gestone Industrale e della Integrazone d Impresa http://www.automazone.ngre.unmore.t/pages/cors/ontrollutomatcgestonale.htm MODEI DI SISTEMI Ing. ug Bagott Tel. 05 0939903

Dettagli

IL FINANZIAMENTO DELLA SANITÀ IN ITALIA: FINANZA AUTONOMA O DERIVATA?

IL FINANZIAMENTO DELLA SANITÀ IN ITALIA: FINANZA AUTONOMA O DERIVATA? WORKIG PAPER o 68 febbrao 2009 IL FIAZIAMETO DELLA SAITÀ I ITALIA: FIAZA AUTOOMA O DERIVATA? AGESE SACCHI JEL Classfcaton: H5, H75, H77 Keywords: Sstema santaro nazonale Federalsmo fscale socetà talana

Dettagli

PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE. (Metodo delle Osservazioni Indirette) - 1 -

PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE. (Metodo delle Osservazioni Indirette) - 1 - PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE (Metodo delle Osservazon Indrette) - - SPECIFICHE DI CALCOLO Procedura software per la compensazone d una rete d lvellazone collegata

Dettagli

Leggere i dati da file

Leggere i dati da file Esempo %soluzon d una equazone d secondo grado dsp('soluzon d a^+b+c') anput('damm l coeffcente a '); bnput('damm l coeffcente b '); cnput('damm l coeffcente c '); deltab^-4*a*c; f delta0 dsp('soluzon

Dettagli

Prof. Giulio Cainelli. appunti di Giovanni Gentile

Prof. Giulio Cainelli. appunti di Giovanni Gentile ECONOMIA POLITICA Macroeconoma Prof. Gulo Canell LA CONTABILITA NAZIONALE E LE VARIABILI MACROECONOMICHE La macroeconoma s occupa del comportamento aggregato del sstema economco, de meccansm d funzonamento

Dettagli

Laboratorio di Strumentazione e Misura. Cesare Bini

Laboratorio di Strumentazione e Misura. Cesare Bini Laboratoro d Strumentazone e Msura Cesare Bn Corso d laurea n Fsca Anno Accademco 006-007 Quest appunt sono basat sulle lezon del modulo d Laboratoro d Strumentazone e Msura del prmo anno delle lauree

Dettagli

Fondamenti di Visione Artificiale (Seconda Parte) Corso di Robotica Prof.ssa Giuseppina Gini Anno Acc.. 2006/2007

Fondamenti di Visione Artificiale (Seconda Parte) Corso di Robotica Prof.ssa Giuseppina Gini Anno Acc.. 2006/2007 Fondament d Vsone Artfcale (Seconda Parte PhD. Ing. Mchele Folgherater Corso d Robotca Prof.ssa Guseppna Gn Anno Acc.. 006/007 Caso Bdmensonale el caso bdmensonale, per ndvduare punt d contorno degl oggett

Dettagli

Elementi di linear discriminant analysis per la classificazione e il posizionamento nelle ricerche di marketing

Elementi di linear discriminant analysis per la classificazione e il posizionamento nelle ricerche di marketing http://www.mauroennas.eu Element d lnear dscrmnant analyss per la classfcazone e l poszonamento nelle rcerche d maretng Mauro Ennas Lnear Dscrmnant Analyss http://www.mauroennas.eu ADL_fnale_confronto_Ecel.sav

Dettagli

LA COMPATIBILITA tra due misure:

LA COMPATIBILITA tra due misure: LA COMPATIBILITA tra due msure: 0.4 Due msure, supposte affette da error casual, s dcono tra loro compatbl quando la loro dfferenza può essere rcondotta ad una pura fluttuazone statstca attorno al valore

Dettagli

DALLA TEORIA DEGLI ERRORI AL TRATTAMENTO DEI DATI

DALLA TEORIA DEGLI ERRORI AL TRATTAMENTO DEI DATI Captolo - Dalla teora degl error al trattamento de dat DALLA TEORIA DEGLI ERRORI AL TRATTAMENTO DEI DATI LA MISURA DELLE GRANDEZZE Nel descrere fenomen, occorre da un lato elaborare de modell (coè delle

Dettagli

Errori nel Posizionamento Satellitare

Errori nel Posizionamento Satellitare Error nel Poszonamento Satelltare Tpologe Casual Sstematc o d Modello D Osservazone L accuratezza è stmata come l 1% della lunghezza d onda (Regola Emprca). Codce C/A: ±3 m; Codce P: ±0,3 m; Portant L1,

Dettagli

2 Modello IS-LM. 2.1 Gli e etti della politica monetaria

2 Modello IS-LM. 2.1 Gli e etti della politica monetaria 2 Modello IS-LM 2. Gl e ett della poltca monetara S consderun modello IS-LM senzastatocon seguent datc = 0:8, I = 00( ), L d = 0:5 500, M s = 00 e P =. ) S calcolno valor d equlbro del reddto e del tasso

Dettagli

Teoria delle Decisioni

Teoria delle Decisioni La teora delle decson Teora delle Decson L oggetto della Decson Theory è la decsone ntesa come scelta tra alternatve Esemp: se ntrodurre o meno d un nuovo prodotto, se rnnovare un mpanto oppure aprrne

Dettagli

Newsletter "Lean Production" Autore: Dott. Silvio Marzo

Newsletter Lean Production Autore: Dott. Silvio Marzo Il concetto d "Produzone Snella" (Lean Producton) s sta rapdamente mponendo come uno degl strument pù modern ed effcac per garantre alle azende la flessbltà e la compettvtà che l moderno mercato rchede.

Dettagli

La tua area riservata Organizzazione Semplicità Efficienza

La tua area riservata Organizzazione Semplicità Efficienza Rev. 07/2012 La tua area rservata Organzzazone Semplctà Effcenza www.vstos.t La tua area rservata 1 MyVstos MyVstos è la pattaforma nformatca rservata a rvendtor Vstos che consente d verfcare la dsponbltà

Dettagli

LE CARTE DI CONTROLLO

LE CARTE DI CONTROLLO ITIS OMAR Dpartento d Meccanca LE CARTE DI CONTROLLO Carte d Controllo Le carte d controllo rappresentano uno degl struent pù portant per l controllo statstco d qualtà. La carta d controllo è corredata

Dettagli

PRIVATIZZAZIONE DEL WELFARE E RUOLO DELLE ASSOCIAZIONI DI RAPPRESENTANZA

PRIVATIZZAZIONE DEL WELFARE E RUOLO DELLE ASSOCIAZIONI DI RAPPRESENTANZA PRIVATIZZAZIONE DEL WELFARE E RUOLO DELLE ASSOCIAZIONI DI RAPPRESENTANZA La rforma del sstema pensonstco talano: le queston aperte e le prospettve d svluppo della componente a captalzzazone Carlo Mazzaferro

Dettagli

Modello idraulico - Rapporto tecnico. (Rev. 0b)

Modello idraulico - Rapporto tecnico. (Rev. 0b) ASAP LIFE06/ENV/IT/000255 ASAP_D4-3_ModelloIdraulcoRappTecnco_IT_0b 1/20 LIFE06/ENV/IT/255 A.S.A.P. Actons for Systemc Aqufer Protecton The ASAP proect s partally funded by the European Unon LIFE Programme

Dettagli

Approfondimenti disciplinari

Approfondimenti disciplinari UNIVERSITÁ DEGLI STUDI DI FERRARA CORSO SPECIALE ABILITANTE anno accademco 2006/2007 CORSO DI: Approfondment dscplnar UNITÁ DIDATTICA DELLA CLASSE A049 LA PROBABILITA DOCENTE: PROF. BERNARDI EROS TITOLO:

Dettagli

InfoCenter Product A PLM Application

InfoCenter Product A PLM Application genes d un fra o Gestone de crcolazone dell'nformazone sa crcoscrtta entro Pdetermnat ambt settoral. L'ntegrazone de sstem e de odpartment azendal rchede nuove modaltà operatve, nuove t competenze e nuov

Dettagli

ELEMENTI DI STATISTICA PARTE 1

ELEMENTI DI STATISTICA PARTE 1 ELEMETI DI STATISTICA PARTE. ITRODUZIOE. La parola statstca. Cenn storc.3 Gl studos.4 La statstca moderna.5 Le font statstche. DEFIIZIOI 3. Una defnzone d statstca 3. I fenomen collettv 3.3 Untà statstche,

Dettagli

E. Il campo magnetico

E. Il campo magnetico - 64 - - 65 - E. Il campo magnetco V è un mportante effetto che accompagna sempre la presenza d una corrente elettrca e s manfesta sa all nterno del conduttore sa al suo esterno: alla corrente elettrca

Dettagli

Moduli su un dominio a ideali principali Maurizio Cornalba versione 15/5/2013

Moduli su un dominio a ideali principali Maurizio Cornalba versione 15/5/2013 Modul su un domno a deal prncpal Maurzo Cornalba versone 15/5/2013 Sa A un anello commutatvo con 1. Indchamo con A k l modulo somma dretta d k cope d A. Un A-modulo fntamente generato M s dce lbero se

Dettagli

Economie di scala, concorrenza imperfetta e commercio internazionale

Economie di scala, concorrenza imperfetta e commercio internazionale Sanna-Randacco Lezone n. 14 Econome d scala, concorrenza mperfetta e commerco nternazonale Non v è vantaggo comparato (e qund non v è commerco nter-ndustrale). S vuole dmostrare che la struttura d mercato

Dettagli

Riflessione, diffusione e rifrazione

Riflessione, diffusione e rifrazione LUCE E VISIONE I COLOI APPUNTI DI FISICA lessone, dusone e rrazone Per meglo capre prncìp della vsone è necessaro conoscere come s propaga la luce e come s comporta quando ncontra un ostacolo Una prma

Dettagli

10.2 Come stimare l amaro di una birra: le unita IBU 1

10.2 Come stimare l amaro di una birra: le unita IBU 1 10.2 Come stmare l amaro d una brra: le unta IBU 1 Il prncpale contrbuto al sapore amaro della brra provene dagl alfa-acd (abbrevato n AA) del luppolo che durante l processo d bolltura vengono trasformat

Dettagli

8.1 Sintesi, descrizione, interpretazione

8.1 Sintesi, descrizione, interpretazione 8.1 Sntes, descrzone, nterpretazone Molte duse tecnche d anals statstca multvarata consentono d studare smultaneamente un numero elevato d varabl sntetzzandone l azone snergca attraverso un numero rdotto

Dettagli

DATA MINING E CLUSTERING

DATA MINING E CLUSTERING Captolo 4 DATA MINING E CLUSTERING 4. Che cos'è l Data Mnng Per Data Mnng s'ntende quel processo d estrazone d conoscenza da banche dat, tramte l'applcazone d algortm che ndvduano le assocazon non mmedatamente

Dettagli

Capitolo 6 Risultati pag. 468. a) Osmannoro. b) Case Passerini c) Ponte di Maccione

Capitolo 6 Risultati pag. 468. a) Osmannoro. b) Case Passerini c) Ponte di Maccione Captolo 6 Rsultat pag. 468 a) Osmannoro b) Case Passern c) Ponte d Maccone Fgura 6.189. Confronto termovalorzzatore-sorgent dffuse per l PM 10. Il contrbuto del termovalorzzatore alle concentrazon d PM

Dettagli

RETI TELEMATICHE Lucidi delle Lezioni Capitolo VII

RETI TELEMATICHE Lucidi delle Lezioni Capitolo VII Prof. Guseppe F. Ross E-mal: guseppe.ross@unpv.t Homepage: http://www.unpv.t/retcal/home.html UNIVERSITA' DEGLI STUDI DI PAVIA Facoltà d Ingegnera A.A. 2011/12 - I Semestre - Sede PV RETI TELEMATICHE Lucd

Dettagli

Generatori di Numeri Pseudocasuali

Generatori di Numeri Pseudocasuali CORSO DI LAUREA MAGISTRALE INGEGNERIA DELLE TECNOLOGIE DELLA COMUNICAZIONE E DELL INFORMAZIONE Generator d Numer Pseudocasual Dego Belvedere, Alessandro Brugnola, Alessa Vennarn Prof. Francesca Merola

Dettagli

PRODOTTI TRANSGENICI E CONSUMATORI: IL RUOLO DELLA CONOSCENZA E DELL'ATTITUDINE AL RISCHIO L. Cembalo - G. Cicia - F. Verneau 1 2

PRODOTTI TRANSGENICI E CONSUMATORI: IL RUOLO DELLA CONOSCENZA E DELL'ATTITUDINE AL RISCHIO L. Cembalo - G. Cicia - F. Verneau 1 2 PRODOTTI TRANSGENICI E CONSUMATORI: IL RUOLO DELLA CONOSCENZA E DELL'ATTITUDINE AL RISCHIO L. Cembalo - G. Cca - F. Verneau 1 2 1 - Introduzone In senso lato le botecnologe possono essere defnte come un

Dettagli

Università degli Studi di Cassino, Anno accademico 2004-2005 Corso di Statistica 2, Prof. M. Furno

Università degli Studi di Cassino, Anno accademico 2004-2005 Corso di Statistica 2, Prof. M. Furno Unverstà degl Stud d Cassno, Anno accademco 004-005 Corso d Statstca, Pro. M. Furno Eserctazone del 5//005 dott. Claudo Conversano Eserczo Ad un certo tavolo d un casnò s goca lancando un dado. Il goco

Dettagli

Il Ministro delle Infrastrutture e dei Trasporti

Il Ministro delle Infrastrutture e dei Trasporti Il Mnstro delle Infrastrutture e de Trasport VISTO l decreto legslatvo 30 aprle 1992, n. 285, come da ultmo modfcato dal decreto legslatvo 18 aprle 2011, n. 59, recante Attuazone delle drettve 2006/126/CE

Dettagli

Calcolo della caduta di tensione con il metodo vettoriale

Calcolo della caduta di tensione con il metodo vettoriale Calcolo della caduta d tensone con l metodo vettorale Esempo d rete squlbrata ed effett del neutro nel calcolo. In Ampère le cadute d tensone sono calcolate vettoralmente. Per ogn utenza s calcola la caduta

Dettagli

Cenni di matematica finanziaria Unità 61

Cenni di matematica finanziaria Unità 61 Prerequst: - Rsolvere equazon algebrche d 1 grado ed equazon esponenzal Questa untà è rvolta al 2 benno del seguente ndrzzo dell Isttuto Tecnco, settore Tecnologco: Agrara, Agroalmentare e Agrondustra.

Dettagli

9.6 Struttura quaternaria

9.6 Struttura quaternaria 9.6 Struttura quaternara L'ultmo lvello strutturale é la struttura quaternara. Non per tutte le protene è defnble una struttura quaternara. Infatt l esstenza d una struttura quaternara é condzonata alla

Dettagli

PROGETTAZIONE PER IL DISASSEMBLAGGIO: APPLICAZIONE DI RETI NEURALI PER L ANALISI DELLA PROFONDITA DI SMONTAGGIO

PROGETTAZIONE PER IL DISASSEMBLAGGIO: APPLICAZIONE DI RETI NEURALI PER L ANALISI DELLA PROFONDITA DI SMONTAGGIO XIII ADM - XV INGEGRAF Internatonal Conference on TOOLS AND METHODS EVOLUTION IN ENGINEERING DESIGN Cassno, June 3 rd, 2003 Napol, June 4 th and June 6 th, 2003 Salerno, June 5 th, 2003 PROGETTAZIONE PER

Dettagli

Analizzata: - Nei livelli Prezzi - Nelle differenze Rendimenti. Rendimento al tempo t: Variabile finanziaria

Analizzata: - Nei livelli Prezzi - Nelle differenze Rendimenti. Rendimento al tempo t: Variabile finanziaria Varable fnanzara Analzzata: - Ne lvell Prezz - Nelle dfferenze endent endento al tepo t: t ( P P ) t P t 1 t 1 1 Unverstà d Terao - Teora del portafoglo fnanzaro - Prof. Paolo D Antono endento atteso:

Dettagli

Corso di laurea in Economia marittima e dei trasporti

Corso di laurea in Economia marittima e dei trasporti Unverstà degl stud d Genova Corso d laurea n Economa marttma e de trasport Il problema del cammno mnmo n ret multobettvo Relatrce: Anna Scomachen Canddato: Slvo Vlla Dedcato a: Coloro che n me Hanno sempre

Dettagli

LA RETE DINAMICA NAZIONALE (RDN) ED IL NUOVO SISTEMA DI RIFERIMENTO ETRF2000

LA RETE DINAMICA NAZIONALE (RDN) ED IL NUOVO SISTEMA DI RIFERIMENTO ETRF2000 LA RETE DINAMICA NAZIONALE (RDN) ED IL NUOVO SISTEMA DI RIFERIMENTO ETRF2000 L. Baron, F. Caul, D. Donatell, G. Farolf, R. Maserol, Servzo Geodetco - Isttuto geografco Mltare - Frenze 1. Premessa La Rete

Dettagli

Scenari di frenata per il comparto elettrico: il nodo della valorizzazione del prodotto

Scenari di frenata per il comparto elettrico: il nodo della valorizzazione del prodotto CRESME Scenar d frenata per l comparto elettrco: l nodo della valorzzazone del prodotto Il mercato elettrco rappresenta uno de pù nteressant compart economc del nostro paese, caratterzzato da profonde

Dettagli

Ottimizzazione nella gestione dei progetti Capitolo 6 Project Scheduling con vincoli sulle risorse CARLO MANNINO

Ottimizzazione nella gestione dei progetti Capitolo 6 Project Scheduling con vincoli sulle risorse CARLO MANNINO Ottmzzazone nella gtone de progett Captolo 6 Project Schedulng con vncol sulle rsorse CARLO MANNINO Unverstà d Roma La Sapenza Dpartmento d Informatca e Sstemstca 1 Rsorse Ogn attvtà rchede rsorse per

Dettagli

Studio grafico-analitico di una funzioni reale in una variabile reale

Studio grafico-analitico di una funzioni reale in una variabile reale Studo grafco-analtco d una funzon reale n una varable reale f : R R a = f ( ) n Sequenza de pass In pratca 1 Stablre l tpo d funzone da studare es. f ( ) Determnare l domno D (o campo d esstenza) della

Dettagli

PARTE II LA CIRCOLAZIONE IDRICA

PARTE II LA CIRCOLAZIONE IDRICA PARTE II LA CIRCOLAZIONE IDRICA La acque d precptazone atmosferca che gungono al suolo scorrono n superfce o penetrano n profondtà dando orgne alla crcolazone, la quale subsce l nfluenza d molt fattor

Dettagli

EH SmartView. Una SmartView sui rischi e sulle opportunità. Servizio di monitoraggio dell assicurazione del credito. www.eulerhermes.

EH SmartView. Una SmartView sui rischi e sulle opportunità. Servizio di monitoraggio dell assicurazione del credito. www.eulerhermes. EH SmartVew Servz Onlne d Euler Hermes Una SmartVew su rsch e sulle opportuntà Servzo d montoraggo dell asscurazone del credto www.eulerhermes.t Cos è EH SmartVew? EH SmartVew è l servzo d Euler Hermes

Dettagli

Edifici a basso consumo energetico: tra ZEB e NZEB

Edifici a basso consumo energetico: tra ZEB e NZEB Edfc a basso consumo energetco: tra ZEB e NZEB Prof. Ing. Percarlo Romagnon Dpartmento d Progettazone e Panfcazone n Ambent Compless Unverstà IUAV d Veneza Dorsoduro 2206 30123 Veneza perca@uav.t Modell

Dettagli

Strategie multi-prodotto nei servizi di pubblica utilità: effetti della diversificazione e della densità dell utenza

Strategie multi-prodotto nei servizi di pubblica utilità: effetti della diversificazione e della densità dell utenza Stratege mult-prodotto ne servz d pubblca utltà: effett della dversfcazone e della denstà dell utenza Govann FRAQUELLI, Massmlano PIACENZA, Davde VANNONI Workng Paper 2, 2003 Hermes Real Collego Carlo

Dettagli

Markov Random Field. Teoria e applicabilità nell elaborazione delle immagini. Giovanni Bianco. Febbraio 1998. 20 i

Markov Random Field. Teoria e applicabilità nell elaborazione delle immagini. Giovanni Bianco. Febbraio 1998. 20 i Markov Random Feld Teora e applcabltà nell elaborazone delle mmagn U ( f) = v [ 1 δ( )] 20 S N f f f * = arg mn f F { U( d f) + U( f) } Govann Banco Febbrao 1998 2 Manoscrtto depostato presso l Dp. d Ingegnera

Dettagli

DOCUMENTO PER LA CONSULTAZIONE 598/2014/R/EEL

DOCUMENTO PER LA CONSULTAZIONE 598/2014/R/EEL DOCUMENTO PER LA CONSULTAZIONE 598/2014/R/EEL ORIENTAMENTI PER LA RIFORMA DELLE INTEGRAZIONI TARIFFARIE PER LE IMPRESE ELETTRICHE MINORI NON INTERCONNESSE Documento per la consultazone per la formazone

Dettagli

Modelli 1 @ Clamfim Equazione delle opzioni Teorema di Radon Nykodym 9 dicembre 2013

Modelli 1 @ Clamfim Equazione delle opzioni Teorema di Radon Nykodym 9 dicembre 2013 CLAMFIM Bologna Modell 1 @ Clamfm Equazone delle opzon Teorema d Radon Nykodym 9 dcembre 2013 professor Danele Rtell danele.rtell@unbo.t 1/33? ubblctà http://elsartcle.com/18arhmh Lbero accesso a Legendre

Dettagli