Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione"

Transcript

1 1 La Regressone Lneare (Semplce) Relazone funzonale e statstca tra due varabl Modello d regressone lneare semplce Stma puntuale de coeffcent d regressone Decomposzone della varanza Coeffcente d determnazone Propretà degl stmator de coeffcent Propretà dello stmatore della rsposta meda Error standard Contenut del Captolo 16 del lbro d testo

2 Introduzone Dall anals ed nferenza rguardante una sngola varable statstca passamo alla relazone tra (due) varabl statstche. Le relazon tra varabl mportant nell anals della realtà economco-azendale possono essere matematcamente espresse come: Y=f(X) dove la funzone f può assumere vare forme, lnear o non lnear, e può non essere conoscuta n modo precso. Consderamo l caso pù semplce quello lneare: regressone lneare semplce

3 3 Esemp Il presdente d una dtta d materal da costruzone rtene che la Quanttà meda annua d pastrelle, Q, venduta sa una funzone (lneare) del Valore complessvo de permess edlz rlascat, V, nell anno passato: Q=f(V). Un grosssta d cereal vuole conoscere l effetto della produzone annua Complessva, C, sul prezzo d vendta a tonnellata, P: Q=f(P). L area marketng d un azenda ha necesstà d sapere come l prezzo della Benzna nfluenz la quanttà venduta: rcorrendo alla sere storca de prezz settmanal e de dat d vendta ntendono svluppare un modello (lneare) che ndch d quanto varano le vendte al varare del prezzo: Q=f(P).

4 4 Relazone funzonale e statstca Obettvo: Date due varabl, X e Y, s è nteressat a comprendere come la varable Y (dpendente o rsposta) sa nfluenzata dalla X (esplcatva o ndpendente). Y è funzone d X se ad ogn valore d X corrsponde un solo valore d Y. La relazone funzonale è lneare, se possamo scrvere: β 0 =ntercetta Y = β + β1x 0 β 1 =coeffcente angolare

5 5 Esempo Per dslocare n manera ottmale punt vendta, un azenda vuole stmare un modello lneare che prevede le vendte per nucleo famlare n funzone del reddto famlare dsponble sulla base de dat provenent da una ndagne camponara : anno Reddto (X) Vendte (Y) anno Reddto (X) Vendte (Y)

6 6 Il dagramma a dspersone ndca una relazone lneare; all aumentare del reddto dsponble aumentano le vendte: L anals della regressone fornsce l modello: Y= X

7 7 Il modello rassume le nformazon de dat camponar e non dmostra che un aumento del reddto determna un aumento delle vendte. La teora economca postula l esstenza d un legame causaeffetto, prelmnar rsultat precedent, possono fornre l evdenza emprca. In generale una buona anals statstca combnata alla teora e all esperenza può consentre d gungere a fondate concluson. Nell esempo, è noto dalla teora che la quanttà d ben acqustata n un certo mercato (Y) può essere modellzzata come funzone lneare del reddto dsponble (X): se l reddto dsponble è x la quanttà acqustata sarà y. Altr fattor tuttava nfluenzano le quanttà acqustate, alcun sconoscut (es. la dversa propensone al consumo delle famgle), altr dentfcabl qual l prezzo del bene, e quello de ben concorrent, etc.

8 8 Cò fa sì che: Nel modello lneare semplce gl effett d tutt fattor dvers dal reddto, per spegare la quanttà acqustata vengono sntetzzat n una componente d errore: ε. Per l generco valore sarà qund y=β 0 +β 1 x +ε ι Al varare del campone noltre avremo n corrspondenza d ogn dato valore x tutto un nseme d possbl valor (una dstrbuzone d valor) d Y

9 9 Pertanto s assume che n P per ogn valore d X, sa l valore medo d Y funzone lneare d X: Y=β 0 +β 1 x Il modello d regressone lneare fornsce l valore atteso della varable aleatora Y (v. dpendente o rsposta) quando X assume un partcolare valore; n base all potes d lneartà l espressone per l valore atteso può essere scrtta come: E(Y/X=x)=β 0 +β 1 x Il valore osservato d Y n corrspondenza ad un dato valore d X è nvece par al valore atteso (o meda d P) pù un errore aleatoro ε y =β 0 +β 1 x+ε La varable ε, errore aleatoro, rappresenta la varazone d Y non spegata dalla relazone lneare.

10 10 In sntes: negl stud emprc, la relazone tra Y e X non è ma funzonale (a un valore X corrspondono pù valor d Y). Una relazone statstca tra la Y e la X può essere descrtta da: f ( X ) ε Y = f ( X ) + ε defnsce l contrbuto della X rappresenta l contrbuto d tutt fattor non osservat ( ) f ε X è una componente determnstca è una componente stocastca Y è una varable casuale.

11 11 Modello d regressone lneare semplce Introducendo opportune assunzon s ottene l modello d regressone lneare semplce. Assunzone 1: Y = 0 + β1x β + ε per ogn osservazone =1, n Assunzone : Assunzone 3: ε Le sono varabl casual ndpendent con valore atteso E( ε ) = 0 e varanza costante per ogn =1,,n V ( ε ) = σ x I valor della varable esplcatva X sono not senza errore

12 1 Modello d regressone lneare semplce Assunzone 1: mplca che la funzone f(x) è lneare. Assunzone : mplca che per ogn valore fssato d X, la Y possede sempre lo stesso grado d varabltà (potes d omoschedastctà). Inoltre, poché la ε è una varable casuale, anche Y è una varable casuale. y Pertanto, le osservazon sono realzzazon d varabl casual ndpendent con valore atteso con varanza V E( Y X = x ) = β 0 + β1x ( Y X x ) = σ =

13 13 13 Stma puntuale de coeffcent d regressone = ˆ β + ˆ Indcheremo con: ŷ 0 β1x l valore d Y fornto dalla retta stmata dove βˆ0 e βˆ1 sono le stme de coeffcent d regressone. Metodo d stma Metodo de mnm quadrat Consste nel rcercare le stme d 0 e, che rendono mnma la funzone d perdta: G n β β 1 ( β, β ) = ( β ) 0 1 y 0 β1x = 1

14 14 14 Stma puntuale de coeffcent d regressone Chameremo resduo -esmo la dfferenza tra l valore osservato y e quello fornto dalla retta stmata, ŷ ê = y ŷ

15 15 15 Stma puntuale de coeffcent d regressone Procedmento: 1) Porre ugual a zero le dervate prme rspetto a parametr ( β, β ) G 0 β0 G 0 β 1 1 ( β, β ) 1 = 0 = 0 ) Rsolvendo l sstema s ottengono le stme de mnm quadrat de coeffcent d regressone βˆ σ = = X Y 1 σ X n = 1 ( x x )( y y ) n = 1 ( x x ) ˆ β = y ˆ β 0 1 x

16 16 Decomposzone della varanza Le stme de mnm quadrat possedono un mportante propretà, nota come decomposzone della varanza totale: n ( y y ) = ( ŷ y ) + = 1 = 1 Somma totale de quadrat (SQT) Somma de quadrat della regressone (SQR) Somma de quadrat degl error (SQE) n n = 1 ê SQT SQR SQE ( y y ) = n y = 1 = n ( ŷ y ) = 1 = n ê = 1

17 17 Decomposzone della varanza SQR=0 SQR=SQT SQE=SQT e valor stmat sono tutt ugual alla meda camponara SQE=0 e tutt valor stmat sono ugual a quell osservat. y

18 18 Coeffcente d determnazone Dalla relazone SQT=SQR+SQE s può defnre un ndce che msura la bontà d adattamento della retta d regressone. Il rapporto R XY SQR = = 1 SQT SQE SQT è detto coeffcente d determnazone e ndca la proporzone d varabltà d Y spegata dalla varable esplcatva X, attraverso l modello d regressone.

19 19 Coeffcente d determnazone S può dmostrare che l coeffcente d determnazone corrsponde al quadrato del coeffcente d correlazone lneare: R XY = ( ρ ) XY σ XY = σ XσY

20 0 Modello d regressone lneare - esempo Su un campone d 0 aree ammnstratve s osserva l reddto pro-capte nel 1989 (X) e 1999 (Y). Area X:1989 Y: ,8 63,0 7,9 33,4 3 36,6 4,0 4 54, 7,8 5 41,9 5,0 6 44,4 54,0 7 54,3 63,4 8 4,3 60,7 9 48, 58, ,5 54, , 55,5 1 56,3 74, ,3 79, 14 46,8 53,1 S potzza l seguente modello: Y = 0 + β1x β + ε 15 45, 59, ,7 5, ,3 47, 18 39,5 48, ,9 41,4 0 5,6 66,9

21 1 Modello d regressone lneare - esempo S ottengono le seguente stme de coeffcent del modello: ˆ β 1 = 1, 55 ˆ β0 = 0, 595 ossa la retta d regressone: ŷ = 0, , 55 x Il coeffcente d correlazone è ρ XY = 0,956 SQT=497,6 da cu: ( 0, 956) 0, 914 R XY = = ossa crca l 91% della varabltà totale d Y è spegata dal modello d regressone.

22 Propretà degl stmator de coeffcent Propretà degl stmator de mnm quadrat 1. B e sono stmator corrett d e 0 B1 β0 β1. Nella classe degl stmator corrett d β e che sono 0 β funzon lnear delle, gl stmator de mnm 1 Y quadrat sono pù effcent. (Gauss-Markov) 3. La varanza e covaranza degl stmator de mnm quadrat sono: V ( B ) Cov 1 = ( B,B ) σ ( x ) n = 1 x 0 1 = σ V x ( B ) 0 ( x ) n = 1 x 1 x = σ + n n = 1 x ( ) x

23 3 3 Propretà dello stmatore della rsposta meda Per lo stmatore della rsposta meda propretà: Ŷ valgono le seguent Ŷ ( Ŷ ) x 1. Lo stmatore è corretto, ossa E = β 0 + β1. La varanza è: ( ) ( ) 1 x x V Ŷ = σ + n n h = 1 x h x ( ) Una msura della varabltà degl stmator de coeffcent d regressone e della rsposta meda è data dagl error standard, ossa le radc quadrate delle varanze: σ ( B ) = V ( ) ( B ) = V ( ) 0 B 0 σ σ ( Ŷ ) = V ( ) 1 B 1 Ŷ

24 4 4 Errore standard Ora sebbene l metodo M.Q. ndvua la retta che mnmzza la dfferenza tra valor osservat e quell prevst, questa non conduce quas ma a prevson scevre da error. E qund necessara una statstca camponara che msur la varabltà degl scostament de valor osservat da prevst. Inoltre, gl error standard dpendono dalla quanttà gnota: σ = V = ( Y ) V ( ε ) pertanto la s sosttusce con una sua stma stmator s ( B ) ( ) 0 s( B 1 ) s Ŷ s ottenendo gl Lo stmatore che s utlzza per ottenere la stma della varanza è dato da: n = 1ê s = n La radce quadrata è una msura della varabltà degl scostament de valor osservat da quell prevst dal modello e vene chamato errore standard della stma (d regressone).

Relazioni tra variabili: Correlazione e regressione lineare

Relazioni tra variabili: Correlazione e regressione lineare Dott. Raffaele Casa - Dpartmento d Produzone Vegetale Modulo d Metodologa Spermentale Febbrao 003 Relazon tra varabl: Correlazone e regressone lneare Anals d relazon tra varabl 6 Produzone d granella (kg

Dettagli

La regressione. La Regressione. La Regressione. min. min. Var X. X Variabile indipendente (data) Y Variabile dipendente

La regressione. La Regressione. La Regressione. min. min. Var X. X Variabile indipendente (data) Y Variabile dipendente Unverstà d Macerata Facoltà d Scenze Poltche - Anno accademco - La Regressone Varable ndpendente (data) Varable dpendente Dpendenza funzonale (o determnstca): f ; Da un punto d vsta analtco, valor della

Dettagli

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari Captolo 3 Covaranza, correlazone, bestft lnear e non lnear ) Covaranza e correlazone Ad un problema s assoca spesso pù d una varable quanttatva (es.: d una persona possamo determnare peso e altezza, oppure

Dettagli

Variabili statistiche - Sommario

Variabili statistiche - Sommario Varabl statstche - Sommaro Defnzon prelmnar Statstca descrttva Msure della tendenza centrale e della dspersone d un campone Introduzone La varable statstca rappresenta rsultat d un anals effettuata su

Dettagli

Introduzione al Machine Learning

Introduzione al Machine Learning Introduzone al Machne Learnng Note dal corso d Machne Learnng Corso d Laurea Magstrale n Informatca aa 2010-2011 Prof Gorgo Gambos Unverstà degl Stud d Roma Tor Vergata 2 Queste note dervano da una selezone

Dettagli

Concetti principale della lezione precedente

Concetti principale della lezione precedente Corso d Statstca medca e applcata 6 a Lezone Dott.ssa Donatella Cocca Concett prncpale della lezone precedente I concett prncpal che sono stat presentat sono: I fenomen probablstc RR OR ROC-curve Varabl

Dettagli

STATISTICA DESCRITTIVA - SCHEDA N. 5 REGRESSIONE LINEARE

STATISTICA DESCRITTIVA - SCHEDA N. 5 REGRESSIONE LINEARE Matematca e statstca: da dat a modell alle scelte www.dma.unge/pls_statstca Responsabl scentfc M.P. Rogantn e E. Sasso (Dpartmento d Matematca Unverstà d Genova) STATISTICA DESCRITTIVA - SCHEDA N. REGRESSIONE

Dettagli

Norma UNI CEI ENV 13005: Guida all'espressione dell'incertezza di misura

Norma UNI CEI ENV 13005: Guida all'espressione dell'incertezza di misura orma UI CEI EV 3005: Guda all'espressone dell'ncertezza d msura L obettvo d una msurazone è quello d determnare l valore del msurando, n altre parole della grandezza da msurare. In generale, però, l rsultato

Dettagli

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI CONFRONTO DI PIU MEDIE IL METODO DI ANALISI DELLA VARIANZA

NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI CONFRONTO DI PIU MEDIE IL METODO DI ANALISI DELLA VARIANZA NOTE DALLE LEZIONI DI STATISTICA MEDICA ED ESERCIZI CONFRONTO DI PIU MEDIE IL METODO DI ANALISI DELLA VARIANZA IL PROBLEMA Supponamo d voler studare l effetto d 4 dverse dete su un campone casuale d 4

Dettagli

STATISTICA DESCRITTIVA CON EXCEL

STATISTICA DESCRITTIVA CON EXCEL STATISTICA DESCRITTIVA CON EXCEL Corso d CPS - II parte: Statstca Laurea n Informatca Sstem e Ret 2004-2005 1 Obettv della lezone Introduzone all uso d EXCEL Statstca descrttva Utlzzo dello strumento:

Dettagli

Regressione Multipla e Regressione Logistica: concetti introduttivi ed esempi

Regressione Multipla e Regressione Logistica: concetti introduttivi ed esempi Regressone Multpla e Regressone Logstca: concett ntroduttv ed esemp I Edzone ottobre 014 Vncenzo Paolo Senese vncenzopaolo.senese@unna.t Indce Note prelmnar alla I edzone 1 Regressone semplce e multpla

Dettagli

CAPITOLO 3 Incertezza di misura Pagina 26

CAPITOLO 3 Incertezza di misura Pagina 26 CAPITOLO 3 Incertezza d msura Pagna 6 CAPITOLO 3 INCERTEZZA DI MISURA Le operazon d msurazone sono tutte nevtablmente affette da ncertezza e coè da un grado d ndetermnazone con l quale l processo d msurazone

Dettagli

Test delle ipotesi Parte 2

Test delle ipotesi Parte 2 Test delle potes arte Test delle potes sulla dstrbuzone: Introduzone Test χ sulla dstrbuzone b Test χ sulla dstrbuzone: Eserczo Test delle potes sulla dstrbuzone Molte concluson tratte nell nferenza parametrca

Dettagli

Università degli Studi di Urbino Facoltà di Economia

Università degli Studi di Urbino Facoltà di Economia Unverstà degl Stud d Urbno Facoltà d Economa Lezon d Statstca Descrttva svolte durante la prma parte del corso d corso d Statstca / Statstca I A.A. 004/05 a cura d: F. Bartolucc Lez. 8/0/04 Statstca descrttva

Dettagli

Adattamento di una relazione funzionale ai dati sperimentali

Adattamento di una relazione funzionale ai dati sperimentali Adattamento d una relazone 1 funzonale a dat spermental Sno ad ora abbamo vsto come può essere stmato, con un certo lvello d confdenza, l valore vero d una grandezza fsca (dretta o dervata) con l suo ntervallo

Dettagli

Economia del Settore Pubblico 97. Economia del Settore Pubblico 99. Quale indice di diseguaglianza usare? il rapporto interdecilico PROBLEMA:

Economia del Settore Pubblico 97. Economia del Settore Pubblico 99. Quale indice di diseguaglianza usare? il rapporto interdecilico PROBLEMA: Economa del Settore Pubblco Laura Vc laura.vc@unbo.t www.dse.unbo.t/lvc/edsp_.htm LEZIONE 4 Rmn, 9 aprle 008 Economa del Settore Pubblco 96 I prncpal ndc d dseguaglanza: ndc d entropa generalzzata Isprata

Dettagli

Corso di Statistica (canale P-Z) A.A. 2009/10 Prof.ssa P. Vicard

Corso di Statistica (canale P-Z) A.A. 2009/10 Prof.ssa P. Vicard Corso d Statstca (canale P-Z) A.A. 2009/0 Prof.ssa P. Vcard VALORI MEDI Introduzone Con le dstrbuzon e le rappresentazon grafche abbamo effettuato le prme sntes de dat. E propro osservando degl stogramm

Dettagli

LEZIONE 2 e 3. La teoria della selezione di portafoglio di Markowitz

LEZIONE 2 e 3. La teoria della selezione di portafoglio di Markowitz LEZIONE e 3 La teora della selezone d portafoglo d Markowtz Unverstà degl Stud d Bergamo Premessa Unverstà degl Stud d Bergamo Premessa () È puttosto frequente osservare come gl nvesttor tendano a non

Dettagli

Tutti gli strumenti vanno tarati

Tutti gli strumenti vanno tarati L'INCERTEZZA DI MISURA Anta Calcatell I.N.RI.M S eseguono e producono msure per prendere delle decson sulla base del rsultato ottenuto, come per esempo se bloccare l traffco n funzone d msure d lvello

Dettagli

Il modello markoviano per la rappresentazione del Sistema Bonus Malus. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti

Il modello markoviano per la rappresentazione del Sistema Bonus Malus. Prof. Cerchiara Rocco Roberto. Materiale e Riferimenti Il modello marovano per la rappresentazone del Sstema Bonus Malus rof. Cercara Rocco Roberto Materale e Rferment. Lucd dstrbut n aula. Lemare 995 (pag.6- e pag. 74-78 3. Galatoto G. 4 (tt del VI Congresso

Dettagli

La taratura degli strumenti di misura

La taratura degli strumenti di misura La taratura degl strument d msura L mportanza dell operazone d taratura nasce dall esgenza d rendere l rsultato d una msura rferble a campon nazonal od nternazonal del msurando n questone affnché pù msure

Dettagli

Statistica e calcolo delle Probabilità. Allievi INF

Statistica e calcolo delle Probabilità. Allievi INF Statstca e calcolo delle Probabltà. Allev INF Proff. L. Ladell e G. Posta 06.09.10 I drtt d autore sono rservat. Ogn sfruttamento commercale non autorzzato sarà perseguto. Cognome e Nome: Matrcola: Docente:

Dettagli

Capitolo 7. La «sintesi neoclassica» e il modello IS-LM. 2. La curva IS

Capitolo 7. La «sintesi neoclassica» e il modello IS-LM. 2. La curva IS Captolo 7 1. Il modello IS-LM La «sntes neoclassca» e l modello IS-LM Defnzone: ndvdua tutte le combnazon d reddto e saggo d nteresse per le qual l mercato de ben (curva IS) e l mercato della moneta (curva

Dettagli

Induzione elettromagnetica

Induzione elettromagnetica Induzone elettromagnetca L esperenza d Faraday L'effetto d produzone d corrente elettrca n un crcuto prvo d generatore d tensone fu scoperto dal fsco nglese Mchael Faraday nel 83. Egl studò la relazone

Dettagli

Calibrazione. Lo strumento idealizzato

Calibrazione. Lo strumento idealizzato Calbrazone Come possamo fdarc d uno strumento? Abbamo bsogno d dentfcare l suo funzonamento n condzon controllate. L dentfcazone deve essere razonalmente organzzata e condvsa n termn procedural: s tratta

Dettagli

Analisi di mercurio in matrici solide mediante spettrometria di assorbimento atomico a vapori freddi

Analisi di mercurio in matrici solide mediante spettrometria di assorbimento atomico a vapori freddi ESEMPIO N. Anals d mercuro n matrc solde medante spettrometra d assorbmento atomco a vapor fredd 0 Introduzone La determnazone del mercuro n matrc solde è effettuata medante trattamento termco del campone

Dettagli

PREVEDERE IL CHURN: UN APPROCCIO LONGITUDINALE

PREVEDERE IL CHURN: UN APPROCCIO LONGITUDINALE UNIVERSITÀ DEGLI STUDI DI PADOVA FACOLTÀ DI SCIENZE STATISTICHE CORSO DI LAUREA SPECIALISTICA IN SCIENZE STATISTICHE, ECONOMICHE, FINANZIARIE E AZIENDALI PREVEDERE IL CHURN: UN APPROCCIO LONGITUDINALE

Dettagli

LA STATISTICA: OBIETTIVI; RACCOLTA DATI; LE FREQUENZE (EXCEL) ASSOLUTE E RELATIVE

LA STATISTICA: OBIETTIVI; RACCOLTA DATI; LE FREQUENZE (EXCEL) ASSOLUTE E RELATIVE Lezone 6 - La statstca: obettv; raccolta dat; le frequenze (EXCEL) assolute e relatve 1 LA STATISTICA: OBIETTIVI; RACCOLTA DATI; LE FREQUENZE (EXCEL) ASSOLUTE E RELATIVE GRUPPO MAT06 Dp. Matematca, Unverstà

Dettagli

Corso di laurea in Ingegneria Meccatronica. DINAMICI CA - 04 ModiStabilita

Corso di laurea in Ingegneria Meccatronica. DINAMICI CA - 04 ModiStabilita Automaton Robotcs and System CONTROL Unverstà degl Stud d Modena e Reggo Emla Corso d laurea n Ingegnera Meccatronca MODI E STABILITA DEI SISTEMI DINAMICI CA - 04 ModStablta Cesare Fantuzz (cesare.fantuzz@unmore.t)

Dettagli

Esercitazioni del corso di Relazioni tra variabili. Giancarlo Manzi Facoltà di Sociologia Università degli Studi di Milano-Bicocca

Esercitazioni del corso di Relazioni tra variabili. Giancarlo Manzi Facoltà di Sociologia Università degli Studi di Milano-Bicocca Eserctazon del corso d Relazon tra varabl Gancarlo Manz Facoltà d Socologa Unverstà degl Stud d Mlano-Bcocca e-mal: gancarlo.manz@statstca.unmb.t Terza eserctazone Mlano, 8 febbrao 7 SOMMARIO TERZA ESERCITAZIONE

Dettagli

MODELLO MONOINDICE. R = a + β R. R M = è variabile aleatoria di rendimento del mercato (in Italia può essere usato il MIB 30).

MODELLO MONOINDICE. R = a + β R. R M = è variabile aleatoria di rendimento del mercato (in Italia può essere usato il MIB 30). ODELLO ONOINDICE Il rendmento d un ttolo uò essere scrtto come: R = a + β R (1) dove: R = rendmento dell -mo ttolo; a = comonente aleatora del rendmento, ndendente dall andamento del mercato; R = è varable

Dettagli

MODELLI STOCASTICI DELLA CLASSE GLM

MODELLI STOCASTICI DELLA CLASSE GLM MODELLI STOCASTICI DELLA CLASSE GLM S possono consderare GLM con dstrbuzone specfcata o modell con quas-verosmglanza, quest ultm sono modell d tpo semparametrco. Illustramo l loro uso come: strumento d

Dettagli

MACROECONOMIA A.A. 2014/2015

MACROECONOMIA A.A. 2014/2015 MACROECONOMIA A.A. 2014/2015 ESERCITAZIONE 2 MERCATO MONETARIO E MODELLO /LM ESERCIZIO 1 A) Un economa sta attraversando un perodo d profonda crs economca. Le banche decdono d aumentare la quota d depost

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne

Metodi e Modelli per l Ottimizzazione Combinatoria Progetto: Metodo di soluzione basato su generazione di colonne Metod e Modell per l Ottmzzazone Combnatora Progetto: Metodo d soluzone basato su generazone d colonne Lug De Govann Vene presentato un modello alternatvo per l problema della turnazone delle farmace che

Dettagli

TITOLO: L INCERTEZZA DI TARATURA DELLE MACCHINE PROVA MATERIALI (MPM)

TITOLO: L INCERTEZZA DI TARATURA DELLE MACCHINE PROVA MATERIALI (MPM) Identfcazone: SIT/Tec-012/05 Revsone: 0 Data 2005-06-06 Pagna 1 d 7 Annotazon: Il presente documento fornsce comment e lnee guda sull applcazone della ISO 7500-1 COPIA CONTROLLATA N CONSEGNATA A: COPIA

Dettagli

SISTEMI PREVISIVI PER IL FLUSSO DI CLIENTELA IN POSTE ITALIANE

SISTEMI PREVISIVI PER IL FLUSSO DI CLIENTELA IN POSTE ITALIANE Statstca Applcata Vol. 17, n. 3, 2005 377 SISTEMI PREVISIVI PER IL FLUSSO DI CLIENTELA IN POSTE ITALIANE Gan Pero Cervellera Poste Italane, Dvsone Rete Terrtorale, Drezone Operazon, Svluppo Process Ducco

Dettagli

Matematica II: Calcolo delle Probabilità e Statistica Matematica

Matematica II: Calcolo delle Probabilità e Statistica Matematica Matematca II: Calcolo delle Probabltà e Statstca Matematca ELT A-Z Docente: dott. F. Zucca Eserctazone # 8 Gl esercz contrassegnat con (*) sono tratt da Eserc. 2002-2003- Prof. Secch # 0 - Statstca Matematca

Dettagli

Il pendolo di torsione

Il pendolo di torsione Unverstà degl Stud d Catana Facoltà d Scenze MM.FF.NN. Corso d aurea n FISICA esna d ABORAORIO DI FISICA I Il pendolo d torsone (sezone costante) Moreno Bonaventura Anno Accademco 005/06 Introduzone. I

Dettagli

Il patrimonio informativo aziendale come supporto alle attività di marketing

Il patrimonio informativo aziendale come supporto alle attività di marketing Unverstà degl Stud d RomaTre - Facoltà d Economa Corso d Rcerche d Marketng Il patrmono nformatvo azendale come supporto alle attvtà d marketng ng. Stefano Cazzella stefano.cazzella@datamat.t Agenda La

Dettagli

POR FESR Sardegna 2007-2013 Asse VI Competitività BANDO PUBBLICO. Voucher Startup Incentivi per la competitività delle Startup innovative

POR FESR Sardegna 2007-2013 Asse VI Competitività BANDO PUBBLICO. Voucher Startup Incentivi per la competitività delle Startup innovative POR FESR Sardegna 2007-2013 Asse VI Compettvtà BANDO PUBBLICO Voucher Startup Incentv per la compettvtà delle Startup nnovatve ALLEGATO 3 PIANO DI UTILIZZO DEL VOUCHER STARTUP INNOVATIVE 2014 3. Pano d

Dettagli

6.1. Moody s KMV Credit Portfolio Manager

6.1. Moody s KMV Credit Portfolio Manager 6.. Moody s MV Credt Portfolo Manager 6... La struttura del modello L mpanto d Moody s MV (MMV) è costtuto dal modello d Merton e da un approcco d tpo fattorale per la stma delle correlazon. Attualmente,

Dettagli

lxmi.mi.infn.it/~camera/silsis/laboratorio-1/2-statistica.ppt http://www2.dm.unito.it/paginepersonali/zucca/index.htm Misura:

lxmi.mi.infn.it/~camera/silsis/laboratorio-1/2-statistica.ppt http://www2.dm.unito.it/paginepersonali/zucca/index.htm Misura: Elaborazone de dat geochmc e cenn d statstca lm.m.nfn.t/~camera/slss/laboratoro-1/-statstca.ppt http://www.dm.unto.t/pagnepersonal/zucca/nde.htm Msura: Espressone quanttatva del rapporto fra una grandezza

Dettagli

Problemi variazionali invarianti 1

Problemi variazionali invarianti 1 Problem varazonal nvarant 1 A F. Klen per l cnquantesmo annversaro del dottorato. Emmy Noether a Gottnga. Comuncazone presentata da F. Klen nella seduta del 26 luglo 1918 2. 1 Invarante Varatonsprobleme,

Dettagli

Trigger di Schmitt. e +V t

Trigger di Schmitt. e +V t CORSO DI LABORATORIO DI OTTICA ED ELETTRONICA Scopo dell esperenza è valutare l ampezza dell steres d un trgger d Schmtt al varare della frequenza e dell ampezza del segnale d ngresso e confrontarla con

Dettagli

Indicatori di rendimento per i titoli obbligazionari

Indicatori di rendimento per i titoli obbligazionari Indcator d rendmento per ttol obblgazonar LA VALUTAZIONE DEGLI INVESTIMENTI A TASSO FISSO Per valutare la convenenza d uno strumento fnanzaro è necessaro precsare: /4 Le specfche esgenze d un nvesttore

Dettagli

MODELLISTICA DI SISTEMI DINAMICI

MODELLISTICA DI SISTEMI DINAMICI CONTROLLI AUTOMATICI Ingegnera Gestonale http://www.automazone.ngre.unmore.t/pages/cors/controllautomatcgestonale.htm MODELLISTICA DI SISTEMI DINAMICI Ing. Federca Gross Tel. 059 2056333 e-mal: federca.gross@unmore.t

Dettagli

Grafico di una serie di dati sperimentali in EXCEL

Grafico di una serie di dati sperimentali in EXCEL Grafco d una sere d dat spermental n EXCEL 1. Inseramo sulla prma rga l ttolo che defnsce l contenuto del foglo. Po nseramo su un altra rga valor spermental della x e su quella successva valor della y.

Dettagli

UNA RASSEGNA SUI METODI DI STIMA DEL VALUE

UNA RASSEGNA SUI METODI DI STIMA DEL VALUE UNA RASSEGNA SUI METODI DI STIMA DEL VALUE at RISK (VaR) Chara Pederzol - Costanza Torrcell Dpartmento d Economa Poltca - Unverstà degl Stud d Modena e Reggo Emla Marzo 999 INDICE Introduzone. Il concetto

Dettagli

La retroazione negli amplificatori

La retroazione negli amplificatori La retroazone negl amplfcator P etroazonare un amplfcatore () sgnfca sottrarre (o sommare) al segnale d ngresso (S ) l segnale d retroazone (S r ) ottenuto dal segnale d uscta (S u ) medante un quadrpolo

Dettagli

Ministero della Salute D.G. della programmazione sanitaria --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA

Ministero della Salute D.G. della programmazione sanitaria --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA Mnstero della Salute D.G. della programmazone santara --- GLI ACC - L ANALISI DELLA VARIABILITÀ METODOLOGIA La valutazone del coeffcente d varabltà dell mpatto economco consente d ndvduare gl ACC e DRG

Dettagli

Lezione 10. L equilibrio del mercato finanziario: la struttura dei tassi d interesse

Lezione 10. L equilibrio del mercato finanziario: la struttura dei tassi d interesse Lezone 1. L equlbro del mercato fnanzaro: la struttura de tass d nteresse Ttol con scadenza dversa hanno prezz (e tass d nteresse) dfferent. Due ttol d durata dversa emess dallo stesso soggetto (stesso

Dettagli

Per il seminario di cultura formale - Dottorato GIA

Per il seminario di cultura formale - Dottorato GIA Per l semnaro d cultura formale - Dottorato GIA Luca Mar, dcembre 003 Lezone 1: la matematca come strumento per pensare Cnque ncontr, da 1 ora e mezza cascuno. Con questo tempo complessvo a dsposzone,

Dettagli

MATERIALE PER IL CORSO DI INDAGINI E STATISTICHE PER IL TURISMO NON DIFFONDERE DA PERCORSI DI RICERCA SOCIALE (a cura di L.

MATERIALE PER IL CORSO DI INDAGINI E STATISTICHE PER IL TURISMO NON DIFFONDERE DA PERCORSI DI RICERCA SOCIALE (a cura di L. MATERIALE PER IL CORSO DI INDAGINI E STATISTICHE PER IL TURISMO NON DIFFONDERE DA PERCORSI DI RICERCA SOCIALE (a cura d L.Bernard) 3.3. Dsegn d camponamento d Lorenzo Bernard 3.3.1. Una defnzone per ntrodurre

Dettagli

Capitolo 2 Dati e Tabelle

Capitolo 2 Dati e Tabelle Captolo 2 Dat e Tabelle La Descrzone della Popolazone La descrzone d una popolazone passa attraverso due fas: 1. la formazone de dat statstc 2. la sntes de dat La formazone del dato statstco prevede: ()

Dettagli

La contabilità analitica nelle aziende agrarie

La contabilità analitica nelle aziende agrarie 2 La contabltà analtca nelle azende agrare Estmo rurale ed element d contabltà (analtca) S. Menghn Corso d Laurea n Scenze e tecnologe agrare Percorso Economa ed Estmo Contabltà generale e cont. ndustrale

Dettagli

Soluzione attuale ONCE A YEAR. correlation curve (ISO10155) done with, at least 9 parallel measurements

Soluzione attuale ONCE A YEAR. correlation curve (ISO10155) done with, at least 9 parallel measurements Torna al programma Sstema per la garanza della qualtà ne sstem automatc d msura alle emsson: applcazone del progetto d norma pren 14181:2003. Rsultat dell esperenza n campo presso due mpant plota. Cprano

Dettagli

Calcolo delle Probabilità

Calcolo delle Probabilità alcolo delle Probabltà Quanto è possble un esto? La verosmglanza d un esto è quantfcata da un numero compreso tra 0 e. n partcolare, 0 ndca che l esto non s verfca e ndca che l esto s verfca senza dubbo.

Dettagli

* * * Nota inerente il calcolo della concentrazione rappresentativa della sorgente. Aprile 2006 RL/SUO-TEC 166/2006 1

* * * Nota inerente il calcolo della concentrazione rappresentativa della sorgente. Aprile 2006 RL/SUO-TEC 166/2006 1 APAT Agenza per la Protezone dell Ambente e per Servz Tecnc Dpartmento Dfesa del Suolo / Servzo Geologco D Itala Servzo Tecnologe del sto e St Contamnat * * * Nota nerente l calcolo della concentrazone

Dettagli

METODI BAYESIANI PER IL CONTROLLO STATISTICO DI QUALITA

METODI BAYESIANI PER IL CONTROLLO STATISTICO DI QUALITA Unverstà degl Stud d Bresca Poltecnco d Mlano Unverstà degl Stud d Pava Unverstà degl Stud d Lecce Dottorato d Rcerca n TECNOLOGIE E SISTEMI DI LAVORAZIONE XII CICLO METODI BAYESIANI PER IL CONTROLLO STATISTICO

Dettagli

Modelli di base per la politica economica

Modelli di base per la politica economica Marcella Mulno Modell d base per la poltca economca Corso d Poltca economca a.a. 22-23 Captolo 2 Modello - e poltche scal e monetare In questo captolo rchamamo brevemente l modello macroeconomco a prezz

Dettagli

Apprendimento Automatico e IR: introduzione al Machine Learning

Apprendimento Automatico e IR: introduzione al Machine Learning Apprendmento Automatco e IR: ntroduzone al Machne Learnng MGRI a.a. 2007/8 A. Moschtt, R. Basl Dpartmento d Informatca Sstem e produzone Unverstà d Roma Tor Vergata mal: {moschtt,basl}@nfo.unroma2.t 1

Dettagli

GLI ERRORI SPERIMENTALI NELLE MISURE DI LABORATORIO

GLI ERRORI SPERIMENTALI NELLE MISURE DI LABORATORIO GLI ERRORI SPERIMETALI ELLE MISURE DI LABORATORIO MISURA DI UA GRADEZZA FISICA S defnsce grandezza fsca una propretà de corp sulla quale possa essere eseguta un operazone d msura. Msurare una grandezza

Dettagli

Principi di ingegneria elettrica. Lezione 6 a. Analisi delle reti resistive

Principi di ingegneria elettrica. Lezione 6 a. Analisi delle reti resistive Prncp d ngegnera elettrca Lezone 6 a Anals delle ret resste Anals delle ret resste L anals d una rete elettrca (rsoluzone della rete) consste nel determnare tutte le corrent ncognte ne ram e tutt potenzal

Dettagli

Esame di Statistica Corso di Laurea in Economia

Esame di Statistica Corso di Laurea in Economia Esame d Statstca Corso d Laurea n Economa 9 Gennao 0 Cognome Nome atr. Teora S dmostr la propretà d lneartà della meda artmetca. Eserczo Una casa edtrce è nteressata a valutare se tra lettor d lbr esste

Dettagli

Analisi dei Segnali. Sergio Frasca. Dipartimento di Fisica Università di Roma La Sapienza

Analisi dei Segnali. Sergio Frasca. Dipartimento di Fisica Università di Roma La Sapienza Sergo Frasca Anals de Segnal Dpartmento d Fsca Unverstà d Roma La Sapenza Versone 13 dcembre 011 Versone aggornata n http://grwavsf.roma1.nfn.t/sp/sp.pdf Sommaro 1 Introduzone: segnal e sstem... 7 1.1

Dettagli

TECNICHE DI PROGRAMMAZIONE

TECNICHE DI PROGRAMMAZIONE TECNICHE DI PROGRAMMAZIONE IPOTESI SOTTOSTANTE: TECNICHE LINEARI (COEFFICIENTI FISSI DI PRODUZIONE) PREVISIONI (vendte, prezz de ben e de fattor) medante tecnche estrapolatve, econometrche e d mercato

Dettagli

1. Una panoramica sui metodi valutativi

1. Una panoramica sui metodi valutativi . Una panoramca su metod valutatv La dottrna azendalstca rconosce l esstenza d var metod att a determnare l valore del captale economco d un mpresa. In partcolare, è possble ndvduare tre macro-tpologe

Dettagli

Divagazioni in margine all Introduzione alla Probabilità di P. Baldi A. Visintin Facoltà di Ingegneria di Trento a.a. 2010-11

Divagazioni in margine all Introduzione alla Probabilità di P. Baldi A. Visintin Facoltà di Ingegneria di Trento a.a. 2010-11 Dvagazon n margne all Introduzone alla Probabltà d P. Bald A. Vsntn Facoltà d Ingegnera d Trento a.a. 2010-11 Indce 1. Statstca descrttva. 2. Spaz d probabltà e calcolo combnatoro. 3. Varabl aleatore dscrete.

Dettagli

MODELLI PER DATI SU RETICOLO (LATTICE DATA)

MODELLI PER DATI SU RETICOLO (LATTICE DATA) Schema degl argoment trattat MODELLI PER DATI SU RETICOLO (LATTICE DATA) -Indc global d autocorrelazone; -Defnzone d strutture d vcnato -Modell SAR -Modell CAR 2 Dat su retcolo S ntendono dat su aree (regolar

Dettagli

Corso di Automazione Industriale 1. Capitolo 7

Corso di Automazione Industriale 1. Capitolo 7 1 Corso d Automazone Industrale 1 Captolo 7 Teora delle code e delle ret d code Introduzone alla Teora delle Code La Teora delle Code s propone d svluppare modell per lo studo de fenomen d attesa che s

Dettagli

I SINDACATI E LA CONTRATTAZIONE COLLETTIVA. Il ruolo economico del sindacato in concorrenza imperfetta, in cui:

I SINDACATI E LA CONTRATTAZIONE COLLETTIVA. Il ruolo economico del sindacato in concorrenza imperfetta, in cui: I IDACATI E LA COTRATTAZIOE COLLETTIVA Il ruolo economco del sndacato n concorrenza mperfetta, n cu: a) le mprese fssano prezz de ben n contest d concorrenza monopolstca (con extra-proftt); b) lavorator

Dettagli

Costruzioni in c.a. Metodi di analisi

Costruzioni in c.a. Metodi di analisi Corso d formazone n INGEGNERIA SISICA Verres, 11 Novembre 16 Dcembre, 2011 Costruzon n c.a. etod d anals Alessandro P. Fantll alessandro.fantll@polto.t Verres, 18 Novembre, 2011 Gl argoment trattat 1.

Dettagli

Analisi statistica di dati biomedici Analysis of biologicalsignals

Analisi statistica di dati biomedici Analysis of biologicalsignals Anals statstca d dat bomedc Analyss of bologcalsgnals I Parte Inferenza statstca Agostno Accardo (accardo@unts.t) Master n Ingegnera Clnca LM Neuroscenze 2013-2014 e segg. Altman Practcal statstcs for

Dettagli

Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili. Modelli per la Logistica: Single Flow One Level Model Multi Flow Two Level Model

Ricerca Operativa e Logistica Dott. F.Carrabs e Dott.ssa M.Gentili. Modelli per la Logistica: Single Flow One Level Model Multi Flow Two Level Model Rcerca Operatva e Logstca Dott. F.Carrabs e Dott.ssa M.Gentl Modell per la Logstca: Sngle Flow One Level Model Mult Flow Two Level Model Modell d localzzazone nel dscreto Modell a Prodotto Sngolo e a Un

Dettagli

UNIVERSITA DEGLI STUDI DI PADOVA ANALISI STATISTICA DELLE VOTAZIONI PRESIDENZIALI AMERICANE IN FLORIDA NEL 2000

UNIVERSITA DEGLI STUDI DI PADOVA ANALISI STATISTICA DELLE VOTAZIONI PRESIDENZIALI AMERICANE IN FLORIDA NEL 2000 UNIVERSITA DEGLI STUDI DI PADOVA FACOLTA DI SCIENZE STATISTICHE CORSO DI LAUREA IN STATISTICA, ECONOMIA E FINANZA RELAZIONE FINALE ANALISI STATISTICA DELLE VOTAZIONI PRESIDENZIALI AMERICANE IN FLORIDA

Dettagli

Appendice B. B Elementi di Teoria dell Informazione 1. p k =P(X = x k ) ovviamente, valgono gli assiomi del calcolo della probabilità: = 1;

Appendice B. B Elementi di Teoria dell Informazione 1. p k =P(X = x k ) ovviamente, valgono gli assiomi del calcolo della probabilità: = 1; Appendce B Eleent d Teora dell Inforazone Appendce B B Eleent d Teora dell Inforazone B Introduzone E noto da tepo che fenoen percettv possono essere foralzzat e studat edante la Teora dell Inforazone

Dettagli

PARENTELA e CONSANGUINEITÀ di Dario Ravarro

PARENTELA e CONSANGUINEITÀ di Dario Ravarro Introduzone PARENTELA e CONSANGUINEITÀ d Daro Ravarro 1 gennao 2010 Lo studo della genealoga d un ndvduo è necessaro al fne d valutare la consangunetà dell ndvduo stesso e la sua parentela con altr ndvdu

Dettagli

Economia del Lavoro. Argomenti del corso

Economia del Lavoro. Argomenti del corso Economa del Lavoro Argoment del corso Studo del funzonamento del mercato del lavoro. In partcolare, l anals economca nerente l comportamento d: a) lavorator, b) mprese, c) sttuzon nel processo d determnazone

Dettagli

VA TIR - TA - TAEG Introduzione

VA TIR - TA - TAEG Introduzione VA TIR - TA - TAEG Introduzone La presente trattazone s pone come obettvo d analzzare due prncpal crter d scelta degl nvestment e fnanzament per valutare la convenenza tra due o pù operazon fnanzare. S

Dettagli

Corso AFFIDABILITÀ DELLE COSTRUZIONI MECCANICHE. Prof. Dario Amodio d.amodio@univpm.it. Ing. Gianluca Chiappini g.chiappini@univpm.

Corso AFFIDABILITÀ DELLE COSTRUZIONI MECCANICHE. Prof. Dario Amodio d.amodio@univpm.it. Ing. Gianluca Chiappini g.chiappini@univpm. Corso AFFIDABILITÀ DELLE COSTRUZIONI MECCANICHE Prof. Daro Amodo d.amodo@unvpm.t Ing. Ganluca Chappn g.chappn@unvpm.t http://www.dpmec.unvpm.t/costruzone/home.htm (Ddattca/Dspense) Testo d rfermento: Stefano

Dettagli

MODELLI DI SISTEMI. Principi di modellistica. Considerazioni energetiche. manca

MODELLI DI SISTEMI. Principi di modellistica. Considerazioni energetiche. manca ONTOI UTOMTII Ingegnera della Gestone Industrale e della Integrazone d Impresa http://www.automazone.ngre.unmore.t/pages/cors/ontrollutomatcgestonale.htm MODEI DI SISTEMI Ing. ug Bagott Tel. 05 0939903

Dettagli

MODELLO SPEDITIVO PER LA PREVISIONE DELLA DISPONIBILITÀ IDRICA NEL BACINO DEL PO IN PERIODI DI SICCITA

MODELLO SPEDITIVO PER LA PREVISIONE DELLA DISPONIBILITÀ IDRICA NEL BACINO DEL PO IN PERIODI DI SICCITA U.O. Protezone Cvle MODELLO SPEDITIVO PER LA PREVISIONE DELLA DISPONIBILITÀ IDRICA NEL BACINO DEL PO IN PERIODI DI SICCITA Centro Funzonale Component del gruppo d lavoro: Nomnatvo Ente Tel. Fax Ing. Maurzo

Dettagli

Allegato A. Modello per la stima della produzione di una discarica gestita a bioreattore

Allegato A. Modello per la stima della produzione di una discarica gestita a bioreattore Modello per la stma della produzone d una dscarca gestta a boreattore 1 Produzone d Bogas Nella letteratura tecnca sono stat propost dvers modell per stmare la produzone d bogas sulla base della qualtà

Dettagli

Programmazione e Controllo della Produzione. Analisi dei flussi

Programmazione e Controllo della Produzione. Analisi dei flussi Programmazone e Controllo della Produzone Anals de fluss Clent SERVIZIO Uscta Quanto al massmo produce l mo sstema produttvo? Quanto al massmo produce la ma macchna? Lo rsolvo con la smulazone? Sarebbe

Dettagli

CIRCOLARE N. 9. CIRCOLARI DELL ENTE MODIFICATE/SOSTITUITE: nessuna. Firmato: ing. Carlo Cannafoglia

CIRCOLARE N. 9. CIRCOLARI DELL ENTE MODIFICATE/SOSTITUITE: nessuna. Firmato: ing. Carlo Cannafoglia PROT. N 53897 ENTE EMITTENTE: OGGETTO: DESTINATARI: DATA DECORRENZA: CIRCOLARE N. 9 DC Cartografa, Catasto e Pubblctà Immoblare, d ntesa con l Uffco del Consglere Scentfco e la DC Osservatoro del Mercato

Dettagli

LA CALIBRAZIONE NELL ANALISI STRUMENTALE

LA CALIBRAZIONE NELL ANALISI STRUMENTALE LA CALIBRAZIONE NELL ANALISI STRUMENTALE La maggor parte delle anals chmche sono ogg condotte medante metod strumental (spettrometra d assorbmento ed emssone a dverse λ, metod elettrochmc, spettrometra

Dettagli

Prof. Giulio Cainelli. appunti di Giovanni Gentile

Prof. Giulio Cainelli. appunti di Giovanni Gentile ECONOMIA POLITICA Macroeconoma Prof. Gulo Canell LA CONTABILITA NAZIONALE E LE VARIABILI MACROECONOMICHE La macroeconoma s occupa del comportamento aggregato del sstema economco, de meccansm d funzonamento

Dettagli

La verifica delle ipotesi

La verifica delle ipotesi La verfca delle potes In molte crcostanze l rcercatore s trova a dover decdere quale, tra le dverse stuazon possbl rferbl alla popolazone, è quella meglo sostenuta dalle evdenze emprche. Ipotes statstca:

Dettagli

IL FINANZIAMENTO DELLA SANITÀ IN ITALIA: FINANZA AUTONOMA O DERIVATA?

IL FINANZIAMENTO DELLA SANITÀ IN ITALIA: FINANZA AUTONOMA O DERIVATA? WORKIG PAPER o 68 febbrao 2009 IL FIAZIAMETO DELLA SAITÀ I ITALIA: FIAZA AUTOOMA O DERIVATA? AGESE SACCHI JEL Classfcaton: H5, H75, H77 Keywords: Sstema santaro nazonale Federalsmo fscale socetà talana

Dettagli

McGraw-Hill. Tutti i diritti riservati. Caso 11

McGraw-Hill. Tutti i diritti riservati. Caso 11 Caso Copyrght 2005 The Companes srl Stma d un area fabbrcable n zona ndustrale nella cttà d Ferrara. La stma è effettuata con crter della comparazone e quello del valore d trasformazone. Indce Confermento

Dettagli

Macchine. 5 Esercitazione 5

Macchine. 5 Esercitazione 5 ESERCITAZIONE 5 Lavoro nterno d una turbomacchna. Il lavoro nterno massco d una turbomacchna può essere determnato not trangol d veloctà che s realzzano all'ngresso e all'uscta della macchna stessa. Infatt

Dettagli

Fotogrammetria. O centro di presa. fig.1 Geometria della presa fotogrammetrica

Fotogrammetria. O centro di presa. fig.1 Geometria della presa fotogrammetrica Fotogrammetra Scopo della fotogrammetra è la determnazone delle poszon d punt nello spazo fsco a partre dalla msura delle poszon de punt corrspondent su un mmagne fotografca. Ovvamente, affnché questo

Dettagli

Analisi dei flussi 182

Analisi dei flussi 182 Programmazone e Controllo Anals de fluss Clent SERVIZIO Uscta Quanto al massmo produce l mo sstema produttvo? Quanto al massmo produce la ma macchna? Anals de fluss 82 Programmazone e Controllo Teora delle

Dettagli

Pianificazione dei Trasporti

Pianificazione dei Trasporti Unverstà degl Stud d Treste Facoltà d Ingegnera Corso d Panfcazone de Trasport Prof. Govann Longo Anno Accademco 2003-2004 APPUNTI d Panfcazone de Trasport Paolo Martns LA PIANIFICAZIONE DEI TRASPORTI

Dettagli

Fondamenti di Visione Artificiale (Seconda Parte) Corso di Robotica Prof.ssa Giuseppina Gini Anno Acc.. 2006/2007

Fondamenti di Visione Artificiale (Seconda Parte) Corso di Robotica Prof.ssa Giuseppina Gini Anno Acc.. 2006/2007 Fondament d Vsone Artfcale (Seconda Parte PhD. Ing. Mchele Folgherater Corso d Robotca Prof.ssa Guseppna Gn Anno Acc.. 006/007 Caso Bdmensonale el caso bdmensonale, per ndvduare punt d contorno degl oggett

Dettagli

Laboratorio di Strumentazione e Misura. Cesare Bini

Laboratorio di Strumentazione e Misura. Cesare Bini Laboratoro d Strumentazone e Msura Cesare Bn Corso d laurea n Fsca Anno Accademco 006-007 Quest appunt sono basat sulle lezon del modulo d Laboratoro d Strumentazone e Msura del prmo anno delle lauree

Dettagli

PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE. (Metodo delle Osservazioni Indirette) - 1 -

PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE. (Metodo delle Osservazioni Indirette) - 1 - PROCEDURA INFORMATIZZATA PER LA COMPENSAZIONE DELLE RETI DI LIVELLAZIONE (Metodo delle Osservazon Indrette) - - SPECIFICHE DI CALCOLO Procedura software per la compensazone d una rete d lvellazone collegata

Dettagli

10.2 Come stimare l amaro di una birra: le unita IBU 1

10.2 Come stimare l amaro di una birra: le unita IBU 1 10.2 Come stmare l amaro d una brra: le unta IBU 1 Il prncpale contrbuto al sapore amaro della brra provene dagl alfa-acd (abbrevato n AA) del luppolo che durante l processo d bolltura vengono trasformat

Dettagli

SU UNA CLASSE DI EQUAZIONI CONSERVATIVE ED IPERBOLICHE COMPLETAMENTE ECCEZIONALI E COMPATIBILI CON UNA LEGGE DI CONSERVAZIONE SUPPLEMENTARE

SU UNA CLASSE DI EQUAZIONI CONSERVATIVE ED IPERBOLICHE COMPLETAMENTE ECCEZIONALI E COMPATIBILI CON UNA LEGGE DI CONSERVAZIONE SUPPLEMENTARE SU UNA CLASSE DI EQUAZIONI CONSERVATIVE ED IPERBOLICHE COMPLETAMENTE ECCEZIONALI E COMPATIBILI CON UNA LEGGE DI CONSERVAZIONE SUPPLEMENTARE GIOVANNI CRUPI, ANDREA DONATO SUMMARY. We characterze a set of

Dettagli