Capitolo 12 La regressione lineare semplice

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Capitolo 12 La regressione lineare semplice"

Transcript

1 Levine, Krehbiel, Berenson Statistica II ed Apogeo Capitolo 12 La regressione lineare semplice Insegnamento: Statistica Corso di Laurea Triennale in Economia Facoltà di Economia, Università di Ferrara Docenti: Dott. Stefano Bonnini, Dott.ssa Susanna Ragazzi

2 Argomenti Regressione e correlazione Regressione lineare semplice Il modello di regressione Equazione della retta di regressione Misure di variabilità Assunzioni del modello Analisi dei residui Inferenza sull inclinazione della retta Le trappole della regressione I calcoli della regressione lineare semplice

3 Regressione e correlazione Esistono molti metodi di inferenza statistica che si riferiscono ad una sola variabile statistica. Obiettivo della lezione: studio della relazione tra due variabili. Tecniche oggetto di studio: regressione Costruire un modello attraverso cui prevedere i valori di una variabile dipendente o risposta (quantitativa) a partire dai valori di una o più variabili indipendenti o esplicative correlazione Studio della associazione tra variabili quantitative

4 Regressione lineare Solitamente nel modello di regressione si indica con Y la variabile dipendente X la variabile esplicativa REGRESSIONE LINEARE SEMPLICE MULTIPLA Una sola variabile esplicativa X Diverse variabili esplicative (X 1, X 2,,X p )

5 Il modello di regressione Per studiare la relazione tra due variabili è utile il diagramma di dispersione in cui si riportano i valori della variabile esplicativa X sull asse delle ascisse e i valori della variabile dipendente Y sull asse delle ordinate. La relazione tra due variabili può essere espressa mediante funzioni matematiche più o meno complesse tramite un modello di regressione. Il modello di regressione lineare semplice è adatto quando i valori delle variabili X e Y si distribuiscono lungo una retta nel diagramma di dispersione.

6 Il modello di regressione L inclinazione β 1 indica come varia Y in corrispondenza di una variazione unitaria di X. L intercetta β 0 corrisponde al valore medio di Y quando X è uguale a 0. Il segno di β 1 indica se la relazione lineare è positiva o negativa. Esempio di relazione lineare positiva

7 Il modello di regressione La scelta del modello matematico appropriato è suggerita dal modo in cui si distribuiscono i valori delle due variabili nel diagramma di dispersione

8 Il modello di regressione Esempio: un produttore desidera ottenere una misura della qualità di un prodotto ma la procedura è troppo costosa. Decide allora di stimare questa misura (score 2) a partire dall osservazione di un altra misura (score 1) più semplice meno costosa da ottenere. Unità di prodotto Score Score Score Score

9 Equazione della retta di regressione Si dimostra che sotto certe ipotesi i parametri del modello β 0 e β 1 possono essere stimati ricorrendo ai dati del campione. Indichiamo con b 0 e b 1 le stime ottenute. La regressione ha come obiettivo quello di individuare la retta che meglio si adatta ai dati. Esistono vari modi per valutare la capacità di adattamento Il criterio più semplice è quello di valutare le differenze tra i valori osservati (Y i ) e i valori previsti (Ŷ i )

10 Equazione della retta di regressione Il metodo dei minimi quadrati consiste nel determinare b 0 e b 1 rendendo minima la somma dei quadrati delle differenze tra i valori osservati Y i e i valori stimati Ŷ i. I valori b 0 e b 1 sono chiamati coefficienti di regressione.

11 Equazione della retta di regressione Nell esempio precedente in cui si intendeva prevedere il valore di una misura di qualità score2 in funzione di un altra misura score1, applicando il metodo dei minimi quadrati si ottiene la seguente retta di regressione: Score y = x Score1 Tramite l equazione score2 = 1, ,2177 score1 è possibile prevedere i valori di score2 in funzione di quelli osservati di score1. Se ad esempio osservassimo un valore di score1 pari a 4,5 il valore stimato di score2 sarebbe 2,1. Risulta: b 1 = 0,2177 b 0 = 1,1177 Perciò se aumenta di un unità il valore di score1, il valore previsto di score2 subisce un incremento di 0,2177. Se score1 assume valore 0, il valore previsto per score2 è pari a 1,1177.

12 Equazione della retta di regressione La previsione di un valore di Y in corrispondenza di un certo valore di X può essere definita in due modi, in relazione all intervallo di valori di X usati per stimare il modello: interpolazione: se la previsione di Y corrisponde ad un valore di X interno all intervallo estrapolazione: se la previsione di Y corrisponde ad un valore di X che non cade nell intervallo Nell esempio precedente l intervallo per la variabile indipendente (score1) è [2,2; 8,5]. Calcolando la previsione di score2 per un valore di score1 pari a 4,5 abbiamo effettuato un interpolazione. Se volessimo calcolare la previsione di score2 in corrispondenza del valore 9 per score1, faremmo un estrapolazione.

13 Misure di variabilità Le seguenti misure di variabilità consentono di valutare le capacità previsive del modello statistico proposto. Variabilità totale (somma totale dei quadrati) variabilità di Y Variabilità spiegata (somma dei quadr. della regress.) variabilità di Ŷ Variabilità non spiegata (somma dei quadr. degli errori) variabilità dell errore

14 Misure di variabilità

15 Misure di variabilità Il coefficiente di determinazione è una misura utile per valutare il modello di regressione Esso misura la parte di variabilità di Y spiegata dalla variabile X nel modello di regressione. L errore standard della stima è una misura della variabilità degli scostamenti dei valori osservati da quelli previsti. Nell esempio precedente risulta r 2 = 0,96 e S YX = 0,13.

16 Le assunzioni del modello Distribuzione normale degli errori: gli errori devono avere, per ogni valore di X, una distribuzione normale. Il modello di regressione è comunque robusto rispetto a scostamenti dall ipotesi di normalità Omoschedasticità: la variabilità degli errori è costante per ciascun valore di X. Indipendenza degli errori: gli errori devono essere indipendenti per ciascun valore di X (importante soprattutto per osservazioni nel corso del tempo)

17 Le assunzioni del modello = +

18 Analisi dei residui Il residuo e i è una stima dell errore che commetto nel prevedere Y i tramite Ŷ i. Per stimare la capacità di adattamento ai dati della retta di regressione è opportuna una analisi grafica grafico di dispersione dei residui (ordinate) e dei valori di X (ascisse). Se si evidenzia una relazione particolare il modello non è adeguato. Nell esempio a lato il modello di regressione lineare non sembra appropriato. Il grafico a destra evidenzia lo scarso adattamento ai dati del modello (lack of fit). Quindi il modello polinomiale è più appropriato.

19 Analisi dei residui Valutazione delle ipotesi: Omoschedasticità: il grafico dei residui rispetto a X consente di stabilire anche se la variabilità degli errori varia a seconda dei valori di X Il grafico a lato evidenzia ad esempio che la variabilità dei residui aumenta all aumentare dei valori di X. Normalità: rappresentazione della distribuzione di frequenze dei residui (es. istogramma) Indipendenza: rappresentando i residui nell ordine con cui sono stati raccolti i dati emerge un eventuale autocorrelazione tra osservazioni successive.

20 Analisi dei residui Dall esempio precedente risulta che i residui non si distribuiscono in modo regolare al variare delle stime della variabile dipendente (e quindi anche al variare della X). Il modello quindi non è ben specificato. Il grafico dei residui rispetto al tempo non sembra evidenziare l esistenza di autocorrelazione dei primi. Residuals Versus the Fitted Values (response is Score2) Residuals Versus the Order of the Data (response is Score2) Residual Residual Fitted Value Observation Order

21 Analisi dei residui Per quanto riguarda la normalità dei residui, l istogramma delle frequenze e il normal probability plot ci portano ad escludere che la condizione sia verificata. Histogram of the Residuals (response is Score2) Normal Probability Plot of the Residuals (response is Score2) Frequency 2 Normal Score Residual Residual

22 Inferenza sull inclinazione della retta di regressione Possiamo stabilire se tra le variabili X e Y sussiste una relazione lineare significativa sottoponendo a verifica l ipotesi che β 1 (inclinazione della popolazione) sia uguale a zero.

23 Inferenza sull inclinazione della retta di regressione Se ad esempio α=0,05 e n=14, allora le regioni di accettazione e di rifiuto sono definite come segue: - + Nell esempio del modello di regressione in cui score1 è variabile esplicativa e score2 variabile dipendente abbiamo che b 1 =0,2177 n=8 t=b 1 /S b1 =12,51>t 6 = 2,45 perciò rigetto l ipotesi che l inclinazione sia nulla a favore dell ipotesi che esista inclinazione significativa.

24 Inferenza sull inclinazione della retta di regressione La significatività dell inclinazione della retta può essere sottoposta a verifica anche ricorrendo al test F:

25 Inferenza sull inclinazione della retta di regressione La regola decisionale è la seguente: Rifiuto H 0 se F > F U con F U valore critico che lascia a destra probabilità pari ad α. Nell esempio del modello di regressione in cui score1 è variabile esplicativa e score2 variabile dipendente abbiamo che F=156,56 > F 1,6 = 5,99 quindi rigetto l ipotesi di inclinazione non significativa.

26 Inferenza sull inclinazione della retta di regressione Un altro modo per verificare la significatività di β 1 è quello di costruire un intervallo di confidenza per il parametro. Se il valore ipotizzato β 1 = 0 è incluso nell intervallo accetto l ipotesi di inclinazione non significativa. Nel nostro esempio abbiamo β 1 = 0,21767 t 6 = 2,45 S b1 = 0,01740 perciò al livello di confidenza del 95% il vero valore di β 1 è compreso nell intervallo [0,17504;0,2603]. Lo zero non cade nell intervallo, perciò rigetto l ipotesi nulla.

27 Stima della previsione Oltre ad ottenere previsioni per i valori di Y (stime puntuali della media di Y) si possono ottenere intervalli di confidenza per la media della variabile risposta:

28 Stima della previsione = +

29 Stima della previsione E possibile ottenere un intervallo di confidenza per la previsione di un singolo valore di Y. La formula è molto simile a quella dell intervallo di confidenza per la media anche se in questo caso si stima un valore e non un parametro:

30 Le trappole dell analisi di regressione Il modello di regressione è una tecnica statistica molto utilizzata. Spesso però viene impiegata in modo non corretto. L analisi grafica molto spesso consente di rilevare eventuali informazioni che le analisi numeriche non evidenziano.

31 Le trappole dell analisi di regressione Ad esempio, a partire da quattro dataset diversi, è possibile ottenere gli stessi risultati in termini di statistiche di regressione pur trattandosi di situazioni molto diverse tra loro.

32 Le trappole dell analisi di regressione Caso A: il modello di regressione lineare semplice sembra appropriato Caso B: sembra più appropriato un modello polinomiale (di secondo grado) Caso C: presenza di un outlier che deve essere eliminato prima di procedere alle stime Caso D: valore anomalo di X di cui si dovrebbe tener conto nella specificazione del modello

33 Le trappole dell analisi di regressione

34 I calcoli della regressione lineare semplice Applicando il metodo dei minimi quadrati per la stima dei coefficienti della retta di regressione si ha:

35 I calcoli della regressione lineare semplice Calcolo delle misure di variabilità:

36 Riepilogo

STATISTICA DESCRITTIVA SCHEDA N. 5: REGRESSIONE LINEARE

STATISTICA DESCRITTIVA SCHEDA N. 5: REGRESSIONE LINEARE STATISTICA DESCRITTIVA SCHEDA N. : REGRESSIONE LINEARE Nella Scheda precedente abbiamo visto che il coefficiente di correlazione fra due variabili quantitative X e Y fornisce informazioni sull esistenza

Dettagli

La regressione lineare multipla

La regressione lineare multipla 13 La regressione lineare multipla Introduzione 2 13.1 Il modello di regressione multipla 2 13.2 L analisi dei residui nel modello di regressione multipla 9 13.3 Il test per la verifica della significatività

Dettagli

Capitolo 11 Test chi-quadro

Capitolo 11 Test chi-quadro Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 11 Test chi-quadro Insegnamento: Statistica Corso di Laurea Triennale in Ingegneria Gestionale Facoltà di Ingegneria, Università di Padova

Dettagli

Excel Terza parte. Excel 2003

Excel Terza parte. Excel 2003 Excel Terza parte Excel 2003 TABELLA PIVOT Selezioniamo tutti i dati (con le relative etichette) Dati Rapporto tabella pivot e grafico pivot Fine 2 La tabella pivot viene messa di default in una pagina

Dettagli

Relazioni statistiche: regressione e correlazione

Relazioni statistiche: regressione e correlazione Relazioni statistiche: regressione e correlazione È detto studio della connessione lo studio si occupa della ricerca di relazioni fra due variabili statistiche o fra una mutabile e una variabile statistica

Dettagli

Regressione Mario Guarracino Data Mining a.a. 2010/2011

Regressione Mario Guarracino Data Mining a.a. 2010/2011 Regressione Esempio Un azienda manifatturiera vuole analizzare il legame che intercorre tra il volume produttivo X per uno dei propri stabilimenti e il corrispondente costo mensile Y di produzione. Volume

Dettagli

Confronto di metodologie statistiche per l analisi di risultati di Customer Satisfaction

Confronto di metodologie statistiche per l analisi di risultati di Customer Satisfaction Confronto di metodologie statistiche per l analisi di risultati di Customer Satisfaction S. Gorla: Citroën Italia S.p.A. e Consigliere di giunta AicqCN; E. Belluco: statistico, PG. Della Role: master Black

Dettagli

RELAZIONE TRA DUE VARIABILI QUANTITATIVE

RELAZIONE TRA DUE VARIABILI QUANTITATIVE RELAZIONE TRA DUE VARIABILI QUANTITATIVE Quando si considerano due o più caratteri (variabili) si possono esaminare anche il tipo e l'intensità delle relazioni che sussistono tra loro. Nel caso in cui

Dettagli

LEZIONI DI STATISTCA APPLICATA. Parte 2. Statistica inferenziale. Variabili continue per continue. Alessandro Valbonesi. SARRF di Scienze ambientali

LEZIONI DI STATISTCA APPLICATA. Parte 2. Statistica inferenziale. Variabili continue per continue. Alessandro Valbonesi. SARRF di Scienze ambientali LEZIONI DI STATISTCA APPLICATA Parte 2 Statistica inferenziale Variabili continue per continue Alessandro Valbonesi SARRF di Scienze ambientali Anno accademico 2010-11 CAPITOLO 7 - RELAZIONI TRA DUE O

Dettagli

RELAZIONE TRA VARIABILI QUANTITATIVE. Lezione 7 a. Accade spesso nella ricerca in campo biomedico, così come in altri campi della

RELAZIONE TRA VARIABILI QUANTITATIVE. Lezione 7 a. Accade spesso nella ricerca in campo biomedico, così come in altri campi della RELAZIONE TRA VARIABILI QUANTITATIVE Lezione 7 a Accade spesso nella ricerca in campo biomedico, così come in altri campi della scienza, di voler studiare come il variare di una o più variabili (variabili

Dettagli

- Premessa...pag. 3. - Tabella dati.pag. 4. - Analisi di regressione lineare multipla pag. 5. - Individuazione residui anomali.pag.

- Premessa...pag. 3. - Tabella dati.pag. 4. - Analisi di regressione lineare multipla pag. 5. - Individuazione residui anomali.pag. Istituto Universitario di Architettura di Venezia Facoltà di Pianificazione del d Territorio Corso di laurea in Scienze della Pianificazione Urbanistica e Territoriale Esame di Metodi Quantitativi per

Dettagli

RAPPRESENTAZIONE GRAFICA E ANALISI DEI DATI SPERIMENTALI CON EXCEL

RAPPRESENTAZIONE GRAFICA E ANALISI DEI DATI SPERIMENTALI CON EXCEL RAPPRESENTAZIONE GRAFICA E ANALISI DEI DATI SPERIMENTALI CON EXCEL 1 RAPPRESENTAZIONE GRAFICA Per l analisi dati con Excel si fa riferimento alla versione 2007 di Office, le versioni successive non differiscono

Dettagli

Analisi della performance temporale della rete

Analisi della performance temporale della rete Analisi della performance temporale della rete In questo documento viene analizzato l andamento nel tempo della performance della rete di promotori. Alcune indicazioni per la lettura di questo documento:

Dettagli

FACOLTÀ DI ECONOMIA Soluzione della Prova di autovalutazione 2012 (primi 6 CFU) ANALISI STATISTICA PER L IMPRESA

FACOLTÀ DI ECONOMIA Soluzione della Prova di autovalutazione 2012 (primi 6 CFU) ANALISI STATISTICA PER L IMPRESA FACOLTÀ DI ECONOMIA Soluzione della Prova di autovalutazione 2012 (primi 6 CFU) ANALISI STATISTICA PER L IMPRESA NB Come potete vedere facendo la somma dei punteggi il numero di quesiti è superiore a quello

Dettagli

Modello di regressione lineare

Modello di regressione lineare Modello di regressione lineare a cura di Giordano dott. Enrico enrico.giordano@meliorbanca.com Nel presente lavoro viene descritto in modo dettagliato (attraverso anche un impatto visivo), l analisi di

Dettagli

Lineamenti di econometria 2

Lineamenti di econometria 2 Lineamenti di econometria 2 Camilla Mastromarco Università di Lecce Master II Livello "Analisi dei Mercati e Sviluppo Locale" (PIT 9.4) Aspetti Statistici della Regressione Aspetti Statistici della Regressione

Dettagli

Laboratorio di Didattica dell analisi: Analisi a priori sulla funzione valore assoluto

Laboratorio di Didattica dell analisi: Analisi a priori sulla funzione valore assoluto Laboratorio di Didattica dell analisi: Analisi a priori sulla funzione valore assoluto Sissis Palermo, 14 Novembre 2007 Prof. Spagnolo Nadia Giovino - (nadiagiovino@libero.it) Giovanni Lo Iacono - (gi.loiacono@virgilio.it)

Dettagli

Laboratorio R Corso di Algebra e Modelli lineari (Anno Accademico 2011-12)

Laboratorio R Corso di Algebra e Modelli lineari (Anno Accademico 2011-12) Laboratorio R Corso di Algebra e Modelli lineari (Anno Accademico 011-1) REGRESSIONE LINEARE SEMPLICE OPEN STATISTICA 8.44 Per 8 settimanali, appartenenti alla medesima fascia di prezzo e presenti in edicola

Dettagli

obbligatorio - n. iscrizione sulla lista se non ve lo ricordate siete fritti; o no?

obbligatorio - n. iscrizione sulla lista se non ve lo ricordate siete fritti; o no? 08.07.2014 - appello ENE - docente: E. Piazza obbligatorio - n. iscrizione sulla lista se non ve lo ricordate siete fritti; o no? il presente elaborato si compone di x (ics) pagine Cognome Nome matr.n.

Dettagli

Il modello di regressione lineare multivariata

Il modello di regressione lineare multivariata Il modello di regressione lineare multivariata Eduardo Rossi 2 2 Università di Pavia (Italy) Aprile 2013 Rossi MRLM Econometria - 2013 1 / 39 Outline 1 Notazione 2 il MRLM 3 Il modello partizionato 4 Collinearità

Dettagli

Metodi Matematici e Informatici per la Biologia----31 Maggio 2010

Metodi Matematici e Informatici per la Biologia----31 Maggio 2010 Metodi Matematici e Informatici per la Biologia----31 Maggio 2010 COMPITO 4 (3 CREDITI) Nome: Cognome: Matricola: ISTRUZIONI Gli esercizi che seguono sono di tre tipi: Domande Vero/Falso: cerchiate V o

Dettagli

Esercitazione Statistica Computazionale B Modelli di regressione lineare semplice Verifica di ipotesi - Analisi della varianza

Esercitazione Statistica Computazionale B Modelli di regressione lineare semplice Verifica di ipotesi - Analisi della varianza Esercitazione Statistica Computazionale B Modelli di regressione lineare semplice Verifica di ipotesi - Analisi della varianza 3 maggio 2005 Esercizio 1 Consideriamo l esempio del libro di testo Annette

Dettagli

Gestione ed Analisi Statistica dei dati

Gestione ed Analisi Statistica dei dati Master in Evidence Based Practice e Metodologia della Ricerca clinico-assistenziale assistenziale Gestione ed Analisi Statistica dei dati Daniela Fortuna 13 giugno 2014 Argomenti Parte teorica Relazioni

Dettagli

STIMARE valori ed eseguire ANALISI DI REGRESSIONE

STIMARE valori ed eseguire ANALISI DI REGRESSIONE STIMARE valori ed eseguire ANALISI DI REGRESSIONE È possibile impostare una serie di valori che seguono una tendenza lineare semplice oppure una tendenza con crescita esponenziale. I valori stimati vengono

Dettagli

3. Piano di lavoro: - applicazione di alcune semplici procedure, con il confronto tra le diverse soluzioni possibili nell ambito del programma SPSS

3. Piano di lavoro: - applicazione di alcune semplici procedure, con il confronto tra le diverse soluzioni possibili nell ambito del programma SPSS Per utilizzare SPSS sui PC dell aula informatica occorre accedere come: ID: SPSS Password: winidams Testo rapido di consultazione: Fideli R. Come analizzare i dati al computer. ed. Carocci, Urbino, 2002.

Dettagli

Microeconometria (Silvia Tiezzi) 01 aprile2011 Esercitazione

Microeconometria (Silvia Tiezzi) 01 aprile2011 Esercitazione Microeconometria (Silvia Tiezzi) 01 aprile2011 Esercitazione Esercizio 1 Si consideri il seguente modello ad effetti fissi con variabili binarie: + 1 2 a) supponete che N=3. Si mostri che i regressori

Dettagli

CPU Performance: Regressione multipla e Analisi Cluster in Matlab

CPU Performance: Regressione multipla e Analisi Cluster in Matlab CPU Performance: Regressione multipla e Analisi Cluster in Matlab Alberto Lusoli Abstract Il seguente documento, illustra le tecniche utilizzate nell analisi del dataset CPU Performance. Gli scopi dello

Dettagli

(accuratezza) ovvero (esattezza)

(accuratezza) ovvero (esattezza) Capitolo n 2 2.1 - Misure ed errori In un analisi chimica si misurano dei valori chimico-fisici di svariate grandezze; tuttavia ogni misura comporta sempre una incertezza, dovuta alla presenza non eliminabile

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Analisi armonica e metodi grafici Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 053 974839 E-mail: marcello.bonfe@unife.it pag. Analisi

Dettagli

MINIMI QUADRATI. REGRESSIONE LINEARE

MINIMI QUADRATI. REGRESSIONE LINEARE MINIMI QUADRATI. REGRESSIONE LINEARE Se il coefficiente di correlazione r è prossimo a 1 o a -1 e se il diagramma di dispersione suggerisce una relazione di tipo lineare, ha senso determinare l equazione

Dettagli

Facoltà di Psicologia Università di Padova Anno Accademico 2010-2011

Facoltà di Psicologia Università di Padova Anno Accademico 2010-2011 Facoltà di Psicologia Università di Padova Anno Accademico 010-011 Corso di Psicometria - Modulo B Dott. Marco Vicentini marco.vicentini@unipd.it Rev. 10/01/011 La distribuzione F di Fisher - Snedecor

Dettagli

Prof.ssa Paola Vicard

Prof.ssa Paola Vicard DISTRIBUZIONE DI FREQUENZE PER CARATTERI QUALITATIVI Questa nota consiste per la maggior parte nella traduzione (con alcune integrazioni) da Descriptive statistics di J. Shalliker e C. Ricketts, 2000,

Dettagli

Strumenti informatici 7.5 - Realizzare l analisi di regressione multipla con SPSS

Strumenti informatici 7.5 - Realizzare l analisi di regressione multipla con SPSS Strumenti informatici 7.5 - Realizzare l analisi di regressione multipla con SPSS Nella sua forma base, Excel non consente di realizzare un analisi di regressione multipla, mentre SPSS offre un ventaglio

Dettagli

ELEMENTI DI STATISTICA DESCRITTIVA

ELEMENTI DI STATISTICA DESCRITTIVA Metodi Statistici e Probabilistici per l Ingegneria ELEMENTI DI STATISTICA DESCRITTIVA Corso di Laurea in Ingegneria Civile Facoltà di Ingegneria, Università di Padova Docente: Dott. L. Corain E-mail:

Dettagli

ELEMENTI DI STATISTICA PER IDROLOGIA

ELEMENTI DI STATISTICA PER IDROLOGIA Carlo Gregoretti Corso di Idraulica ed Idrologia Elementi di statist. per Idrolog.-7//4 ELEMETI DI STATISTICA PER IDROLOGIA Introduzione Una variabile si dice casuale quando assume valori che dipendono

Dettagli

RAPPORTO CER Aggiornamenti

RAPPORTO CER Aggiornamenti RAPPORTO CER Aggiornamenti 17 Settembre 2010 L ECONOMIA ITALIANA HA GIA SUPERATO UN PUNTO DI MASSIMO CICLICO? I dati diffusi dall Istat lo scorso venerdì suscitano qualche preoccupazione sulle prospettive

Dettagli

Il corso si colloca nell ambito del corso integrato di scienze quantitative, al primo anno.

Il corso si colloca nell ambito del corso integrato di scienze quantitative, al primo anno. Corso di Statistica Medica Il corso si colloca nell ambito del corso integrato di scienze quantitative, al primo anno. Sono previste 40 ore complessive, di cui almeno 16 di lezione frontale e le restanti

Dettagli

Abbiamo costruito il grafico delle sst in funzione del tempo (dal 1880 al 1995).

Abbiamo costruito il grafico delle sst in funzione del tempo (dal 1880 al 1995). ANALISI DI UNA SERIE TEMPORALE Analisi statistica elementare Abbiamo costruito il grafico delle sst in funzione del tempo (dal 1880 al 1995). Si puo' osservare una media di circa 26 C e una deviazione

Dettagli

Iniziativa Comunitaria Equal II Fase IT G2 CAM - 017 Futuro Remoto. Strumenti di Valutazione di un Prodotto Finanziario

Iniziativa Comunitaria Equal II Fase IT G2 CAM - 017 Futuro Remoto. Strumenti di Valutazione di un Prodotto Finanziario AREA FINANZA DISPENSA FINANZA Iniziativa Comunitaria Equal II Fase IT G2 CAM - 017 Futuro Remoto Strumenti di Valutazione di un Prodotto Finanziario ORGANISMO BILATERALE PER LA FORMAZIONE IN CAMPANIA Strumenti

Dettagli

LA MODELLAZIONE EMPIRICA DELLE RELAZIONI ECONOMICHE: APPLICAZIONI IN STATA 7. Maria Elena Bontempi e.bontempi@economia.unife.it

LA MODELLAZIONE EMPIRICA DELLE RELAZIONI ECONOMICHE: APPLICAZIONI IN STATA 7. Maria Elena Bontempi e.bontempi@economia.unife.it LA MODELLAZIONE EMPIRICA DELLE RELAZIONI ECONOMICHE: APPLICAZIONI IN STATA 7 Maria Elena Bontempi e.bontempi@economia.unife.it VI LEZIONE: Analisi dei residui di stima: outlier, eteroschedasticità. Leverage.

Dettagli

8 marzo 2013. Petya G. Garalova. Assistenza studenti Venerdì dalle 18 alle 19

8 marzo 2013. Petya G. Garalova. Assistenza studenti Venerdì dalle 18 alle 19 1 Esercitazione 8 marzo 2013 Petya G. Garalova petya.garalova@hotmail.com Assistenza studenti Venerdì dalle 18 alle 19 Scopo delle esercitazioni Gli obiettivi delle esercitazioni sono: Ripassare/rafforzare

Dettagli

Indicando con x i minuti di conversazione effettuati in un mese, con la spesa totale nel mese e con il costo medio al minuto:

Indicando con x i minuti di conversazione effettuati in un mese, con la spesa totale nel mese e con il costo medio al minuto: PROBLEMA 1. Il piano tariffario proposto da un operatore telefonico prevede, per le telefonate all estero, un canone fisso di 10 euro al mese, più 10 centesimi per ogni minuto di conversazione. Indicando

Dettagli

Vincolo di bilancio del consumatore, paniere ottimo

Vincolo di bilancio del consumatore, paniere ottimo Microeconomia, Esercitazione 2 (26/02/204) Vincolo di bilancio del consumatore, paniere ottimo Dott. Giuseppe Francesco Gori Domande a risposta multipla ) Antonio compra solo due beni, sigarette e banane.

Dettagli

UNIVERSITÀ DEGLI STUDI DI FERRARA

UNIVERSITÀ DEGLI STUDI DI FERRARA UNIVERSITÀ DEGLI STUDI DI FERRARA Anno Accademico 2012/2013 REGISTRO DELL ATTIVITÀ DIDATTICA Docente: ANDREOTTI MIRCO Titolo del corso: MATEMATICA ED ELEMENTI DI STATISTICA Corso: CORSO UFFICIALE Corso

Dettagli

Capitolo 13: L offerta dell impresa e il surplus del produttore

Capitolo 13: L offerta dell impresa e il surplus del produttore Capitolo 13: L offerta dell impresa e il surplus del produttore 13.1: Introduzione L analisi dei due capitoli precedenti ha fornito tutti i concetti necessari per affrontare l argomento di questo capitolo:

Dettagli

Esplorazione dei dati

Esplorazione dei dati Esplorazione dei dati Introduzione L analisi esplorativa dei dati evidenzia, tramite grafici ed indicatori sintetici, le caratteristiche di ciascun attributo presente in un dataset. Il processo di esplorazione

Dettagli

Guida rapida - versione Web e Tablet

Guida rapida - versione Web e Tablet Guida rapida - versione Web e Tablet Cos è GeoGebra? Un pacchetto completo di software di matematica dinamica Dedicato all apprendimento e all insegnamento a qualsiasi livello scolastico Gestisce interattivamente

Dettagli

6. Modelli statistici: analisi della regressione lineare

6. Modelli statistici: analisi della regressione lineare BIOSTATISTICA 6. Modelli statistici: analisi della regressione lineare Marta Blangiardo, Imperial College, London Department of Epidemiology and Public Health m.blangiardo@imperial.ac.uk MARTA BLANGIARDO

Dettagli

Capitolo 7 Guida operativa del programma TQ Controlla

Capitolo 7 Guida operativa del programma TQ Controlla Capitolo 7 Guida operativa del programma TQ Controlla Panoramica delle funzionalità Fornisce un ampio ventaglio di strumenti per il controllo statistico dei processi (SPC) in modo da soddisfare ogni esigenza

Dettagli

Il corso si colloca nell ambito del corso integrato di scienze quantitative, al secondo anno, primo semestre.

Il corso si colloca nell ambito del corso integrato di scienze quantitative, al secondo anno, primo semestre. Corso di Statistica Medica 2004-2005 Il corso si colloca nell ambito del corso integrato di scienze quantitative, al secondo anno, primo semestre. Sono previste 30 ore di lezione di statistica e 12 di

Dettagli

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 1

CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 1 CORSO DI STATISTICA (parte 1) - ESERCITAZIONE 1 Dott.ssa Antonella Costanzo a.costanzo@unicas.it Un breve riepilogo: caratteri, unità statistiche e collettivo UNITA STATISTICA: oggetto dell osservazione

Dettagli

3. Quale affermazione è falsa?

3. Quale affermazione è falsa? 1. Quale affermazione è falsa? Se la funzione f) è continua e monotona crescente su R e se f) = 1 e f4) =, allora ha un unico zero nell intervallo, 4) f) non si annulla mai in R f ) > nell intervallo,

Dettagli

Statistica. Lezione 6

Statistica. Lezione 6 Università degli Studi del Piemonte Orientale Corso di Laurea in Infermieristica Corso integrato in Scienze della Prevenzione e dei Servizi sanitari Statistica Lezione 6 a.a 011-01 Dott.ssa Daniela Ferrante

Dettagli

In questa dispensa cercheremo di approfondire le più comuni tecniche statistiche per l analisi dei dati raccolti nell ambito di ricerca clinica e di

In questa dispensa cercheremo di approfondire le più comuni tecniche statistiche per l analisi dei dati raccolti nell ambito di ricerca clinica e di In questa dispensa cercheremo di approfondire le più comuni tecniche statistiche per l analisi dei dati raccolti nell ambito di ricerca clinica e di base. Verranno inoltre forniti i concetti fondamentali

Dettagli

SOLUZIONE DEL PROBLEMA 1 TEMA DI MATEMATICA ESAME DI STATO 2015

SOLUZIONE DEL PROBLEMA 1 TEMA DI MATEMATICA ESAME DI STATO 2015 SOLUZIONE DEL PROBLEMA 1 TEMA DI MATEMATICA ESAME DI STATO 015 1. Indicando con i minuti di conversazione effettuati nel mese considerato, la spesa totale mensile in euro è espressa dalla funzione f()

Dettagli

Metodi statistici per le ricerche di mercato

Metodi statistici per le ricerche di mercato Metodi statistici per le ricerche di mercato Prof.ssa Isabella Mingo A.A. 2013-2014 Facoltà di Scienze Politiche, Sociologia, Comunicazione Corso di laurea Magistrale in «Organizzazione e marketing per

Dettagli

ESEMPIO SPERIMENTAZIONE DEL MODELLO CS ON LINE. Indagine di soddisfazione per il Comune di XY

ESEMPIO SPERIMENTAZIONE DEL MODELLO CS ON LINE. Indagine di soddisfazione per il Comune di XY ESEMPIO SPERIMENTAZIONE DEL MODELLO CS ON LINE Indagine di soddisfazione per il Comune di XY Indice Introduzione: le fasi per la realizzazione dell indagine di customer satisfaction...2 L indagine del

Dettagli

Reliability & Minitab Ing. Pier Giorgio DELLA ROLE Six Sigma Master Black Belt pgrole@yahoo.it

Reliability & Minitab Ing. Pier Giorgio DELLA ROLE Six Sigma Master Black Belt pgrole@yahoo.it Reliability & Minitab Ing. Pier Giorgio DELLA ROLE Six Sigma Master Black Belt pgrole@yahoo.it Il linguaggio e i concetti dell affidabilità I miglioramenti della qualità dei prodotti hanno solitamente

Dettagli

Facoltà di Psicologia Università di Padova Anno Accademico 2010-2011

Facoltà di Psicologia Università di Padova Anno Accademico 2010-2011 Facoltà di Psicologia Università di Padova Anno Accademico 2010-2011 L4, Corso Integrato di Psicometria - Modulo B Dr. Marco Vicentini marco.vicentini@unipd.it Rev. 18/04/2011 Inferenza statistica Formulazione

Dettagli

Prefazione all edizione originale. Prefazione all edizione italiana

Prefazione all edizione originale. Prefazione all edizione italiana Indice Prefazione all edizione originale Prefazione all edizione italiana xiii xv 1 Il miglioramento della qualità nel moderno ambiente produttivo 1 1.1 Significato dei termini qualità e miglioramento

Dettagli

Esempio. Approssimazione con il criterio dei minimi quadrati. Esempio. Esempio. Risultati sperimentali. Interpolazione con spline cubica.

Esempio. Approssimazione con il criterio dei minimi quadrati. Esempio. Esempio. Risultati sperimentali. Interpolazione con spline cubica. Esempio Risultati sperimentali Approssimazione con il criterio dei minimi quadrati Esempio Interpolazione con spline cubica. Esempio 1 Come procedere? La natura del fenomeno suggerisce che una buona approssimazione

Dettagli

Tabella per l'analisi dei risultati

Tabella per l'analisi dei risultati Vai a... UniCh Test V_Statistica_Eliminatorie Quiz V_Statistica_Eliminatorie Aggiorna Quiz Gruppi visibili Tutti i partecipanti Info Anteprima Modifica Risultati Riepilogo Rivalutazione Valutazione manuale

Dettagli

LEZIONE n. 5 (a cura di Antonio Di Marco)

LEZIONE n. 5 (a cura di Antonio Di Marco) LEZIONE n. 5 (a cura di Antonio Di Marco) IL P-VALUE (α) Data un ipotesi nulla (H 0 ), questa la si può accettare o rifiutare in base al valore del p- value. In genere il suo valore è un numero molto piccolo,

Dettagli

Progetto di analisi statistica: misurazione della costante di Hubble e verifica della legge di espansione dell Universo

Progetto di analisi statistica: misurazione della costante di Hubble e verifica della legge di espansione dell Universo Andrea Pisoni, andreapisoni@virgilio.it Davide Valentinis, davidevalentinis@virgilio.it Laureandi in Ingegneria Fisica, Politecnico di Milano Progetto di analisi statistica: misurazione della costante

Dettagli

APPROFONDIMENTO TECNICHE STATISTICHE. 1.6 Analisi dei dati

APPROFONDIMENTO TECNICHE STATISTICHE. 1.6 Analisi dei dati APPROFONDIMENTO TECNICHE STATISTICHE 1.6 Analisi dei dati Nella sua configurazione, il questionario consente l effettuazione di analisi descrittive, bivariate e multivariate. In proposito, è orientamento

Dettagli

Indice generale. Prefazione...xi. Introduzione...1. Capitolo 1 Tabelle e prospetti...25

Indice generale. Prefazione...xi. Introduzione...1. Capitolo 1 Tabelle e prospetti...25 Prefazione...xi Introduzione...1 Terminologia essenziale... 1 Differenze di aspetto tra Excel 2003 (XP) ed Excel 2010: la barra multifunzione... 3 Novità relative al menu File e alle barre Standard e Formattazione...

Dettagli

Metodologie statistiche per l analisi del rischio PROGETTAZIONE ED ANALISI DEGLI ESPERIMENTI PER L ANALISI DEL RISCHIO

Metodologie statistiche per l analisi del rischio PROGETTAZIONE ED ANALISI DEGLI ESPERIMENTI PER L ANALISI DEL RISCHIO Corso di Laurea in Sicurezza igienico-sanitaria degli alimenti Metodologie statistiche per l analisi del rischio PROGETTAZIONE ED ANALISI DEGLI ESPERIMENTI PER L ANALISI DEL RISCHIO Facoltà di Medicina

Dettagli

Diagrammi di Bode. I Diagrammi di Bode sono due: 1) il diagramma delle ampiezze rappresenta α = ln G(jω) in funzione

Diagrammi di Bode. I Diagrammi di Bode sono due: 1) il diagramma delle ampiezze rappresenta α = ln G(jω) in funzione 0.0. 3.2 Diagrammi di Bode Possibili rappresentazioni grafiche della funzione di risposta armonica F (ω) = G(jω) sono: i Diagrammi di Bode, i Diagrammi di Nyquist e i Diagrammi di Nichols. I Diagrammi

Dettagli

STATISTICA ECONOMICA ED ANALISI DI MERCATO Previsioni Economiche ed Analisi di Serie Storiche A.A. 2003 / 04 ESERCITAZIONE 2

STATISTICA ECONOMICA ED ANALISI DI MERCATO Previsioni Economiche ed Analisi di Serie Storiche A.A. 2003 / 04 ESERCITAZIONE 2 STATISTICA ECONOMICA ED ANALISI DI MERCATO Previsioni Economiche ed Analisi di Serie Storiche A.A. 2003 / 04 ESERCITAZIONE 2 Introduzione all uso di EViews di Daniele Toninelli 1. INTRODUZIONE ad EViews

Dettagli

2. STYLE ANALYSIS DEI FONDI COMUNI D INVESTIMENTO. pag.10 2.1 Introduzione pag.10 2.2 Metodologia pag.11

2. STYLE ANALYSIS DEI FONDI COMUNI D INVESTIMENTO. pag.10 2.1 Introduzione pag.10 2.2 Metodologia pag.11 INDICE: SOMMARIO 1. I FONDI COMUNI D INVESTIMENTO pag.5 1.1 Definizione e caratteristiche di un fondo comune d investimento pag.5 1.2 La struttura di un fondo comune d investimento..pag.6 1.3 Classificazione

Dettagli

Histogram of C1 Normal

Histogram of C1 Normal Soluzioni domande ed esercizi Fondamenti di Affidabilità Capitolo 2. La vita di un cambio ad ingranaggi può essere fortemente influenzata nelle fasi iniziali della sua vita da problemi derivanti principalmente

Dettagli

Elementi di Statistica

Elementi di Statistica Elementi di Statistica Contenuti Contenuti di Statistica nel corso di Data Base Elementi di statistica descrittiva: media, moda, mediana, indici di dispersione Introduzione alle variabili casuali e alle

Dettagli

Cenni di statistica descrittiva

Cenni di statistica descrittiva Cenni di statistica descrittiva La statistica descrittiva è la disciplina nella quale si studiano le metodologie di cui si serve uno sperimentatore per raccogliere, rappresentare ed elaborare dei dati

Dettagli

Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 14: Analisi della varianza (ANOVA)

Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 14: Analisi della varianza (ANOVA) Corso di laurea in Scienze Motorie Corso di Statistica Docente: Dott.ssa Immacolata Scancarello Lezione 4: Analisi della varianza (ANOVA) Analisi della varianza Analisi della varianza (ANOVA) ANOVA ad

Dettagli

Statistica multivariata. Statistica multivariata. Analisi multivariata. Dati multivariati. x 11 x 21. x 12 x 22. x 1m x 2m. x nm. x n2.

Statistica multivariata. Statistica multivariata. Analisi multivariata. Dati multivariati. x 11 x 21. x 12 x 22. x 1m x 2m. x nm. x n2. Analisi multivariata Statistica multivariata Quando il numero delle variabili rilevate sullo stesso soggetto aumentano, il problema diventa gestirle tutte e capirne le relazioni. Cercare di capire le relazioni

Dettagli

SCHEDA DI PROGRAMMAZIONE DELLE ATTIVITA EDUCATIVE DIDATTICHE. Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco

SCHEDA DI PROGRAMMAZIONE DELLE ATTIVITA EDUCATIVE DIDATTICHE. Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco Disciplina: Matematica Classe: 5A sia A.S. 2014/15 Docente: Rosito Franco ANALISI DI SITUAZIONE - LIVELLO COGNITIVO La classe ha dimostrato fin dal primo momento grande attenzione e interesse verso gli

Dettagli

Econometria. lezione 17. variabili dipendenti binarie. Econometria. lezione 17. AA 2014-2015 Paolo Brunori

Econometria. lezione 17. variabili dipendenti binarie. Econometria. lezione 17. AA 2014-2015 Paolo Brunori AA 2014-2015 Paolo Brunori domande di mutui rigettate - nei dati raccolti a Boston negli anni 90 il tasso di rifiuto è 28% per i neri e 9% per i bianchi - si può parlare di discriminazione? - è possibili

Dettagli

PROGRAMMAZIONE DIDATTICA RIFERITA ALLA DISCIPLINA :MATEMATICA

PROGRAMMAZIONE DIDATTICA RIFERITA ALLA DISCIPLINA :MATEMATICA Istituto Istruzione Superiore A. Venturi Modena Liceo artistico - Istituto Professionale Grafica Via Rainusso, 66-41124 MODENA Sede di riferimento (Via de Servi, 21-41121 MODENA) tel. 059-222156 / 245330

Dettagli

STUDIO DI SETTORE VG82U

STUDIO DI SETTORE VG82U ALLEGATO 18 NOTA TECNICA E METODOLOGICA STUDIO DI SETTORE VG82U SERVIZI PUBBLICITARI, RELAZIONI PUBBLICHE E COMUNICAZIONE 862 CRITERI PER L EVOLUZIONE DELLO STUDIO DI SETTORE L'applicazione dello studio

Dettagli

Verifica di ipotesi e intervalli di confidenza nella regressione multipla

Verifica di ipotesi e intervalli di confidenza nella regressione multipla Verifica di ipotesi e intervalli di confidenza nella regressione multipla Eduardo Rossi 2 2 Università di Pavia (Italy) Maggio 2014 Rossi MRLM Econometria - 2014 1 / 23 Sommario Variabili di controllo

Dettagli

Lezioni di Ricerca Operativa. Corso di Laurea in Informatica Università di Salerno. Lezione n 4

Lezioni di Ricerca Operativa. Corso di Laurea in Informatica Università di Salerno. Lezione n 4 Lezioni di Ricerca Operativa Lezione n 4 - Problemi di Programmazione Matematica - Problemi Lineari e Problemi Lineari Interi - Forma Canonica. Forma Standard Corso di Laurea in Informatica Università

Dettagli

Statistica Medica. Verranno presi in esame:

Statistica Medica. Verranno presi in esame: Statistica Medica Premessa: il seguente testo cerca di riassumere e rendere in forma comprensibile ai non esperti in matematica e statistica le nozioni e le procedure necessarie a svolgere gli esercizi

Dettagli

qwertyuiopasdfghjklzxcvbnmqwerty AppuntiBicoccaAppuntiBicoccaAppu ntibicoccaappuntibicoccaappuntibic occaappuntibicoccaappuntibicoccaa

qwertyuiopasdfghjklzxcvbnmqwerty AppuntiBicoccaAppuntiBicoccaAppu ntibicoccaappuntibicoccaappuntibic occaappuntibicoccaappuntibicoccaa qwertyuiopasdfghjklzxcvbnmqwerty AppuntiBicoccaAppuntiBicoccaAppu ntibicoccaappuntibicoccaappuntibic occaappuntibicoccaappuntibicoccaa Analisi multivariata dei dati Teoria e procedimento con SPSS ppuntibicoccaappuntibicoccaappunt

Dettagli

Metodologia per l analisi dei dati sperimentali L analisi di studi con variabili di risposta multiple: Regressione multipla

Metodologia per l analisi dei dati sperimentali L analisi di studi con variabili di risposta multiple: Regressione multipla Il metodo della regressione può essere esteso dal caso in cui si considera la variabilità della risposta della y in relazione ad una sola variabile indipendente X ad una situazione più generale in cui

Dettagli

Dipartimento di Scienze dell Educazione Università degli studi Roma Tre

Dipartimento di Scienze dell Educazione Università degli studi Roma Tre Dipartimento di Scienze dell Educazione Università degli studi Roma Tre Materiale del Laboratorio sulle Procedure Statistiche di base con SPSS CASD Centro Analisi Statistica Dati 1 1. Il Questionario Nella

Dettagli

STUDIO DI UNA FUNZIONE

STUDIO DI UNA FUNZIONE STUDIO DI UNA FUNZIONE OBIETTIVO: Data l equazione Y = f(x) di una funzione a variabili reali (X R e Y R), studiare l andamento del suo grafico. PROCEDIMENTO 1. STUDIO DEL DOMINIO (CAMPO DI ESISTENZA)

Dettagli

Indice. pag. 15. Prefazione. Introduzione» 17

Indice. pag. 15. Prefazione. Introduzione» 17 Indice Prefazione 15 Introduzione 17 1. Pianificazione della qualità 1.1. Il concetto di 6 sigma 1.1.1. Le aree e le fasi del sei sigma 1.2. I processi produttivi e la variabilità 1.2.1. Cause comuni 1.2.2.

Dettagli

Maurizio Rinaldi. 18 settembre 2015

Maurizio Rinaldi. 18 settembre 2015 Dipartimento di Scienze del Farmaco Corso di Laurea in Farmacia Corso di Laurea in Chimica e Tecnologia Farmaceutiche Corso di Matematica e Statistica A.A. 2015/2016 Maurizio Rinaldi 18 settembre 2015

Dettagli

LICEO MAZZINI - Peof.ssa BORZACCA Cristina LA RETTA

LICEO MAZZINI - Peof.ssa BORZACCA Cristina LA RETTA LA RETTA Che cos è una FUNZIONE Dati 2 insiemi A e B non vuoti si definisce Funzione una legge o relazione che a ogni elemento x di A associa uno e un solo elemento y di B x è detta variabile indipendente

Dettagli

STUDIO DI SETTORE SG78U

STUDIO DI SETTORE SG78U ALLEGATO 8 NOTA TECNICA E METODOLOGICA STUDIO DI SETTORE SG78U NOTA TECNICA E METODOLOGICA CRITERI PER LA COSTRUZIONE DELLO STUDIO DI SETTORE Di seguito vengono esposti i criteri seguiti per la costruzione

Dettagli

Dai dati al modello teorico

Dai dati al modello teorico Dai dati al modello teorico Analisi descrittiva univariata in R 1 Un po di terminologia Popolazione: (insieme dei dispositivi che verranno messi in produzione) finito o infinito sul quale si desidera avere

Dettagli

Note sull esperienza Misura di g versione 1, Francesco, 7/05/2010

Note sull esperienza Misura di g versione 1, Francesco, 7/05/2010 Note sull esperienza Misura di g versione 1, Francesco, 7/05/010 L esperienza, basata sullo studio di una molla a spirale in condizioni di equilibrio e di oscillazione, ha diversi scopi e finalità, tra

Dettagli

Appunti di Econometria

Appunti di Econometria Appunti di Econometria ARGOMEO [5]: ANALISI DEI DATI PANEL Maria Luisa Mancusi Università Bocconi Novembre 2009 1 I dati panel Un panel è un campione che contiene osservazioni su N individui per T anni.

Dettagli

IL CAMPIONAMENTO NELLA REVISIONE CONTABILE

IL CAMPIONAMENTO NELLA REVISIONE CONTABILE Università RomaTre. Facoltà di Economia Federico Caffè Prof. Ugo Marinelli Anno Accademico 07-08 1 PREMESSA RACCOLTA SUFFICIENTI ED APPROPRIATI ELEMENTI PROBATIVI LA È SVOLTA IN BASE A VERIFICHE DI CAMPIONI

Dettagli

Corso Matlab : Sesta lezione (Esercitazione, 25/10/13) Samuela Persia, Ing. PhD.

Corso Matlab : Sesta lezione (Esercitazione, 25/10/13) Samuela Persia, Ing. PhD. Advanced level Corso Matlab : Sesta lezione (Esercitazione, 25/10/13) Samuela Persia, Ing. PhD. Sommario Toolbox finance Analisi dei portafogli Analisi grafica Determinate Date Toolbox statistics Analisi

Dettagli

4. Funzioni elementari algebriche

4. Funzioni elementari algebriche ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 4. Funzioni elementari algebriche A. A. 2013-2014 1 Funzioni elementari Sono dette elementari un insieme di funzioni dalle quali si ottengono, mediante

Dettagli

Anno 4 Grafico di funzione

Anno 4 Grafico di funzione Anno 4 Grafico di funzione Introduzione In questa lezione impareremo a disegnare il grafico di una funzione reale. Per fare ciò è necessario studiare alcune caratteristiche salienti della funzione che

Dettagli

ELABORATO FINALE DI STATISTICA:

ELABORATO FINALE DI STATISTICA: ELABORATO FINALE DI STATISTICA: PRIMA PARTE Analisi Descrittiva e Inferenziale di un campione di dati SECONDA PARTE Anova ad una via PRIMA PARTE Analisi Descrittiva e Inferenziale di un campione di dati

Dettagli

STUDIO DI SETTORE SG42U

STUDIO DI SETTORE SG42U ALLEGATO 2 NOTA TECNICA E METODOLOGICA STUDIO DI SETTORE SG42U NOTA TECNICA E METODOLOGICA CRITERI PER LA COSTRUZIONE DELLO STUDIO DI SETTORE Di seguito vengono esposti i criteri seguiti per la costruzione

Dettagli

ANALISI DEI DATI CON SPSS

ANALISI DEI DATI CON SPSS STRUMENTI E METODI PER LE SCIENZE SOCIALI Claudio Barbaranelli ANALISI DEI DATI CON SPSS II. LE ANALISI MULTIVARIATE ISBN 978-88-7916-315-9 Copyright 2006 Via Cervignano 4-20137 Milano Catalogo: www.lededizioni.com

Dettagli