MATEMATICA FINANZIARIA

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "MATEMATICA FINANZIARIA"

Transcript

1 Capializzazioe semplice e composa MATEMATICA FINANZIARIA Immagiiamo di impiegare 4500 per ai i ua operazioe fiaziaria che frua u asso del, % auo. Quao avremo realizzao alla fie dell operazioe? I u coeso simile alla siuazioe preseaa l imporo ivesio ( 4500 è il capiale C, quello che l operazioe frua è l ieresse I; la somma ra ieresse e capiale è il moae M. Ci soo due modalià di calcolo degli ieressi: L ieresse viee calcolao alla fie di ogi ao sul capiale iiziale. I al caso si parla di capializzazioe semplice L ieresse viee calcolao alla fie di ogi ao sul moae già realizzao. I al caso si parla di capializzazioe composa. Esamiiamo i due casi ell esempio proposo. Capializzazioe semplice: ieresse del primo ao 4500*0,0= 10,5 ieresse del secodo ao 4500*0,0= 10,5 moae = ,5. = 4707 Capializzazioe composa: ieresse del primo ao 4500*0,0= 10,5 ieresse del secodo ao ( ,5 *0,0= 105,8805 moae = ,5+105,8805= 4709,805 Immagiiamo ora di impiegare 4500 per ai e mesi i ua operazioe fiaziaria che frua u asso del, % auo. Quao avremo realizzao alla fie dell operazioe? Esamiiamo i due casi el uovo esempio proposo. Capializzazioe semplice: ieresse del primo ao 4500*0,0= 10,5 ieresse del secodo ao 4500*0,0= 10,5 ieresse per mesi ,0 = 5,875 moae = ,5. +5,875= 47,875 Capializzazioe composa: ieresse del primo ao 4500*0,0= 10,5 ieresse del secodo ao ( ,5 0, 0 = 105,8805 ieresse per mesi ( ,5+105,8805 0, 0 7,079 moae = ,5+105,8805+7,079= 476,46 = Esrapoliamo il procedimeo: idicado co il umero di ai, co f la frazioe di ao e co i il asso auo uiario Capializzazioe semplice: moae dopo +f ai M = C + I = C + C i + C i + C i C i f + i + i f Ieresse dopo +f ai I = C i ( + f Capializzazioe composa: moae alla fie del primo ao M = C( 1 moae alla fie del secodo ao M = C( 1+ i + C(1 i (1 moae dopo +f ai M = C( 1+ i + C(1 i f (1+ if

2 Ques ulima procedura viee dea capializzazioe co covezioe lieare. E possibile ache adoare la covezioe espoeziale, ossia calcolare il moae el modo f + f seguee: M (1 Nello specifico esempio si oiee M=4500*(1+0,0 +/ = 476, Geeralizziamo: idicado co il empo oale espresso i ai e co i il asso auo uiario, si ha: Capializzazioe semplice: Ieresse dopo ai I = C i Moae dopo ai M = C( 1+ i Capializzazioe composa: Moae dopo ai M espoeziale ESEMPI N.B Se o idicao espressamee, useremo l ao commerciale = C( 1+ i (covezioe 1 Calcolare il moae di 000, impiegai per 5 ai e 11 mesi, al % auo 11 - i capializzazioe semplice M = 000 (1 + 0,0(5 + = 5, i capializzazioe composa M = 000(1 + 0,0 = 57,44059 Calcolare i quao empo u capiale, al asso del % auo, si raddoppia - i capializzazioe semplice C + i, quidi = 1 + 0,0 ai e 4 mesi - i capializzazioe composa C + 0,0, quidi log =log ( 1+ 0,0 = ai 5 mesi giori (1 + = 0,0 Calcolare quale capiale, impiegao per 7 mesi e 15 giori, al asso del % auo, forisce u ieresse di 0 - i capializzazioe semplice 0 = C 0,0 C= i capializzazioe composa I = M C 0 + 0,0 C 0 = C((1 + 0,0 1 C= 645,7 4 Calcolare a quale asso auo di ieresse 00 dao u moae di 100, se impiegai per ai. - i capializzazioe semplice 100 = 00(1 + i i =0, circa 11,59 % - i capializzazioe composa 100 oppure: log( = log(1 00 i= 0, circa 10,46 % 100 i = 00( i = i = 0,

3 Tassi equivalei Ipoizziamo di ivesire 4500 per ai e mesi i ua operazioe fiaziaria che frua u asso del 6 % auo. Ci chiediamo se il moae realizzao si oerrebbe ugualmee co u asso dello 0,5% (6/ mesile. - i capializzazioe semplice al 6% auo, per,5 ai, si ha: M = 4500(1 + 0,06,5 = 510 oppure allo 0,005 mesile per 7 mesi M = 4500(1 + 0,005 7 = i capializzazioe composa al 6% auo, i covezioe espoeziale, per,5 ai, si,5 ha: M = 4500 (1 + 0,06 = 510,9901 oppure, 7 allo 0,005 mesile per 7 mesi M = 4500 (1 + 0,005 = 5148,688 Si vede che i due assi o soo equivalei, iededo per assi equivalei quelli che, a parià di capiale e di empo, dao lo sesso moae. Applicado quesa defiizioe ad u capiale C, ad u asso auo i e ad u asso mesile i, per u ao, si oiee: - i capializzazioe semplice: M = C( 1+ i 1+ i = 1+ i i = i quidi, per u geerico asso periodico i, si ha i = i Ad esempio per u asso semesrale i = i, per u asso quadrimesrale, i = i - i capializzazioe composa: i = ( 1+ 1 ed ache (1 + i 1 = i i M 1 + i i = (1 i Spesso, i capializzazioe composa si usa il cosiddeo asso auo omiale coveribile, che ha solo valore covezioale; o può essere uilizzao ei calcoli, ma deve essere appuo coverio i asso periodico. Se ad esempio parliamo del 6% omiale coveribile bimesralmee, per fare i calcoli useremo il asso bimesrale dell 1% oeuo dividedo il omiale per 6. I geerale il asso auo omiale è idicao co ESEMPI j ed è i 1 Calcolare il moae realizzao co l impiego di per ai e 5 mesi allo 0,6 % mesile. - i capializzazioe semplice M = 17000(1 + 0, = 6118,8 5 oppure M = (1 + 0,04 (+ = 6118, i capializzazioe composa, M =17000 (1 + 0,006 = 909,0147 oppure, poiché i = (1 + i 1=0, , M = 17000(1 + 0, (+ = 909,0147 Calcolare l ieresse realizzao co l impiego di 1570 per ai 4 mesi e 16 giori al asso auo omiale 5% coveribile semesralmee. = j

4 0,05 Coveriamo il asso: i = j = = 0, 05 è il asso semesrale, quidi: - usiamo il asso semesrale ed esprimiamo il empo i semesri 4 16 (4+ + M = 1570(1 + 0, = 1765,6145 oppure - rasformiamo il asso semesrale i auo equivalee ed esprimiamo il empo i ai i = (1 + i 1=0,05065 e M = 1570(1 + 0, ( USO DI EXCEL = 1765,6145 Il foglio di calcolo può essere usao per risolvere alcui dei problemi precedei, mediae lo srumeo Ricerca obieivo. Ad esempio, dao il problema: Calcolare a quale asso auo di ieresse 00 dao u moae di 100, se impiegai per ai, si possoo digiare i dai i quesa forma Nella cella D si digia la formula =A*(1+C*B e ella cella E si digia la formula =A*(1+C^B ed il valore,elle celle B e B, oeedo Si va sulla cella D, poi dalla barra dei meu, Srumei Ricerca obieivo OK OK Si va sulla cella E, poi dalla barra dei meu, Srumei Ricerca obieivo

5 Il risulao oeuo per il asso è uguale a quello oeuo precedeemee co la risoluzioe di equazioi:

Appunti sulla MATEMATICA FINANZIARIA

Appunti sulla MATEMATICA FINANZIARIA INTRODUZIONE Apputi sulla ATEATIA FINANZIARIA La matematica fiaziaria si occupa delle operazioi fiaziarie. Per operazioe fiaziaria si itede quella operazioe ella quale avviee uo scambio di capitali, itesi

Dettagli

SCUOLA POLITECNICA IN ECONOMIA E ORGANIZZAZIONE VILFREDO PARETO MASTER IN E-BUSINESS CAPITAL BUDGETING

SCUOLA POLITECNICA IN ECONOMIA E ORGANIZZAZIONE VILFREDO PARETO MASTER IN E-BUSINESS CAPITAL BUDGETING CAPITAL BUDGETING VALUTAZIONE DI PROGETTI D INVESTIMENTO CON PREVISIONE DEI FLUSSI DI CASSA ATTESI: l impresa ivese moea oggi per oeere flussi moeari icremeali el fuuro.* PROGETTO: Ivesimeo i arezzaure

Dettagli

2. Duration. Stefano Di Colli

2. Duration. Stefano Di Colli 2. Duraio Meodi Saisici per il Credio e la Fiaza Sefao Di Colli Tassi di ieresse e redimei La reddiivià di u obbligazioe è misuraa dal asso di redimeo o dal asso di ieresse U idicaore del redimeo deve

Dettagli

Capitolo Terzo. rappresenta la rata di ammortamento del debito di un capitale unitario. Si tratta di risolvere un equazione lineare nell incognita R.

Capitolo Terzo. rappresenta la rata di ammortamento del debito di un capitale unitario. Si tratta di risolvere un equazione lineare nell incognita R. 70 Capitolo Terzo i cui α i rappreseta la rata di ammortameto del debito di u capitale uitario. Si tratta di risolvere u equazioe lieare ell icogita R. SIANO NOTI IL MONTANTE IL TASSO E IL NUMERO DELLE

Dettagli

Elementi di matematica finanziaria

Elementi di matematica finanziaria Elemeti di matematica fiaziaria 18.X.2005 La matematica fiaziaria e l estimo Nell ambito di umerosi procedimeti di stima si rede ecessario operare co valori che presetao scadeze temporali differeziate

Dettagli

LA DERIVATA DI UNA FUNZIONE

LA DERIVATA DI UNA FUNZIONE LA DERIVATA DI UNA FUNZIONE OBIETTIVO: Defiire lo strumeto matematico ce cosete di studiare la cresceza e la decresceza di ua fuzioe Si comicia col defiire cosa vuol dire ce ua fuzioe è crescete. Defiizioe:

Dettagli

Tavola 1 - Popolazione italiana residente alle date dei censimenti generali, riportata ai confini attuali - Anni 1861-2001 (migliaia di unità)

Tavola 1 - Popolazione italiana residente alle date dei censimenti generali, riportata ai confini attuali - Anni 1861-2001 (migliaia di unità) 4 Quai eravamo, quai siamo, quai saremo Che cosa si impara el capiolo 4 er cooscere le caraerisiche e l evoluzioe della popolazioe ialiaa araverso u lugo arco di empo uilizziamo il asso di icremeo medio

Dettagli

Introduzione (1) Introduzione (2) Prodotti e servizi sono realizzati per mezzo di processi produttivi.

Introduzione (1) Introduzione (2) Prodotti e servizi sono realizzati per mezzo di processi produttivi. Iroduzioe () Ua defiizioe (geerale) del ermie qualià: qualià è l isieme delle caraerisiche di u eià (bee o servizio) che e deermiao la capacià di soddisfare le esigeze espresse ed implicie di chi la uilizza.

Dettagli

8. Quale pesa di più?

8. Quale pesa di più? 8. Quale pesa di più? Negli ultimi ai hao suscitato particolare iteresse alcui problemi sulla pesatura di moete o di pallie. Il primo problema di questo tipo sembra proposto da Tartaglia el 1556. Da allora

Dettagli

5 ln n + ln. 4 ln n + ln. 6 ln n + ln

5 ln n + ln. 4 ln n + ln. 6 ln n + ln DOMINIO FUNZIONE Determiare il domiio della fuzioe f = l e e + e + e Deve essere e e + e + e >, posto e = t si ha t e + t + e = per t = e e per t = / Il campo di esisteza è:, l, + Determiare il domiio

Dettagli

Campi vettoriali conservativi e solenoidali

Campi vettoriali conservativi e solenoidali Campi vettoriali coservativi e soleoidali Sia (x,y,z) u campo vettoriale defiito i ua regioe di spazio Ω, e sia u cammio, di estremi A e B, defiito i Ω. Sia r (u) ua parametrizzazioe di, fuzioe della variabile

Dettagli

Esercitazione 2 Progetto e realizzazione di un semplice sintetizzatore musicale basato su FPGA

Esercitazione 2 Progetto e realizzazione di un semplice sintetizzatore musicale basato su FPGA Architetture dei sistemi itegrati digitali Alessadro Bogliolo Esercitazioe 2 Progetto e realizzazioe di u semplice sitetizzatore musicale basato su FPGA (A) Defiizioe della specifica ed esperimeti prelimiari

Dettagli

Sintassi dello studio di funzione

Sintassi dello studio di funzione Sitassi dello studio di fuzioe Lavoriamo a perfezioare quato sapete siora. D ora iazi pretederò che i risultati che otteete li SCRIVIATE i forma corretta dal puto di vista grammaticale. N( x) Data la fuzioe:

Dettagli

Modelli attuariali per la previdenza complementare

Modelli attuariali per la previdenza complementare Modelli auariali per la prevideza complemeare Fabio Grasso Diparimeo di Scieze Saisiche Uiversià degli Sudi di Roma La Sapieza fabiograsso@uiroma1i Riassuo Il presee lavoro esamia i profili auariali della

Dettagli

APPUNTI DI MATEMATICA ALGEBRA \ ARITMETICA \ NUMERI NATURALI (1)

APPUNTI DI MATEMATICA ALGEBRA \ ARITMETICA \ NUMERI NATURALI (1) ALGEBRA \ ARITMETICA \ NUMERI NATURALI (1) I umeri aturali hao u ordie; ogi umero aturale ha u successivo (otteuto aggiugedo 1), e ogi umero aturale diverso da zero ha u precedete (otteuto sottraedo 1).

Dettagli

La matematica finanziaria

La matematica finanziaria La matematica fiaziaria La matematica fiaziaria forisce gli strumeti ecessari per cofrotare fatti fiaziari che avvegoo i mometi diversi Esempio: Come posso cofrotare i ricavi e i costi legati all acquisto

Dettagli

( ) ( ) ( ) ( ) ( ) CAPITOLO VII DERIVATE. (3) D ( x ) = 1 derivata di un monomio con a 0

( ) ( ) ( ) ( ) ( ) CAPITOLO VII DERIVATE. (3) D ( x ) = 1 derivata di un monomio con a 0 CAPITOLO VII DERIVATE. GENERALITÀ Defiizioe.) La derivata è u operatore che ad ua fuzioe f associa u altra fuzioe e che obbedisce alle segueti regole: () D a a a 0 0 0 derivata di u moomio D 6 D 0 D ()

Dettagli

Appunti su rendite e ammortamenti

Appunti su rendite e ammortamenti Corso di Matematica I Facoltà di Ecoomia Dipartimeto di Matematica Applicata Uiversità Ca Foscari di Veezia Fuari Stefaia, fuari@uive.it Apputi su redite e ammortameti 1. Redite Per redita si itede u isieme

Dettagli

Terzo appello del. primo modulo. di ANALISI 18.07.2006

Terzo appello del. primo modulo. di ANALISI 18.07.2006 Terzo appello del primo modulo di ANALISI 18.7.26 1. Si voglioo ifilare su u filo delle perle distiguibili tra loro solo i base alla dimesioe: si hao a disposizioe perle gradi di diametro di 2 cetimetri

Dettagli

Interesse e formule relative.

Interesse e formule relative. Elisa Battistoi, Adrea Frozetti Collado Iteresse e formule relative Esercizio Determiare quale somma sarà dispoibile fra 7 ai ivestedo oggi 0000 ad u tasso auale semplice del 5% Soluzioe Il diagramma del

Dettagli

I appello - 29 Giugno 2007

I appello - 29 Giugno 2007 Facoltà di Igegeria - Corso di Laurea i Ig. Iformatica e delle Telecom. A.A.6/7 I appello - 9 Giugo 7 ) Studiare la covergeza putuale e uiforme della seguete successioe di fuzioi: [ ( )] f (x) = cos (

Dettagli

L ammortamento dei prestiti. S. Corsaro Matematica Finanziaria a.a. 2007/08

L ammortamento dei prestiti. S. Corsaro Matematica Finanziaria a.a. 2007/08 L ammortameto dei prestiti. Corsaro Matematica Fiaziaria a.a. 27/8 Prestiti idivisi Operazioi fiaziarie co due cotraeti mutuate o creditore: presta u capitale mutuatario o debitore: si impega a restituire

Dettagli

EQUAZIONI ALLE RICORRENZE

EQUAZIONI ALLE RICORRENZE Esercizi di Fodameti di Iformatica 1 EQUAZIONI ALLE RICORRENZE 1.1. Metodo di ufoldig 1.1.1. Richiami di teoria Il metodo detto di ufoldig utilizza lo sviluppo dell equazioe alle ricorreze fio ad u certo

Dettagli

IL CALCOLO COMBINATORIO

IL CALCOLO COMBINATORIO IL CALCOLO COMBINATORIO Calcolo combiatorio è il termie che deota tradizioalmete la braca della matematica che studia i modi per raggruppare e/o ordiare secodo date regole gli elemeti di u isieme fiito

Dettagli

Stima di un immobile a destinazione alberghiera APPROFONDIMENTI

Stima di un immobile a destinazione alberghiera APPROFONDIMENTI APPROFONDIMENTI www.shutterstock.com/vladitto Stima di u immobile a destiazioe alberghiera di Maria Ciua (Ricercatore di Estimo Facoltà di Igegeria dell Uiversità di Palermo) I geere ell expertise immobiliare

Dettagli

Calibrazione di tranche CDO con il modello dinamico GPL

Calibrazione di tranche CDO con il modello dinamico GPL Calibrazioe di rache CDO co il modello diamico GPL La calibrazioe di u idice di credio e delle sue rache cosiseemee sulle varie scadeze co u sigolo modello i asseza di opporuià di arbiraggio è u problema

Dettagli

1. Considerazioni generali

1. Considerazioni generali . osiderazioi geerali Il processaeto di ob su acchie parallele è iportate sia dal puto di vista teorico che pratico. Dal puto di vista teorico questo caso è ua geeralizzazioe dello schedulig su acchia

Dettagli

Statistica I, Laurea triennale in Ing. Gestionale, a.a. 2011/12 Registro delle lezioni

Statistica I, Laurea triennale in Ing. Gestionale, a.a. 2011/12 Registro delle lezioni Statistica I, Laurea trieale i Ig. Gestioale, a.a. 2011/12 Registro delle lezioi Lezioe 1 (28/9, ore 11:30). Vedere la registrazioe di Barsati, dispoibile alla pagia http://users.dma.uipi.it/barsati/statistica_2011/idex.html.

Dettagli

MATEMATICA FINANZIARIA A.A. 2007 2008 Prova dell 8 febbraio 2008. Esercizio 1 (6 punti)

MATEMATICA FINANZIARIA A.A. 2007 2008 Prova dell 8 febbraio 2008. Esercizio 1 (6 punti) MATEMATICA FINANZIARIA A.A. 007 008 Prova dell 8 febbraio 008 Nome Cognome Maricola Esercizio (6 puni) La vendia raeale di un bene di valore 000 prevede il pagameno di rae mensili posicipae cosani calcolae

Dettagli

BLOCCO TEMATICO DI ESTIMO. Diritti reali: usufrutto CORSO PRATICANTI 2015

BLOCCO TEMATICO DI ESTIMO. Diritti reali: usufrutto CORSO PRATICANTI 2015 BLOCCO TEMATICO DI ESTIMO Diritti reali: usufrutto CORSO PRATICANTI 2015 Usufrutto L'usufrutto è il diritto di godimeto da parte di ua persoa detta USUFRUTTUARIO di u bee altrui; il proprietario del bee

Dettagli

Università degli Studi La Sapienza. Facoltà di Economia. Anno accademico 2012-13. Matematica Finanziaria Canale D - K

Università degli Studi La Sapienza. Facoltà di Economia. Anno accademico 2012-13. Matematica Finanziaria Canale D - K 1 Matematica Fiaziaria Uiversità degli Studi La Sapieza Facoltà di Ecoomia Ao accademico 212-13 Matematica Fiaziaria Caale D - K Capitolo 3 Ammortameto di prestiti idivisi Atoio Aibali Atoio Aibali a.a.

Dettagli

Analisi dei segnali nel dominio del tempo

Analisi dei segnali nel dominio del tempo Appui di Teoria dei Segali a.a. / Aalisi dei segali el domiio del empo L.Verdoliva I quesa prima pare del corso sudieremo come rappreseare i segali empo coiuo e discreo el domiio del empo e defiiremo le

Dettagli

Serie numeriche e serie di potenze

Serie numeriche e serie di potenze Serie umeriche e serie di poteze Sommare u umero fiito di umeri reali è seza dubbio u operazioe che o può riservare molte sorprese Cosa succede però se e sommiamo u umero ifiito? Prima di dare delle defiizioi

Dettagli

Foglio di esercizi N. 1 - Soluzioni

Foglio di esercizi N. 1 - Soluzioni Foglio di esercizi N. - Soluzioi. Determiare il domiio della fuzioe f) = log 3 + log 3 3)). Deve essere + log 3 3) > 0, ovvero log 3 3) >, ovvero prededo l espoeziale i base 3 di etrambi i membri) 3 >

Dettagli

Soluzione La media aritmetica dei due numeri positivi a e b è data da M

Soluzione La media aritmetica dei due numeri positivi a e b è data da M Matematica per la uova maturità scietifica A. Berardo M. Pedoe 6 Questioario Quesito Se a e b soo umeri positivi assegati quale è la loro media aritmetica? Quale la media geometrica? Quale delle due è

Dettagli

Campionamento stratificato. Esempio

Campionamento stratificato. Esempio ez. 3 8/0/05 Metodi Statiici per il Marketig - F. Bartolucci Uiversità di Urbio Campioameto ratificato Ua tecica molto diffusa per sfruttare l iformazioe coteuta i ua variabile ausiliaria (o evetualmete

Dettagli

STATISTICA ECONOMICA STATISTICA PER L ECONOMIA

STATISTICA ECONOMICA STATISTICA PER L ECONOMIA STATISTICA ECONOMICA STATISTICA PER L ECONOMIA aa 2009-2010 Operazioi statistiche elemetari Spesso ci si preseta il problema del cofroto tra dati Ad esempio, possiamo voler cofrotare feomei [ecoomici]

Dettagli

Tutti i diritti di sfruttamento economico dell opera appartengono alla Esselibri S.p.A. (art. 64, D.Lgs. 10-2-2005, n. 30)

Tutti i diritti di sfruttamento economico dell opera appartengono alla Esselibri S.p.A. (art. 64, D.Lgs. 10-2-2005, n. 30) Copyright 2005 Esselibri S.p.A. Via F. Russo, 33/D 8023 Napoli Azieda co sistema qualità certificato ISO 400: 2003 Tutti i diritti riservati. È vietata la riproduzioe ache parziale e co qualsiasi mezzo

Dettagli

LA VALUTAZIONE DEGLI INVESTIMENTI: UN APPROFONDIMENTO ATTRAVERSO L ANALISI LIFE CYCLE COST (LCC) NELL IMPRESA AGRARIA 1

LA VALUTAZIONE DEGLI INVESTIMENTI: UN APPROFONDIMENTO ATTRAVERSO L ANALISI LIFE CYCLE COST (LCC) NELL IMPRESA AGRARIA 1 A. Fac. Medic. Ve. di Para (Vol. XXVII, 27) pag. 321 - pag. 344 LA VALUTAZIONE DEGLI INVESTIMENTI: UN APPROFONDIMENTO ATTRAVERSO L ANALISI LIFE CYCLE COST (LCC) NELL IMPRESA AGRARIA 1 INVESTMENT VALUATION:

Dettagli

Approfondimenti di statistica e geostatistica

Approfondimenti di statistica e geostatistica Approfodimeti di statistica e geostatistica APAT Agezia per la Protezioe dell Ambiete e per i Servizi Tecici Cos è la geostatistica? Applicazioe dell aalisi di Rischio ai siti Cotamiati Geostatistica La

Dettagli

(formula dello sconto composto convertibile)

(formula dello sconto composto convertibile) uado iassuivo delle picipali foule di aeaica fiaziaia Ieesse seplice: aua i peiodi di epo ifeioi o uguali all ao ale che l ieesse auao sul capiale iiziale o divea fuifeo. epo d ipiego del capiale ( ao!)

Dettagli

MATEMATICA FINANZIARIA

MATEMATICA FINANZIARIA TETI FINNZIRI. Defiizioi 2. Iteesse semplice 3. Iteesse composto cotiuo 4. Iteesse composto discotiuo auo Spostameto dei valoi el tempo ualità Peiodicità 5. Iteesse composto discotiuo covetibile atematica

Dettagli

Capitolo 24. Elementi di calcolo finanziario

Capitolo 24. Elementi di calcolo finanziario Cpiolo 24 Elemei di clcolo fizirio 24. Le divere forme dell ieree Cpile (C, ock di moe dipoibile i u do momeo) Ieree (I, prezzo d uo del cpile) Sggio o o di ieree (r) (ieree muro dll uià di cpile,, ell

Dettagli

APPUNTI DI ECONOMIA ELEMENTARE. (tratti da A. MONTE Elementi di Impianti Industriali Cortina)

APPUNTI DI ECONOMIA ELEMENTARE. (tratti da A. MONTE Elementi di Impianti Industriali Cortina) ITIS OMAR Dipartimeto di Meccaica APPUNTI DI ECONOMIA ELEMENTARE (tratti da A. MONTE Elemeti di Impiati Idustriali Cortia) Si defiisce iteresse il dearo pagato per l'uso di u capitale otteuto i prestito

Dettagli

Corso di Laurea Magistrale in Ingegneria Informatica A.A. 2014/15. Complementi di Probabilità e Statistica. Prova scritta del del 23-02-15

Corso di Laurea Magistrale in Ingegneria Informatica A.A. 2014/15. Complementi di Probabilità e Statistica. Prova scritta del del 23-02-15 Corso di Laurea Magistrale i Igegeria Iformatica A.A. 014/15 Complemeti di Probabilità e Statistica Prova scritta del del 3-0-15 Puteggi: 1. 3+3+4;. +3 ; 3. 1.5 5 ; 4. 1 + 1 + 1 + 1 + 3.5. Totale = 30.

Dettagli

SUCCESSIONI e LIMITI DI SUCCESSIONI. c Paola Gervasio - Analisi Matematica 1 - A.A. 15/16 Successioni cap3b.pdf 1

SUCCESSIONI e LIMITI DI SUCCESSIONI. c Paola Gervasio - Analisi Matematica 1 - A.A. 15/16 Successioni cap3b.pdf 1 SUCCESSIONI e LIMITI DI SUCCESSIONI c Paola Gervasio - Aalisi Matematica 1 - A.A. 15/16 Successioi cap3b.pdf 1 Successioi Def. Ua successioe è ua fuzioe reale (Y = R) a variabile aturale, ovvero X = N:

Dettagli

Le carte di controllo

Le carte di controllo Le carte di cotrollo Dott.ssa Bruella Caroleo 07 dicembre 007 Variabilità ei processi produttivi Le caratteristiche di qualsiasi processo produttivo soo caratterizzate da variabilità Le cause di variabilità

Dettagli

SUCCESSIONI NUMERICHE

SUCCESSIONI NUMERICHE SUCCESSIONI NUMERICHE Ua fuzioe reale di ua variabile reale f di domiio A è ua legge che ad ogi x A associa u umero reale che deotiamo co f(x). Se A = N, la f è detta successioe di umeri reali. Se co si

Dettagli

Introduzione alla Statistica descrittiva. Definizioni preliminari. Definizioni preliminari. Fasi di un indagine statistica. Tabelle statistiche

Introduzione alla Statistica descrittiva. Definizioni preliminari. Definizioni preliminari. Fasi di un indagine statistica. Tabelle statistiche Itroduzioe alla Statistica descrittiva Defiizioi prelimiari È la scieza che studia i feomei collettivi o di massa. U feomeo è detto collettivo o di massa quado è determiato solo attraverso ua molteplicità

Dettagli

IMPLICAZIONE TRA VARIABILI BINARIE: L Implicazione di Gras

IMPLICAZIONE TRA VARIABILI BINARIE: L Implicazione di Gras IMPLICAZIONE TRA VARIABILI BINARIE: L Implicazioe di Gras Date due variabili biarie a e b, i quale misura posso assicurare che i ua popolazioe da ogi osservazioe di a segue ecessariamete quella di b? E

Dettagli

LA GESTIONE DELLA QUALITA : IL TOTAL QUALITY MANAGEMENT

LA GESTIONE DELLA QUALITA : IL TOTAL QUALITY MANAGEMENT LA GESTIONE DELLA QUALITA : IL TOTAL QUALITY MANAGEMENT La gestioe, il cotrollo ed il migliorameto della qualità di u prodotto/servizio soo temi di grade iteresse per l azieda. Il problema della qualità

Dettagli

Medici Specialisti e Odontoiatri

Medici Specialisti e Odontoiatri ALLEGATO B BOLLO 16,00 P A R T E P R I M A DOMANDA DI INCLUSIONE NELLA GRADUATORIA art. 21 dell Accordo Collettivo Nazioale per la disciplia dei rapporti co i Medici specialisti ambulatoriali, Medici Veteriari

Dettagli

Economia Internazionale - Soluzioni alla IV Esercitazione

Economia Internazionale - Soluzioni alla IV Esercitazione Ecoomia Iterazioale - Soluzioi alla IV Esercitazioe 25/03/5 Esercizio a) Cosa soo le ecoomie di scala? Come cambia la curva di oerta i preseza di ecoomie di scala? Perchè queste oroo u icetivo al commercio

Dettagli

Modelli multiperiodali discreti. Strategie di investimento

Modelli multiperiodali discreti. Strategie di investimento Modelli multiperiodali discreti Cosideriamo ora modelli discreti cioè co u umero fiito di stati del modo multiperiodali, cioè apputo co più periodi. Il prototipo di questa classe di modelli è il modello

Dettagli

Matematica Finanziaria

Matematica Finanziaria Corso di Matematica Fiaziaria a.a. 202/203 Testo a cura del Prof. Sergio Biachi Programma Operazioi fiaziarie i codizioi di certezza L operazioe fiaziaria elemetare Operazioi a proti e a termie Regimi

Dettagli

Matematica II: Calcolo delle Probabilità e Statistica Matematica

Matematica II: Calcolo delle Probabilità e Statistica Matematica Matematica II: Calcolo delle Probabilità e Statistica Matematica ELT A-Z Docete: dott. F. Zucca Esercitazioe # 4 1 Distribuzioe Espoeziale Esercizio 1 Suppoiamo che la durata della vita di ogi membro di

Dettagli

PARTE QUARTA Teoria algebrica dei numeri

PARTE QUARTA Teoria algebrica dei numeri Prerequisiti: Aelli Spazi vettoriali Sia A u aello commutativo uitario PARTE QUARTA Teoria algebrica dei umeri Lezioe 7 Cei sui moduli Defiizioe 7 Si dice modulo (siistro) su A (o semplicemete, A-modulo)

Dettagli

Capitolo uno STATISTICA DESCRITTIVA BIVARIATA

Capitolo uno STATISTICA DESCRITTIVA BIVARIATA Capitolo uo STATISTICA DESCRITTIVA BIVARIATA La statistica bidimesioale o bivariata si occupa dello studio del grado di dipedeza di due caratteri distiti della stessa uità statistica. E possibile, ad esempio,

Dettagli

Selezione avversa e razionamento del credito

Selezione avversa e razionamento del credito Selezioe avversa e razioameto del credito Massimo A. De Fracesco Dipartimeto di Ecoomia politica e statistica, Uiversità di Siea May 3, 013 1 Itroduzioe I questa lezioe presetiamo u semplice modello del

Dettagli

Appunti di Matematica e tecnica finanziaria

Appunti di Matematica e tecnica finanziaria LIUC ebook Apputi di Matematica e tecica fiaziaria Ettore Cui Luca Ghezzi LIUC ebook, 2 Apputi di Matematica e tecica fiaziaria Ettore Cui, Luca Ghezzi LIUC Uiversità Cattaeo Castellaza 2013 Apputi di

Dettagli

LEZIONI DI MATEMATICA PER I MERCATI FINANZIARI VALUTAZIONE DI TITOLI OBBLIGAZIONARI E STRUTTURA PER SCADENZA DEI TASSI DI INTERESSE

LEZIONI DI MATEMATICA PER I MERCATI FINANZIARI VALUTAZIONE DI TITOLI OBBLIGAZIONARI E STRUTTURA PER SCADENZA DEI TASSI DI INTERESSE LEZIONI DI MATEMATICA PER I MERCATI FINANZIARI Dipartimeto di Sieze Eoomihe Uiversità di Veroa VALUTAZIONE DI TITOLI OBBLIGAZIONARI E STRUTTURA PER SCADENZA DEI TASSI DI INTERESSE Lezioi di Matematia per

Dettagli

Random walk classico. Simulazione di un random walk

Random walk classico. Simulazione di un random walk Radom walk classico Il radom walk classico) è il processo stocastico defiito da co prob. S = S0 X k, co X k = k= co prob. e le X soo tra di loro idipedeti. k Si tratta di u processo a icremeti idipedeti

Dettagli

ARGOMENTI Scopi e caratteristiche dello strumento Tipologie di mutui Il mercato secondario e il ruolo svolto nella crisi finanziaria

ARGOMENTI Scopi e caratteristiche dello strumento Tipologie di mutui Il mercato secondario e il ruolo svolto nella crisi finanziaria MERCATO DEI MUTUI A.A. 2015/2016 Prof. Alberto Dreassi adreassi@uits.it DEAMS Uiversità di Trieste ARGOMENTI Scopi e caratteristiche dello strumeto Tipologie di mutui Il mercato secodario e il ruolo svolto

Dettagli

Esercizi di Matematica Finanziaria

Esercizi di Matematica Finanziaria Esercizi di Maemaica Finanziaria Copyrigh SDA Bocconi Faori nanziari Classi care e rappresenare gra camene i segueni faori nanziari per : (a) = + ; 8 (b) = ( + ; ) (c) = (d) () = ; (e) () = ( + ; ) (f)

Dettagli

Complessità Computazionale

Complessità Computazionale Uiversità degli studi di Messia Facoltà di Igegeria Corso di Laurea i Igegeria Iformatica e delle Telecomuicazioi Fodameti di Iformatica II Prof. D. Brueo Complessità Computazioale La Nozioe di Algoritmo

Dettagli

DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE

DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE DEFINIZIONE PROCESSO LOGICO E OPERATIVO MEDIANTE IL QUALE, SULLA BASE DI UN GRUPPO DI OSSERVAZIONI O DI ESPERIMENTI, SI PERVIENE A CERTE CONCLUSIONI, LA CUI VALIDITA PER UN COLLETTIVO Più AMPIO E ESPRESSA

Dettagli

1 FLESSIBILITÀ DELLE PRESTAZIONI... 2 1.1 Adeguamento delle prestazioni... 3 1.1.1 Assicurazioni indicizzate e rivalutabili... 5 1.

1 FLESSIBILITÀ DELLE PRESTAZIONI... 2 1.1 Adeguamento delle prestazioni... 3 1.1.1 Assicurazioni indicizzate e rivalutabili... 5 1. FLEIBILITÀ DELLE PRETZIONI... 2. deguameo delle resazioi... 3.. ssicurazioi idicizzae e rivaluabili... 5.2 ssicurazioi Wi Profi... 7.3 ssicurazioi Ui Liked....4 Ierazioi ra riserva maemaica ed ivesimei

Dettagli

LEZIONI DI ANALISI ECONOMETRICA

LEZIONI DI ANALISI ECONOMETRICA LEZIONI DI ANALISI ECONOMETRICA Idice Lisa degli esempi applicaivi Iroduzioe Il modello lieare. Aalisi ecoomica ed aalisi ecoomerica Primi obieivi dell Ecoomeria. I modelli e il lugo periodo Modelli saici

Dettagli

Indici COMIT Metodologia di calcolo

Indici COMIT Metodologia di calcolo Il presete documeto riassume le regole fodametali per il calcolo e la gestioe degli idici elaborati da Itesa Sapaolo per l itero Mercato Telematico Azioario italiao (MTA) ed il vecchio Nuovo Mercato. Gli

Dettagli

Problemi di Scheduling Definizioni. Problemi di Scheduling Definizioni. Problemi di Scheduling Definizioni. Problemi di Scheduling Definizioni

Problemi di Scheduling Definizioni. Problemi di Scheduling Definizioni. Problemi di Scheduling Definizioni. Problemi di Scheduling Definizioni Problemi di Schedulig Defiizioi I problemi di schedulig soo caratterizzati da tre isiemi: Attività (Task) T {T,T 2, T } macchie (Machies) P {P,P 2, P m } Risorse R {R,R 2, R s } Schedulig: assegare m Macchie

Dettagli

Il confronto tra DUE campioni indipendenti

Il confronto tra DUE campioni indipendenti Il cofroto tra DUE camioi idiedeti Il cofroto tra DUE camioi idiedeti Cofroto tra due medie I questi casi siamo iteressati a cofrotare il valore medio di due camioi i cui i le osservazioi i u camioe soo

Dettagli

I numeri complessi. Pagine tratte da Elementi della teoria delle funzioni olomorfe di una variabile complessa

I numeri complessi. Pagine tratte da Elementi della teoria delle funzioni olomorfe di una variabile complessa I umeri complessi Pagie tratte da Elemeti della teoria delle fuzioi olomorfe di ua variabile complessa di G. Vergara Caffarelli, P. Loreti, L. Giacomelli Dipartimeto di Metodi e Modelli Matematici per

Dettagli

PENSIONI INPDAP COME SI CALCOLANO

PENSIONI INPDAP COME SI CALCOLANO Mii biblioteca de Il Giorale Ipdap per rederci coto e sapere di piu Mii biblioteca de Il Giorale Ipdap per rederci coto e sapere di piu PENSIONI INPDAP COME SI CALCOLANO I tre sistemi I cique pilastri

Dettagli

Matematica Finanziaria

Matematica Finanziaria Corso di Matematica Fiaziaria a.a. 202/203 Testo a cura del Prof. Sergio Biachi Programma Operazioi fiaziarie i codizioi di certezza L operazioe fiaziaria elemetare Operazioi a proti e a termie Regimi

Dettagli

Capitolo Decimo SERIE DI FUNZIONI

Capitolo Decimo SERIE DI FUNZIONI Capitolo Decimo SERIE DI FUNZIONI SUCCESSIONI DI FUNZIONI I cocetti di successioe e di serie possoo essere estesi i modo molto aturale al caso delle fuzioi DEFINIZIONE Sia E u sottoisieme di  e, per ogi

Dettagli

LA VERIFICA DELLE IPOTESI SUI PARAMETRI

LA VERIFICA DELLE IPOTESI SUI PARAMETRI LA VERIFICA DELLE IPOTESI SUI PARAMETRI E u problema di ifereza per molti aspetti collegato a quello della stima. Rispode ad u esigeza di carattere pratico che spesso si preseta i molti campi dell attività

Dettagli

CONCETTI BASE DI STATISTICA

CONCETTI BASE DI STATISTICA CONCETTI BASE DI STATISTICA DEFINIZIONI Probabilità U umero reale compreso tra 0 e, associato a u eveto casuale. Esso può essere correlato co la frequeza relativa o col grado di credibilità co cui u eveto

Dettagli

ALLEGATO C ELENCO PREZZI UNITARI QUANTITA PREVISTA. Cassonetti Intervento. Cestini Intervento. 231 Interventi. Cassonetti Intervento.

ALLEGATO C ELENCO PREZZI UNITARI QUANTITA PREVISTA. Cassonetti Intervento. Cestini Intervento. 231 Interventi. Cassonetti Intervento. ART. 1 2 3 DESCRIZIONE Svuotaeto autoatizzato di coteitori portarifiuti da 1,1 3 istallati dall'ipresa presso le Stazioi Autostradali, i Posti di Mautezioe ediate ipiego di attrezzatura specifica e secodo

Dettagli

AL VIA L ASSISTENZA SANITARIA PER I FERROVIERI

AL VIA L ASSISTENZA SANITARIA PER I FERROVIERI Iformativa del 11 geaio 2013 AL VIA L ASSISTENZA SANITARIA PER I FERROVIERI Arriva al traguardo ua parte importate degli impegi cotrattualmete assuti i tema di welfare aziedale per i dipedeti del Gruppo

Dettagli

STRUMENTI MATEMATICI PER LE SCELTE ECONOMICHE. [brevi appunti di testo in bozza] 1) Scelta tra progetti economico-finanziari (generalità)

STRUMENTI MATEMATICI PER LE SCELTE ECONOMICHE. [brevi appunti di testo in bozza] 1) Scelta tra progetti economico-finanziari (generalità) UNIVERSITA DEGLI STUDI DI PAVIA Dipartieto di Scieze Ecooiche e Aziedali Via S. Felice, 7-271 Pavia Tel. 382/986268 - Fax 382/22486 STRUMENTI MATEMATICI PER LE SCELTE ECONOMICHE. [brevi apputi di testo

Dettagli

velocità angolare o pulsazione (gradi /s oppure rad/s) (angolo percorso da V in un intervallo di tempo)

velocità angolare o pulsazione (gradi /s oppure rad/s) (angolo percorso da V in un intervallo di tempo) V A = AMPIEZZA = lunghezza di V A ALTERNATA Proiezione di V X ISTANTE = velocià angolare o pulsazione (gradi /s oppure rad/s) (angolo percorso da V in un inervallo di empo) DEVE ESSERE COSTANTE Angolo

Dettagli

Statistica di base. Luca Mari, versione 31.12.13

Statistica di base. Luca Mari, versione 31.12.13 Statistica di base Luca Mari, versioe 31.12.13 Coteuti Moda...1 Distribuzioi cumulate...2 Mediaa, quartili, percetili...3 Sigificatività empirica degli idici ordiali...3 Media...4 Acora sulla media...4

Dettagli

Elettronica dello Stato Solido Lezione 12: Concentrazione di portatori all equilibrio

Elettronica dello Stato Solido Lezione 12: Concentrazione di portatori all equilibrio lettroica dello Stato Solido Lezioe 1: ocetrazioe di portatori all equilibrio Daiele Ielmii DI Politecico di Milao ielmii@elet.polimi.it D. Ielmii lettroica dello Stato Solido 1 Outlie Itroduzioe ocetrazioe

Dettagli

Sessione ordinaria Esame di Stato 2011 Tema di Informatica - Abacus Soluzione proposta da: Prof. Mauro De Berardis Itis Teramo Commento

Sessione ordinaria Esame di Stato 2011 Tema di Informatica - Abacus Soluzione proposta da: Prof. Mauro De Berardis Itis Teramo Commento Soluzioe del tema di Iformatica Abacus Esame di Stato AS 2010-2011 1 Sessioe ordiaria Esame di Stato 2011 Tema di Iformatica - Abacus Soluzioe proposta da: Il Miistero dell Ambiete commissioa lo sviluppo

Dettagli

ESERCIZI SUI MOTORI ALTERNATIVI A COMBUSTIONE INTERNA

ESERCIZI SUI MOTORI ALTERNATIVI A COMBUSTIONE INTERNA ESERCIZI SUI MOTORI ALTERNATII A COMBUSTIONE INTERNA U oor alraivo co cilidri a ua cilidraa oal di 0,999 d, u rapporo cora diaro di 0,9 fuzioa a ri a 000 iri/i. riar la CORSA la ELOCITÀ MEIA EL PISTONE

Dettagli

Introduzione all assicurazione. (Dispensa per il corso di Microeconomia per manager. Prima versione, marzo 2013; versione aggiornata, marzo 2014)

Introduzione all assicurazione. (Dispensa per il corso di Microeconomia per manager. Prima versione, marzo 2013; versione aggiornata, marzo 2014) Itroduzioe all assicurazioe. (Dispesa per il corso di Microecoomia per maager. Prima versioe, marzo 2013; versioe aggiorata, marzo 2014) Massimo A. De Fracesco Uiversità di Siea March 14, 2014 1 Prezzo

Dettagli

D Conversione in MJ 4. 87.5 sostenibile 3 : Parte bio

D Conversione in MJ 4. 87.5 sostenibile 3 : Parte bio Formato per la trasmissioe delle iformazioi ai sesi dell articolo 7bis comma 2 del decreto legislativo 21 marzo 2005,.66, come itrodotto dal comma 6 dell articolo 1 del decreto legislativo 31 marzo 2011.55

Dettagli

Metodi statistici per l'analisi dei dati

Metodi statistici per l'analisi dei dati Metodi statistici per l aalisi dei dati due Motivazioi Obbiettivo: Cofrotare due diverse codizioi (ache defiiti ) per cui soo stati codotti gli esperimeti. Metodi tatistici per l Aalisi dei Dati due Esempio

Dettagli

Capitolo 8 Le funzioni e le successioni

Capitolo 8 Le funzioni e le successioni Capitolo 8 Le fuzioi e le successioi Prof. A. Fasao Fuzioe, domiio e codomiio Defiizioe Si chiama fuzioe o applicazioe dall isieme A all isieme B ua relazioe che fa corrispodere ad ogi elemeto di A u solo

Dettagli

1 Successioni 1 1.1 Limite di una successione... 2. 2 Serie 3 2.1 La serie armonica... 6 2.2 La serie geometrica... 6

1 Successioni 1 1.1 Limite di una successione... 2. 2 Serie 3 2.1 La serie armonica... 6 2.2 La serie geometrica... 6 SUCCESSIONI Successioi e serie Idice Successioi. Limite di ua successioe........................................... Serie 3. La serie armoica................................................ 6. La serie

Dettagli

Le onde elettromagnetiche. Origine e natura, spettro delle onde e.m., la polarizzazione

Le onde elettromagnetiche. Origine e natura, spettro delle onde e.m., la polarizzazione Le ode elettromagetiche Origie e atura, spettro delle ode e.m., la polarizzazioe Origie e atura delle ode elettromagetiche: Ua carica elettrica che oscilla geera u campo elettrico E che oscilla e a questo

Dettagli

Metodi statistici per l analisi dei dati

Metodi statistici per l analisi dei dati Metodi statistici per l aalisi dei dati due ttameti Motivazioi ttameti Obbiettivo: Cofrotare due diverse codizioi (ache defiiti ttameti) per cui soo stati codotti gli esperimeti. due ttameti Esempio itroduttivo

Dettagli

Schemi a blocchi. Sistema in serie

Schemi a blocchi. Sistema in serie Scem a blocc Nel caso ssem semplc, ques possoo essere scemazza meae blocc, ce rappreseao vers compoe, collega ra loro sere o parallelo a secoa ella logca uzoameo. Vl Valvolal solvee Sesore Pompa Pompa

Dettagli

A.A. 2013/14 Esercitazione - IRPEF TESTO E SOLUZIONI

A.A. 2013/14 Esercitazione - IRPEF TESTO E SOLUZIONI A.A. 2013/14 Eserciazione - IRPEF TESTO E SOLUZIONI Esercizio 1 - IRPEF Il signor X, che vive solo e non ha figli, ha percepio, nel corso dell anno correne, i segueni reddii: - Reddii da lavoro dipendene

Dettagli

Risposte. f v = φ dove φ(x,y) = e x2. f(x) = e x2 /2. +const. Soluzione. (i) Scriviamo v = (u,w). Se f(x) è la funzione richiesta, si deve avere

Risposte. f v = φ dove φ(x,y) = e x2. f(x) = e x2 /2. +const. Soluzione. (i) Scriviamo v = (u,w). Se f(x) è la funzione richiesta, si deve avere Eserciio 1 7 puti. Dato il campo vettoriale v, + 1,, i si determii ua fuioe f > i modo tale che il campo vettoriale f v sia irrotaioale, cioè abbia le derivate icrociate uguali; ii si spieghi se i risultati

Dettagli

Valutazione delle prestazioni di calcolo

Valutazione delle prestazioni di calcolo Architettura degli Elaboratori e delle Reti Valutazioe delle prestazioi di calcolo A. Borghese, F. Pedersii Dipartimeto di Iformatica Uiversità degli Studi di Milao 1 Perché valutare le prestazioi? Perché?!

Dettagli

Estimo rurale appunti 2005. Estimo rurale

Estimo rurale appunti 2005. Estimo rurale Estimo rurale apputi 2005 Estimo rurale L estimo rurale rietra ell ambito delle disciplie ecoomiche, ma metre l ecoomia si occupa della coosceza della realtà, esso si occupa della valutazioe dei bei. Compito

Dettagli

Media Mobile di ampiezza k (k pari) Esempio: Vendite mensili di shampoo

Media Mobile di ampiezza k (k pari) Esempio: Vendite mensili di shampoo Media Mobile di ampiezza k (k pari) Esempio: Vendie mensili di shampoo Mese y 1 266,0 2 145,9 3 183,1 4 119,3 5 180,3 6 168,5 7 231,8 8 224,5 9 192,8 10 122,9 11 336,5 12 185,9 1 194,3 2 149,5 3 210,1

Dettagli

APPUNTI DI ECONOMIA AGRARIA

APPUNTI DI ECONOMIA AGRARIA APPUNTI DI ECONOMIA AGRARIA prof Vittorio Moaui Liberamete tratti da Apputi di Ecoomia Agraria I Uiversità di Padova pag 2/20 AZIENDA ED IMPRESA azieda uità tecica di produzioe costituita da terrei (ache

Dettagli

MATEMATICA FINANZIARIA

MATEMATICA FINANZIARIA MATEMATICA FINANZIAIA Prof. Adrea Berard 999 4. MUTUI E PIANI I AMMOTAMENTO Corso d Maeaca Fazara 999 d Adrea Berard Sezoe 4 0 CONTATTO I MUTUO Il corao d uuo è u operazoe fazara corrspodee ad ua parcolare

Dettagli