Il procedimento di linearizzazione consiste nell'usare una funzione delle variabili anziché le variabili stesse.

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Il procedimento di linearizzazione consiste nell'usare una funzione delle variabili anziché le variabili stesse."

Transcript

1 Y Lnerzzzone Il dgrmm d dspersone suggersce che le funzone d nterpolzone de dt non sono lner, m presentno un ndmento che n un cso (dots ner) potree essere d tpo esponenzle, mentre nell ltro cso (dots ross) potree essere d tpo rdce. X

2 Qundo dt spermentl non evdenzno un correlzone d tpo lnere, m presentno un ndmento d tpo esponenzle, polnomle, etc. è dffcle (se non mpossle) rcvre grfcmente prmetr crtterstc dell curv, che spesso hnno un sgnfcto chmco-fsco en precso e potreero pertnto fornre utlssme nformzon su un certo fenomeno. In quest cs è convenente trsformre l'equzone che rppresent l curv che meglo pprossm dt n quell d un rett effettundo un cmmento d vrl (lnerzzzone) Il procedmento d lnerzzzone consste nell'usre un funzone delle vrl nzché le vrl stesse.

3 Un clsse mportnte d lnerzzzon è quell legt d ndment esponenzl (o logrtmc) e legg d potenz. Consdermo l funzone Ae Per rcondurc d un form pù «comod», pplchmo un "lnerzzzone" dell funzone pplcndo l funzone logrtmo: B Ponendo ln ln A B Y = ln, C = ln A, X = S grfcno dt mednte le nuove vrl funzonl X,Y che hnno così dpendenz lnere. Y C BX

4 Esempo B.3 Ae e Y ln.3 ln Y = ln X

5 Altr esemp: A n B X n Y Y 5X X= 3

6 A X Y 5 Y 5X 8 6 Y X=rdce qudrt

7 oppure A A X Y 5 Y 5X Y=^ X

8 Grfc con scle non lner Scle Logrtmche Un scl logrtmc è un sse sul qule sono rportt segment proporzonl logrtm de numer sull sse prescelto (d es. sse ) s rppresent l punto d scss = nell drezone postv s rppresentno, dstnze ugul fr d loro, punt d scss,, 3,... nell drezone negtv s rppresentno, dstnze ugul fr d loro, puntd scss,, 3,... vlor ntermed tr un potenz d e l successv (d.es., 3,... 9 ) sono poszont vlor de rspettv logrtm decml

9

10

11 Crt SemLogrtmc scl lnere sull sse delle scsse X e scl logrtmc sull sse delle ordnte Y (o vcevers) TRASFORMAZIOE DI VARIABILI X Y log X log Y lnere sull sse X e logrtmc sull sse Y logrtmc sull sse X e lnere sull sse Y

12 Crt Logrtmc scl logrtmc sull sse delle scsse X e scl logrtmc sull sse delle ordnte Y TRASFORMAZIOE DI VARIABILI X log Y log

13 APPLICAZIOI: rppresentre msure postve con ordn d grndezz molto dvers fr loro lnerzzre funzon esponenzl K scle semlogrtmche lnerzzre funzon potenz B scle logrtmche

14 Crt SemLogrtmc Dt l funzone esponenzle K pssndo logrtm decml e utlzzndo le propretà de logrtm ponendo log log X K log log s h l equzone d un rett K Y log log K log Y log K X log ntercett coeffcente ngolre

15 Crt Logrtmc Dt l funzone potenz B pssndo logrtm decml e utlzzndo le propretà de logrtm log log B log log B log B log ponendo X log Y log s h l equzone d un rett Y log B X ntercett coeffcente ngolre

16 8 6 4 Esempo 4 (.5 )

17 Rett de mnm qudrt Il metodo dell mssm e mnm pendenz per determnre l rett d est-ft è un metodo grfco che funzon stnz ene, m non esste lcun gustfczone teorc dell procedur. Affrontmo l prolem con un metodo pù rgoroso. Consdermo coppe d msure (, ) d due grndezze e fr le qul sppmo che esste un relzone d tpo lnere: Supponmo che l ncertezz su un delle due vrl (d esempo sull ) s trscurle rspetto quell dell ltr () determnmo mglor vlor d e corrspondent dt spermentl

18 In corrspondenz d ogn esste un vlore teorco dto dll relzone t t t ovvero rppresent l ordnt del punto d scss pprtenente ll rett, mentre è quello msurto spermentlmente n corrspondenz d. t

19 In genere, cus degl error d msur, t e può essere volte t volte t t L qunttà rppresent lo scrto del vlore spermentle d quello teorco t t Al vrre d e l rett cmerà pendenz o trslerà e gl scrt ssumernno vlor dvers

20 Osservzone: un grnde vlore d non h d per sè un grnde sgnfcto. Cò che cont è l vlore ssoluto dello scrto rspetto ll errore d cu e ffetto. L mglor rett deve rendere l pù possle pccol vlor ssolut degl scrt (dvs per rspettv error). Pochè rendere pccolo uno scrto può renderne grnd ltr, llor come mglor rett s prende quell che rende mnm l somm de qudrt degl scrt (dvs per rspettv error) (Prncpo d Mssm Verosmglnz)

21 L mglor rett è quell che rende mnm l qunttà z dove σ è l ncertezz sttstc sull msur. z = z (, ), l vrre d e, ssume uno ed un solo mnmo n corrspondenz de vlor per cu le dervte przl rspetto e s nnullno z z

22 z z

23 Che equvle d vere l sstem: Supponendo che le σ sno tutte ugul σ = σ Sstem d equzon n ncognte

24 S S S S S S S S S S S S S S S Usndo l regol d Crmer S S SS S S S SS SS

25

26 I prmetr e sono ffett d ncertezz (perché lo sono le ). Per l propgzone degl error sttstc: ) ( ) (

27 ( ) ell potes che tutte le vrnze sno ugul

28 Anlogmente s clcol ( )

29 Rssumendo: ( ) ( )

30 Queste espresson ndcno che le ncertezze su prmetr dell rett dmnuscono ll umentre d, m nche dell qunttà denomnt rcco dell lev dell estensone delle msure: lo stesso numero d msure sprse su un ntervllo pù grnde determnno prmetr con un mggore precsone. S può noltre dmostrre che l rett de mnm qudrt pss per l punto B( B, B ) le cu coordnte sono rcentr delle msure d ed. B B

31 Se l non è not l s può stmre trmte l dspersone de punt ntorno ll rett: resdu ( ) È stt così determnt l mglore rett che pprossm un nseme d dt spermentl rendendo mnm l somm de qudrt delle dstnze, msurte nell drezone dell sse, de punt dll rett. L rett così determnt d dce rett d regressone (d su )

32 Avremmo potuto mnmzzre l somm de qudrt delle dstnze msurte nell drezone dell sse, ovvero l qunttà ' ' L rett così determnt d dce rett d regressone (d su ). In genere le due rette non concdono, m qunto pù l dstruzone de punt è prossm d essere rettlne, tnto pù le due rette d regressone s vvcnno. Infne è possle rendere mnm l somm de qudrt delle dstnze msurte ortogonlmente d punt ll rett. L rett così determnt d dce rett d regressone ortogonle.

33 Generlzzzone del metodo de mnm qudrt Il metodo può essere pplcto n modo molto pù generle. Consdermo coppe d msure (, ) d due grndezze e e supponmo che l ncertezz su un delle due vrl (d esempo sull ) s trscurle rspetto quell dell ltr () e che le σ sno tutte ugul σ = σ Inoltre l relzone che leg le vrl s espress dll generc funzone f c, c, c, c,..., 3 4 c p c j sono prmetr d cu s voglono determnre vlor n corrspondenz de qul l curv meglo s dtt dt spermentl

34 Il metodo de mnm qudrt permette d determnre vlor de prmetr c j che rendono mnm l qunttà:,...,c,c f z... c p z c z c z Mednte l rsoluzone del sstem d equzon:

Scrivere 2.1 cm implica dire che la misura sia compresa nell intervallo mm

Scrivere 2.1 cm implica dire che la misura sia compresa nell intervallo mm Il lto d un ddo è pr. cm. Usndo le cfre sgnfctve per stmre l errore clcolre l volume del cuo. Supponendo che l devzone stndrd nell msur del lto s d mm clcolre l devzone stndrd che ssoct ll msur del volume.

Dettagli

INTERPOLAZIONE STATISTICA

INTERPOLAZIONE STATISTICA ITERPOLAZIOE STATISTICA ell esme d fenomen collettv spesso c trovmo confrontre le coppe d vlor tr due vrl potzzndo v s un relzone tr loro; è noto, d esempo, v s relzone tr prezzo e domnd d un ene, reddto

Dettagli

I vettori. a b. 180 α B A. Un segmento orientato è un segmento su cui è stato fissato un verso. di percorrenza, da verso oppure da verso.

I vettori. a b. 180 α B A. Un segmento orientato è un segmento su cui è stato fissato un verso. di percorrenza, da verso oppure da verso. I vettor B Un segmento orentto è un segmento su cu è stto fssto un verso B d percorrenz, d verso oppure d verso. A A Il segmento orentto d verso è ndcto con l smolo. Due segment orentt che hnno l stess

Dettagli

MATEMATICA FINANZIARIA 5. VALUTAZIONE DI PROGETTI ECONOMICO-FINANZIARI

MATEMATICA FINANZIARIA 5. VALUTAZIONE DI PROGETTI ECONOMICO-FINANZIARI MATEMATICA FINANZIARIA Pro. Andre Berrd 999 5. VALUTAZIONE DI PROGETTI ECONOMICO-FINANZIARI Corso d Mtemtc Fnnzr 999 d Andre Berrd Sezone 5 PROGETTO ECONOMICO-FINANZIARIO Un progetto economco-nnzro è un

Dettagli

Università di Napoli Parthenope Facoltà di Ingegneria

Università di Napoli Parthenope Facoltà di Ingegneria Unverstà d Npol Prthenope Fcoltà d Ingegner Corso d Trsmssone Numerc docente: Prof. Vto Psczo 3 Lezone: /0/004 4 Lezone: /0/004 Sommro Quntzzzone sclre (unforme e non unforme) Quntzzzone vettorle (VQ)

Dettagli

Versione 20 dicembre. Integrali curvilinei. 2.1 Curve nel piano e nello spazio

Versione 20 dicembre. Integrali curvilinei. 2.1 Curve nel piano e nello spazio 2 Integrl curvlne 2. Curve nel pno e nello spzo S I un qulunque ntervllo dell rett rele e s : I R 3 un funzone. Indchmo con (t) = ( x(t), y(t), z(t) ) R 3 l punto mmgne d t I ttrverso. Dcmo che è un funzone

Dettagli

Elaborazione dei Dati Sperimentali

Elaborazione dei Dati Sperimentali Chmc Fsc Industrle Modulo A Teor degl error Elorzone de Dt Spermentl Lortoro d Chmc Fsc Teor degl error MISURA DIRETTA DI UA GRADEZZA FISICA Error d msur, mglore stm e ncertezz L msur drett d un grndezz

Dettagli

UNIVERSITÀ DEGLI STUDI DI BERGAMO. Facoltà di Ingegneria. Istituzioni di Economia Laurea Triennale in Ingegneria Gestionale

UNIVERSITÀ DEGLI STUDI DI BERGAMO. Facoltà di Ingegneria. Istituzioni di Economia Laurea Triennale in Ingegneria Gestionale Gnmr Mrtn UNIVERSITÀ DEGLI STUDI DI BERGAMO Fcoltà d Ingegner Isttuzon d Econom Lure Trennle n Ingegner Gestonle Lezone 9 Domnd del mercto Prof. Gnmr Mrtn Unverstà degl Stud d Bergmo Fcoltà d Ingegner

Dettagli

Liceo Scientifico Statale A. Volta, Torino Anno scolastico 2014 / 2015

Liceo Scientifico Statale A. Volta, Torino Anno scolastico 2014 / 2015 Leo Sentfo Sttle A. Volt, Torno Anno solsto 0 / 0 Cognome e Nome: LOGARITMI ED ESPONENZIALI Complet on l equone d sun funone: A) B) C) D) 0) Qule funone pss per l punto ( ; ) ed è sempre postv? 0) L funone

Dettagli

MISURE DELL ACCELERAZIONE DI GRAVITÁ g 1) PENDOLO REVERSIBILE DI KATER

MISURE DELL ACCELERAZIONE DI GRAVITÁ g 1) PENDOLO REVERSIBILE DI KATER MISURE DELL ACCELERAZIONE DI GRAVIÁ In questo espermento s vuole msurre l ccelerzone d rvtà. Dvers sono mod possl. S consderno qu le oscllzon d un pendolo fsco e l cdut ler d pllne d cco. All fne del esperment

Dettagli

Laboratorio 2B A.A. 2012/2013. Elaborazione Dati. Lab 2B CdL Fisica

Laboratorio 2B A.A. 2012/2013. Elaborazione Dati. Lab 2B CdL Fisica Laboratoro B A.A. 01/013 Elaborazone Dat Lab B CdL Fsca Lab B CdL Fsca Elaborazone dat spermental Prncpo della massma verosmglanza Quando eseguamo una sere d msure relatve ad una data grandezza fsca, quanto

Dettagli

x = Il problema del calcolo delle aree Suddivisione dell intervallo [a,b] in sottointervalli che ne costituiscono una partizione

x = Il problema del calcolo delle aree Suddivisione dell intervallo [a,b] in sottointervalli che ne costituiscono una partizione Integrle Dento. Il prolem del clcolo delle ree Suddvsone dell ntervllo [,] n sottontervll che ne costtuscono un prtzone De. Prtzone S chm prtzone P dell ntervllo [,] un nseme d n+ punt <

Dettagli

Teoremi su correnti e tensioni

Teoremi su correnti e tensioni Teorem su corrent e tenson 1) ombnzone lnere efnzone: n un crcuto, ogn corrente e tensone è dt un combnzone lnere d genertor: V = K 1 $ g 1 K 2 $ g 2 K 3 $ g 3... I = K 1 $ g 1 K 2 $ g 2 K 3 $ g 3... oe

Dettagli

Formule di Integrazione Numerica

Formule di Integrazione Numerica Formule d Itegrzoe Numerc Itegrzoe umerc: geerltà Prolem: vlutre l tegrle deto: I d F F utlzzo opportue tecce umerce qudo: l prmtv d o e esprmle orm cus d esempo s/, ep- ; dcoltà el clcolre ltcmete l prmtv

Dettagli

Lezione 7. Numeri primi. Teorema Fondamentale dell'aritmetica.

Lezione 7. Numeri primi. Teorema Fondamentale dell'aritmetica. Lezone 7 Prereqst: L'nseme de nmer nter Lezone 6 Nmer prm Teorem Fondmentle dell'artmetc Defnzone 7 Un nmero ntero p dverso d 0 e s dce prmo se per ogn b Z Altrment p s dce composto p b p oppre p b Defnzone

Dettagli

Alcune proprietà dei circuiti lineari

Alcune proprietà dei circuiti lineari Unerstà degl Stud d Cssno lcune propretà de crcut lner ntono Mffucc, Fo Vllone 00/00 er 09/00 IL PINCIPIO DI SOVPPOSIZION DGLI FFTTI Il prncpo d sorpposzone degl effett è forse l pù mportnte conseguenz

Dettagli

Propagazione degli Errori

Propagazione degli Errori Propgone egl Error L mggor prte elle grnee fsche solto non può essere msurt ttrverso un sngol msur rett m vene nvece etermnt n ue pss stnt come etto nell efnone msure nrette:. S msurno un o pù grnee che

Dettagli

ROTAZIONI ( E TEOREMA DI PITAGORA

ROTAZIONI ( E TEOREMA DI PITAGORA ROTAZIONI ( E TEOREMA DI PITAGORA ) Defnzone Defnmo rotzone nel pno R un funzone (,) --> f(,) = (',') R, tle che : ) f(,) = f(,) + ort(f(,), per ogn (,) R dove : ort(,b) := (-b,) "ortogonle (ntorro)" d

Dettagli

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione

Relazione funzionale e statistica tra due variabili Modello di regressione lineare semplice Stima puntuale dei coefficienti di regressione 1 La Regressone Lneare (Semplce) Relazone funzonale e statstca tra due varabl Modello d regressone lneare semplce Stma puntuale de coeffcent d regressone Decomposzone della varanza Coeffcente d determnazone

Dettagli

Misura masse molecolari

Misura masse molecolari Msur msse molecolr Le propretà de mterl polmerc dpendono dll mss molecolre. E possble conoscere l mss molecolre de sstem polmerc msurndo tl propretà Qul propretà? meccnche, fsche, n soluzone? Qule mss

Dettagli

RAPPRESENTAZIONE DI MISURE. carta millimetrata

RAPPRESENTAZIONE DI MISURE. carta millimetrata carta mllmetrata carta mllmetrata non è necessaro rportare sul foglo la tabella (ma auta; l mportante è che sta da qualche parte) carta mllmetrata 8 7 6 5 4 3 smbolo della grandezza con untà d msura!!!

Dettagli

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo:

, x 2. , x 3. è un equazione nella quale le incognite appaiono solo con esponente 1, ossia del tipo: Sistemi lineri Un equzione linere nelle n incognite x 1, x 2, x,, x n è un equzione nell qule le incognite ppiono solo con esponente 1, ossi del tipo: 1 x 1 + 2 x 2 + x +!+ n x n = b con 1, 2,,, n numeri

Dettagli

Esercitazioni Capitolo 8-9 Impianti di riscaldamento

Esercitazioni Capitolo 8-9 Impianti di riscaldamento Eserctzon Cptolo 8-9 Impnt d rscldmento 1) In un locle rscldto (volume V 400 m 3 ) l rnnovo d r è n 5 (1/h). Nell potes d un tempertur estern t e - 5 C qunto vle l flusso termco per ventlzone v. ssumere:

Dettagli

I vettori. Grandezze scalari: Grandezze vettoriali

I vettori. Grandezze scalari: Grandezze vettoriali Grndee sclr: I ettor engono defnte dl loro lore numerco esemp: lunghe d un segmento, re d un fgur pn, tempertur d un corpo, ecc. Grndee ettorl engono defnte, oltre che dl loro lore numerco, d un dreone

Dettagli

Ellisse ed iperbole. Osservazione. Considereremo sempre ellissi della forma + = 1 le quali hanno tutte centro nell origine degli

Ellisse ed iperbole. Osservazione. Considereremo sempre ellissi della forma + = 1 le quali hanno tutte centro nell origine degli Ellisse ed iperole Ellisse Definizione: si definise ellisse il luogo geometrio dei punti del pino per i quli è ostnte l somm delle distnze d due punti fissi F e F detti fuohi. L equzione noni dell ellisse

Dettagli

METODI ITERATIVI PER LA RISOLUZIONE DI SISTEMI LINEARI

METODI ITERATIVI PER LA RISOLUZIONE DI SISTEMI LINEARI METODI ITERATIVI PER LA RISOLUZIONE DI SISTEMI LINEARI Per l rsoluzone d un sstem lnere A b, oltre metod drett, è possble utlzzre nche metod tertv che rggungono l soluzone estt come lmte d un procedmento

Dettagli

Noi investiamo in qualità della vita e Tu?

Noi investiamo in qualità della vita e Tu? No nvestmo n qultà dell vt e Tu? sosttuzone de serrment SI NO - RISPARMIO IN BOLLETTA - COMFORT - QUALITÀ DELLA VITA + - lvor d rqulfczone lvor d rqulfczone + eff cen 10 nn relzzzone del cppotto z e nerg

Dettagli

Capitolo 5. Il Sistema Satellitare GPS

Capitolo 5. Il Sistema Satellitare GPS Cptolo 5 Il stem telltre GP 5. Descrzone del sstem L nvgzone stelltre nsce con l lnco dello putn d prte dell U nell ottobre 957; l osservzone dello shft-doppler sull frequenz delle converszon dllo putn

Dettagli

Il problema delle aree. Metodo di esaustione.

Il problema delle aree. Metodo di esaustione. INTEGRALE DEFINITO. DEFINIZIONE E SIGNIFICATO GEOMETRICO. PROPRIETA DELL INTEGRALE DEFINITO. FUNZIONE INTEGRALE. TEOREMA DELLA MEDIA. TEOREMA FONDAMENTALE DEL CALCOLO INTEGRALE. FORMULA DI LEIBNITZ NEWTON.

Dettagli

Esercitazioni Capitolo 8-9 Impianti di riscaldamento

Esercitazioni Capitolo 8-9 Impianti di riscaldamento Eserctzon Cptolo 8-9 Impnt d rscldmento 1) In un locle rscldto (volume V 400 [m 3 ]) l rnnovo d r è n 0.5 (1/h). Nell potes d un tempertur estern t e - 5 [ C], qunto vle l flusso termco per ventlzone v.

Dettagli

Campi Elettromagnetici e Circuiti I Teoremi delle reti elettriche

Campi Elettromagnetici e Circuiti I Teoremi delle reti elettriche Fcoltà d Ingegner Unverstà degl stud d Pv Corso d ure Trennle n Ingegner Elettronc e Informtc Cmp Elettromgnetc e Crcut I Teorem delle ret elettrche Cmp Elettromgnetc e Crcut I.. 04/5 Prof. uc Perregrn

Dettagli

Modellazione e Identificazione Dinamica della Cupola della Basilica di S. Gaudenzio in Novara

Modellazione e Identificazione Dinamica della Cupola della Basilica di S. Gaudenzio in Novara Modellzone e Identfczone Dnmc dell Cupol dell Bslc d S. Gudenzo n Novr Ing. Slvno Erlcher Sommro Nell prm prte dell rtcolo s present un modello gl element fnt dell Cupol dell Bslc d S. Gudenzo. S mostrno

Dettagli

La parabola. Fuoco. Direttrice y

La parabola. Fuoco. Direttrice y L prol Definizione: si definise prol il luogo geometrio dei punti del pino equidistnti d un punto fisso detto fuoo e d un rett fiss dett direttrie. Un rppresentzione grfi inditiv dell prol nel pino rtesino

Dettagli

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari

Capitolo 3 Covarianza, correlazione, bestfit lineari e non lineari Captolo 3 Covaranza, correlazone, bestft lnear e non lnear ) Covaranza e correlazone Ad un problema s assoca spesso pù d una varable quanttatva (es.: d una persona possamo determnare peso e altezza, oppure

Dettagli

DETERMINAZIONE GRAFICA DEL BARICENTRO

DETERMINAZIONE GRAFICA DEL BARICENTRO DETERMNZONE GRFC DEL BRCENTRO (SSTEM D MSSE) Geometria delle masse 1/75 L BRCENTRO D UN SSTEM D MSSE È L CENTRO D UN QULSS SSTEM D VETTOR PRLLEL E CONCORD (DETT VETTOR MSS), PPLCT N CORRSPONDENZ DELLE

Dettagli

Università degli Studi Federico II di Napoli Facoltà di Architettura

Università degli Studi Federico II di Napoli Facoltà di Architettura Unverstà degl Stud Federco II d Npol Fcoltà d Archtettur Ferdnndo Csolro - Ivno Csolro Appunt del corso d Geometr CAPITOLO I - LA GEOMETRIA ANALITICA. - CENNI STORICI.2 - INTRODUZIONE ALLE COORDINATE CARTESIANE.3

Dettagli

La regressione. La Regressione. La Regressione. min. min. Var X. X Variabile indipendente (data) Y Variabile dipendente

La regressione. La Regressione. La Regressione. min. min. Var X. X Variabile indipendente (data) Y Variabile dipendente Unverstà d Macerata Facoltà d Scenze Poltche - Anno accademco - La Regressone Varable ndpendente (data) Varable dpendente Dpendenza funzonale (o determnstca): f ; Da un punto d vsta analtco, valor della

Dettagli

corrispondenza dal piano in sé, che ad ogni punto P del piano fa corrispondere il punto P' in

corrispondenza dal piano in sé, che ad ogni punto P del piano fa corrispondere il punto P' in Cpitolo 5 Le omotetie 5. Richimi di teori Definizione Sino fissti un punto C del pino ed un numero rele. Si chim omoteti di centro C e rpporto ( che si indic con il simolo O, ) l corrispondenz dl pino

Dettagli

VARIABILI ALEATORIE (v.a.) DISCRETE

VARIABILI ALEATORIE (v.a.) DISCRETE Corso d Sttstc, Lure Ecoom Azedle, Uverstà C. Ctteo, Cstellz, 7 Ottobre 008. 008 R. D Agò VARIABILI ALEATORIE: SIMBOLOGIA, DEFINIIONI, PROPRIETA VARIABILI ALEATORIE (v.. DISCRETE pgg. -3 VARIABILI ALEATORIE

Dettagli

Geometria Analitica Domande, Risposte & Esercizi

Geometria Analitica Domande, Risposte & Esercizi Geometri Anlitic Domnde, Risposte & Esercizi. Dre l definizione di iperole come luogo di punti. L iperole è un luogo di punti, è cioè un insieme di punti del pino le cui distnze d due punti fissi F e F

Dettagli

MATEMATICA Classe Prima

MATEMATICA Classe Prima Liceo Clssico di Treiscce Esercizi per le vcnze estive 0 MATEMATICA Clsse Prim Cpitolo Numeri nturli Primi ogni pgin del cpitolo Cpitolo Numeri nturli Primi ogni pgin del cpitolo Per gli llievi promossi

Dettagli

Campi Elettromagnetici e Circuiti I Leggi Fondamentali

Campi Elettromagnetici e Circuiti I Leggi Fondamentali Fcoltà d Ingegner Unerstà degl stud d P Corso d Lure Trennle n Ingegner Elettronc e Informtc Cmp Elettromgnetc e Crcut I Legg Fondmentl Cmp Elettromgnetc e Crcut I.. 06/7 Prof. Luc Perregrn Legg fondmentl,

Dettagli

30 quesiti. 1 Febbraio 2011. Scuola... Classe... Alunno... Copyright 2011 Zanichelli Editore SpA, Bologna

30 quesiti. 1 Febbraio 2011. Scuola... Classe... Alunno... Copyright 2011 Zanichelli Editore SpA, Bologna verso LA RILEVAZIONE INVALSI SCUOLA SECONDARIA DI secondo GRADO PROVA DI Mtemtic 30 quesiti Febbrio 0 Scuol... Clsse... Alunno... e b sono numeri reli che verificno quest uguglinz: Qunto vle il loro prodotto?

Dettagli

Ellisse riferita al centro degli assi

Ellisse riferita al centro degli assi Appunti delle lezioni tenute in clsse: ellisse e iperole Ellisse riferit l centro degli ssi Dti due punti F ed F detti fuochi, l ellisse è il luogo geometrico dei punti P del pino per cui è costnte l somm

Dettagli

5. Coperture in acciaio: applicazione

5. Coperture in acciaio: applicazione 5. Coperture n cco: pplczone Le coperture n cco, d solto rservte costruzon non bttve, hnno tpologe costruttve bbstnz tpche ( FIGURA 1). Gl element costruttv ordnr sono: sol; le trv, sezone pen (rcrecc)

Dettagli

SUGLI INSIEMI. 1.Insiemi e operazioni su di essi

SUGLI INSIEMI. 1.Insiemi e operazioni su di essi SUGLI INSIEMI 1.Insiemi e operzioni su di essi Il concetto di insieme è primitivo ed è sinonimo di clsse, totlità. Si A un insieme di elementi qulunque. Per indicre che è un elemento di A scriveremo A.

Dettagli

FUNZIONI A DUE VARIABILI RICERCA DEI PUNTI DI MASSIMO E MINIMO

FUNZIONI A DUE VARIABILI RICERCA DEI PUNTI DI MASSIMO E MINIMO Pg. Pro. Muro D Ettorr UNZIONI A DUE VARIABILI RICERCA DEI PUNTI DI MASSIMO E MINIMO PREMESSE DERIVATE PARZIALI DI UNA UNZIONE A DUE O PIU VARIABILI Dt un unzon d n vrbl z=... n s dc drvt przl l unzon

Dettagli

Laboratorio di FISICA 2. Misura della resistenza di un conduttore con il ponte di Wheatstone R + R R 3 + R4 E, (2) =, (3) i 2 V B = R 3 = V AC

Laboratorio di FISICA 2. Misura della resistenza di un conduttore con il ponte di Wheatstone R + R R 3 + R4 E, (2) =, (3) i 2 V B = R 3 = V AC Lortoro d FISICA Msur dell resstez d u coduttore co l pote d Whetstoe Il pote d Whetstoe è u crcuto dtto ll msur dell resstez d u coduttore per cofroto co ressteze ote. ello schem d Fgur l tter E lmet

Dettagli

U.D. N 15 Funzioni e loro rappresentazione grafica

U.D. N 15 Funzioni e loro rappresentazione grafica 54 Unità Didttic N 5 Funzioni e loro rppresentzione grfic U.D. N 5 Funzioni e loro rppresentzione grfic ) Le coordinte crtesine ) L distnz tr due punti 3) Coordinte del punto medio di un segmento 4) Le

Dettagli

Laboratorio 2B A.A. 2013/2014. Elaborazione Dati. Lab 2B CdL Fisica

Laboratorio 2B A.A. 2013/2014. Elaborazione Dati. Lab 2B CdL Fisica Laboratoro B A.A. 013/014 Elaborazone Dat Lab B CdL Fsca Elaborazone dat spermental Come rassumere un nseme d dat spermental? Una statstca è propro un numero calcolato a partre da dat stess. La Statstca

Dettagli

Temi d'esame (Seconda prova) Alcuni testi e relative soluzioni

Temi d'esame (Seconda prova) Alcuni testi e relative soluzioni Unverstà d Rom "L Spenz" Fcoltà d Ingegner Corso d Lure n Ingegner Informtc Corso d Clcoltor Elettronc II Tem d'esme (Second prov) Alcun test e reltve soluzon Appello del 23 luglo 2002 Tem n. 2 Un cche

Dettagli

EQUAZIONI DIFFERENZIALI 2

EQUAZIONI DIFFERENZIALI 2 EQUAZIONI DIFFERENZIALI. PROBLEMI AI LIMITI I prolem dfferenzl lmt sono quell ne qul ll equzone dfferenzle defnt n un nseme [,], vengono ffncte delle condzon sull soluzone, e/o sulle sue dervte, non solo

Dettagli

Il Circuito Elementare

Il Circuito Elementare Corso d IMPIEGO INDUSRIALE dell ENERGIA L ener, ont, trsormzon ed us nl Impnt vpore I enertor d vpore Impnt turbos Ccl combnt e coenerzone Il mercto dell ener 1 Corso d IMPIEGO INDUSRIALE dell ENERGIA

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2003

ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. 2003 ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE P.N.I. Il cndidto risolv uno dei due problemi e 5 dei quesiti in cui si rticol il questionrio. PROBLEMA Nel pino sono dti: il cerchio di dimetro OA,

Dettagli

Si noti che da questa definizione segue che il punto C è il punto medio del segmento PP'. Figura 1

Si noti che da questa definizione segue che il punto C è il punto medio del segmento PP'. Figura 1 APITOLO 3 LE SIMMETRIE 3. Richimi di teori Definizione. Si dto un punto del pino; si chim simmetri centrle di centro (che si indic con il simbolo s ) l corrispondenz dl pino in sé che d ogni punto P del

Dettagli

a > 1 y = 1 x = 1 La funzione esponenziale La funzione y = a x è chiamata funzione esponenziale di x dove a è la base della funzione.

a > 1 y = 1 x = 1 La funzione esponenziale La funzione y = a x è chiamata funzione esponenziale di x dove a è la base della funzione. L funzione esponenzile L funzione = è chimt funzione esponenzile di dove è l bse dell funzione. > 0; Condizioni di vlidità: < < ; > 0 Se > l funzione è monoton crescente > = = = o L funzione esponenzile

Dettagli

Sistemi lineari: generalità

Sistemi lineari: generalità Sstem ler: geerltà Prolem: rsolvere u sstem lere d grd dmeso N, I form comptt: A B M M M M A [ ] R vettore de coeffcet B [ ] R vettore de term ot [ ] R vettore delle cogte Sstem ler: soluzoe Teorem Rouché-pell):

Dettagli

Maturità scientifica, corso di ordinamento, sessione ordinaria 2000-2001

Maturità scientifica, corso di ordinamento, sessione ordinaria 2000-2001 Mtemtic per l nuov mturità scientific A. Bernrdo M. Pedone Mturità scientific, corso di ordinmento, sessione ordinri 000-001 PROBLEMA 1 Si consideri l seguente relzione tr le vribili reli x, y: 1 1 1 +

Dettagli

Integrazione numerica

Integrazione numerica Cludo Esttco cludo.esttco@usur.t Itegrzoe umerc Itegrzoe Numerc Itegrzoe umerc Formule d qudrtur. Grdo d esttezz. 3 Metodo de coecet determt. 4 Formule d Newto-Cotes semplc. Formule d Newto-Cotes composte.

Dettagli

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didattica N 11 Le equazioni di secondo grado ad una incognita

Unità Didattica N 11 Le equazioni di secondo grado ad una incognita Unità Didattica N 11 Le equazioni di secondo grado ad una incognita 86 Unità Didtti N Le equzioni di seondo grdo d un inognit Unità Didtti N Le equzioni di seondo grdo d un inognit ) L definizione di equzione di seondo grdo d un inognit ) L risoluzione delle equzioni di

Dettagli

Risoluzione verifica di matematica 3C del 17/12/2013

Risoluzione verifica di matematica 3C del 17/12/2013 Problem 1 Risoluzione verific di mtemtic C del 17/1/01 Si clcolno le intersezioni tr le rette generiche del fscio proprio y x y 1, risolvendo il sistem: x y 1 y mx Si ottengono i punti di coordinte espresse

Dettagli

dr Valerio Curcio Le affinità omologiche Le affinità omologiche

dr Valerio Curcio Le affinità omologiche Le affinità omologiche 1 Le ffinità omologiche 2 Tringoli omologici: Due tringoli si dicono omologici se le rette congiungenti i punti omologhi dei due tringoli si incontrno in un medesimo punto. Principio dei tringoli omologici

Dettagli

Lezione 16. Costruibilità con riga e compasso.

Lezione 16. Costruibilità con riga e compasso. Lezone 6 Prerequst: Lezon 9, 5. Costrubltà on rg e ompsso. Defnzone 6. S F un mpo, e s K un su estensone. Un elemento ostruble su F se esste un estensone -rdle d F ontenente α. α K s de Quest defnzone

Dettagli

STATISTICA DESCRITTIVA - SCHEDA N. 5 REGRESSIONE LINEARE

STATISTICA DESCRITTIVA - SCHEDA N. 5 REGRESSIONE LINEARE Matematca e statstca: da dat a modell alle scelte www.dma.unge/pls_statstca Responsabl scentfc M.P. Rogantn e E. Sasso (Dpartmento d Matematca Unverstà d Genova) STATISTICA DESCRITTIVA - SCHEDA N. REGRESSIONE

Dettagli

Facoltà di Economia - Università di Sassari Anno Accademico 2004-2005. Dispense Corso di Econometria Docente: Luciano Gutierrez.

Facoltà di Economia - Università di Sassari Anno Accademico 2004-2005. Dispense Corso di Econometria Docente: Luciano Gutierrez. Fcoltà di Economi - Università di Sssri Anno Accdemico 2004-2005 Dispense Corso di Econometri Docente: Lucino Gutierrez Algebr Linere Progrmm: 1.1 Definizione di mtrice e vettore 1.2 Addizione e sottrzione

Dettagli

La t di Student. Per piccoli campioni si definisce la variabile casuale. = s N. detta t di Student.

La t di Student. Per piccoli campioni si definisce la variabile casuale. = s N. detta t di Student. Pccol campon I parametr della dstrbuzone d una popolazone sono n generale ncognt devono essere stmat dal campone de dat spermental per pccol campon (N N < 30) z = (x µ)/ )/σ non ha pù una dstrbuzone gaussana

Dettagli

Calcolo della concentrazione e della densità del Silicio Monocristallino

Calcolo della concentrazione e della densità del Silicio Monocristallino Clcolo dell concentrzone e dell denstà del Slco Monocrstllno Clcolo del numero d tom per cell Contrbuto de vertc: 8 1 8 1 Contrbuto delle superfc: 6 1 2 3 Contrbuto tom ntern: 4 1 4 Totle: 8 tom equvlent

Dettagli

Valore del parametro Tipo di Equazione Soluzioni Equazione di I grado x = 4. Equazione Spuria x 1 = 0 x 2 = 5 Equazione Completa con < 0

Valore del parametro Tipo di Equazione Soluzioni Equazione di I grado x = 4. Equazione Spuria x 1 = 0 x 2 = 5 Equazione Completa con < 0 Equzioni letterli di II grdo Un equzione letterle di II grdo è un equzione che contiene, oltre l letter che rppresent l incognit dell equzione, ltre lettere, dette prmetri, che rppresentno numeri ben determinti,

Dettagli

Campo di applicazione

Campo di applicazione Unverstà del Pemonte Orentale Corso d Laurea n Botecnologa Corso d Statstca Medca Correlazone Regressone Lneare Corso d laurea n botecnologa - Statstca Medca Correlazone e Regressone lneare semplce Campo

Dettagli

Ing. Alessandro Pochì

Ing. Alessandro Pochì Dispense di Mtemtic clsse quint -Gli integrli Quest oper è distriuit con: Licenz Cretive Commons Attriuzione - Non commercile - Non opere derivte. Itli Ing. Alessndro Pochì Appunti di lezione svolti ll

Dettagli

Intorduzione alla teoria delle Catene di Markov

Intorduzione alla teoria delle Catene di Markov Intorduzone alla teora delle Catene d Markov Mchele Ganfelce a.a. 2014/2015 Defnzone 1 Sa ( Ω, F, {F n } n 0, P uno spazo d probabltà fltrato. Una successone d v.a. {ξ n } n 0 defnta su ( Ω, F, {F n }

Dettagli

Esempi di Cinematica Diretta/Inversa. Massimo Cavallari. Corso di Robotica Prof.ssa Giuseppina Gini 2007/2008

Esempi di Cinematica Diretta/Inversa. Massimo Cavallari. Corso di Robotica Prof.ssa Giuseppina Gini 2007/2008 Eemp Cnemt Drett/Inver Mmo Cvllr Coro Robot rof. Gueppn Gn 7/8 Cnemt nver oone e Orentmento ell EnEffetor oone e Gunt Obettvo ell nemt nver è l rer elle relon per l lolo elle vrbl gunto, te l poone e l'orentmento

Dettagli

Funzioni razionali fratte

Funzioni razionali fratte Funzioni rzionli frtte Per illustrre l medizione che AlNuSet fornisce per lo studio delle funzioni rzionli frtte, inizimo con il considerre l funzione f ( ) l vrire del prmetro. L su rppresentzione nell

Dettagli

Vettori. Le grandezze fisiche sono: scalari; vettoriali;

Vettori. Le grandezze fisiche sono: scalari; vettoriali; Vetto 1 Le gndee fsche sono: scl; vettol; Def: Gnde scle defnt unvocmente d un numeo (postvo o negtvo) (con oppotun untà d msu) es.: tempo, mss, tempetu, cc elettc, Def: Gnde vettole (vd. pgn seguente)

Dettagli

Definizioni fondamentali

Definizioni fondamentali Definizioni fondmentli Sistem scisse su un rett 1 Un rett si ce orientt qundo su ess è fissto un verso percorrenz Dti due punti qulsisi A e B un rett orientt r, il segmento AB che può essere percorso d

Dettagli

Relazioni tra variabili: Correlazione e regressione lineare

Relazioni tra variabili: Correlazione e regressione lineare Dott. Raffaele Casa - Dpartmento d Produzone Vegetale Modulo d Metodologa Spermentale Febbrao 003 Relazon tra varabl: Correlazone e regressone lneare Anals d relazon tra varabl 6 Produzone d granella (kg

Dettagli

Sessione Suppletiv PNI 006 Sessione Suppletiv PNI 006 Sessione Suppletiv PNI 006 PROBLEMA ) L prbol di equzione V ' (0,0). y h sse di simmetri prllelo ll sse delle ordinte e vertice in L prbol di equzione

Dettagli

Calcolo letterale. 1) Operazioni con i monomi. a) La moltiplicazione. b) La divisione. c) Risolvi le seguenti espressioni con i monomi.

Calcolo letterale. 1) Operazioni con i monomi. a) La moltiplicazione. b) La divisione. c) Risolvi le seguenti espressioni con i monomi. Clcolo letterle. ) Operzioni con i monomi. ) L moltipliczione. ) L divisione. c) Risolvi le seguenti espressioni con i monomi. ) I polinomi. ) Clcol le seguenti somme di polinomi. ) Applic l proprietà

Dettagli

Area del Trapezoide. f(x) A f(a) f(b) f(x)

Area del Trapezoide. f(x) A f(a) f(b) f(x) Are del Trpezoide y o A f() trpezoide h B f() f() L're del trpezoide S puo' essere pprossimt dll're del trpezio AB. Per vere un migliore pprossimzione possimo suddividere il trpezio in trpezi piu' piccoli.

Dettagli

COME SOPRAVVIVERE ALLA MATEMATICA. 1. La funzione matematica e la sua utilità in economia

COME SOPRAVVIVERE ALLA MATEMATICA. 1. La funzione matematica e la sua utilità in economia COME SOPRAVVIVERE ALLA MATEMATICA di Giuli Cnzin e Dominique Cppelletti Come potrete notre inoltrndovi nel corso di Introduzione ll economi, l interpretzione dell teori economic non presuppone conoscenze

Dettagli

VALORI MEDI (continua da Lezione 5)

VALORI MEDI (continua da Lezione 5) VALORI MEDI (cotu d Lezoe 5) Dott.ss Pol Vcrd 6. L ed rtetc è lere coè è vrte per trsforzo ler de dt. S u dstrbuzoe utr d ed A. Effettuo u trsforzoe lere delle osservzo coè b c d dove c e d soo due costt

Dettagli

Principi di ingegneria elettrica. Lezione 6 a. Analisi delle reti resistive

Principi di ingegneria elettrica. Lezione 6 a. Analisi delle reti resistive Prncp d ngegnera elettrca Lezone 6 a Anals delle ret resste Anals delle ret resste L anals d una rete elettrca (rsoluzone della rete) consste nel determnare tutte le corrent ncognte ne ram e tutt potenzal

Dettagli

{ 3 x y=4. { x=2. Sistemi di equazioni

{ 3 x y=4. { x=2. Sistemi di equazioni Sistemi di equzioni Definizione Un sistem è un insieme di equzioni che devono essere verificte contempornemente, cioè devono vere contempornemente le stesse soluzioni. Definimo grdo di un sistem il prodotto

Dettagli

6. Il telerilevamento passivo.

6. Il telerilevamento passivo. 6. Il telerlevmento pssvo. Il telerlevmento h lo scopo rlevre stnz le crtterstche fsco/chmche un oggetto trmte un sensore che s n gro msurre l energ elettromgnetc che l superfce ell oggetto rr nello spzo

Dettagli

Trigger di Schmitt. e +V t

Trigger di Schmitt. e +V t CORSO DI LABORATORIO DI OTTICA ED ELETTRONICA Scopo dell esperenza è valutare l ampezza dell steres d un trgger d Schmtt al varare della frequenza e dell ampezza del segnale d ngresso e confrontarla con

Dettagli

Lezione 7: Rette e piani nello spazio

Lezione 7: Rette e piani nello spazio Lezione 7: Rette e pini nello spzio In quest lezione i metteremo in un riferimento rtesino ortonormle dello spzio. I primi oggetti geometrii he individuimo sono le rette e i pini. Per qunto rigurd le rette

Dettagli

COLPO D ARIETE: MANOVRE DI CHIUSURA

COLPO D ARIETE: MANOVRE DI CHIUSURA Università degli studi di Rom Tor Vergt Corso di Idrulic. Prof. P. Smmrco COLPO D ARIETE: MANOVRE DI CHIUSURA Appunti integrtivi l testo E. Mrchi, A. Rubtt - Meccnic dei Fluidi dlle lezioni del prof. P.

Dettagli

Ingegneria Energetica, Nucleare e del Controllo Ambientale

Ingegneria Energetica, Nucleare e del Controllo Ambientale Alm Mter Studorum nverstà d ologn DOTTORATO DI RICERCA IN Ingegner Energetc, Nuclere e del Controllo Ambentle Cclo XXII Settore scentfco-dscplnre d fferenz: ING-IND/9 IMPIANTI NCLEARI Tecnche MonteCrlo

Dettagli

1 COORDINATE CARTESIANE

1 COORDINATE CARTESIANE 1 COORDINATE CARTESIANE In un sistem di ssi crtesini (,) un punto P è identificto dll su sciss e dll su ordint : Asciss : distnz di P dll sse delle ordinte Ordint :distnz di P dll sse delle scisse P(-4,4)

Dettagli

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n.

AUTOVALORI ED AUTOVETTORI. Sia V uno spazio vettoriale di dimensione finita n. AUTOVALORI ED AUTOVETTORI Si V uno spzio vettorile di dimensione finit n. Dicesi endomorfismo di V ogni ppliczione linere f : V V dello spzio vettorile in sé. Se f è un endomorfismo di V in V, considert

Dettagli

Un carrello del supermercato viene lanciato con velocità iniziale

Un carrello del supermercato viene lanciato con velocità iniziale Esempio 44 Un utomobile procede lungo l utostrd ll velocità costnte di m/s, ed inizi d ccelerre in vnti di m/s.5 proprio nell istnte in cui super un cmion fermo in un re di sost. In quel preciso momento

Dettagli

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così:

2 x = 64 (1) L esponente (x) a cui elevare la base (2) per ottenere il numero 64 è detto logaritmo (logaritmo in base 2 di 64), indicato così: Considerimo il seguente problem: si vuole trovre il numero rele tle che: = () L esponente () cui elevre l bse () per ottenere il numero è detto ritmo (ritmo in bse di ), indicto così: In prticolre in questo

Dettagli

FORMULE DI AGGIUDICAZIONE

FORMULE DI AGGIUDICAZIONE Clssfczone: domno pubblco Formule d ggudczone Mnule d supporto ll utlzzo d Sntel per stzone ppltnte FOMULE DI AGGIUDICAZIONE Formule d ggudczone 18 Ottobre 2016 Pgn 1 d 29 Indce AZIENDA EGIONALE CENTALE

Dettagli

5. Funzioni elementari trascendenti

5. Funzioni elementari trascendenti ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA 5. Funzioni elementri trscendenti A. A. 2013-2014 1 FUNZIONI ESPONENZIALI Le più semplici funzioni esponenzili sono le funzioni f: R R definite

Dettagli

-STRUTTURE DI LEWIS SIMBOLI DI LEWIS

-STRUTTURE DI LEWIS SIMBOLI DI LEWIS STRUTTURE DI LEWIS SIMBLI DI LEWIS ELETTRI DI VALEZA: sono gli elettroni del guscio esterno, i responsbili principli delle proprietà chimiche di un tomo e quindi dell ntur dei legmi chimici che vengono

Dettagli

Differenziale. Consideriamo la variazione finita, x della variabile indipendente a cui corrisponde una variazione finita della funzione f x, f x y

Differenziale. Consideriamo la variazione finita, x della variabile indipendente a cui corrisponde una variazione finita della funzione f x, f x y Differenzile Considerimo l vrizione finit, dell vriile indipendente cui corrisponde un vrizione finit dell funzione f, f y Δf 1 Δ 2 L vrizione dell vriile dipendente puo' essere molto piccol, infinitesim

Dettagli

Variabile casuale uniforme (o rettangolare)

Variabile casuale uniforme (o rettangolare) Vribile csule uniforme (o rettngolre) Le crtteristic principle è che le sue relizzzioni sono equiprobbili Si pplic nelle situzioni in cui il fenomeno: Assume vlori in un intervllo limitto [,b] L probbilità

Dettagli

Trasmissione multilivello in banda base

Trasmissione multilivello in banda base Trsmssone multlvello n n se Ruzone n Clcolo ell prolt errore. Fonment Segnl e Trsmssone L trsmssone A multlvello () L sequenz nr { k } consste cfre nre {0,}, centrte negl stnt kt. T e etto tempo t (veloct

Dettagli

LA CALIBRAZIONE NELL ANALISI STRUMENTALE

LA CALIBRAZIONE NELL ANALISI STRUMENTALE LA CALIBRAZIONE NELL ANALISI STRUMENTALE La maggor parte delle anals chmche sono ogg condotte medante metod strumental (spettrometra d assorbmento ed emssone a dverse λ, metod elettrochmc, spettrometra

Dettagli

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito.

Integrali de niti. Il problema del calcolo di aree ci porterà alla de nizione di integrale de nito. Integrli de niti. Il problem di clcolre l re di un regione pin delimitt d gr ci di funzioni si può risolvere usndo l integrle de nito. L integrle de nito st l problem del clcolo di ree come l equzione

Dettagli