Anno 3. Classificazione delle funzioni

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Anno 3. Classificazione delle funzioni"

Transcript

1 nno 3 Classificazione delle funzioni 1

2 Introduzione In questa lezione affronteremo lo studio delle principali proprietà delle funzioni, imparando a classificarle e a compiere alcune operazioni su esse. l termine della lezione sarai in grado di: descrivere le funzioni iniettive descrivere le funzioni suriettive descrivere le funzioni biunivoche determinare la funzione inversa di una funzione determinare la funzione composta di due funzioni In questa lezione affronteremo lo studio delle principali proprietà delle funzioni, imparando a classificarle e a compiere alcune operazioni su di esse. l termine della lezione sarai pertanto in grado di: descrivere le funzioni iniettive, suriettive e biunivoche, determinare le funzioni inverse e determinare la funzione composta di due funzioni. 2

3 Definizioni e notazioni Si dice funzione da a ogni corrispondenza fra i due insiemi che associ ad ogni elemento di uno e un solo elemento di. Indichiamo la funzione f da in con i simboli suo codominio. f : dove è detto dominio di f e il Considerato l elemento x nell insieme, indichiamo con y l elemento in che la funzione f associa ad x. llora scriviamo y=f(x) e diciamo che y è immagine di x x è controimmagine di y x f y Ricordiamo che una funzione da a è una corrispondenza che ad ogni elemento di associa uno ed un solo elemento di. Per indicare che f è una funzione da in si scrive f :. è il dominio della funzione, è il codominio. Considerato l elemento x in, indichiamo con y l elemento in che la funzione f associa ad x. llora scriviamo y=f(x) e diciamo che y è l immagine di x e x è la controimmagine di y. 3

4 Le proprietà delle funzioni Le funzioni, come ogni oggetto matematico, hanno delle proprietà; inoltre, con le funzioni e tra le funzioni, si possono stabilire alcune particolari operazioni. Prima di esaminare nel dettaglio proprietà e operazioni, facciamoci un idea generale. Proprietà: iniettiva: riguarda il numero di controimmagini di ogni elemento del codominio suriettiva: riguarda la relazione tra il codominio della funzione e l insieme di arrivo biunivoca: riunisce le due proprietà precedenti Operazioni: funzione inversa: è un operazione che si esegue su una sola funzione, se possibile; infatti non tutte le funzioni sono invertibili composizione di funzioni: è un operazione tra due funzioni, possibile sotto certe condizioni, che dà come risultato una terza funzione Le funzioni, come ogni oggetto matematico, hanno delle proprietà. Inoltre, con le funzioni e tra le funzioni, si possono stabilire alcune particolari operazioni. Prima di esaminare nel dettaglio proprietà e operazioni, formiamoci un idea generale. Le proprietà che studieremo sono: la proprietà iniettiva, che riguarda il numero di controimmagini di ogni elemento del codominio, la proprietà suriettiva, che riguarda la relazione tra il codominio della funzione ed il suo insieme di arrivo e la proprietà biunivoca, che riunisce le due proprietà precedenti. Per quanto riguarda le operazioni studieremo: la funzione inversa, che è un operazione che si esegue su una sola funzione, se possibile. Premettiamo già che non tutte le funzioni sono invertibili; la composizione di funzioni è un operazione tra due funzioni che, sotto certe condizioni, dà come risultato una terza funzione che unisce le due di partenza. 4

5 Le funzioni iniettive Una funzione da in si dice iniettiva se ogni elemento di è immagine al più di un elemento di. due elementi distinti dell insieme corrispondono due elementi distinti dell insieme. In simboli: x 1 x 2 f(x 1 ) f(x 2 ) Tracciando il grafico della funzione, una qualsiasi retta orizzontale taglia il grafico al più in un punto. Non iniettiva Iniettiva Non iniettiva Iniettiva Quando una funzione di dice iniettiva? Una funzione da in si dice iniettiva se ogni elemento di è immagine al più di un elemento di. Vediamo come si può tradurre praticamente questa definizione. due elementi distinti dell insieme corrispondono due elementi distinti dell insieme. In simboli scriveremo che, x x f x ) f ( ). 1 2 ( 1 x2 Nelle figure, si vedono due esempi: il primo caso riporta una funzione non iniettiva, in quanto a due elementi distinti del dominio è associato lo stesso elemento del codominio. Nel secondo caso, invece, la funzione è iniettiva. Il grafico di una funzione iniettiva è attraversato da una qualsiasi retta orizzontale in al più un punto. In tal modo possiamo verificare che il primo grafico rappresenta una funzione non inettiva. 5

6 Le funzioni suriettive Una funzione da in si dice suriettiva se ogni elemento di è immagine di almeno un elemento di. Su ogni elemento di arriva almeno una freccia nella rappresentazione sagittale. In simboli: y x t. c. y f ( x) Tracciando il grafico della funzione, una qualsiasi retta orizzontale taglia il grafico almeno in un punto. Non suriettiva Suriettiva Non suriettiva Suriettiva Quando una funzione di dice suriettiva? Una funzione da in si dice suriettiva se ogni elemento di è immagine di almeno un elemento di. nche in questo caso analizziamo le conseguenze di questa definizione. Su ogni elemento di arriva almeno una freccia nella rappresentazione sagittale. In simboli scriveremo y x t. c y f ( x). Questo ci permette di distinguere subito una funzione non suriettiva, come nel primo disegno, in cui in c è un elemento a cui non arrivano frecce, da una funzione suriettiva, come quella del secondo disegno, in cui ad ogni elemento di arriva una freccia. Notiamo che operando un opportuna restrizione dell insieme si può sempre rendere una funzione suriettiva. 6

7 Le funzioni biunivoche Una funzione da in si dice biunivoca (o biiettiva) se è sia iniettiva che suriettiva. Tra e si può stabilire una corrispondenza uno a uno. y x t. c. y f ( x) Tracciando il grafico della funzione, una qualsiasi retta orizzontale taglia il grafico esattamente in un punto. Non biunivoca Non biunivoca iunivoca iunivoca Quando una funzione si dice biunivoca? Una funzione da in si dice biunivoca o biiettiva se è sia iniettiva che suriettiva. La prima conseguenza è che tra e si può stabilire una corrispondenza uno a uno. In simboli scriveremo che, per ogni y elemento di, esiste una ed una sola x in tale che y è uguale ad f di x. Questo permette di distinguere rapidamente una funzione non biunivoca da una biunivoca, guardando la rappresentazione sagittale. 7

8 Le funzioni inverse Data una funzione f biunivoca da in, tale che per ogni x in, y=f(x) è la sua immagine in, si dice funzione inversa di f la funzione da in che a ogni elemento y in associa x in. 1 1 In simboli, la funzione inversa si indica con f :, e si scrive che x f ( y ). x f y Da un punto di vista pratico, data la funzione scritta come y=f(x), bisogna cercare di raccogliere e isolare la x, esprimendola in funzione di y. Esempio: f 1 y 5 1 y 5 f ( x) y 3x 5 x f ( y) Solitamente si sostituiscono x e y, ottenendo: ( ) x f 1 x. 3 Vediamo ora come si definisce la funzione inversa di una funzione. Data una funzione f biunivoca da in, tale che per ogni x in, y=f(x) è la sua immagine in, si dice funzione inversa di f la funzione da in che a ogni elemento y in associa x in. In simboli, la funzione inversa si indica con un f -1 e si scrive x= f -1 (y) è la variabile dipendente dalla variabile y. Da un punto di vista operativo, data la funzione y=f(x) bisogna cercare di esprimere x in funzione di y. Per esempio, nella funzione y=3x-5, con semplici passaggi algebrici si ottiene che x=(y+5)/3. Solitamente, poi si sostituiscono di nuovo la x e la y riscrivendo formalmente la funzione con la x come variabile indipendente. 8

9 La composizione di funzioni Date due funzioni f : e g : C, la funzione composta g f è una funzione da in C ottenuta con la seguente procedura: preso un elemento x di si determina la sua immagine y secondo la funzione f il valore f(x) è un valore di e sarà l oggetto per la funzione g, cioè la g(y) sarà proprio g(f(x)) Notiamo che, per poter considerare la funzione composta g f, è assolutamente necessario che il codominio della funzione f sia contenuto con il dominio della funzione g. C f g x f (x) y z g f (x) g f Se e C sono uguali, allora si può realizzare anche la composizione composizione non è commutativa, cioè f g g f. f g, ma in generale la Occupiamoci, infine, della composizione di funzioni. Date due funzioni f da in e g da in C, la funzione composta g o f è una funzione da in C ottenuta con la seguente procedura: preso un elemento x di si determina f(x); si determina quindi z, l immagine di y secondo la funzione g; La funzione g o f fa corrispondere all elemento x l elemento z C. È molto importante notare che, per poter considerare la funzione g o f, il codominio di f deve essere contenuto nel dominio di g. Nella rappresentazione si vede che la funzione f associa a x l elemento y=f(x) e la funzione g associa a f(x) l elemento z=g(f(x)). La funzione composta associa direttamente all elemento x l immagine z. Se e C sono uguali e se il codominio di g è contenuto nel dominio di f allora si può realizzare anche la composizione f o g, ma in generale, la composizione non è commutativa. 9

10 Conclusione Le Funzioni: Proprietà e Operazioni Iniettive Suriettive Composizione di funzioni iunivoche Funzione inversa Ricapitoliamo quanto visto in questa lezione su proprietà delle funzioni e operazioni tra esse. Inizialmente, abbiamo definito cos è una funzione iniettiva, suriettiva e biiettiva o biunivoca. Successivamente, abbiamo visto che nel caso delle funzioni biiettive è possibile definire la funzione inversa e ne abbiamo fornita la corrispondente definizione. Infine, abbiamo studiato la composizione di due funzioni. 10

Anno 5 Funzioni inverse e funzioni composte

Anno 5 Funzioni inverse e funzioni composte Anno 5 Funzioni inverse e funzioni composte 1 Introduzione In questa lezione impareremo a definire e ricercare le funzioni inverse e le funzioni composte. Al termine di questa lezione sarai in grado di:

Dettagli

LE FUNZIONI E LE LORO PROPRIETÀ

LE FUNZIONI E LE LORO PROPRIETÀ LE FUNZIONI E LE LORO PROPRIETÀ LE FUNZIONI REALI DI VARIABILE REALE COSA SONO LE FUNZIONI Dati due sottoinsiemi A e B non vuoti di R, una FUNZIONE da A a B è una relazione che associa ad ogni numero reale

Dettagli

.y 6. .y 4. .y 5. .y 2.y 3 B C C B. B f A B f -1

.y 6. .y 4. .y 5. .y 2.y 3 B C C B. B f A B f -1 Funzioni FUNZIONI Una funzione è una relazione fra due insiemi non vuoti e, che associa ad ogni elemento uno e un solo elemento. In simboli si scrive: = oppure. x 1. x..y B C.y 5 x 4..y 4 L elemento è

Dettagli

Funzioni. Funzioni /2

Funzioni. Funzioni /2 Funzioni Una funzione f è una corrispondenza tra due insiemi A e B che a ciascun elemento di A associa un unico elemento di B. Si scrive: f : A B l'insieme A si chiama il dominio della funzione f, l'insieme

Dettagli

FUNZIONE. Si scrive: A B f: A B x y=f(x) (si legge: f funzione da A in B) x f y= f(x)

FUNZIONE. Si scrive: A B f: A B x y=f(x) (si legge: f funzione da A in B) x f y= f(x) 1 FUNZIONE Dati gli insiemi A e B, si definisce funzione da A in B una relazione o legge o corrispondenza che ad ogni elemento di A associa uno ed un solo elemento di B. Si scrive: A B f: A B f() (si legge:

Dettagli

Corrispondenze e funzioni

Corrispondenze e funzioni Corrispondenze e funzioni L attività fondamentale della mente umana consiste nello stabilire corrispondenze e relazioni tra oggetti; è anche per questo motivo che il concetto di corrispondenza è uno dei

Dettagli

Anno 3. Funzioni: dominio, codominio e campo di esistenza

Anno 3. Funzioni: dominio, codominio e campo di esistenza Anno 3 Funzioni: dominio, codominio e campo di esistenza 1 Introduzione In questa lezione parleremo delle funzioni. Ne daremo una definizione e impareremo a studiarne il dominio in relazione alle diverse

Dettagli

APPUNTI DI MATEMATICA ALGEBRA \ INSIEMISTICA \ TEORIA DEGLI INSIEMI (1)

APPUNTI DI MATEMATICA ALGEBRA \ INSIEMISTICA \ TEORIA DEGLI INSIEMI (1) ALGEBRA \ INSIEMISTICA \ TEORIA DEGLI INSIEMI (1) Un insieme è una collezione di oggetti. Il concetto di insieme è un concetto primitivo. Deve esistere un criterio chiaro, preciso, non ambiguo, inequivocabile,

Dettagli

Funzioni inverse Simmetrie rispetto alla bisettrice dei quadranti dispari. Consideriamo la trasformazione descritta dalle equazioni : = y

Funzioni inverse Simmetrie rispetto alla bisettrice dei quadranti dispari. Consideriamo la trasformazione descritta dalle equazioni : = y Funzioni inverse Simmetrie rispetto alla bisettrice dei quadranti dispari. Consideriamo la trasformazione descritta dalle equazioni : ' = y y' = Consideriamo il punto P(,5) se eseguiamo tra trasformazione

Dettagli

Le funzioni reali di variabile reale

Le funzioni reali di variabile reale Prof. Michele Giugliano (Gennaio 2002) Le funzioni reali di variabile reale ) Complementi di teoria degli insiemi. A) Estremi di un insieme numerico X. Dato un insieme X R, si chiama maggiorante di X un

Dettagli

FUNZIONI ELEMENTARI - ESERCIZI SVOLTI

FUNZIONI ELEMENTARI - ESERCIZI SVOLTI FUNZIONI ELEMENTARI - ESERCIZI SVOLTI 1) Determinare il dominio delle seguenti funzioni di variabile reale: (a) f(x) = x 4 (c) f(x) = 4 x x + (b) f(x) = log( x + x) (d) f(x) = 1 4 x 5 x + 6 ) Data la funzione

Dettagli

Lezione 9: Cambio di base

Lezione 9: Cambio di base Lezione 9: Cambio di base In questa lezione vogliamo affrontare uno degli argomenti piu ostici per lo studente e cioè il cambio di base all interno di uno spazio vettoriale, inoltre cercheremo di capire

Dettagli

2 FUNZIONI REALI DI VARIABILE REALE

2 FUNZIONI REALI DI VARIABILE REALE 2 FUNZIONI REALI DI VARIABILE REALE 2.1 CONCETTO DI FUNZIONE Definizione 2.1 Siano A e B due insiemi. Una funzione (o applicazione) f con dominio A a valori in B è una legge che associa ad ogni elemento

Dettagli

11. Le funzioni composte

11. Le funzioni composte . Le funzioni composte Definizione Date le due funzioni f A B e g D C, dove f[ A] D, si dice funzione composta di f e g la funzione h A C che ad ogni elemento a Afa corrispondere l elemento g(()) f a Ce

Dettagli

Funzione Una relazione fra due insiemi A e B è una funzione se a ogni elemento di A si associa uno e un solo elemento

Funzione Una relazione fra due insiemi A e B è una funzione se a ogni elemento di A si associa uno e un solo elemento TERIA CAPITL 9. ESPNENZIALI E LGARITMI. LE FUNZINI Non si ha una funzione se anche a un solo elemento di A non è associato un elemento di B, oppure ne sono associati più di uno. DEFINIZINE Funzione Una

Dettagli

31/10/2012. Lo studio delle funzioni permette di interpretare la variazione di due grandezze, l una rispetto l altra, quando

31/10/2012. Lo studio delle funzioni permette di interpretare la variazione di due grandezze, l una rispetto l altra, quando FUNZIONI MATEMATICHE Introduzione Lo studio delle funzioni permette di interpretare la variazione di due grandezze, l una rispetto l altra, quando tra le due esiste un legame di tipo matematico. La teoria

Dettagli

Anno 1. Le relazioni fondamentali (equivalenza, d'ordine, inverse, fra insiemi)

Anno 1. Le relazioni fondamentali (equivalenza, d'ordine, inverse, fra insiemi) Anno 1 Le relazioni fondamentali (equivalenza, d'ordine, inverse, fra insiemi) 1 Introduzione In questa lezione imparerai a utilizzare le diverse tipologie di relazione e a distinguerle a seconda delle

Dettagli

I tre concetti si possono descrivere in modo unitario dicendo che f e iniettiva, suriettiva, biiettiva se e solo se per ogni b B l equazione

I tre concetti si possono descrivere in modo unitario dicendo che f e iniettiva, suriettiva, biiettiva se e solo se per ogni b B l equazione Lezioni del 29 settembre e 1 ottobre. 1. Funzioni iniettive, suriettive, biiettive. Sia f : A B una funzione da un insieme A ad un insieme B. Sia a A e sia b = f (a) B l elemento che f associa ad a, allora

Dettagli

Funzione reale di variabile reale

Funzione reale di variabile reale Funzione reale di variabile reale Siano A e B due sottoinsiemi non vuoti di. Si chiama funzione reale di variabile reale, di A in B, una qualsiasi legge che faccia corrispondere, a ogni elemento A x A

Dettagli

Basi di matematica per il corso di micro

Basi di matematica per il corso di micro Basi di matematica per il corso di micro Microeconomia (anno accademico 2006-2007) Lezione del 21 Marzo 2007 Marianna Belloc 1 Le funzioni 1.1 Definizione Una funzione è una regola che descrive una relazione

Dettagli

MATEMATICA 2001. p = 4/6 = 2/3; q = 1-2/3 = 1/3. La risposta corretta è quindi la E).

MATEMATICA 2001. p = 4/6 = 2/3; q = 1-2/3 = 1/3. La risposta corretta è quindi la E). MATEMATICA 2001 66. Quale fra le seguenti affermazioni è sbagliata? A) Tutte le funzioni ammettono la funzione inversa B) Una funzione dispari è simmetrica rispetto all origine C) Una funzione pari è simmetrica

Dettagli

Funzioni. Il concetto di funzione nasce da quello di corrispondenza fra grandezze. Tale corrispondenza può essere data in svariati modi:

Funzioni. Il concetto di funzione nasce da quello di corrispondenza fra grandezze. Tale corrispondenza può essere data in svariati modi: Funzioni Il concetto di funzione nasce da quello di corrispondenza fra grandezze. Tale corrispondenza può essere data in svariati modi: da un rilevamento empirico da una formula (legge) ESEMPI: 1. la temperatura

Dettagli

Anno 5 4. Funzioni reali: il dominio

Anno 5 4. Funzioni reali: il dominio Anno 5 4 Funzioni reali: il dominio 1 Introduzione In questa lezione impareremo a definire cos è una funzione reale di variabile reale e a ricercarne il dominio. Al termine di questa lezione sarai in grado

Dettagli

Capitolo 2. Operazione di limite

Capitolo 2. Operazione di limite Capitolo 2 Operazione di ite In questo capitolo vogliamo occuparci dell operazione di ite, strumento indispensabile per scoprire molte proprietà delle funzioni. D ora in avanti riguarderemo i domini A

Dettagli

Funzioni. Parte prima. Daniele Serra

Funzioni. Parte prima. Daniele Serra Funzioni Parte prima Daniele Serra Nota: questi appunti non sostituiscono in alcun modo le lezioni del prof. Favilli, né alcun libro di testo. Sono piuttosto da intendersi a integrazione di entrambi. 1

Dettagli

Funzioni. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara

Funzioni. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara Funzioni Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utenti.unife.it/lorenzo.pareschi/ lorenzo.pareschi@unife.it Lorenzo Pareschi (Univ. Ferrara)

Dettagli

Funzioni funzione dominio codominio legge argomento variabile indipendente variabile dipendente

Funzioni funzione dominio codominio legge argomento variabile indipendente variabile dipendente Funzioni In matematica, una funzione f da X in Y consiste in: 1. un insieme X detto dominio di f 2. un insieme Y detto codominio di f 3. una legge che ad ogni elemento x in X associa uno ed un solo elemento

Dettagli

Anno 4 Grafico di funzione

Anno 4 Grafico di funzione Anno 4 Grafico di funzione Introduzione In questa lezione impareremo a disegnare il grafico di una funzione reale. Per fare ciò è necessario studiare alcune caratteristiche salienti della funzione che

Dettagli

3 GRAFICI DI FUNZIONI

3 GRAFICI DI FUNZIONI 3 GRAFICI DI FUNZIONI Particolari sottoinsiemi di R che noi studieremo sono i grafici di funzioni. Il grafico di una funzione f (se non è specificato il dominio di definizione) è dato da {(x, y) : x dom

Dettagli

RELAZIONI E FUNZIONI. Per ricordare. Figura 1. Figura 2. Figura 3. Figura 4

RELAZIONI E FUNZIONI. Per ricordare. Figura 1. Figura 2. Figura 3. Figura 4 RELAZIONI E FUNZIONI 3 Per ricordare H Dati due insiemi A e B e una proposizione aperta px,y, con x 2 A e y 2 B, si dice che x eá in relazione con y, e si scrive x R y, sepx,y eá vera; si parla allora

Dettagli

1. PRIME PROPRIETÀ 2

1. PRIME PROPRIETÀ 2 RELAZIONI 1. Prime proprietà Il significato comune del concetto di relazione è facilmente intuibile: due elementi sono in relazione se c è un legame tra loro descritto da una certa proprietà; ad esempio,

Dettagli

+... + a n. a 0 x n + a 1 x n 1. b 0 x m + b 1 x m 1. +... + b m 0. Funzioni reali di variabile reale. Definizione classica. Funzioni razionali

+... + a n. a 0 x n + a 1 x n 1. b 0 x m + b 1 x m 1. +... + b m 0. Funzioni reali di variabile reale. Definizione classica. Funzioni razionali Funzioni reali di variabile reale Una reale di variabile reale è una funzione nella quale il dominio d è un sottoinsieme di r e il condominio c è anch esso un sottoinsieme di r. F:r r Definizione classica.

Dettagli

APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI

APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI APPUNTI DI MATEMATICA LE FRAZIONI ALGEBRICHE ALESSANDRO BOCCONI Indice 1 Le frazioni algebriche 1.1 Il minimo comune multiplo e il Massimo Comun Divisore fra polinomi........ 1. Le frazioni algebriche....................................

Dettagli

Applicazioni lineari

Applicazioni lineari Applicazioni lineari Esempi di applicazioni lineari Definizione. Se V e W sono spazi vettoriali, una applicazione lineare è una funzione f: V W tale che, per ogni v, w V e per ogni a, b R si abbia f(av

Dettagli

Funzioni continue. ) della funzione calcolata in x 0, ovvero:

Funzioni continue. ) della funzione calcolata in x 0, ovvero: Funzioni continue Dal punto di vista intuitivo dire che una funzione è continua in un intervallo è come dire che nel disegnare il suo grafico non stacchiamo mai la penna dal foglio. Scriviamo adesso la

Dettagli

Esercitazione del 16-11-11 Analisi I

Esercitazione del 16-11-11 Analisi I Esercitazione del 6-- Analisi I Dott.ssa Silvia Saoncella silvia.saoncella 3[at]studenti.univr.it a.a. 00-0 Esercizio. Determinare se la funzione f() è continua nel suo dominio sin se 0 f() = 0 se = 0

Dettagli

Appunti di informatica. Lezione 2 anno accademico 2015-2016 Mario Verdicchio

Appunti di informatica. Lezione 2 anno accademico 2015-2016 Mario Verdicchio Appunti di informatica Lezione 2 anno accademico 2015-2016 Mario Verdicchio Sistema binario e logica C è un legame tra i numeri binari (0,1) e la logica, ossia la disciplina che si occupa del ragionamento

Dettagli

G3. Asintoti e continuità

G3. Asintoti e continuità G3 Asintoti e continuità Un asintoto è una retta a cui la funzione si avvicina sempre di più senza mai toccarla Non è la definizione formale, ma sicuramente serve per capire il concetto di asintoto Nei

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI 1. Esercizi Esercizio 1. Date le seguenti applicazioni lineari (1) f : R 2 R 3 definita da f(x, y) = (x 2y, x + y, x + y); (2) g : R 3 R 2 definita da g(x, y, z) = (x + y, x y); (3)

Dettagli

f il sottoinsieme D f di A dei valori che può assumere la variabile indipendente x. Talvolta indicheremo il dominio della funzione f con dom (f).

f il sottoinsieme D f di A dei valori che può assumere la variabile indipendente x. Talvolta indicheremo il dominio della funzione f con dom (f). Liceo Scientico Paritario Ven. A. Luzzago di Brescia. Classe 5A - Anno Scolastico 2014/2015 - Prof. Simone Alghisi 1 Le funzioni (1.1) Denizione Siano A e B due insiemi. Una funzione f : A B é una legge

Dettagli

Funzioni e loro invertibilità

Funzioni e loro invertibilità Funzioni e loro invertibilità Una proposta didattica di Ettore Limoli Definizione di funzione Sono dati due insiemi non vuoti A (dominio) e B (codominio) Diremo che y=f(x) è una funzione, definita in A

Dettagli

FUNZIONI ELEMENTARI Esercizi risolti

FUNZIONI ELEMENTARI Esercizi risolti FUNZIONI ELEMENTARI Esercizi risolti 1 Discutendo graficamente la disequazione x > 3+x, verificare che l insieme delle soluzioni è un intervallo e trovarne gli estremi Rappresentare nel piano x, y) l insieme

Dettagli

Teoria in sintesi 10. Attività di sportello 1, 24 - Attività di sportello 2, 24 - Verifica conclusiva, 25. Teoria in sintesi 26

Teoria in sintesi 10. Attività di sportello 1, 24 - Attività di sportello 2, 24 - Verifica conclusiva, 25. Teoria in sintesi 26 Indice L attività di recupero 6 Funzioni Teoria in sintesi 0 Obiettivo Ricerca del dominio e del codominio di funzioni note Obiettivo Ricerca del dominio di funzioni algebriche; scrittura del dominio Obiettivo

Dettagli

Matematica e Statistica

Matematica e Statistica Matematica e Statistica Prova d esame (0/07/03) Università di Verona - Laurea in Biotecnologie - A.A. 0/3 Matematica e Statistica Prova di MATEMATICA (0/07/03) Università di Verona - Laurea in Biotecnologie

Dettagli

f(x) = 1 x. Il dominio di questa funzione è il sottoinsieme proprio di R dato da

f(x) = 1 x. Il dominio di questa funzione è il sottoinsieme proprio di R dato da Data una funzione reale f di variabile reale x, definita su un sottoinsieme proprio D f di R (con questo voglio dire che il dominio di f è un sottoinsieme di R che non coincide con tutto R), ci si chiede

Dettagli

Elementi di topologia della retta

Elementi di topologia della retta Elementi di topologia della retta nome insieme definizione l insieme è un concetto primitivo che si accetta come intuitivamente noto secondo George Cantor, il padre della teoria degli insiemi: Per insieme

Dettagli

FASCI DI RETTE. scrivere la retta in forma esplicita: 2y = 3x + 4 y = 3 2 x 2. scrivere l equazione del fascio di rette:

FASCI DI RETTE. scrivere la retta in forma esplicita: 2y = 3x + 4 y = 3 2 x 2. scrivere l equazione del fascio di rette: FASCI DI RETTE DEFINIZIONE: Si chiama fascio di rette parallele o fascio improprio [erroneamente data la somiglianza effettiva con un fascio!] un insieme di rette che hanno tutte lo stesso coefficiente

Dettagli

IL CONCETTO DI FUNZIONE

IL CONCETTO DI FUNZIONE IL CONCETTO DI FUNZIONE Il concetto di funzione è forse il concetto più importante per la matematica: infatti la matematica e' cercare le cause, le implicazioni, le conseguenze e l'utilità di una funzione

Dettagli

G. Pareschi GENERALITÀ SULLE FUNZIONI. CARDINALITÀ

G. Pareschi GENERALITÀ SULLE FUNZIONI. CARDINALITÀ G. Pareschi GENERALITÀ SULLE FUNZIONI. CARDINALITÀ 1. Definizione di funzione Definizione 1.1. Siano X e Y due insiemi. Una funzione f da X a Y è un sottoinsieme del prodotto cartesiano: f X Y, tale che

Dettagli

Le funzioni continue. A. Pisani Liceo Classico Dante Alighieri A.S. 2002-03. A. Pisani, appunti di Matematica 1

Le funzioni continue. A. Pisani Liceo Classico Dante Alighieri A.S. 2002-03. A. Pisani, appunti di Matematica 1 Le funzioni continue A. Pisani Liceo Classico Dante Alighieri A.S. -3 A. Pisani, appunti di Matematica 1 Nota bene Questi appunti sono da intendere come guida allo studio e come riassunto di quanto illustrato

Dettagli

Osservazioni sulla continuità per le funzioni reali di variabile reale

Osservazioni sulla continuità per le funzioni reali di variabile reale Corso di Matematica, I modulo, Università di Udine, Osservazioni sulla continuità Osservazioni sulla continuità per le funzioni reali di variabile reale Come è noto una funzione è continua in un punto

Dettagli

Matematica generale CTF

Matematica generale CTF Equazioni differenziali 9 dicembre 2015 Si chiamano equazioni differenziali quelle equazioni le cui incognite non sono variabili reali ma funzioni di una o più variabili. Le equazioni differenziali possono

Dettagli

Teoria degli insiemi

Teoria degli insiemi Teoria degli insiemi pag 1 Easy Matematica di dolfo Scimone Teoria degli insiemi Il concetto di insieme si assume come primitivo, cioè non riconducibile a concetti precedentemente definiti. Sinonimi di

Dettagli

1 Appunti a cura di prof.ssa MINA Maria Letizia integrati e pubblicati in data 12/10/10

1 Appunti a cura di prof.ssa MINA Maria Letizia integrati e pubblicati in data 12/10/10 FUNZIONE OMOGRAFICA ASINTOTO VERTICALE: ASINTOTO ORIZZONTALE: 1 abbiamo verificato che, applicando all iperbole equilatera base, la dilatazione verticale di coefficiente 7 e la traslazione di vettore di

Dettagli

Lezione 6 Nucleo, Immagine e Teorema della Dimensione. 1 Definizione di Nucleo e Immagine

Lezione 6 Nucleo, Immagine e Teorema della Dimensione. 1 Definizione di Nucleo e Immagine Lezione 6 Nucleo, Immagine e Teorema della Dimensione In questa lezione entriamo nel vivo della teoria delle applicazioni lineari. Per una applicazione lineare L : V W definiamo e impariamo a calcolare

Dettagli

ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA

ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA ESERCIZI DI ALGEBRA LINEARE E GEOMETRIA Francesco Bottacin Padova, 24 febbraio 2012 Capitolo 1 Algebra Lineare 1.1 Spazi e sottospazi vettoriali Esercizio 1.1. Sia U il sottospazio di R 4 generato dai

Dettagli

STRUTTURE ALGEBRICHE

STRUTTURE ALGEBRICHE STRUTTURE ALGEBRICHE Operazioni in un insieme Sia A un insieme non vuoto; una funzione f : A A A si dice operazione binaria (o semplicemente operazione), oppure legge di composizione interna. Per definizione

Dettagli

Funzioni e loro grafici

Funzioni e loro grafici Funzioni e loro grafici Dicesi funzione y=f(x) della variabile x una legge qualsiasi che faccia corrispondere ad ogni valore di x, scelto in un certo insieme, detto dominio, uno ed uno solo valore di y

Dettagli

Lezione 10: Il problema del consumatore: Preferenze e scelta ottimale

Lezione 10: Il problema del consumatore: Preferenze e scelta ottimale Corso di Scienza Economica (Economia Politica) prof. G. Di Bartolomeo Lezione 10: Il problema del consumatore: Preferenze e scelta ottimale Facoltà di Scienze della Comunicazione Università di Teramo Scelta

Dettagli

Funzioni composte pag 1 Adolfo Scimone

Funzioni composte pag 1 Adolfo Scimone Funzioni composte pa 1 Adolo Scimone Appunti elaborati dalle lezioni del Pro. Boieri PROPRIETA' DELLE FUNZIONI La unzione composta Consideriamo due unzioni e di variabile reale e indichiamo : A = dom B

Dettagli

Funzioni - Parte II. 1 Composizione di Funzioni. Antonio Lazzarini. Prerequisiti: Funzioni (Parte I).

Funzioni - Parte II. 1 Composizione di Funzioni. Antonio Lazzarini. Prerequisiti: Funzioni (Parte I). Funzioni - Parte II Antonio Lazzarini Prerequisiti: Funzioni (Parte I). 1 Composizione di Funzioni Sappiamo che é possibile denire diverse operazioni ra i numeri: addizione, sottrazione, moltiplicazione,

Dettagli

Le equazioni. Diapositive riassemblate e rielaborate da prof. Antonio Manca da materiali offerti dalla rete.

Le equazioni. Diapositive riassemblate e rielaborate da prof. Antonio Manca da materiali offerti dalla rete. Le equazioni Diapositive riassemblate e rielaborate da prof. Antonio Manca da materiali offerti dalla rete. Definizione e caratteristiche Chiamiamo equazione l uguaglianza tra due espressioni algebriche,

Dettagli

LE FUNZIONI A DUE VARIABILI

LE FUNZIONI A DUE VARIABILI Capitolo I LE FUNZIONI A DUE VARIABILI In questo primo capitolo introduciamo alcune definizioni di base delle funzioni reali a due variabili reali. Nel seguito R denoterà l insieme dei numeri reali mentre

Dettagli

FUNZIONI / ESERCIZI SVOLTI

FUNZIONI / ESERCIZI SVOLTI ANALISI MATEMATICA I - A.A. 0/0 FUNZIONI / ESERCIZI SVOLTI ESERCIZIO. Data la funzione f () = determinare l insieme f (( +)). Svolgimento. Poiché f (( +)) = { dom f : f () ( +)} = { dom f : f () > } si

Dettagli

4 Dispense di Matematica per il biennio dell Istituto I.S.I.S. Gaetano Filangieri di Frattamaggiore EQUAZIONI FRATTE E SISTEMI DI EQUAZIONI

4 Dispense di Matematica per il biennio dell Istituto I.S.I.S. Gaetano Filangieri di Frattamaggiore EQUAZIONI FRATTE E SISTEMI DI EQUAZIONI 119 4 Dispense di Matematica per il biennio dell Istituto I.S.I.S. Gaetano Filangieri di Frattamaggiore EQUAZIONI FRATTE E SISTEMI DI EQUAZIONI Indice degli Argomenti: TEMA N. 1 : INSIEMI NUMERICI E CALCOLO

Dettagli

Matematica 1 - Corso di Laurea in Ingegneria Meccanica

Matematica 1 - Corso di Laurea in Ingegneria Meccanica Matematica 1 - Corso di Laurea in Ingegneria Meccanica Esercitazione su massimi e minimi vincolati 9 dicembre 005 Esercizio 1. Considerare l insieme C = {(x,y) R : (x + y ) = x } e dire se è una curva

Dettagli

Calcolo differenziale Test di autovalutazione

Calcolo differenziale Test di autovalutazione Test di autovalutazione 1. Sia f : R R iniettiva, derivabile e tale che f(1) = 3, f (1) = 2, f (3) = 5. Allora (a) (f 1 ) (3) = 1 5 (b) (f 1 ) (3) = 1 2 (c) (f 1 ) (1) = 1 2 (d) (f 1 ) (1) = 1 3 2. Sia

Dettagli

RELAZIONI BINARIE. Proprietà delle relazioni Data una relazione R, definita in un insieme non vuoto U, si hanno le seguenti proprietà :

RELAZIONI BINARIE. Proprietà delle relazioni Data una relazione R, definita in un insieme non vuoto U, si hanno le seguenti proprietà : RELAZIONI INARIE Dati due insiemi non vuoti, A detto dominio e detto codominio, eventualmente coincidenti, si chiama relazione binaria (o corrispondenza) di A in, e si indica con f : A, (oppure R ) una

Dettagli

Corso di Informatica

Corso di Informatica Corso di Informatica Modulo T3 1-Sottoprogrammi 1 Prerequisiti Tecnica top-down Programmazione elementare 2 1 Introduzione Lo scopo di questa Unità è utilizzare la metodologia di progettazione top-down

Dettagli

Coordinate Cartesiane nel Piano

Coordinate Cartesiane nel Piano Coordinate Cartesiane nel Piano O = (0,0) origine degli assi ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi, y sistemi dimetrici: unità di misura diverse sui due assi (spesso

Dettagli

Capitolo 5. Funzioni. Grafici.

Capitolo 5. Funzioni. Grafici. Capitolo 5 Funzioni. Grafici. Definizione: Una funzione f di una variabile reale,, è una corrispondenza che associa ad ogni numero reale appartenente ad un insieme D f R un unico numero reale, y R, denotato

Dettagli

Trasformazioni geometriche nel piano cartesiano

Trasformazioni geometriche nel piano cartesiano Trasformazioni geometriche nel piano cartesiano Francesco Biccari 18 marzo 2013 Una trasformazione geometrica del piano è una legge (corrispondenza biunivoca) che consente di associare a un determinato

Dettagli

( x) ( x) 0. Equazioni irrazionali

( x) ( x) 0. Equazioni irrazionali Equazioni irrazionali Definizione: si definisce equazione irrazionale un equazione in cui compaiono uno o più radicali contenenti l incognita. Esempio 7 Ricordiamo quanto visto sulle condizioni di esistenza

Dettagli

Anno 5 Funzioni reali: proprietà

Anno 5 Funzioni reali: proprietà Anno 5 Funzioni reali: proprietà 1 Introduzione In questa lezione impareremo a riconoscere le proprietà delle funzioni reali. Al termine di questa lezione sarai in grado di definire i concetti di: funzione

Dettagli

a) Il campo di esistenza di f(x) è dato da 2x 0, ovvero x 0. Il grafico di f(x) è quello di una iperbole -1 1

a) Il campo di esistenza di f(x) è dato da 2x 0, ovvero x 0. Il grafico di f(x) è quello di una iperbole -1 1 LE FUNZIONI EALI DI VAIABILE EALE Soluzioni di quesiti e problemi estratti dal Corso Base Blu di Matematica volume 5 Q[] Sono date le due funzioni: ) = e g() = - se - se = - Determina il campo di esistenza

Dettagli

Dimensione di uno Spazio vettoriale

Dimensione di uno Spazio vettoriale Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione

Dettagli

CORSO DI LAUREA INF TWM ANNO DI IMMATRICOLAZIONE MATRICOLA

CORSO DI LAUREA INF TWM ANNO DI IMMATRICOLAZIONE MATRICOLA COGNOME NOME CORSO DI LAUREA INF TWM ANNO DI IMMATRICOLAZIONE MATRICOLA SIMULAZIONE SCRITTO DI MATEMATICA DISCRETA, SECONDA PARTE Per ottenere la sufficienza bisogna rispondere in modo corretto ad almeno

Dettagli

Perché il logaritmo è così importante?

Perché il logaritmo è così importante? Esempio 1. Perché il logaritmo è così importante? (concentrazione di ioni di idrogeno in una soluzione, il ph) Un sistema solido o liquido, costituito da due o più componenti, (sale disciolto nell'acqua),

Dettagli

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU)

Corso Integrato: Matematica e Statistica. Corso di Matematica (6 CFU) Corso di Laurea in Scienze e Tecnologie Agrarie Corso Integrato: Matematica e Statistica Modulo: Matematica (6 CFU) (4 CFU Lezioni +2 CFU Esercitazioni) Corso di Laurea in Tutela e Gestione del territorio

Dettagli

CONCETTO DI LIMITE DI UNA FUNZIONE REALE

CONCETTO DI LIMITE DI UNA FUNZIONE REALE CONCETTO DI LIMITE DI UNA FUNZIONE REALE Il limite di una funzione è uno dei concetti fondamentali dell'analisi matematica. Tramite questo concetto viene formalizzata la nozione di funzione continua e

Dettagli

Capitolo 13: L offerta dell impresa e il surplus del produttore

Capitolo 13: L offerta dell impresa e il surplus del produttore Capitolo 13: L offerta dell impresa e il surplus del produttore 13.1: Introduzione L analisi dei due capitoli precedenti ha fornito tutti i concetti necessari per affrontare l argomento di questo capitolo:

Dettagli

Considero 2x e sostituisco elemento del dominio con x, 2(-3)=6, oppure e il doppio?

Considero 2x e sostituisco elemento del dominio con x, 2(-3)=6, oppure e il doppio? Avvertenza: Le domande e a volte le risposte, sono tratte dal corpo del messaggio delle mails in cui non si ha a disposizione un editor matematico e quindi presentano una simbologia non corretta, ma comprensibile

Dettagli

Una ricetta per il calcolo dell asintoto obliquo. Se f(x) è asintotica a mx+q allora abbiamo f(x) mx q = o(1), da cui (dividendo per x) + o(1), m =

Una ricetta per il calcolo dell asintoto obliquo. Se f(x) è asintotica a mx+q allora abbiamo f(x) mx q = o(1), da cui (dividendo per x) + o(1), m = Una ricetta per il calcolo dell asintoto obliquo Se f() è asintotica a m+q allora abbiamo f() m q = o(1), da cui (dividendo per ) m = f() q + 1 f() o(1) = + o(1), mentre q = f() m = o(1). Dunque si ha

Dettagli

La funzione è continua nel suo dominio perchè y = f(x) è composizione di funzioni continue. Il punto x = 0 è un punto isolato per D f.

La funzione è continua nel suo dominio perchè y = f(x) è composizione di funzioni continue. Il punto x = 0 è un punto isolato per D f. FUNZIONI CONTINUE - ALCUNI ESERCIZI SVOLTI SIMONE ALGHISI 1. Continuità di una funzione Dati un insieme D R, una funzione f : D R e x 0 R, si è detto che f è continua in x 0 se sono soddisfatte le seguenti

Dettagli

LA FORMA MATEMATICA DEI FENOMENI NATURALI

LA FORMA MATEMATICA DEI FENOMENI NATURALI LE FUNZIONI Alla base del calcolo differenziale esiste il concetto di funzione. Il termine funzione è stato introdotto nella matematica da Gottfried Wilhelm LEIBNIZ nel 1664, per denotare una quantità

Dettagli

Moto circolare uniforme

Moto circolare uniforme Moto circolare uniforme 01 - Moto circolare uniforme. Il moto di un corpo che avviene su una traiettoria circolare (una circonferenza) con velocità (in modulo, intensità) costante si dice moto circolare

Dettagli

risulta (x) = 1 se x < 0.

risulta (x) = 1 se x < 0. Questo file si pone come obiettivo quello di mostrarvi come lo studio di una funzione reale di una variabile reale, nella cui espressione compare un qualche valore assoluto, possa essere svolto senza necessariamente

Dettagli

Matematica generale CTF

Matematica generale CTF Successioni numeriche 19 agosto 2015 Definizione di successione Monotonìa e limitatezza Forme indeterminate Successioni infinitesime Comportamento asintotico Criterio del rapporto per le successioni Definizione

Dettagli

LA RETTA. Retta per l'origine, rette orizzontali e verticali

LA RETTA. Retta per l'origine, rette orizzontali e verticali Retta per l'origine, rette orizzontali e verticali LA RETTA Abbiamo visto che l'equazione generica di una retta è del tipo Y = mx + q, dove m ne rappresenta la pendenza e q il punto in cui la retta incrocia

Dettagli

La f(x) dovrà rimanere all interno di questo intorno quando la x è all interno di un intorno di x 0, cioè I(x 0 ), cioè:

La f(x) dovrà rimanere all interno di questo intorno quando la x è all interno di un intorno di x 0, cioè I(x 0 ), cioè: 1 Limiti Roberto Petroni, 2011 Possiamo introdurre intuitivamente il concetto di limite dicendo che quanto più la x si avvicina ad un dato valore x 0 tanto più la f(x) si avvicina ad un valore l detto

Dettagli

Tavola riepilogativa degli insiemi numerici

Tavola riepilogativa degli insiemi numerici N : insieme dei numeri naturali Z : insieme dei numeri interi Q : insieme dei numeri razionali I : insieme dei numeri irrazionali R : insieme dei numeri reali Tavola riepilogativa degli insiemi numerici

Dettagli

l insieme Y è detto codominio (è l insieme di tutti i valori che la funzione può assumere)

l insieme Y è detto codominio (è l insieme di tutti i valori che la funzione può assumere) Che cos è una funzione? Assegnati due insiemi X e Y si ha una funzione elemento di X uno e un solo elemento di Y. f : X Y se esiste una corrispondenza che associa ad ogni Osservazioni: l insieme X è detto

Dettagli

Anno 5 4 Funzioni reali. elementari

Anno 5 4 Funzioni reali. elementari Anno 5 4 Funzioni reali elementari 1 Introduzione In questa lezione studieremo alcune funzioni molto comuni, dette per questo funzioni elementari. Al termine di questa lezione sarai in grado di definire

Dettagli

Parte 6. Applicazioni lineari

Parte 6. Applicazioni lineari Parte 6 Applicazioni lineari A Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Applicazioni fra insiemi, 2 Applicazioni lineari tra spazi vettoriali, 2 3 Applicazioni lineari da R n a R

Dettagli

4 3 4 = 4 x 10 2 + 3 x 10 1 + 4 x 10 0 aaa 10 2 10 1 10 0

4 3 4 = 4 x 10 2 + 3 x 10 1 + 4 x 10 0 aaa 10 2 10 1 10 0 Rappresentazione dei numeri I numeri che siamo abituati ad utilizzare sono espressi utilizzando il sistema di numerazione decimale, che si chiama così perché utilizza 0 cifre (0,,2,3,4,5,6,7,8,9). Si dice

Dettagli

LEZIONE 31. B i : R n R. R m,n, x = (x 1,..., x n ). Allora sappiamo che è definita. j=1. a i,j x j.

LEZIONE 31. B i : R n R. R m,n, x = (x 1,..., x n ). Allora sappiamo che è definita. j=1. a i,j x j. LEZIONE 31 31.1. Domini di funzioni di più variabili. Sia ora U R n e consideriamo una funzione f: U R m. Una tale funzione associa a x = (x 1,..., x n ) U un elemento f(x 1,..., x n ) R m : tale elemento

Dettagli

2 Argomenti introduttivi e generali

2 Argomenti introduttivi e generali 1 Note Oltre agli esercizi di questa lista si consiglia di svolgere quelli segnalati o assegnati sul registro e genericamente quelli presentati dal libro come esercizio o come esempio sugli argomenti svolti

Dettagli

Prodotto libero di gruppi

Prodotto libero di gruppi Prodotto libero di gruppi 24 aprile 2014 Siano (A 1, +) e (A 2, +) gruppi abeliani. Sul prodotto cartesiano A 1 A 2 definiamo l operazione (x 1, y 1 ) + (x 2, y 2 ) := (x 1 + x 2, y 1 + y 2 ). Provvisto

Dettagli

24 : 3 = 8 con resto 0 26 : 4 = 6 con resto 2

24 : 3 = 8 con resto 0 26 : 4 = 6 con resto 2 Dati due numeri naturali a e b, diremo che a è divisibile per b se la divisione a : b è esatta, cioè con resto 0. In questo caso diremo anche che b è un divisore di a. 24 : 3 = 8 con resto 0 26 : 4 = 6

Dettagli

Trasformazioni Geometriche 1 Roberto Petroni, 2011

Trasformazioni Geometriche 1 Roberto Petroni, 2011 1 Trasformazioni Geometriche 1 Roberto etroni, 2011 Trasformazioni Geometriche sul piano euclideo 1) Introduzione Def: si dice trasformazione geometrica una corrispondenza biunivoca che associa ad ogni

Dettagli